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Abstract

This thesis describes a project in which algorithms are developed for the
rapid and accurate solution of Poisson’s equation in the presence of a dielec-
tric boundary and multiple point charges. These algorithms are then used to
perform Brownian dynamics simulations on realistic models of biological ion
channels. An iterative method of solution, in which the dielectric boundary
is tiled with variable sized surface charge sectors, provides the flexibility to
deal with arbitrarily shaped boundaries, but is too slow to perform Brow-
nian dynamics. An analytical solution is derived, which is faster and more
accurate, but only works for a toroidal boundary. Finally, a method is de-
veloped of pre-calculating solutions to Poisson’s equation and storing them
in tables. The solution for a particular configuration of ions in the channel
can then be assembled by interpolation from the tables and application of
the principle of superposition. This algorithm combines the flexibility of the
iterative method with greater speed even than the analytical method, and
is fast enough that channel conductance can be predicted. The results of
simulations for a model single-ion channel, based on the acetylcholine recep-
tor channel, show that the narrow pore through the low dielectric strength
medium of the protein creates an energy barrier which restricts the perme-
ation of ions. They further show that this barrier can be removed by dipoles
in the neck of the channel, but that the barrier is not removed by shielding
by counter-ions. The results of simulations for a model multi-ion channel,
based on a bacterial potassium channel, show that the model channel has
conductance characteristics similar to those of real potassium channels. Ions
appear to move through the model multi-ion channel via rapid transitions
between a series of semi-stable states. This observation suggests a possible
physical basis for the reaction rate theory of channel conductance, and opens
up an avenue for future research.
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Chapter 1

Ion Channels

The project described by this thesis is an effort to improve the understanding
of ion channels by devising methods of computer simulation that can predict
channel conductance from channel structure. Ion channels are an essential
part of the molecular machinery of life, performing a role in biological in-
formation systems analogous to that of transistors in artificial information
systems. They are the fundamental amplifiers, transducers, and regulators
of the nervous system and the reactive tissues attached to it. Many of the
roles that ion channels play are now understood, thanks to decades of care-
ful electrophysiological research, culminating in the patch-clamp technique
which can measure the current through a single channel. The structures of
ion channels are less well known, but a recent breakthrough has revealed
the detailed molecular structure of one type of potassium channel, and the
structures of more channels may soon follow. What is missing from this
picture are physical theories that predict channel function from channel
structure. Without such theories we cannot claim to understand how ion
channels work.

Although the lack of detailed channel structures has impeded the de-
velopment of such theories, a more fundamental difficulty is the physical
complexity of describing a working ion channel. The size of ion channels
(typically 50–100 Å long) places them in the grey area between the statis-
tical laws of physics used for bulk materials, and the atomic laws used for
individual atoms and molecules. Ion channels are small enough that interac-
tions between individual atoms are likely to be important to their operation,
but large enough that calculation of all such interactions is impractical. In
addition, ion channels are biological objects, the product of a billion or more
years of evolution. The process of natural selection can be expected to have
improved their efficiency and effectiveness by all available means, very likely
operating on multiple scales and using multiple physical effects. We should
expect ion channels to be sophisticated pieces of molecular machinery, not
simple holes in the cell membrane.

1



2 CHAPTER 1. ION CHANNELS

As a result of this complexity, most physical descriptions of ion channel
operation (including this one) rely on computer simulations or computer
calculations. Computers are good at performing complex calculations, and
are the tool of choice for attacking an intrinsically complex problem such
as this. While a simple analytical theory would be easier to use and give a
clearer intuitive picture, the complexity of the problem means that such a
construct is unlikely to be found. A good simulation technique may be an
acceptable alternative. Graphical visualization can assist in gaining intu-
ition from a simulation, and powerful desktop computer systems (with good
graphics) are now common. The most important requirement of a theory is
that it make testable, non-obvious predictions about the system it attempts
to describe, rendering it potentially both falsifiable, if its predictions are
contrary to experiment, and useful, if its predictions agree with experiment.
The method by which the predictions are made is not so important, as long
as it can be accurately described and reproduced. Unfortunately, even us-
ing a modern supercomputer (as for this project), simplifying assumptions
need to be made for conductance to be predicted. Simplifying assumptions
are undesirable at this stage because they are dangerous. We do not yet
know which aspects of the physical reality of ion channels are important to
their operation and which are incidental. Making too many assumptions will
likely result in something important being missed, and it may be impossible
to track down which assumption is responsible. However, the ultimate test
of any theory is comparison with experiment, which in the case of ion chan-
nels means single channel currents from patch-clamp recordings. If too few
assumptions are made the theory will be unable to predict the conductance
of a model channel, and comparison with experiment will be impossible.

Of course an ideal theory should not include irrelevant details which in-
troduce unnecessary complexity and detract from understanding. It should
rather capture the essence of the problem and nothing else. However, at
this stage I do not think that anyone knows what the essence of ion channel
operation is. The many contradictory ideas presented in the second (more
theoretical) part of Hille’s Ionic Channels of Excitable Membranes [31] il-
lustrate this point, giving the impression of an unassembled jigsaw puzzle,
with pieces missing, and perhaps some extras thrown in: each individual
piece makes sense, but the pieces do not fit together. It is to Hille’s credit
that he does not prematurely attempt to force these ideas into a coherent
framework, but simply presents them, so giving a true picture of the state
of the field.

The strategy we use in this project is to ignore the quest for elegance
to start with, and build the most comprehensive computer simulation of an
ion channel that current hardware and the requirement to predict conduc-
tance allow. The presence of a modern supercomputer at the ANU and my
own background in computer science make this strategy practical. Any the-
ory that works, that successfully predicts conductance from structure, will
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produce an increase in our understanding of ion channels, no matter how
complex or cumbersome that theory is. This increased understanding can
then be used to develop more elegant and usable theories, as our intuition
will be strengthened, and the effect of simplifications can be controlled by
comparison with the original, complicated theory. This is not, however, a
pure brute-force approach. To make the simulations last long enough to pre-
dict conductance (several microseconds of simulated time), we are forced to
abstract away most of the atomic detail of the system, and use macroscopic
electrostatic theory to recover the long range forces.

The rest of this chapter describes ion channels further: their roles in
biological systems, the mechanisms they use to perform these roles, and
their structures as far as is known. The information is taken for the most
part from Refs. [31, 51]. Chapter 2 delves into the physics of ion channel
conductance, and discusses some of the existing theories of the same, and
their shortcomings. It explains the reasoning behind our choice of simula-
tion method: three-dimensional Brownian dynamics. A consequence of this
choice is the need to use continuum electrostatic theory to calculate long
range forces between ions in the simulation. Doing so rapidly enough to let
the simulation predict conductance was the major technical problem of the
project. Chapter 3 describes the problem and an iterative method of solution
that works, but is far too slow. Chapter 4 describes an analytical method of
solution that is fast enough to allow limited Brownian dynamics simulation,
but restricts the shape of the model channel to a torus. Chapter 5 describes
the Brownian dynamics algorithm itself, and the first simulation results us-
ing the analytical method for the electrostatic calculations. The tracks of
ions placed in the channel indicate that there is an energy barrier for ions
crossing the channel, which can be removed by the appropriate placement
of fixed charges inside the wall of the channel. Chapter 6 describes an al-
gorithm where the electrostatic calculations are done in advance, stored in
tables, and looked up rapidly during simulation. This at last renders the
simulation fast enough to predict conductance, and at the same time allows
the use of the more flexible iterative method of electrostatic calculation
(from chapter 2). Chapter 7 describes Brownian dynamics simulations for
a catenary channel using this new method. The conductance results are
encouraging, being reminiscent of those from real channels. In chapter 8
we use our methods to build a model based on a recently discovered potas-
sium channel structure. The conductance characteristics of the model are
recognizably those of a multi-ion channel: the model channel’s conductance
shows both rectification and saturation. In addition the way that the model
conducts is interesting, in that it suggests a possible physical basis for the
success of reaction rate theory in channels (the usual physical justification
for reaction rate theory is doubtful when the theory is applied to channels).
Chapter 9 summarizes the strengths and weaknesses of our theory, and dis-
cusses the avenues for future research opened up by its application to the
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potassium channel, and by the insights about channel conductance that it
has yielded.

1.1 The Role of Ion Channels

It is the nature of biological systems that they have a purpose: they play
some role in helping the organism that they are part of survive in the world.
The roles that ion channel play are varied, and some are yet to be discovered,
but one theme appears dominant, and has been extensively studied: that of
rapid signalling in animal cells. All ion channels do roughly the same thing,
namely transport ions rapidly across a biological membrane. A channel
with this property alone would not be very useful (except for killing cells:
some antibiotics are simple channels of this type). Channels typically have
two other properties: firstly, they are selective about the ions that they
transport, secondly, they open and close in response to external stimuli (or
rather the stimuli alter the probability with which they open and close).

Different types of ion channel have different characteristics of conduc-
tance, gating, and selectivity, and do different jobs in the signalling process.
The genetic sequences of many types of channels have been found, form-
ing a family tree which gives clues about their evolutionary origins. The
genetic sequence dictates the protein sequence, which dictates the three-
dimensional structure of the channel. The structure in turn gives rise to
the characteristics of the channel, via the operation of the laws of physics
and chemistry. The prediction of three-dimensional structure from protein
sequence is one of the great unsolved problems of biology. Channel structure
has to be determined by other means, as has been done most recently by
x-ray crystallography. The prediction of channel characteristics from chan-
nel structure is another unsolved problem, one that this project aims to
address, at least in part. On the other hand, the functional characteristics
of ion channels can be measured by experiment, and given these, the way
in which channels interact with the cell membrane to provide rapid inter-
cellular signalling is now understood, at least in general terms. This section
provides a brief summary.

Cells are the smallest self-contained unit of life and are defined by the
membrane that surrounds them. This membrane gives a cell an interior
volume which concentrates biological molecules, and can be regulated to
provide conditions different from the exterior environment. Biological sys-
tems without a membrane, such as some viruses, can only reproduce by
taking over an existing cell. It seems that cells and membranes are essential
for life. As well as dividing the inside of cells from the outside, membranes
provide a home for many types of proteins, including those, like ion chan-
nels, that transport through the membrane molecules that otherwise could
not pass. The simplest cells, the prokaryotes (such as bacteria), have a cell
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membrane, a rigid cell wall, and possibly an outer membrane, but their
interior is an unstructured biological soup. In contrast eukaryotic cells (vir-
tually all multicellular life, as well as single celled animals and plants) have
a complex internal structure, with multiple internal membranes defining or-
ganelles which perform specialized functions, and an internal framework, the
cytoskeleton, which provides organization and transport.

The cell membrane (and other biological membranes) are made of a
double layer of molecules called phospholipids. These molecules have a long
oily tail attached to a compact polar or charged head. Their heads are
attracted to water (are hydrophilic) while the tails are repelled by it (are
hydrophobic), so the phospholipids arrange themselves into a double layer,
with the tails in the middle and the heads on the outside. The membrane
is like a two-dimensional liquid: hydrophobic forces hold it together, pre-
venting the phospholipids from leaving the plane, but the phospholipids and
other molecules can drift around freely within the membrane. Proteins that
span the membrane, such as ion channels, have a hydrophobic middle and
hydrophilic ends. This anchors them in the plane of the membrane and pre-
vents them from flipping, but does not prevent them from drifting: many
such proteins, however, are connected to the cytoskeleton, which does pre-
vent them from drifting. Other proteins emerge from one or other side of
the membrane, or are even enclosed by it. Some of these are free to drift
and act as messengers or transport within the membrane.

Biological membranes block ions. Other small molecules, such as dis-
solved gases, steroid hormones, and even individual water molecules, can
cross the membrane by dissolving into the lipid layer and drifting across to
the other side. There are gaps between the lipid tails, and enough flexibility
to let these small molecules pass. But ions have an unbalanced charge, which
strongly coordinates the immediately surrounding layer of water molecules
(the first hydration shell), and interacts with at least two further layers of
water. All of this water has to be stripped off for the ion to enter the lipid
layer, which costs a large amount of energy. The non-polar lipids do not
interact with the ion, and so do not replace the energy, with the result that
the membrane is effectively impermeable to ions. Since ions are the charge
carriers in aqueous solutions, this means that biological membranes are in-
sulators, and being very thin, are excellent capacitors. In prokaryotes the
cell membrane is used to store and convert energy: glucose is broken down
and the energy is stored as an electrical potential across the membrane, then
converted to chemical energy by protons moving down the electrical gradient
inside specialized proteins. This is why antibiotics that let ions cross the
bacterial membrane are so effective: they collapse the membrane potential
and starve the cell. In eukaryotes energy generation is done internally by
the mitochondria, organelles believed to be descended from bacteria. This
leaves the outer membrane free for other tasks.

One such task is intercellular signalling, achieved by waves of depolar-
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ization traveling along the cell membrane. The polarization, or electric po-
tential across the membrane, is set up by a combination of ion pumps and
potassium channels. Like all ion channels, potassium channels are passive
transporters: they let ions cross the membrane but do not impel them. The
ions cross if the electric potential or concentration gradient favors it, not
otherwise. Ion pumps, in contrast, are active transporters, working against
the concentration gradients by spending cellular energy. The ion pumps
concentrate potassium ions inside the cell, while ejecting sodium ions into
the extra-cellular solution. They transport five ions at once, ejecting three
sodium ions for every two potassium ions brought in. Since both sodium
and potassium ions have a single positive charge, this creates an electric
potential across the membrane, making the inside of the cell more negative
than the outside.

Potassium channels regulate this potential. Potassium ions can leave (or
enter) the cell through the potassium channels because the electrical and
concentration gradients are nearly in balance. They stop flowing when their
tendency to leave the cell because of the high concentration inside is matched
by their tendency to enter the cell because of the electrical driving force.
Thus open potassium channels have a stabilizing effect on the membrane
potential. There are a bewildering variety of potassium channels, expressed
in different types of cells, and with subtly different gating characteristics.
The main theme seems to be stabilization of the membrane potential when
needed (during the depolarization cycle of the membrane), but closure at
other times, to minimize the flow of ions and conserve energy. Of course,
for the sodium ions, concentrated on the outside, the concentration and
electrical gradients are pushing in the same direction, into the cell. This is
the basis of the depolarization mechanism.

The depolarization wave is started by ligand-gated cation channels. These
channels open in response to the presence of a neurotransmitter, a chemical
signal outside the cell, and allow sodium ions to enter, locally depolarizing
the membrane. After a short time the ligand-gated channels close, either
because their triggering chemical has been mopped up, or because they in-
activate, closing and becoming insensitive to the triggering chemical until
concentrations of it fall and they reset. Before this happens, however, the
depolarization is propagated by voltage-gated sodium channels. These open
in response to a drop in membrane potential and allow more sodium to enter,
amplifying and spreading the signal. Voltage-gated sodium channels also in-
activate, shutting down once they have completed their task. At about the
time the sodium channels inactivate, extra voltage-gated potassium chan-
nels open. These delayed rectifiers are also triggered by a drop in membrane
potential, but take longer than the sodium channels to respond to it. They
quickly restore the membrane potential, resetting the voltage-gated sodium
channels and preparing the membrane for the next pulse. When the depo-
larization reaches its destination, voltage-gated calcium channels open and
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allow calcium to enter the cell, again in response to the drop in membrane
potential. Calcium is a divalent cation, concentrated outside the cell by an-
other set of ion pumps. Its presence inside the cell is a signal for the cellular
machinery to perform some action, for instance a muscle cell to contract, or
a nerve cell to release neurotransmitter and signal to an adjacent cell.

The advantage of this signalling mechanism is speed of operation: nerve
cells can fire up to 1000 times per second. Ion channels work far more quickly
than ion pumps: a typical ion pump processes 10 ions per second, compared
to 106-107 ions per second for a typical ion channel. However, the number
of sodium or potassium ions needed to polarize or depolarize the membrane
is small compared to the total number of ions in the cell: the passage of a
single wave does not upset the concentration differences much. Thus a small
number of ion channels rapidly alter the membrane potential, to achieve high
signalling speed, while a large number of ion pumps slowly and continuously
move ions to maintain the appropriate concentrations: potassium on the
inside, and sodium on the outside.

1.2 Ion Channel Function

The function of ion channels is conductance, modified by selectivity and
gating. Conductance is the rapid transport of ions down the free-energy
gradient, and ion channels do transport ions rapidly, with individual chan-
nels generating a current in the picoampere range by moving millions or tens
of millions of ions per second. Selectivity is the preference, or specificity, for
particular types of ions. Most ion channels select on valence, transporting
for instance only cations, or anions, or divalent cations. Some are much
more specific, such as potassium channels, which maintain the membrane
potential by transporting potassium ions while blocking sodium ions, despite
these both being monovalent cations of similar size. Gating is the ability to
open and close in response to external stimuli. All channels open and close
at random, and some have sub-conductance states, where they conduct at
less then their maximum, but the probabilities of opening and closing, and
average times spent open and closed, are influenced by the external stimuli.
Averaged over many channels the effect is the same as if the channels were
being reliably opened and closed on command.

These channel functions can be, and have been, studied by the patch-
clamp technique. This involves attaching a micropipette to the surface of
the cell by suction, isolating the solution inside the pipette and the patch
of membrane covered by it from the rest of the system. The high resistance
and small size of the patch reduces the electrical noise to the level where
the current from a single channel can be recorded. Variations on this tech-
nique include pulling the patch off the cell to vary the bathing solution on
the cytoplasmic side, and increasing the suction to breach the membrane,
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then recording current for the whole cell, not just a small patch. Controlled
experiments can be done to investigate all aspects of channel function: the
conductance and selectivity of a channel under different concentrations of
ions and different electrical potentials, and the pattern of opening and clos-
ing of individual channels under the influence of various stimuli. This wealth
of experimental data should make it easy to test theories of channel mecha-
nism. Knowledge of channel structure is not so well advanced, however, and
theories based on the detailed physics of channels have difficulty predicting
conductance.

The most striking aspect of channel conductance is the ability of an
individual channel to carry picoamperes of current, enough to be individually
measured by the patch-clamp apparatus. Other types of transport proteins,
and the vast majority of enzymes, operate much more slowly, performing
from 10 to 1000 actions (transportations or reactions) per second. These
slower proteins use mechanisms of tight binding to their substrates and
conformational change. In other words the whole protein reshapes itself
while the substrate hops between well defined positions or states. The much
higher rate at which ion channels operate (one picoampere is equivalent
to around six million monovalent ions per second) strongly suggests that a
different mechanism is responsible. The only mechanism known to operate
at these speeds is diffusion, drift due to the random thermal motion of
molecules. This would explain why all channels are unpowered, relying on
electrical and concentration gradients to drive the ions. Diffusion involves
many possible positions for an ion crossing the channel, and without an
ion binding to a particular location a protein could not assist its transport
by a chemically powered conformational change. A diffusive conductance
mechanism implies a water filled pore through the channel, to provide the
ions with the necessary freedom of motion, and structural studies do show
evidence of such pores (hence the name channel). The diffusive mechanism is
widely accepted, but some theories still suggest mechanisms involving tight
binding to particular locations (binding sites) and hopping between these
sites.

Another important aspect of channel conductance is the role of electro-
static interactions between the ion and the channel. It is easy to think of
the membrane as a mechanical barrier to ions, and a channel as a hole in the
membrane, large enough for the ion to fit through, but this simple picture is
not enough to explain channel conductance. The membrane itself is flexible
and contains gaps large enough to contain the ion, if it were not for the
surrounding coordinated water. For an ion to pass through a channel some
of this water must be stripped off. In the less selective channels the pore
is wide enough for the ion to keep its first hydration shell, but selectivity
between ions of the same valence requires contact between the protein and
the ion, implying that at least some of the first shell is removed. The first
shell contains most of the coordination energy, but the remainder in the
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second and third shells is enough to effectively block transport. If the ion is
to pass, this energy must be replaced by interaction with the channel. En-
ergy lost by intruding into the first shell could be replaced by polar groups,
such as carbonyl, in contact with the ion. This mechanism is seen in the
channel formed by the antibiotic gramicidin, which has a known structure
and has been extensively studied. Energy lost by the stripping of the second
and third shells could be replaced by longer range interactions with fixed
charges or large dipoles in the protein wall. The membrane is an electro-
static barrier to the passage of ions, so a channel must somehow create an
electrostatic hole in the barrier.

The mechanism of selectivity depends on the mechanism of conductance.
Selectivity can be explained by a binding site which is specific for a particular
species of ion, as seen in ion carriers, another type of antibiotic. An ion
carrier works by wrapping itself around an ion on one side of the membrane
and drifting across to the other side before releasing the ion. Ion carriers
are very specific to a particular ion, but they are around ten thousand
times slower than a channel. The speed of the channel suggests a diffusive
mechanism, which means that selectivity cannot be produced by a binding
site. An alternative hypothesis is a selectivity filter, a narrow region of the
channel which intrudes into the first hydration shell, replacing some of its
water with polar groups. In bulk solution the water molecules in the first
shell adjust themselves to the size of the ion, but pieces of protein would
be more constrained. They could be arranged to replace all the hydration
energy for a particular species of ion, but not for other types of ion of slightly
different sizes. So for the preferred ion, the selectivity filter strips off some
of the water in the first shell, but replaces the energy by interaction with
the polar groups. The filter provides not a binding site, but a continuous
path for diffusion, free of sharp energy barriers which would impede the ion,
or sharp energy wells which would trap it. For ions other than the preferred
one the filter would still remove the water, but would not do as good a job
of replacing the energy, producing an energy barrier.

Selectivity between ions of the same valence in diffusive channels is an
interesting topic, but not one that can be readily studied by the Brownian
dynamics simulations described in this thesis. Molecular dynamics simula-
tions are needed to study the short range interactions involved. In Brownian
dynamics these are abstracted into the random force, so any selectivity be-
tween ions of the same valence must be built into the simulation method,
rather than emerging from the model structure. Ions of different valence,
however, have different long range electrostatic effects, which could be in-
volved in selection among them. For example, if fixed charges or large dipoles
are used in channels to replace energy from the outer hydration shells, these
would be specific to cations or anions. For ions of the opposite polarity the
dipoles would add to the energy barrier rather than canceling it, leading to
a channel specific to one polarity of ion. This hypothesis could explain the
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selectivity of non-specific cation channels, such as most ligand-gated chan-
nels, but for other types of channels more complex mechanisms seem to be
in operation. Calcium channels are specific for divalent cations, blocking
the monovalent sodium ions unless there are no divalent cations present, in
which case they conduct sodium ions perfectly well. Anion channels are not
very selective among anions, and furthermore they allow some cations to
pass, but only in the presence of permeant anions. These conductance char-
acteristics can be explained by theories involving multiple interacting ions
in a channel with binding sites, but this is inconsistent with the diffusive
mechanism needed to explain rapid transport. If these characteristics or se-
lectivity between ions of different valence are due to long range interactions
between ions and the protein, then they can certainly be investigated by the
methods described here.

Gating, and channel kinetics in general, is another topic that our Brow-
nian dynamics simulations cannot examine directly. The pattern of channel
opening and closings seen on a patch clamp recording occurs over a period
of tens to thousands of milliseconds, while our current methods can only
manage the several microseconds of simulation time needed to predict con-
ductance. Channel gating seems, in most cases, to be accomplished by a
conformational change in the protein structure which occludes the aqueous
pore, preventing the passage of ions. The view of the channel as a hole in
an electrostatic barrier raises the possibility of an electrostatic gating mech-
anism, where a conformational change would shift fixed charges within the
protein so as to reestablish the barrier. It has been suggested that such a
mechanism would change a cation channel into an anion channel or vice-
versa, but this is not necessarily the case: the membrane barrier shows that
electrostatic effects can block ions of both valences. There is, however, no
experimental evidence that any channel uses such a mechanism. Other types
of channel kinetics, which may not be due to conformational change, are the
rapid flickering shown by some types of channel, and the subconductance
states (periods of reduced conductance during a long open interval) exhib-
ited by ligand gated anion channels. It is possible that these are caused
by interaction between ions in a multi-ion channel: this is suggested by the
dependence of some of these effects on the concentration or type of ions in
the bathing solution.

1.3 Ion Channel Structure

In order to test if a theory makes accurate predictions from a channel struc-
ture, details of that structure need to be known, especially details about the
structure of the pore. For a theory based on long range electrostatics, such
as the Brownian dynamics simulations described here, the important infor-
mation is the geometry of the pore and the position and strengths of fixed
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charges and large dipoles. The nature of the pore lining is also important,
that is whether it is hydrophobic or hydrophilic (covered in small dipoles).
For a theory based on short range interactions between molecules, such as
molecular dynamics simulations, more information is needed, namely the
detailed three dimensional structure of the amino acid residues that make
up the protein.

The usual method of determining the three dimensional structure of
a protein is x-ray crystallography: the protein is crystallized, then x-ray
diffraction patterns are produced from various angles and analyzed to recover
the molecular structure. Channels are difficult to crystallize since they are
only stable in their usual form when part of a membrane, so until recently
other methods such as electron microscopy and hydropathy plots have been
used to gain some idea of channel structure. These methods show that the
overall structure of a channel is a bundle of four or five protein sub-units
which cross the membrane: the pore is formed out of the gap between them.
In some channels the sub-units are identical, while others are made of a
mixture of slightly different types. The four sub-unit channels are usually
voltage gated and highly selective, while the five sub-unit channels are ligand
gated and less selective. Gene sequences show that within each type the
channels are related. Whether the four and five unit channels are related
is not yet known. This section gives a brief description of the structure of
two channels: firstly the acetylcholine receptor, a ligand gated channel, and
secondly the KcsA channel, a bacterial channel of the four sub-unit type,
and one of the very few channels whose structure has been determined by
x-ray crystallography [21].

The most studied ligand gated channel is the nicotinic acetylcholine re-
ceptor of the electric ray (Torpedo californica), a non-selective cation chan-
nel. Electric rays use these channels to power their electric pulse, and so
produce them in very large quantities, which has allowed the channels to be
separated and purified. Despite their unconventional use, gene sequencing
shows that these ACh receptors are very similar to those of other species,
which are used to activate muscle contraction. ACh receptors have five sub-
units, two each of the type called α and one each of types β, γ, and δ. The α
sub-units contain the ligand binding sites: it takes two molecules of acetyl-
choline to activate an ACh receptor. The overall structure of these channels
has been determined [70]. The channels were packed into a two dimensional
lattice, and electron micrographs of the lattice were analyzed by crystallo-
graphic methods, yielding a low resolution picture. ACh receptors take the
form of an hourglass, with large bell-shaped vestibules extending away from
the membrane, by 60 Å on the extracellular side, and 20 Å on the cytoplas-
mic side. Both vestibules are about 12.5 Å in radius at their mouths, and
narrow towards the membrane crossing pore. Overall the channel is about
100 Å long. The pore is too narrow to be resolved on the micrographs, but
electrophysiology indicates that its minimum radius is around 6 Å, since
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this is the radius of the largest organic ion that can be pushed through the
channel.

Indirect methods have been used to deduce a rough position for some
of the charged protein residues in the ACh receptor [71]. The protein se-
quences were analyzed using a hydropathy plot: by allocating each residue
a hydrophobicity number, indicating whether it would be more likely to
be found surround by lipids or by water, four membrane spanning segments
were identified. These segments are assumed to form alpha helices, the usual
secondary structure in a hydrophobic environment, and under this assump-
tion they are about the right length to cross the membrane. Studies using
point mutagenesis have identified one of these, the M2 segment, as providing
the lining of the pore. In point mutagenesis, the channel is cloned, but one
of its residues is swapped for an alternative by altering the genetic sequence.
The function of mutant channels produced by the altered code can then be
compared with the function of channels of the wild type. Any changes give
information about the role of the modified residue. In the case of the M2
segment several residues were identified that affect the operation of toxins
which block the pore by binding to its wall. Other, negatively charged,
residues on the segment affect the conductance of the channel. If the M2
segment is assumed to be an alpha helix then all of these residues appear
on the same side. Although circumstantial, the evidence is convincing: it
seems that the pore of the Ach receptor is formed by the M2 segments of
each of the sub-units, in the form of five alpha helices in a bundle. If this
interpretation is correct the negative charges form three rings around the
pore: one at each end of the trans-membrane section and one just inside the
membrane on the cytoplasmic side. Moreover, the point mutagenesis exper-
iments suggest that these rings of charges are necessary for the channel to
conduct.

In a recent breakthrough the detailed structure of the KcsA channel has
been found by crystallographic methods [21]. This is a bacterial channel,
but the protein sequence of its membrane spanning region is very similar
to a group of voltage gated potassium channels (Ka channels) found in eu-
karyotes. The KcsA channel is formed from four identical sub-units, and
is about 45 Å long in total. Unlike the ACh receptor it has no vestibules.
The eukaryotic Ka channels have much larger sub-units, however, which may
include vestibules. The shape of the pore is unexpected. It starts out rel-
atively narrow (around 3 Å radius) on the cytoplasmic side, then expands
into an ellipsoidal chamber (around 5 Å in radius and 12 Å long) near the
centre of the membrane, which is connected to the extracellular side by a
very narrow section (around 1.5 Å radius). The narrow section is lined with
polar carbonyl groups. The chamber and lower pore, however, have hy-
drophobic walls. Short alpha helices within the surrounding protein provide
large fixed dipole moments, with negative poles pointing towards the central
chamber. There is also evidence of charged residues near the cytoplasmic
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and extracellular entrances to the channel. Doyle et. al. [21] suggest that
the narrow section is a selectivity filter, while the combination of the water
filled chamber and helix dipoles act to stabilize cations in the hydrophobic
centre of the membrane.

In summary, while knowledge about the structure of channels is limited,
it is enough to begin constructing theories based on channel structure, rather
than the fitting of abstract models to experimental data. The information
available about the ACh channel, its overall shape and the position of some
of the fixed charges, is sufficient to allow construction of a tentative model
using Brownian dynamics simulations, as described in chapters 3 through 7.
Sansom and co-workers have gone further [65], by using molecular dynam-
ics to deduce a detailed structure for the ACh channel pore, based on the
sequence of the M2 helix. The discovery of the crystallographic structure of
the KcsA channel is a major advance. The structure revealed can be used as
the basis for Brownian dynamics simulations, as described in chapter 8. It is
detailed enough for molecular dynamics simulations, allowing investigations
of the operation of the selectivity filter. It also raises the hope that more
crystallographic structures of channels will be discovered, providing further
encouragement for the development of structurally based theories of channel
operation.
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Chapter 2

Conductance Theories

The existing theories of ion channel conductance have had some success, but
they do not provide a coherent picture, nor can they predict conductance
from structure. The theories operate on different scales and under different
assumptions. Each can explain some aspects of channel conductance, but
there is no bridge between the theories, no way to know which aspects are
dominant for a particular channel with a defined structure. Some theories
propose contradictory mechanisms, for instance reaction rate theory involves
a mechanism of kinetic hopping over a small number of energy barriers,
while Brownian dynamics and Poisson-Nernst-Planck theory are based on
the diffusion of ions. In other cases the links between the different theories
have not yet been sufficiently explored. For example molecular dynamics
studies can be used to investigate the molecular mechanisms of diffusion
and electrostatics in channels, and so check and calibrate the assumptions
Brownian Dynamics and Poisson-Nernst-Planck theory, but unambiguous
results are yet to emerge from the attempts that have been made along
these lines.

This project is an attempt to improve on this unsatisfactory situation:
the biological importance of channels, the wealth of experimental data, and
the emergence of detailed structures make the need for improved channel
theories an acute one. However, the deficiency of progress in ion channel
theory compared to that in ion channel experimentation is not due to a lack
of effort or imagination on the part of theorists, but rather because of the
difficulty of the problem. We therefore first examine the existing theories,
identify their strengths and weaknesses, and then develop a new approach
which attempts to combine as many strengths and as few weaknesses as
possible, with the aim of predicting conductance from structure to allow
comparison with experiment. This new approach is by no means perfect:
our hope is to improve upon the existing theories, and that the new theory
in turn will inspire still further improvements by ourselves or others.

This chapter gives a brief description of three of the most successful
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theories of channels, explaining how they work, what aspects of channel be-
haviour they explain, what their strengths and weaknesses are, and why we
believe they cannot predict conductance from structure. Reaction rate the-
ory (RRT) is a simple theory of kinetic hopping between states, developed
to explain the rate of chemical reactions, used successfully for enzymes, and
later applied to channels [20]. It is popular because of its usability and its
ability to explain the operation of multi-ion channels, but its physical as-
sumptions, while appropriate for enzymes, are inappropriate for channels.
Molecular dynamics (MD) is a simulation technique that operates fully on
a molecular level, with all higher level phenomena emerging from the simu-
lation [4]. It has been used to discover the conductance mechanism in the
pores formed by the antibiotic gramicidin. It has the potential to predict
channel operation from near first principles, but with existing computers it
is too slow to predict the conductance of channels. Poisson-Nernst-Planck
theory (PNP) is a new method: based on the continuum theories of elec-
trostatics and diffusion it is simple enough to predict conductance using a
desktop computer system [23]. It can fit experimental data over a larger
range than RRT, but some of the structural and physical predictions it
makes seem strange. We believe that one of the simplifying assumptions
that makes PNP so usable is flawed, and this leads PNP to make some
incorrect predictions.

The chapter goes on to describe our approach to the problem and why we
chose it. These are the tactics to implement our strategy of the most com-
prehensive simulation still capable of predicting conductance. We choose to
use three-dimensional Brownian dynamics (BD), a technique where the ions
are simulated explicitly, but the water is treated as a continuum. Brown-
ian dynamics has been used before to study channel conductance, but only
in one dimension (the axis of the channel). Our approach is based on the
concepts of diffusion and electrostatics (as is PNP), but the diffusion is sim-
ulated on an ion by ion basis. In three-dimensional BD both shielding by
counterions (predicted by PNP), and multiple ion effects (predicted by RRT)
should emerge naturally from the simulation. The treatment of water as a
continuum and the channel wall as an abstract geometric shape are neces-
sary simplifications to make the simulation fast enough. Even with these
simplifications the electrostatic problem must be solved extremely quickly
if conductance is to be predicted.

2.1 Reaction Rate Theory

Reaction rate theory is a highly simplified model. The channel is represented
as a series of energy wells, or binding sites, separated by energy barriers.
The ions are assumed to linger in the wells, moving by rapid hops over the
energy barriers. So the channel has states, each consisting of a pattern of
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particular types of ions in particular wells (each well is assumed to hold at
most one ion). Conductance can be calculated from the transition proba-
bilities between states, or equivalently the reaction rates between states (if
the movement of an ion from one energy well to another is thought of as a
chemical reaction). For a single ion channel with only one type of perme-
ant ion there is one state per energy well (plus the state for the unoccupied
channel), and the reaction rates are simply the probability of the ion moving
forwards or backwards when it is in a particular well. These probabilities
are affected by the strength of the applied electric field. Multi-ion chan-
nels, and channels with more than one type of permeant ion, have more
complicated state diagrams, and there are multiple transition probabilities
associated with each well, depending not only on the type of ion that occu-
pies that well, but on the occupancy of other wells (that is the state of the
whole channel). This abstract model of states and transition probabilities
represents all of the interactions between the ions, water, and protein wall.

Reaction rate theory was invented to explain and predict the rates of
chemical reactions [25, 7]. The theory is based on the concepts of a reaction
pathway and an activated complex. The reaction pathway is a series of
configurations that the reactants must pass through to become the products.
The activated complex is an unstable combination of the reactants, ready
to break into products. Eyring’s original formulation of the theory [25]
uses statistical mechanics to estimate the proportion of reactants in the
form of the activated complex, and then estimates the rate of decay into
products from the frequency of vibration of the activated complex. The
rate of the reaction is then the product of these two quantities. The use of
statistical mechanics relies on the states involved being in near equilibrium,
but this is a reasonable assumption for chemical reactions, which typically
have large energy barriers and are slow compared to thermal motion. This
form of RRT allows reaction rates to be predicted from knowledge of the
structure of the reactants and the activated complex, and the potential
energy step between them. Unfortunately the structure of the activated
complex is often unknown, so there is an alternate form of the theory based
on thermodynamics rather than statistical mechanics. This is more of an
explanatory tool, allowing the rate of a chemical reaction to be interpreted
as a free energy barrier. If the temperature dependence of the reaction rate is
also known, the free energy can be split into enthalpy and entropy, with the
enthalpy corresponding to the potential energy in the original formulation.

RRT has a history of successful use in chemistry, including biochem-
istry, where it is used to explain the operation of enzymes. Enzymes are
proteins which speed up (often greatly) chemical reactions which could hap-
pen spontaneously. They operate by binding tightly to a substrate, and by
stabilizing the transition state: reducing the energy cost of the substrate en-
tering a form part way between two stable forms [51]. RRT thus provides an
intuitive explanation for the operation of enzymes: with the energy step to
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the activated complex reduced, the proportion of reactants in the activated
form is greater, and the reaction proceeds more quickly. RRT also provides
a framework for the quantitative prediction of reaction rates in enzymes, as
the situation in enzymes is close to the original assumptions of tight binding,
a single reaction path, and chemical bonds being broken and formed at the
transition state. RRT can also be used to describe diffusion [26, 31] by as-
suming a series of small energy wells which an ion hops between, performing
a random walk. If the wells are closely enough spaced RRT predicts a linear
relationship between applied field and drift velocity, agreeing with experi-
ment and conventional diffusion theory. This form of RRT has been used
successfully to study diffusion in solids, for example to predict deviations
from ohms law in glass at large fields [49]. This does not necessarily mean
that the diffusion and hopping models are equivalent, however. As pointed
out by Jordan [39], diffusion is a poor model if there are sharp changes in
energy along the reaction pathway (within a fraction of an ionic radius),
while hopping is a poor model if the energy is slowly varying over a large
distance (several ionic radii).

The physical assumptions of reaction rate theory are unlikely to be met
in channels [20]. The high rate of ion transport in ion channels suggests
that diffusion is the main mechanism of transport. Diffusion involves broad,
shallow energy wells, a multiplicity of possible paths, and no special acti-
vated state where the key step in an ion’s transport can be said to happen.
These are very different conditions to those which gave rise to RRT. While
RRT can be used to describe diffusion, this use demands a series of small
energy wells, a few ionic radii across at most, and in any case works best
for crystals and solids where the location of the wells is fixed. Analysis of
this sort may be useful in the narrowest regions of a channel, where pro-
tein is substituting for some of the first hydration shell. In the gramicidin
channel, which is very narrow throughout, RRT of this type has been used
to relate structure to conductance. However, a more typical use of RRT
involves dividing the entire length of the channel (typically 25-80 Å) into
at most half a dozen energy wells or binding sites. This is nowhere near
enough wells to describe diffusion across the length of the channel by RRT.
The wells are sometimes interpreted as describing the situation in the selec-
tivity filter, with the rest of the channel (where the physical basis of RRT
is hard to justify) assumed to be unimportant to conductance [31]. In a
multi-ion channel this amounts to an assumption that all the ions crowd
together in the selectivity filter, within a few angstroms of each other. Even
under this assumption, the meaning of the free energy barrier produced by
RRT is unclear. Without studies of the temperature dependence of conduc-
tance (which are rarely done) the free energy cannot be split into enthalpy
and entropy. Moreover, the pre-exponential factor used to estimate the free
energy barrier in RRT, derived under the assumption of a chemical reaction
taking place, may not be appropriate for describing the transport of ions
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in channels [39]. If so this means that the heights of the barriers estimated
by the theory are meaningful only in the most abstract sense, and are not
useful for comparison with channel structure.

Thus the physical assumptions of RRT are probably violated in channels:
nevertheless it continues to be used, because it is simple, provides intuitive
explanations for the operation of multi-ion channels, and works reasonably
well [20]. In practice, RRT is used by developing an abstract model of states
and transition probabilities, and fitting this to the experimental data. After
this is done the abstract model is translated into energy wells and barriers
using the modified Boltzmann factors of Eyring rate theory. Although the
state diagram for a multi-ion channel is complex, it can easily be solved
by a desktop computer, making RRT usable in any laboratory. RRT has
been successful in explaining many of the peculiar behaviors of multi-ion
channels, and does so in an intuitively understandable manner. The RRT
parameters fitted for a set of experimental data can predict the conductance
of the channel under similar conditions, but very different conditions require
a new fit and different parameters [23]. Most practitioners of RRT are aware
of its limitations, and do not make claims for great quantitative accuracy
or ability to predict structure. Rather they continue to use it because of
its many advantages, and because no more realistic theory can do the same
job.

The success of RRT indicates not that its physical assumptions are some-
how valid, but that the abstract model of states and transition probabilities
is a reasonable, if not perfect, match to the mechanisms of channel con-
ductance. It is the abstract model that is fitted to the experimental data,
and provides the intuitive explanations. There is no reason to expect that
the barrier and well heights predicted by the Eyring rate theory interpreta-
tion of the model have any relation to the real forces experienced by an ion
traveling through a channel. Other mechanisms can explain the existence
of states and transition probabilities: they could be caused by diffusion be-
tween broad energy wells, rather than kinetic hopping. This is suggested by
our Brownian dynamics results: see chapter 8.

As RRT is generally applied to channels, the quantitative predictions
it makes about energy profiles cannot be trusted, and it cannot be used
to predict channel conductance form channel structure. This is because
the physical assumptions of RRT are inappropriate for channels. Although
RRT can make accurate predictions when carefully applied to very narrow
channels such as gramicidin, and this approach could be extended to the
narrow selectivity filters of other types of channel, this is not how RRT is
usually used. Rather it is applied to a small number of energy wells spread
over the full length of the channel. Even if the number and depth of such
free energy wells were somehow calculated from a channel’s structure, Eyring
rate theory would not accurately predict conductance in the wider regions
of the channel, because the assumption of transition between states by a
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single kinetic jump would not apply. Nevertheless the success of RRT, or
rather the abstract state models it leads to, cannot be ignored. An improved
model of channel conductance should include the parts of RRT that work,
by allowing the channel to take up distinct states, and accurately calculating
the interactions between ions in these states.

2.2 Molecular Dynamics

Molecular dynamics is a detailed simulation technique, based solely on inter-
molecular interactions [4, 40]. It works by dividing simulated time into very
small steps (typically one or two femtoseconds), calculating the force on each
atom at each step, and then moving all the atoms a short distance according
to the laws of mechanics. This algorithm assumes that the force on each
atom is constant during each timestep: keeping this assumption approxi-
mately true is the reason for the very short timesteps. Constraints on the
atoms can be incorporated into this scheme, and are often used to represent
rigid molecular bonds. Less rigid bonds are represented by a combination of
constraints and forces. Each atom interacts pairwise with every other atom,
and large scale effects, such as diffusion and induced charges, emerge from
this multitude of interactions. The computer keeps track of the position
of each atom at every time step, but making sense of this vast amount of
information requires either analysis in terms of higher level concepts and
theories, or graphical visualization.

The model forces between atoms are determined empirically, by fitting
parameters to make the simulations match experimental quantities such as
radial distribution functions and diffusion constants [11, 9, 29]. Because
these experiments (and the simulations they are used to calibrate) are done
for bulk materials, it is possible that model forces may not be correct in the
environment within a channel. For example, non-polarizable water models
have a larger dipole moment than isolated water molecules (water vapor)
to account for the average polarization that occurs in liquid water. This
average polarization may not be correct in the first hydration shell of an
ion, or in a highly charged part of a channel. Short range forces between
atoms are modeled by a Lennard-Jones function, or a similar form, which
includes Van der Waals attraction and soft sphere repulsion. Longer range
forces are modeled by partial charges on the atoms and are calculated using
Coulombs law.

MD studies of a channel are much easier and more reliable if the detailed
atomic scale structure is available. If it is, it provides the boundary between
water and protein, and any effects depending on the details of interactions
between ion, water, and protein will be faithfully reproduced. For instance,
an MD simulation based on a real channel structure should be able to pre-
dict that channel’s selectivity between ions of the same valence. Empirical
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constraints would still be needed to hold the channel protein in position: in
reality this is done by the membrane, but MD simulations must be kept as
small as possible to reduce the computational cost. There would also be a
need for reservoirs of water at either end of the channel, and these would
have to be provided with some sort of boundary. However, both the bound-
aries for the reservoirs and the constraints holding the protein would be a
fair distance from the critical part of the simulation, namely the channel
pore. Boundaries are always a difficult part of an MD simulation, since the
simulated volume is small, and effects from an improvised boundary can eas-
ily propagate into the centre of the simulation and affect the results. This
presents a problem if the detailed structure is not available. It is possible
to use an abstract geometric boundary, as we do in our BD simulations,
but in an MD simulation the atomic level detail of the boundary makes a
difference, be it an imaginary hard wall, an array of carbon atoms, or some
other scheme. With the results of the simulation perhaps depending on an
arbitrary choice of boundary lining, the extra effort of a simulation on the
atomic level hardly seems worthwhile. For this reason MD simulations of
channels are usually only done for a detailed structure.

At least one detailed structure for a channel is now available, and more
may become available in the future, but there is another problem with the
use of MD as a theory of channel operation: with existing computers it is
too slow to predict channel conductance. The timesteps are very short, and
each step requires calculation of all the pairwise interactions between atoms,
at a large computational cost which increases with the square of the number
of atoms. A typical run of one million steps only yields a nanosecond or
two of simulated time. Several microseconds are needed to estimate con-
ductance. For short range forces not all of the pairwise interactions need to
be considered: these forces have little effect at distances of more than a few
Angstroms, and a cut-off at 6 to 10 Å can be imposed. This reduces the
number of interactions, but logic to impose the cut-off must be included in
the algorithm, and this may slow the program, especially on a vector proces-
sor. Nevertheless, cut-offs are often used, especially for larger systems where
their advantage is greatest. Unfortunately, the long range (Coulomb) forces
from the partial charge centres cannot be cut off in a channel simulation, as
electrostatic effects such as induced charges and shielding are caused by the
partial alignment of water dipoles throughout the simulation. Any attempt
to cut-off the long range forces would likely prevent these important elec-
trostatic effects from emerging from the simulation, so channel simulations
are stuck with calculating all pairwise interactions between partial charge
centres.

As an example take a system of 1000 partial charge centres: a small
channel and 150 water molecules. This requires 500,000 force calculations
per timestep. If each takes 100 floating point operations, and the program
achieves 1 gigaflop, each step will take 0.05 seconds. A gigaflop is 109 floating
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point operations per second, but MD programs typically achieve only 1/3 of
the rated maximum speed of a computer. Only supercomputers are this fast
at the moment, though no doubt desktop systems will follow shortly. At 20
steps per second, 1,000,000 steps will take 14 hours of CPU time and yield
1 ns of simulated time. To see an ion cross the channel will take a minimum
of 10 ns, or a week of CPU time. To measure conductance will take at least
1 µs, or about 11

2 years of CPU time. And this is just for one point on one
I/V diagram.

The elegance, comprehensiveness, and physical realism of MD make it a
very attractive technique, and agree with the strategy of making the mini-
mum number of assumptions, unfortunately its inability to predict conduc-
tance prevents direct comparison with experiment, and rules it out as a
possible method for this project. This is not a fundamental weakness, how-
ever, only a limitation of current computer hardware. If computers continue
to increase in speed, estimation of channel conductance by MD will become
practical in the future (based on a doubling of computer power every 18
months, I predict 2010 for supercomputers, and 2015 for desktop systems).
In the meantime there are plenty of interesting uses for MD, including in-
vestigation of the assumptions underlying the continuum theories of channel
conductance, PNP and BD.

2.3 Ab Initio Molecular Dynamics

The new ab initio molecular dynamics technique provides a way of removing
the doubt about interatomic forces, at the cost of even more computer time
than conventional MD [13, 62]. It has not yet been applied to ion chan-
nels, but it may be in the future. Car and Parrinello’s innovative algorithm
combines classical MD with the density functional theory of quantum chem-
istry. The paths of the atoms are still simulated by classical mechanics, but
the forces between atoms are calculated from first principles using density
functional theory. Calculation of these forces requires the ground state of
the electronic structure to be found, which is a multi-dimensional optimiza-
tion problem with constraints (the basis functions must be orthonormal).
In ab initio MD this optimization problem is solved by simulated annealing,
a technique where a multi-dimensional space is explored to locate a global
minimum (or near minimum) by some form of pseudo-mechanics. Instead of
the usual Monte Carlo algorithm, Car and Parrinello use classical MD as the
pseudo-mechanics, with the orthonormality constraints maintained by the
SHAKE algorithm (the usual constraint algorithm for classical MD). Thus
the same algorithms are being used both to simulate the classical motion
of the atomic centres and to calculate the quantum states of the electronic
structure. With a small enough timestep the two halves of the calculation
can be combined and proceed simultaneously. In practice this technique
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works very well, with the pseudo-momentum of the electrons (from the sim-
ulated annealing algorithm) tending to keep the electronic state optimized
as the atoms move, eliminating the need to re-optimize after every timestep,
and greatly speeding up the simulation. Systems of moderate size have been
run for picoseconds of simulated time: 128 silicon atoms in a crystal for 6 ps
[12], and a beryllium ion hydrated by 31 water molecules for 1 ps [48].

Assessment of the speed of ab initio MD calculations is difficult, as the
technique is more complex than classical MD, the methods are still devel-
oping rapidly, and the computers used and CPU time taken are rarely re-
ported. Timesteps are typically 1-2×10−16 s, around 10 times smaller than
for classical MD. The time taken to perform a step depends greatly on the
basis functions chosen, which depend on the particular atoms being simu-
lated. Overall, ab initio MD seems to be around three orders of magnitude
slower than classical MD, which is consistent with the reported picoseconds
of simulated time, rather than the nanoseconds typical for classical MD. As
computers become faster, and classical MD is used for larger systems and
longer timescales, it is likely that ab initio MD will be used for the sorts
of problem currently being tackled using classical MD. It might not be nec-
essary to wait for faster computers, however: it is possible that improved
algorithms and better basis functions will provide the speed needed for ab
initio MD to be more generally useful. As an example, for certain sorts of
basis functions the pseudo-forces can be calculated by fast Fourier trans-
form methods [62]: this reduces the dependence of CPU time on system size
from n2 to n log n (where n is the size of the system), making the simulation
of large systems much more practical. Ab initio MD is a technique worth
watching.

2.4 Poisson-Nernst-Planck Theory

PNP is a simplified model of channel conductance which, unlike RRT, is
based on physical mechanisms that are likely to apply in channels [23, 24, 14,
15, 16, 54, 53, 41]. It treats both water and ions as continua, describing them
by the the Nernst-Planck equation of electrodiffusion theory, and Poisson’s
equation of macroscopic electrostatics. These simplifications allow a PNP
model to be solved quickly on a desktop computer system: in practice many
PNP models are solved together as physical and structural parameters are
automatically adjusted to fit a set of experimental data. When used in
this way PNP can deal with a greater range of experimental conditions than
RRT, but it does not offer the same intuitive explanations of the conductance
mechanism. In effect PNP is used to make predictions about the structure
of the channel (the position and density of charges on the channel wall) and
the physical conditions inside it (the diffusion coefficients of the ions). If the
shape of a channel, the position of fixed charges, and the diffusion coefficients
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were known, then PNP could be used instead to make predictions about a
channel’s conductance from its structure.

Poisson’s equation describes the electric potential in relation to the
charge density and dielectric constant. It can be solved to estimate the
long range forces on ions in a channel model where water is treated as a
continuum. Water and protein are treated as continuous dielectric media,
with different dielectric constants. The many atomic and molecular dipoles
contained in the water and protein are approximated as a linear polarizable-
ity of the media: in effect this is an assumption of evenly spread, infinitesimal
dipoles. This assumption is entirely reasonable at macroscopic scales, but
on the scale of ion channels the individual water dipoles that produce most
of the dielectric effects are far from infinitesimal. Nevertheless, treating
water as a continuum is the key assumption necessary to simulate channel
conductance in a reasonable time, and is made by both BD and PNP. The
approximate and macroscopic nature of this use of Poisson’s equation is due
to the concepts of dielectrics and dielectric constants [28]. Without these
Poisson’s equation is an exact representation of electrostatic forces, and can
be used at an atomic level, for instance in the interatomic force calculations
of ab initio MD.

In channel models the water-protein interface is represented as a dielec-
tric boundary, and the solution of Poisson’s equation depends on the shape of
this boundary. Analytical solutions can be found only for particular shapes:
PNP is generally used with a solution for a finite cylinder, and in chapter 4
I describe our analytical solution for a torus. If other shapes are needed
(and the shape of the pore may well be a factor in channel conductance)
then a numerical method of solution must be used. I describe our numerical
method in chapter 3, and our method of making it fast in chapter 6. There
is no reason in principle why numerical methods cannot be used with PNP:
although they are usually much slower than analytical methods, this is more
of a problem for BD simulations. The qualitative effects of the dielectrics on
an ion are twofold. The high dielectric strength water reduces the effective
field of the ion by a large factor as nearby dipoles orient themselves to pro-
vide a layer of negative charge around a cation, or positive charge around
an anion. Dipoles further out are also oriented, but where the field from the
ion crosses a boundary into the much less polarizable protein the layer of
dipoles at the boundary creates an induced surface charge of the same po-
larity as the ion. This induced charge has the effect of repelling the ion from
the boundary. This is the same phenomena as repulsion due to the energy
cost of removing the hydration shells of the ion, looked at from a different
point of view, that of a macroscopic theory. Although the qualitative effects
of dielectrics are easy enough to understand, quantitative calculations are
highly dependent on the shape of the boundary, as induced charge generates
its own field and induces still further charge. Solving Poisson’s equation pro-
duces a self-consistent set of surface charges, but the calculations are very
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complex.
The Nernst-Planck equation describes electrodiffusion: it gives the cur-

rent in terms of ion concentration and electric potential. By assuming a
constant current (which there will be during steady state conductance) it
is possible to solve the Nernst-Planck equation to give the concentration
profile in terms of the potential profile, or vice-versa [31]. However, in a real
channel both of these change to arrive at the steady state. In PNP theory
it is assumed that the potential profile can be obtained by solving Poisson’s
equation for the charge distribution of the average concentration profile [23].
This is the mean field assumption, so called because the superposition prin-
ciple applies to solutions for different charge distributions (provided they
are for the same dielectric boundary), and as a result the mean concentra-
tion profile yields the mean field. This assumption allows the Nernst-Planck
equation and Poisson’s equation to be solved simultaneously by a process
of iteration, giving a prediction of potential, concentration, and current for
the model channel.

While PNP does a good job of fitting experimental conductance data,
some of the predictions it makes in doing so seem strange. PNP predicts
diffusion constants an order of magnitude lower than the bulk values for
cations, and two orders of magnitude lower than bulk values for anions.
The confined space of a channel pore may well reduce the mobility of ions
(molecular dynamics studies are needed to confirm this), but a factor of 10
or 100 seems excessive, and the large difference between cation and anion
mobility has not been explained. Also, PNP predicts that the electrostatic
barrier presented to ions by the membrane is completely removed by shield-
ing by counterions. PNP is designed to be electrostatically self-consistent,
and the electrostatic effects of the membrane and the channel protein are
included in the model, and do indeed present a barrier to individual ions.
This barrier can be turned off without affecting the results of the simulation,
however. As long as concentrations of cations and anions are approximately
equal the negative charges induced by the cations and the positive charges
induced by the anions cancel out, and produce no net repulsive force. Since
biological membranes prevent ions from crossing by means of an electrostatic
barrier, and a channel’s main purpose is to allow ions to cross, the complete
insensitivity of PNP to barriers of this type is very worrying.

On the small scale of channels the Nernst-Planck equation has to be
interpreted in an unusual way: while it remains valid under this interpreta-
tion, the same may not be true of the mean field assumption. In the confined
space of a channel pore the concentrations appearing in the Nernst-Planck
equation must be interpreted as probability densities. For example a section
of pore 3 Å in radius and 6 Å long has a volume of 170 cubic Å, and contains
0.015 ions at a typical physiological concentration of 150 mM: in other words
there is a 1.5% chance of the section containing an ion. The Nernst-Planck
equation links two different causes of average ion motion, of drift superim-
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posed on random diffusion. The first is average motion due to concentration
differences. This is a statistical effect that places no real force on any ion.
Rather, if there are more ions on one side of an imaginary line, random mo-
tion will tend to even them out, creating a net drift. This source of motion
is unaffected by the probability density interpretation: a greater probability
of an ion being on one side of the line leads to a greater probability that an
ion will cross from that side to the other. The second cause of motion is the
average drift velocity due to the electric field acting on the ions. This is a
real force acting on real ions, not a statistical effect. It produces an average
drift velocity rather than straight line motion due to the water molecules
which surround the ions: these produce both friction and a superimposed
random motion. The drift velocity is proportional to the applied force, and
takes around a picosecond to build up. Again, this source of motion makes
sense under the probability density interpretation, provided that the electric
field experienced by each ion is calculated correctly.

This is where the mean field assumption falls down: it is likely that some
of the predictions of PNP are incorrect, and that the mean field assumption
is responsible. The mean field is averaged over a period of microseconds,
the timescale of the steady state current, while changes in the electric field
and resulting ion motion occur on a timescale of picoseconds as individual
ions move through the channel. To give a concrete example, consider again
the small section of pore, 3 Å in radius and 6 Å long, and imagine that
it is near one end of the channel. If the section contains a cation (a 1.5%
chance) then positive charges are induced on the walls of the pore, and these
repel the ion, tending to expel it. If instead the section contains an anion
(again a 1.5% chance) then negative charges are induced, but the force is still
repulsive, since the anion is also negatively charged. From the microscopic
point of view either polarity of ion is progressively having its hydration shells
stripped off as it moves into the channel, and this increasing energy cost
produces a repulsive force. Finally, if there is no ion present in the section
(a 97% chance), then the electric field in the section has no relevance to
ion conductance, as it cannot produce a drift velocity without an ion to act
on. The electric field in the section is very different in these three cases, and
changes on a picosecond time scale as ions move in and out. Under the mean
field assumption, however, the electric field from all of the cases is averaged,
weighted by their probabilities: 1.5% chance of a field repelling cations, 1.5%
chance of a field repelling anions, and 97% chance of a field produced by
distant ions that has no relevance to the drift velocity in this section. It is
no surprise that this average field is very close to zero, and as a result PNP
predicts that charges induced on the boundary by the ions have no effect on
conductance. Presumably if a PNP simulation of a biological membrane was
set up, with appropriate calculation of the electrostatic barrier, and values
for ion mobility in lipids used for the interior, then the mean fields from
cations and anions would cancel out, and PNP would predict a large ion
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flow through the membrane.
The error in applying the mean field assumption to channels is a statis-

tical one: the states of the system are being weighted by total probability,
when conditional probabilities are required. Because the electric mobility
term of the Nernst-Planck equation is based on drift velocity, it carries an
implicit assumption that there is at least one ion at the position of interest.
In a macroscopic system this is not a problem (at 150mM a drop of water
contains around 1020 ions). On the microscopic scale of solid state electron-
ics this assumption is still valid, and approaches similar to PNP have been
successful in modeling transistors. However, on the atomic scale of a channel
the chance of a small section of pore containing an ion are quite low. To be
consistent with the Nernst-Planck equation, the mean field must be calcu-
lated given that there is an ion at the position of interest: the possible states
of the channel must be weighted by their conditional probability under this
assumption to arrive at the average field. This approach would calculate dif-
ferent electric fields for cations and anions approaching the membrane, and
so predict that both would be repelled. Unfortunately the concentrations
yielded by solving the Nernst-Planck equation give no indication of what
these conditional probabilities are, so the problem with using the mean field
cannot easily be corrected.

2.5 Brownian Dynamics

Brownian dynamics is a simulation technique that treats ions explicitly,
moving them step by step in the same manner as an MD algorithm, but
treats water as a continuum, as PNP does [4]. BD is based on the Langevin
equation, which breaks up the forces on an ion into three components: ran-
dom force, frictional force, and systematic force. The random and frictional
forces represent the effect of the ion colliding with the surrounding water
molecules. The distribution of the random force is a three dimensional Gaus-
sian, while the frictional force opposes the direction of motion of the ion, and
is proportional to its velocity. The magnitude of both depend on a frictional
coefficient which is derived from the diffusion coefficient for the ion in wa-
ter. The systematic force is the sum of forces not caused by the surrounding
water. In the case of an ion this is mainly the electrostatic force due to the
other ions and the water and protein throughout the system. This force can
be calculated by solving Poisson’s equation for each step, many more times
than it needs to be solved for PNP.

BD can be done on two different timescales [35, 72]. In the diffusive
regime each step is around 100 fs long and represents a small amount of
diffusion for each of the ions. Over this long timestep the Langevin equa-
tion has to be integrated, and produces a random motion of each ion, not
correlated with its previous velocity. The systematic force produces a drift
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velocity. In the kinetic regime each step is 1 or 2 fs long and represents
thermal motion by the ion, including contributions from collisions (the ran-
dom and frictional forces), and from the systematic force. The ion’s velocity
in each step is highly correlated with that in the last step. The Langevin
equation is integrated by the repeated action of the motion algorithm, in
the same way that an MD algorithm integrates Newton’s equations. The
advantage of using the long timestep is speed of simulation: simulated time
passes 100 times faster, ions move a significant distance in each step (an rms
displacement of 0.34 Å for a potassium ion in a 100 fs step), and prediction
of conductance becomes a possibility. The advantage of the short timestep
is accurate integration of motion near sharp energy barriers, such as the
repulsive forces that act between atoms at close ranges. In a timestep of 1 fs
a potassium ion moves an average of 0.004 Å, and can respond to a sharp
repulsive force, as velocity is built up over several steps. In the diffusive
regime the systematic force only has an indirect effect by producing a drift
velocity that will bias the motion over many steps, but the ion can pass over
a sharp barrier (1 or 2 Å in width) in only a few steps, before the repulsive
force has time to act. This is the penalty for viewing ion motion on the
longer timescale: small scale forces cannot be accurately represented. In
our simulations we use the long timestep most of the time, representing ions
as hard spheres and the protein boundary as a hard surface to avoid the
problem with repulsive forces. In some simulations we define short timestep
regions in critical parts of the channel, and use the appropriate number of
short timesteps instead of a long timestep for ions in these regions. This al-
lows us to use more accurate forces where we need them without sacrificing
the overall speed of the simulation.

Brownian dynamics makes prediction of conductance possible: it is much
faster than MD while making fewer assumptions than either PNP or RRT.
The change from thousands of charge centres in MD to a few dozen ions in
BD greatly reduces the number of interactions that have to be considered
at each step, since the number of interactions is proportional to the square
of the number of charge centres. In addition it is possible to use a much
larger timestep for BD, one of 100 fs instead of the 1 or 2 fs typical of MD.
Despite these advantages a simulation which predicts conductance requires
very many steps: 10 million for a simulated time of 1 µs. Poisson’s equation
needs to be solved for each of these steps, many more times than it needs to
be solved in a PNP simulation. The key to using BD to simulate a channel
is solving Poisson’s equation quickly. Previous simulations of channels us-
ing BD have been done in one dimension (to make the solution of Poisson’s
equation simple) and with only a few ions, but this assumes that there is
no shielding of the electrostatic forces by counterions, an assumption that
should not be made given the results from PNP. While we think that this
shielding is an artefact of the mean field assumption of PNP, we should test
this hypothesis, not assume it. Our simulations are done in three dimen-
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sions, with reservoirs of ions and counterions available for any shielding,
which should emerge naturally from the motion of the ions under the BD
algorithm. Another advantage of BD is that it allows the multi-ion channel
states suggested by RRT. While RRT is based on non-physical assumptions
(for channels) its success in explaining the operation of multi-ion channels
suggests that its abstract model of states and transition probabilities may
have a basis in reality. While PNP averages the concentration profile of the
channel over many individual ion passages, BD simulates each individual
passage, and so samples the state space of the channel, and includes any
multi-ion effects.

The limitations of BD come from the assumptions it makes: that water
and protein can be treated as a continuum. This means that selectivity
between ions of the same valence cannot be expected to emerge from the
simulation, since this must be dependent on the detailed interactions be-
tween an ion, its first hydration shell, and the channel’s selectivity filter.
The macroscopic electrostatics used to estimate the long range effects of the
water and protein cannot be entirely accurate in the confined space of a
channel pore. The success of the Born energy approximation for the hydra-
tion energy of ions indicates that macroscopic electrostatics can be useful at
these small scales, but the errors due to using it inside a channel have not
been quantified. Other sources of uncertainty are the diffusion coefficient
and dielectric constant. While these are known for bulk conditions they
may have different values inside a channel. In particular the use of the same
dielectric constant for water throughout the simulation is a simplification
that may not be appropriate for channels. See section 3.1.4 in the following
chapter. Molecular dynamics has the potential to resolve these questions
and so put BD simulations on firmer foundations. MD could also be used
to investigate selectivity in channels where the detailed structure is known.

Despite these uncertainties, BD is the technique that best meets our
strategy. PNP and RRT make too many simplifications, while MD is too
slow to predict conductance. Although these theories are inadequate for our
purpose, they give clues to what is important, suggesting what cannot be
simplified. RRT tells us that states formed of a few ions may be impor-
tant, requiring explicit simulations of the ions. PNP tells us that shielding
by counterions should be allowed, requiring simulation in three dimensions.
We accept the abstraction of water and protein as necessary to enable con-
ductance to be predicted, in the knowledge that MD simulations have the
potential to investigate the effects of this simplification. Having decided
on a technique, the problem is to get it to work: the major challenge here
is to solve Poisson’s equation rapidly for a channel shaped boundary. The
description of how this problem was solved begins in the next chapter.
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Chapter 3

Iterative Method

The decision to use Brownian dynamics creates the need to calculate the elec-
tric field and potential inside a channel without explicitly considering the
water molecules. Water molecules have permanent dipole moments. Within
the structure of liquid water they have some freedom to rotate, and align
themselves with an applied electric field. The combined effects of all the
water dipoles are a major component of the force acting on an ion within a
channel, and must be included in any realistic simulation. We need a way of
summarizing and accurately predicting these effects. The macroscopic the-
ory of electrostatics provides the answer. This theory represents substances
as regions of constant polarizability and uses a three dimensional differen-
tial equation, Poisson’s equation, along with boundary conditions where the
polarizability changes, to describe the electric potential [28]. The parts of
this theory relevant to our simulations are summarized in section 3.1 below.

There are two ways to solve such a system of differential equation and
boundary conditions. The traditional way, and the only practical way before
the invention of computers, is to produce a solution by mathematical analysis
of the problem [52]. Such a solution for a toroidal boundary is described
in chapter 4. The power of modern computers provides a second approach.
Differential equations describe relationships between the rate of change of
various quantities, and can be solved by imposing these relationships on a
system and iterating: repeatedly recalculating the state of the system until a
solution is reached. This approach has been used to analyze the electrostatic
barriers in the gramicidin channel [56, 43, 44, 36, 37, 38], and the work
described here continues this tradition, using the improved performance of
a vector supercomputer to calculate solutions for larger channels with more
complicated shapes.

The first step in constructing such a numerical algorithm is to divide the
problem into finite pieces. Poisson’s equation describes the electric potential
in three dimensions, and can be solved by discretizing space, dividing it into
a Cartesian grid, for example. In the case of an ion channel, however, the

31
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boundary is the interesting part of the system, and as shown below, it is
sufficient to find the surface charge on the boundary. So we discretize the
channel boundary, dividing it into sectors which tile the surface. The advan-
tage of this approach is that the boundary is represented more accurately,
since the sectors are defined to follow the surface, rather than the surface
being approximated in a Cartesian grid. The disadvantage is an inability to
represent variations in dielectric constant away from the channel boundary:
see section 3.1.4 for a description of why this would be useful.

There are three stages to our iterative solution. The first stage is to
generate a geometric outline of the channel, which can be rotated to form
the three-dimensional boundary. This is described in section 3.2. The second
stage is to divide the boundary into sectors. To make the algorithm practical
the sectors have to be concentrated in the constricted regions of the channel,
so the sector spacing has to vary. This is described in section 3.3. The third
stage is the iterative algorithm itself. This is the stage that takes up all
the computer time. It is described in section 3.4. Section 3.5 describes a
method of increasing the accuracy of the algorithm by compensating for the
curvature of the sectors. Section 3.6 describes the testing of the iterative
solution and discusses its performance.

3.1 Macroscopic Theory of Electrostatics

3.1.1 Poisson’s Equation

Poisson’s equation is the fundamental equation of electrostatics. It relates
the electric potential ϕ throughout space to the charge distribution ρ:

∇2ϕ =
−ρ

ε0
. (3.1)

The electric potential is defined by its relationship to the electric field

E = −∇ϕ. (3.2)

The existence of the scalar potential ϕ is guaranteed by one of Maxwell’s
equations for electrostatics

∇× E = 0 (3.3)

(it is a theorem of vector calculus that any vector field with a curl of zero
is a gradient of a scalar field [28]). Poisson’s equation can be obtained by
substituting the definition of ϕ into another of Maxwell’s equations

∇ · E =
ρ

ε0
. (3.4)

Solving Poisson’s equation gives the electric potential throughout space, and
the gradient of this potential is the electric field.
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This is fine as long as the positions of all charges are known, but in
macroscopic electrostatics this is not the case. The charges we know about
are surrounded by insulators (or dielectrics) made up of many atoms, and
these atoms have charges in them that may move in response to an electric
field. In our case the main concern is with the water molecules, not simulated
explicitly, each of which has a permanent dipole and is capable of rotating
to align with the electric field. To take account of these non-explicit charges
and incorporate them into the electrostatic theory we make two assumptions.
The first is that a dielectric polarizes linearly in response to an electric field

P = (ε − 1)ε0E, (3.5)

where P is the polarization, the dipole moment per unit volume, and ε is
the dielectric constant. The dielectric constant is defined so that ε = 1 for
vacuum, hence the −1 in the equation: vacuum does not polarize.

This polarization implies a surface charge density on the surface of a
dielectric

σpol = P · n̂, (3.6)

(where n̂ is the normal pointing outwards from the dielectric), as well as a
volume charge density within the dielectric

ρpol = −∇ · P. (3.7)

Substituting the volume charge density into Eq. 3.4 gives

∇ · E =
ρexp + ρpol

ε0
(3.8)

=
ρexp −∇ · P

ε0
(3.9)

=
ρexp

ε0
−∇ · [(ε − 1)E], (3.10)

where ρexp is the explicit charge density, and the last line comes from the
assumption of linear polarization (Eq. 3.5). This result can be summarized
as

∇ · (εE) =
ρexp

ε0
. (3.11)

We now make a second assumption: that space is divided into regions
where ε is constant. This means that

∇ · E =
ρexp

εε0
, (3.12)

and so
∇2ϕi =

−ρi

εiε0
, (3.13)

where i indexes the regions, and ρi is the explicit charge in region i. This
is a simple modification to Poisson’s equation, and can be solved using the
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same methods. However, the assumptions mean that this is no longer a
fundamental equation, but rather a macroscopic approximation. Examining
the equation shows two things. First, the potential from charges is reduced
by a factor of 1/ε. Second, the potential is otherwise unaffected: Laplace’s
equation ∇2ϕ = 0 still holds where there are no explicit charges.

This modified Poisson’s equation describes what happens within a region
of uniform dielectric constant, but not what happens at the boundaries
between regions. To find the electric potential throughout space in a system
with regions of different polarizability we need to know how the potential
changes at the boundaries, or equivalently what the surface charge density
is at the boundaries. Consider a small segment of boundary. Polarization
creates a surface charge density

σ = (ε2 − 1)ε0E2 · n̂ − (ε1 − 1)ε0E1 · n̂, (3.14)

which is the sum of σpol from the two regions (see Eq. 3.6). E1 and ε1
are the electric field and dielectric constant in region 1, E2 and ε2 those in
region 2. The normal to the surface n̂ points out from region 2 into region
1, hence the negative sign for the surface charge contribution from region 1.
By convention we use region 1 (and ε1) for water and region 2 (and ε2) for
protein, so the normal points outward form the protein boundary, into the
water.

This is all very well, but E1 and E2, the electric fields on either side of
the boundary, are affected by the surface charge density σ. We can introduce
a new component of the electric field: Eex, the external electric field from
charges outside the segment. By defining a Gaussian pillbox around our
segment, and by assuming that it is sufficiently small, it is possible to show
that

E1 = Eex +
σ

2ε0
n̂

E2 = Eex −
σ

2ε0
n̂, (3.15)

and so
E1 − E2 =

σ

ε0
n̂. (3.16)

Combining this with Eq. 3.14 and rearranging gives

ε1E1 · n̂ = ε2E2 · n̂, (3.17)

which is the boundary condition for the component of E perpendicular to
the boundary. The components of E parallel to the boundary are continuous
across it (as can be seen by examining Eq. 3.16). In terms of the potential,
these boundary conditions become

ε1∇ϕ1 · n̂ = ε2∇ϕ2 · n̂, (3.18)
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and
ϕ1 = ϕ2. (3.19)

Along with the modified Poisson’s equation (Eq. 3.13) these are sufficient to
allow an analytical solution to be attempted. Our iterative solution works
by calculating the surface charge density, however. This can be obtained by
substituting Eq. 3.15 into Eq. 3.14 and rearranging:

σ = PBEex · n̂, (3.20)

where
PB = 2ε0

ε2 − ε1
ε2 + ε1

(3.21)

is a constant which describes the polarizability of the boundary. Eq. 3.20
gives the surface charge at the boundary in terms of the external field: that
part of the electric field not from the charges on the local segment.

3.1.2 Born Energy

The simple model of a uniformly polarizable medium containing point charges
ignores the finite radii of ions and water molecules: in reality polarization
cannot continue all the way to the centre of an ion. This effect can be ap-
proximated by assuming a spherical region around the ion that cannot be
polarized. This is called Born theory. The spherical boundary around the
ion acquires a surface charge density, as described above, which is evenly
distributed and reduces the field from the ion by a factor of 1/ε, just as for
a point charge. So an ion with charge +1 is surrounded by a sphere with a
total charge of −(1−1/ε) which shields it and reduces its effective charge at
long range. In reality the polarizability of the water will vary continuously
from the bulk value as an ion is approached, so the shielding charge will not
form a sharply defined sphere.

The spherical dielectric boundary is a simplified model, but it does allow
the interaction energy between an ion and the surrounding medium to be
estimated. The Born energy incurred by moving an ion from a medium of
dielectric constant ε1 to one of dielectric constant ε2 is

EB =
q2

8πε0r

(
1
ε2

− 1
ε1

)
. (3.22)

This is from the electrostatic energy between an ion and the charge on
the surrounding dielectric boundary. There is a factor of 1/2 because the
induced charge is caused by the presence of the charge on the ion, and builds
up gradually if the charge on the ion is brought in from infinity in small
packets. As an example, consider a potassium ion surrounded by water. Let
r = 1.33 Å (the crystal radius), q = 1.6×10−19 C, ε2 = 80, and ε1 = 1. Then
EB is −8.6×10−19 J or −208 kTr. The enthalpy of hydration for a potassium



36 CHAPTER 3. ITERATIVE METHOD

ion is estimated to be −5.9×10−19 J or −143 kTr. The enthalpy of hydration
can be measured experimentally for a salt, but assigning this between the
cation and anion requires some educated guesswork [10]. Nevertheless, the
resulting uncertainty is not enough to explain the discrepancy between the
prediction of Born theory and the experimentally derived value.

Rather, the discrepancy is due to the assumption of a sharp dielectric
sphere, and the use of macroscopic electrostatic theory at the atomic scale.
Under these circumstances 50% error is not too bad. It is usual to assign
cations a larger effective radius for the purpose of Born energy calculations,
however. Bockris and Reddy [10] suggest adding 0.85 Å to the crystal radius
(giving 2.08 Å for potassium), Rashin and Honig [60] suggest using the
covalent radius instead of the crystal radius (giving 2.06 Å), while for this
project we derive an effective radius by substituting the estimated enthalpy
of hydration into the Born energy equation and solving for the radius (giving
1.93 Å). Thus all of these methods give a similar result, and the differences
between them are not worth worrying about given the larger uncertainties
involved in applying macroscopic electrostatic theory at such a small scale,
and the limited use made of Born energy estimates in our simulations (we use
them only to provide compensation for the difference between the dielectric
constant in the reservoirs and pore when the dielectric constant has been
reduced from the bulk value, see section 8.1.4). This increased radius can
be thought of as accounting for the finite radius of the water molecules, but
as already indicated, the situation is in reality more complex. For example,
using the ionic radius of anions in the Born energy equation provides a
reasonable estimate of the enthalpy: their effective radius does not need to
be adjusted. This is because there are differences between the hydration of
a cation and an anion at the atomic scale.

3.1.3 Induced Surface Charge

The concept of induced surface charge provides an intuitive picture of the
effect of dielectrics and dielectric boundaries on the electric field. An ion in
water is surrounded by a sphere of induced charge of the opposite polarity,
which partially shields the charge on the ion, reducing the electric field. If
the ion approaches a dielectric boundary with protein (ε = 2 compared to
ε = 80 for water), then charge of the same polarity is induced, tending to
repel the ion from the boundary. Viewed from a distance in the medium of
lower dielectric constant, the ion has a much larger effective charge than it
has in water. The charge on the boundary must undo much of the shielding
of the ion: it must be of the same polarity as the ion.

Lowering the dielectric constant used for the water increases the repul-
sion, which is surprising because the repulsion must disappear where water
and protein have the same dielectric constant. Examining Eq. 3.20 shows
that the induced surface charge is proportional to the strength of the field,
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and also proportional to a coefficient depending on the the dielectric con-
stants, (ε2 − ε1)/(ε2 + ε1). If the dielectric constant for water is dropped
from 80 to 40, while that for protein remains 2, the coefficient drops from
0.95 to 0.90. The field due to an ion doubles, however, its effective charge
increased by the reduced shielding ability of the water. Only when ε1 and
ε2 are nearly equal does the induced surface charge tail off.

3.1.4 Limitations of Macroscopic Electrostatics

In using macroscopic electrostatic theory the effects of induced and rotat-
ing dipoles in water and protein are summarized by the dielectric constant
and the modified Poisson’s equation (Eq. 3.13). The concern in applying
this theory to channels is that the concept of a dielectric constant may be
completely invalid on such a small scale. After all, the dipoles that are
creating the fields have dimensions that are a reasonable fraction of the
scale of the system, while macroscopic electrostatic theory considers them
to be infinitesimal. There are reasons for thinking that the theory is still
useful, however, even on such small scales. One reason is the success of
Born theory in explaining the hydration energy of ions. Although the er-
rors in prediction of energy can be large (> 50%), the theory remains a
useful way of estimating the energy, and can be modified to provide more
accurate answers. Another reason is that macroscopic electrostatic theory
gives qualitatively similar results to microscopic simulations, even in con-
fined spaces. For example the observation from MD studies that an ion
in a narrow channel aligns the water into chains is similar to electrostatic
calculations which show that a channel concentrates the electric field along
its axis. In a macroscopic electrostatic calculation the field from an ion in a
narrow pore would be unable to escape into the surrounding low dielectric
strength medium, and would therefore remain nearly constant until the pore
widened out, rather than decaying with the inverse square of the distance as
it would in bulk water. In microscopic terms the dipoles would tend to align
along the axis of the pore, which is the observation from MD. In summary
we believe that macroscopic electrostatic theory is a useful way of estimat-
ing the electrostatic forces on ions in a channel, although the errors may be
large in the regions of the pore where the radius is smallest.

Where the theory cannot be of any help is in calculating the detailed
interactions where an ion is forced into close contact with the protein. An
example of this is the selectivity between ions produced by a selectivity
filter. The different energy barriers experienced by different species of ion
(of the same valence) are lumped together by the large errors in electrostatic
calculation in the narrowest regions. Macroscopic electrostatic theory still
provides an estimate of the energy barrier height, and we belive a useful one
for the purpose of studying conductance throughout the channel, but the
subtleties that produce selectivity are lost.
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If macroscopic electrostatic theory is a valid approach, but subject to
large errors, the obvious question is how could these errors be reduced? The
answer is by relaxing the assumptions made above (section 3.1.1) of constant
dielectric strength and linear dielectric response. The dielectric strength of
water in a channel may be quite different from that in bulk, but our present
approach does not allow it to be varied, except at dielectric boundaries.
Hence we either have to use the bulk dielectric constant throughout the sim-
ulation, or introduce a smaller effective dielectric constant for the channel.
Using an effective dielectric constant means that the dielectric strength in
the reservoirs is wrong. In chapter 8 we compensate for this by introducing
an ad hoc Born energy barrier at the mouths of the channel (section 8.1.4),
but this is not a very satisfactory solution. Although an effective dielectric
constant is a useful concept for a pore of constant radius [57] our simula-
tions include reservoirs and channels with complex shapes. If the dielectric
strength changes between bulk water and water in a narrow pore it would
seem to be a function of pore radius, and in our context would need to vary
throughout the length of the pore. And if dielectric strength is allowed to
vary in space then the assumption of linear polarizability also should be
relaxed. The details of the shielding of an ion by dipoles would need to be
calculated explicitly, instead of by the use of an effective charge as with our
present approach. However, close to an ion the field strength is large enough
to completely align the water dipoles. In macroscopic terms the polarizabil-
ity is no longer linear, but is subject to saturation. Indeed Partenskii and
Jordan [57] point out that if the pore is narrow enough this dipole alignment
and high field strength is propagated throughout the channel.

The challenge then is to invent a way of solving the electrostatic equa-
tions for a system where the polarizability varies in space and is subject to
saturation. An iterative solution to such a system would be possible, but
would have to be done in the full three dimensions, since polarization charges
would not be confined to the boundaries. Important considerations would
be the ability to deal with smooth channel boundaries and the ability to
concentrate computational effort where most needed, that is in the narrow
regions of the channel and close to the ions. Another concern would be the
effect on the lookup table method of speeding up the simulations (described
in chapter 6), since this depends on superposition of solutions for individual
ions, which in turn depends on linear dielectric response.

Although producing such an improved iterative solution would be a chal-
lenge, a greater challenge would be its calibration: there is no point in
allowing for variable polarizability unless it is known how it varies. This
calibration would involve an extensive series of MD simulations for a model
channel as similar as possible to the BD model. There are various ways
of estimating the dielectric constant in an MD simulation. The important
issue here, however, is not the rotational mobility of the ions as such, but
rather the forces on the ions, which are needed for the BD simulations. The
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safest procedure would be to calculate the potential energy profile for an
ion traversing the channel, and then define an effective dielectric strength
function which causes the iterative electrostatic profile to match that from
the MD simulations. Saturation of polarizability could be investigated by
varying the charge on the ion. With dielectric strength and saturation es-
tablished, the new electrostatic model would be able to cope with multiple
ions in the channel, assuming the basic concept of dielectric strength is valid
in channels. This could be checked by further MD simulations with multiple
ions.

Unfortunately calculating such energy profile using MD is tricky. Care
has to be taken to properly define the macroscopic concept of electrostatic
potential energy in terms of the microscopic quantities available from the
MD simulation, and drift in temperature and pressure may affect the result
unless prevented or compensated for. Another difficulty is the long runs
needed to reduce the statistical uncertainty in points on the energy profile.
The macroscopic potential energy of an ion is, from the point of view of
an MD simulation, a long timescale average of rapidly fluctuating quanti-
ties. Reducing uncertainty in the potential energy to ±1 kT would require
very long runs, but might be necessary to provide an energy profile smooth
enough to be used for BD. The BD simulations described here show that
sharp energy barriers as small as 3-4 kT can greatly reduce the conductance
of a channel. An energy profile with points subject to random variations of
±2 kT could easily produce a spurious barrier of this size. The profile could
be smoothed, but this would also remove any genuine sharp barriers along
with the artefacts. Such a procedure would remove much of the attraction
of doing the MD calculation in the first place.

A more sophisticated electrostatic model is desirable then, but beyond
the scope of this project, its construction and calibration being a large
project in its own right. For the time being we are stuck with the simplified
electrostatic model described here. Despite the inevitable errors involved,
the use of this model does not prevent our simulations from producing useful
results. We can explore aspects of channel conductance usually not consid-
ered in simulation, namely the effect on conductance of the overall shape and
charge distribution of the channel, as well as long range interactions between
multiple ions. We can make predictions about conductance which can be
compared with experiment, expecting, in light of the above discussion, that
these predictions will be correct to the extent that overall channel shape,
long range electrostatics, and diffusion processes are responsible for channel
conductance, and incorrect to the extent that detailed interactions between
water, protein, and ions are responsible for conductance. Simplifying the
electrostatics model to make the prediction of conductance possible is con-
sistent with the project’s strategy. The effects of this simplification on the
validity of the method, although not fully known as yet, are at least capable
of being identified by checks against experiment and microscopic simula-
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tion, and if necessary reduced by the use of more sophisticated techniques
of electrostatics.

For the current project the use of simplified electrostatics has implica-
tions for the way we build model channels and interpret results. Model
channels should reflect, as far as it is know, the overall shape and charge
distribution of the real channel. Exact replication of the real channel, espe-
cially small details, is unnecessary and potentially misleading, as our sim-
plified electrostatics is incapable of faithfully reflecting the effect of such
small details on the potential energy of ions traversing the channel, and the
resulting effects on conductance. In a similar vein, we should not yet expect
to reproduce from a model channel the exact conductance of the real chan-
nel on which it is based. Rather, we should hope that the model channel’s
conductance will show the general characteristics of the real channel’s con-
ductance. These expectations may seem modest, after all the effort needed
to make our BD method work, and compared to the ability of other theories
such as PNP and RRT to produce an exact quantitative match to channel
conductance by adjusting parameters. However, we believe it is important
to build a theory to predict conductance from channel structure, rather than
relying on adjustable parameters, now that computer technology makes this
possible, and we do not pretend that this project is more than another step
in this direction.

3.2 Outline Generation

To represent a channel using the macroscopic theory of electrostatics, we
need a sharp boundary between water and protein, a boundary described
in three dimensions. We assume that channel boundaries are cylindrically
symmetric, which simplifies the problem: we describe the outline of a chan-
nel as a curve in two dimensions, and then rotate the outline around the
channel axis to produce a three dimensional surface. Note that only the
boundary is cylindrically symmetric. Ions and fixed charges in the protein
are represented as point charges in three dimensional space, so the total sys-
tem of ions, fixed charges, and boundary will not have cylindrical symmetry.
Examples of channel outlines are shown in Fig. 3.1.

The channel outlines are built up piece by piece from sections of line,
arc, and catenary. Each section has its own parametric equations, expressed
in local coordinate t, and these need to be assembled to form parametric
equations for the complete outline, expressed in global coordinate s. Both
t and s coordinates are scaled to be path lengths: they measure distance
along the curve. The s coordinate is defined to be 0 at the minimum r value
of those points with the minimum z value, that is the lower left corner of
the outline. It increases as the curve proceeds clockwise around the outline.

Each section is described by its type, and the following attributes:
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Figure 3.1: Example channel outlines for catenary, biconical, toroidal, and cylindrical
channels. The outlines have been reflected about the z axis to better show the shape of
the pore. The outline of the toroidal channel has been truncated at r = 44 Å: it continues
in a full circle out to r = 84 Å. For all channels the minimum pore radius (rneck ) is 4 Å.
The catenary and biconical channels have a neck length (hneck ) of 35 Å, for a total length
of 80 Å. The catenary channel has mouth radii (rvtop , rvbot ) of 13 Å, while those of the
biconical channel are 17.5 Å. The cylindrical channel has a neck length (hneck ) of 17.7 Å,
plus two corners of radius 5 Å, for a total length of 27.7 Å. All channels except for the
torus have an outer radius (rchan ) of 44 Å. The mouth radii of the catenary and biconical
channels, and the length of the cylindrical channel have been adjusted so that all four
channels present a potential energy barrier of the same height.
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Rj , Zj offset in (r, z) coordinates,
aj scale factor, or slope for a line,
uj , vj start and end of the section in t coordinate.

The types of sections, and their parametric equations, are as follows.

Line A straight line in the direction of angle aj passing through point
(Rj , Zj). This is the point where t = 0, and t ranges from −∞ to
∞.

rj(t) = Rj + t cos(aj)
zj(t) = Zj + t sin(aj)
θj(t) = aj . (3.23)

Arc 1 A semi-circle centred on point (Rj , Zj) with radius aj . The arc
sweeps clockwise from −π/2 to π/2 as t runs from 0 to πaj .

rj(t) = Rj − aj sin(t/aj)
zj(t) = Zj − aj cos(t/aj)
θj(t) = π − t/aj . (3.24)

Arc 2 A semi-circle centred on point (Rj , Zj) with radius aj . The arc
sweeps clockwise from π/2 to −π/2 as t runs from 0 to πaj .

rj(t) = Rj + aj sin(t/aj)
zj(t) = Zj + aj cos(t/aj)
θj(t) = −t/aj . (3.25)

Catenary 1 Half of the positive branch of a catenary, with the origin at
(Rj , Zj) and with scale factor aj . The curve starts at (Rj , Zj + aj),
where t is 0, and t runs from 0 to ∞.

rj(t) = Rj + aj sinh−1(t/aj)

zj(t) = Zj +
√

t2 + a2
j

θj(t) = tan−1(t/aj). (3.26)

Catenary 2 Half of the negative branch of a catenary, with the origin at
(Rj , Zj) and with scale factor aj . The curve ends at (Rj , Zj − aj),
where t is 0, and t runs from −∞ to 0.

rj(t) = Rj + aj sinh−1(−t/aj)

zj(t) = Zj −
√

t2 + a2
j

θj(t) = π + tan−1(t/aj). (3.27)
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The sections are assembled into a single curve by defining wj to be the
end of each section in the global coordinate s:

w0 = 0
wj = wj−1 + (vj − uj). (3.28)

Then the global parametric equations are

r(s) = rj(s − wj−1), j : wj−1 ≤ s < wj

z(z) = zj(s − wj−q), j : wj−1 ≤ s < wj . (3.29)

To form a continuous outline, without any sharp corners, the sectors must
satisfy

zj(uj) = zj−1(vj−1)
rj(uj) = rj−1(vj−1)
θj(uj) = θj−1(vj−1), (3.30)

where j = 0 is considered equivalent to j = n, n being the number of sectors:
the start of the first sector (j = 1) must match the end of the last sector
(j = n equivalent to j = 0).

Although this piecewise method of describing the channel shape allows
great flexibility, choosing section attributes so that the outline is continuous
and smooth can be difficult. We compromise by defining channel types, each
of which has a fixed number of sectors and a fixed overall shape, but has
channel parameters which control its dimensions. The section attributes are
generated automatically from the parameters, with the aid of a root find-
ing algorithm where necessary. The parameters for toroidal and cylindrical
channels are shown in Fig. 3.2. The parameters for catenary and biconical
channels are shown in Fig. 3.3. The effect of changing the channel param-
eters for a catenary channel is illustrated in Fig. 3.4. Fig. 3.4 A shows the
effect of variation in the rneck and rchan parameters. Fig. 3.4 B shows the
effect of variation in the hvtop and rvbot parameters: note that the shapes
of the vestibules can be adjusted independently. Fig. 3.4 C shows the effect
of variation in the hneck parameter: note that this changes the total height
of the channel as well as the height of the neck. Fig. 3.4 D shows the effect
of variation in the rcnr parameter.

3.3 Tiling the Boundary

Having generated the outline, the next step is to generate the surface charge
sectors which tile the boundary. This is done by slicing the outline into
rings, so called because when the outline is rotated they become rings of
surface charge sectors. The rings are not evenly spaced around the outline.
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Figure 3.2: Catenary and bicone parameters
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Figure 3.3: Torus and cylinder parameters



46 CHAPTER 3. ITERATIVE METHOD

-40

-20

0

20

40

40200

A

-40

-20

0

20

40

40200

B

-40

-20

0

20

40

40200

C

-40

-20

0

20

40

40200

D

Figure 3.4: Effect of changing channel parameters. The vertical axes are for z, the hori-
zontal axes are for r. The axes are labeled in Å. In A, rneck changes from 2 to 4 to 6 Å,
while rchan changes from 39 to 44 to 49 Å. In B, hvtop changes from 30 to 35 to 40 Å,
while rvbot changes from 10 to 13 to 16 Å. In C, hneck changes from 5 to 10 to 15 Å. In
D, rcnr changes from 2.5 to 5 to 7.5 Å.
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The accuracy of the iterative method depends on the spacing of the sectors.
in particular it cannot be expected to give accurate results for points closer
to the boundary than the sector spacing (see section 3.6). The computer
resources required, however, are proportional to the inverse fourth power of
the sector spacing. This places a practical limit on the number of sectors
that can be used (10 to 15 thousand sectors on the VPP). To make the best
use of the available resources it is important to vary the spacing between
sectors, reducing it in areas where ions come close to the boundary, and
increasing it in areas where they do not.

3.3.1 Sector Spacing

We do this by defining three regions of the boundary. The first is the neck
region, the constricted part of the channel where ions are forced into close
proximity to the boundary. The second is the vestibule region, the vestibules
and top and bottom surfaces of the channel, where ions will occasionally
approach the boundary closely. The third is the outer region, the outer
corners and outside surface of the channel. In our BD simulations the ions
are restricted to cylindrical reservoirs with radii smaller than the radius of
the outer edge of the channel, located above and below the channel. The
ions therefore do not approach the outer region. The sector spacing can be
much larger here, as the errors in the iterative method are small when then
point of interest is far from the boundary compared to the sector spacing.

The neck region is defined by vertical limits

−hns bot ≤ z ≤ hns top, (3.31)

the vestibule region by horizontal limits

r ≤
{

rvs top; z ≥ 0
rvs bot; z < 0,

(3.32)

and the outer region is the rest of the outline. The nominal spacings for
the regions are ∆sneck , ∆svest , and ∆sout , usually set to 0.5 Å, 1 Å,
and 10 Å respectively. These spacings are scaled by the ring generation
algorithm to keep the number of sectors under a specified limit: this makes
the memory use of the program predictable. The scale factor is called λ
and is usually between 1.2 and 1.5, so the real spacings are larger than the
nominal spacings by this factor.

Although the sector spacing needs to vary, it should not jump suddenly,
as nearby sectors need to be spaced reasonably evenly for the iterative algo-
rithm to work. To achieve this we define a ramp function which increases the
spacing linearly from the smaller to the larger, for 50% beyond the smaller
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region’s limit. The function is

Framp(x, xlim,∆s1,∆s2) =




∆s2; x > 1.5xlim

∆s1 + 2
(

x−xlim
xlim

)
(∆s2 − ∆s1); xlim < x ≤ 1.5xlim

∆s2; x ≤ xlim,
(3.33)

and so the nominal spacing is given by

∆s(r, z) =




Framp(r, rvs top,
Framp(z, hns top,∆sneck,∆svest),

∆sout); z ≥ 0
Framp(r, rvs bot,

Framp(−z, hns bot,∆sneck,∆svest),
∆sout); z < 0.

(3.34)

The regions are defined in terms of the outline parameters for the various
types of outline. For a toroidal channel

hns top = hns bot = 1
4rtor

rvs top = rvs bot = rneck + 3
4rtor,

(3.35)

where rtor = (rchan − rneck)/2 is the radius of the torus. For a cylindrical
channel

hns top = hns bot = 2
3(1

2hneck + rcnr)
rvs top = rvs bot = rchan − 2rcnr,

(3.36)

and for a biconical or catenary channel

hns top = hns bot = 1
2hneck + rcnr

rvs top = rvs bot = rchan − 2rcnr.
(3.37)

All of the neck limits leave enough space for the vestibule spacing to be
reached by the top and bottom of the channel, hence the factor of 2

3 in the
cylinder limits. However, except for the toroidal channel the vestibule limits
usually do not allow the full outer spacing to be reached.

3.3.2 Ring Generation

The ring generation algorithm seeks to divide the outline into rings, based
on the parametric equations for the outline, r(t) and z(t), and the sector
spacing ∆s(t) = ∆s(r(t), z(t)). The algorithm begins by calculating three
new functions

A(t) =
∫ t

0
2πr(t′) dt′

M(t) =
∫ t

0

1
∆s(t′)

dt′

N(t) =
∫ t

0

2πr(t′)
∆s(t′)

dt, (3.38)
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these being the cumulative totals of the boundary area, the number of rings
at nominal spacing, and the number of sectors at nominal spacing, respec-
tively.

The scaling factor λ and the number of rings m are determined as follows.
The minimum scaling factor, λmin , depends on the limit on the total number
of sectors, nlim :

λmin =
√

N(tmax)/nlim, (3.39)

where tmax is the path length of the outline. The number of rings is then

m = 	M(tmax)/λmin
, (3.40)

and the final value for λ is

λ = M(tmax)/m. (3.41)

The rings can now be described in the t coordinate:

t0 = 0
ti = max t : M(t)/λ ≤ i, i = 1 . . . n, (3.42)

and

Ti =
ti − ti−1

2
, (3.43)

so that ti−1, ti, and Ti are the beginning, end, and centre of ring i, respec-
tively. Additional ring attributes are

Ai = A(ti) − A(ti−1), (3.44)

the total area of ring i,
∆si = λ∆s(Ti), (3.45)

the target spacing for ring i, and

∆ti = ti − ti−1, (3.46)

the thickness of the ring. Note that ∆si is the target spacing used for
breaking the ring into sectors, while ∆ti is the actual path length across the
ring, used for calculating its normals and polarizability.

The centres of the rings for a catenary channel are shown in Fig. 3.5.
This figure shows that sectors are concentrated in the neck region of the
channel, and very sparse in the outer region, where they are far from the
ions in a simulation. It also shows that the variation in spacing is done
smoothly.
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Figure 3.5: Sector spacing for a catenary channel. ∆sneck is 0.5 Å, ∆svest is 1 Å, and
∆sout is 10 Å. The channel parameters are hneck = 10 Å, rchan = 44 Å, and rcnr = 5 Å,
so hns top and hns bot are 10 Å, and rvs top and rvs bot are 34 Å.
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3.3.3 Sector Generation

The final step, now that the outline has been divided into rings, is to generate
sectors by rotating each ring around the z axis. First we need the values
and derivatives of r and z at the centre of each ring:

ri = r(Ti)

r′i =
r(ti) − r(ti−1)

∆ti
≈ r′(Ti), (3.47)

and

zi = z(Ti)

z′i =
z(ti) − z(ti−1)

∆ti
≈ z′(Ti). (3.48)

Then the normal to the ring at its centre (r̂i, ẑi) is given by

r̂i = −z′i/γi

ẑi = r′i/γi, (3.49)

where

γi =
√

r′2i + z′2i . (3.50)

The outline goes clockwise with increasing t, so this normal points out from
the channel boundary, towards the water.

3.4 Iterative Algorithm

3.4.1 Basic Algorithm

The first step in the iterative algorithm is to calculate the electric field due
to the permanent charges at each of the surface charge sectors. The normal
for each sector is taken at its centre point, and along with the external
electric field this allows the surface charge of the sector to be calculated
from Eq. 3.20. Of course this is only an initial estimate of the surface
charge, since the electric field from the rest of the surface has been ignored.
However, this estimated surface charge is now converted into charge at the
surface charge centres, and the process is repeated, with the electric field at
each sector calculated not only from the permanent charges, but also from
the last estimate of the induced charges. This yields a better estimate of
the surface charge, which is again fed into the electric field calculation, and
the iterations continue until the system converges, that is the surface charge
estimates stop changing.
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Symbols

N Number of permanent charges (ions and dipoles).

Ri Position of permanent charges.

Qi Effective charge of permanent charges (charge divided local ε).

m Number of surface charge centres.

ri Position of surface centres.

∆Si Area of surface charge sectors.

n̂i Normal to surface at ri.

E(k)
i External electric field at sector i after algorithm step k.

σ
(k)
i Surface charge density of sector i after step k.

q
(k)
i Charge on surface charge centre i after step k.

δ
(k)
i Normalized absolute change in charge centre i during step k.

∆ Tolerance for convergence (scaled absolute error).

Algorithm

1. Calculate the field at the centre of the sectors from the permanent
charges:

E(0)
i =

∑
j=1,N

Qj

4πε0

(ri − Rj)
|ri − Rj |3

. (3.51)

Set k to 1.

2. Allocate new charges to the sectors based on the electric field:

σ
(k)
i = PBE(k−1)

i · n̂i (3.52)

q
(k)
i = σ

(k)
i ∆Si. (3.53)

3. Recalculate the electric field at the surface charge centres:

E(k)
i = E(0)

i +
∑

j=1,m; j �=i

q
(k)
j

4πε0

(ri − rj)
|ri − rj |3

. (3.54)
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4. Check for convergence:

δ
(k)
i =

∣∣∣∣∣q
(k)
i − q

(k−1)
i

q
(k)
max

∣∣∣∣∣ , (3.55)

where qmax = max(|qi|). If δ
(k)
i < ∆ ∀i and k ≥ 10 then finish,

otherwise set k to k + 1 and go to 2.

3.4.2 Convergence

The algorithm needs to test for convergence of the system in order to decide
when to stop, and this is done by estimating the error in the solution from
the change in surface charge values from step to step. The system is assumed
to have converged sufficiently when the maximum error is less than some
specified value. We at first tried estimating the fractional error

δ
(k)
i =

∣∣∣∣∣q
(k)
i − q

(k−1)
i

q
(k−1)
i

∣∣∣∣∣ , (3.56)

with a tolerance δi of 0.01. The intent was to reduce the error in the potential
due to convergence to under 1%. However, this resulted in variations in the
number of steps taken and the accuracy of the solution depending on the
starting conditions. The problem is that by using fractional errors detection
of convergence may be controlled by small errors in surface charge centres
far from the ion, which have little effect on the solution. The larger surface
charges close to the ion are far more important and this should be reflected
in the convergence condition. We switched to using absolute errors scaled
by the largest surface charge in the system

δ
(k)
i =

∣∣∣∣∣q
(k)
i − q

(k−1)
i

q
(k)
max

∣∣∣∣∣ . (3.57)

With ∆ = 0.0001 this method produced satisfactory results without the
instability of using fractional errors.

3.4.3 Pre-Calculation of Interactions

The basic algorithm recalculates the interactions between all the surface
charge centres at each step. Since the position of the sectors is known
and fixed once the boundary has been divided up, much of this work is
redundant. The distance and direction between surface charge centres does
not change between steps, or even if the algorithm is re-run for a new set of
permanent charges, provided the boundary stays the same. This observation
provides a means of speeding up the algorithm, at the expense of a larger
requirement for memory. The interaction between each pair of surface charge
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centres can be pre-calculated and summarized as a single number, part of
a square matrix with dimensions equal to the number of surface charge
centres, an m by m matrix. Then the new surface charges at each step
can be calculated quickly by multiplying the vector of old surface charges
by the matrix, and adding the surface charge due to permanent charges.
This optimization can result in a large speedup, provided enough memory
to hold the matrix is available, and the matrix can be rapidly read into the
processor (or processors). These conditions apply in the case of the vector
architecture machine we use, and are likely hold for other high-performance
architectures. For a desktop machine, however, the basic algorithm may be
better.

The formula for the interaction matrix Bij is derived as follows. Let

Aij =
1

4πε0

(ri − rj)
|ri − rj |3

. (3.58)

By substituting k − 1 for k, Eq. 3.54 becomes

E(k−1)
i = E(0)

i +
∑

j=1,m; j �=i

Aijq
(k−1)
j , (3.59)

and this can be substituted into Eq. 3.52

σ
(k)
i = PBE(k−1)

i · n̂i

= PBE(0)
i · n̂i +

∑
j=1,m; j �=i

PB(Aij · n̂i)q
(k−1)
j . (3.60)

Finally, the equation for the new charge values, Eq. 3.53, becomes

q
(k)
i = σ

(k)
i ∆Si

= PB∆SiE
(0)
i · n̂i +

∑
j=1,m; j �=i

PB∆Si(Aij · n̂i)q
(k−1)
j

= q
(0)
i +

∑
j=1,m; j �=i

Bijq
(k−1)
j , (3.61)

where
Bij = PB∆Si(Aij · n̂i). (3.62)

Bij is the matrix of interaction values, and Eq. 3.61 is the calculation of
new charge values from the old with a matrix multiplication and a vector
addition, as promised.

3.5 Curvature Compensation

The iterative algorithm relies on the assumption the the surface charge sec-
tors are flat, and therefore the surface charge on a sector does not affect
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that sector’s own polarization. This can be seen from Eq. 3.20. While the
derivation of this equation is strictly only valid for infinitesimal areas of
surface, the electric field from the surface charge on a finite but flat sector
would be perpendicular to the normal all over the sector, the term Eex · n̂
would be zero, and there would be no contribution to surface charge density
due to surface charge elsewhere on the sector.

Unfortunately the finite sectors that tile the boundary are not flat. They
are curved where the boundary is curved, and this must inevitably result
in inaccuracy in the calculations. The smaller the sectors, the better they
approximate the ideal of flat and infinitesimal areas of surface. It should
be possible to reduce the error to any desired level simply by making the
sectors small enough. However, the time taken by the iterative algorithm
is proportional to the square of the number of sectors, as is the memory
required if pre-calculation is used. The number of sectors is proportional
to the inverse square of the sector dimensions, so the computer resources
required to run the algorithm depend on the inverse fourth power of the
sector dimensions. Halving the spacing between sectors results in a sixteen-
fold increase in the resources required. Obviously there is a practical limit
to the reduction of errors by making the sectors smaller.

We use a method of compensating for curved sectors by incorporating an
estimate of self interaction into the polarizability of each sector. We assume
that the charge density σ is constant across the sector, and that the electric
field E and normal n̂ at the center of the sector are representative of the
whole sector. Including the self interaction, Eq. 3.20 can be written as

σ = PB(Eex + Eself) · n̂,

= σex + σself , (3.63)

where Eex is the external electric field due to other sectors and fixed charges,
and Eself arises from the self interaction of other points within the sector.
The charge densities σex and σself are associated with the external field and
self interaction, respectively. Since we assume that the charge density is
constant across the sector, σself is directly proportional to σ, that is

σself = Qσ, (3.64)

where the constant of proportionality Q depends only on the shape and size
of the sector and the polarizability of the boundary, but not on the external
field. Using this relation in Eq. 3.63, we obtain for the corrected charge
density

σ = σex + Qσ,

=
1

1 − Q
σex,

=
PB

1 − Q
Eex · n̂. (3.65)
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By pre-calculating Q and using Eq. 3.65 in place of (3.20) in the iterations,
we can compensate for curved sectors without modifying the iterative algo-
rithm.

Towards this end, we first express Q in terms of Eself using Eqs. 3.63
and 3.64

Q =
PBEself · n̂

σ
. (3.66)

With the assumption of constant charge density σ in the sector, Eself de-
pends only on the geometry of the sector and is given by the surface integral

Eself =
σ

4πε0

∫
S

δR
|δR|3 dA, (3.67)

where δR is a vector from the center of the sector to an arbitrary point
on the sector, and the surface area covers the whole sector. Substituting
Eq. 3.67 into 3.66, we obtain the desired expression for Q

Q =
PB

4πε0

∫
S

δR · n̂
|δR|3 dA. (3.68)

To make further progress, we describe the sector as a parametric surface in
variables (t, u) with the center at R0 = R(t0, u0) and the distance from the
center given by δR = R(t, u)−R0. Since the surface dimensions are small,
we can Taylor expand δR around R0 as

δR = Rt,0 δt + Ru,0 δu +
1
2
Rtt,0 δt2 +

1
2
Ruu,0 δu2 + Rtu,0 δt δu + . . . (3.69)

where δt = t − t0, δu = u − u0 and the subscripts denote derivatives of
R(t, u) at (t0, u0), that is

Rt,0 =
∂R
∂t

∣∣∣∣
t0,u0

, Rtt,0 =
∂2R
∂t2

∣∣∣∣∣
t0,u0

, Rtu,0 =
∂2R
∂t∂u

∣∣∣∣∣
t0,u0

, etc. (3.70)

Noting that n̂ ∝ Rt,0 ×Ru,0, we obtain for the length and projection of δR
to lowest order

|δR|2 = |Rt,0|2 δt2 + |Ru,0|2 δθ2 + Rt,0 · Ru,0 δt δu

δR · n̂ =
1
2
Rtt,0 · n̂ δt2 +

1
2
Ruu,0 · n̂ δu2 + Rtu,0 · n̂ δtδu. (3.71)

There are no first order terms in δR ·n̂, indicating absence of self-interaction
when the sector is flat. The second order terms take into account deviation
from a flat surface with constant curvatures in the t and u directions.

Our boundaries are all cylindrically symmetric, so we use cylindrical
coordinates r(t), z(t), and θ to parameterize the surface. Then the sector
becomes part of a generalized cylinder

R(t, θ) = r(t) cos θ i + r(t) sin θ j + z(t)k . (3.72)
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Using a cylindrically symmetric dielectric boundary does not restrict the
whole system to cylindrical symmetry; permanent charges such as ions can
be arranged arbitrarily in three dimensional space. This approach can also
be used for boundaries that are not cylindrically symmetric, although the
formulas will be different and more complex. The partial derivatives of
R(t, θ) defined in Eq. 3.70 are given by

Rt,0 = r′0 cos θ0 i + r′0 sin θ0 j + z′0 k,

Rθ,0 = −r0 sin θ0 i + r0 cos θ0 j,

Rtt,0 = r′′0 cos θ0 i + r′′0 sin θ0 j + z′′0 k,

Rθθ,0 = −r0 cos θ0 i − r0 sin θ0 j,

Rtθ,0 = −r′0 sin θ0 i + r′0 cos θ0 j. (3.73)

where r0 = r(t0), z0 = z(t0), and primes indicate derivative with respect to
t. The normal n̂ at R0 can be found by taking the cross product of the unit
tangents

n̂ =
Rt,0

|Rt,0|
× Rθ,0

|Rθ,0|
,

=
1
γ0

(r′0 cos θ0 i + r′0 cos θ0 j + z′0 k) × (− sin θ0 i + cos θ0 j),

=
1
γ0

(−z′0 cos θ0 i − z′0 sin θ0 j + r′0 k), (3.74)

where
γ0 =

√
r′20 + z′20 . (3.75)

Substituting Eqs. 3.73 and 3.74 into (3.71) gives

|δR|2 = γ2
0 δt2 + r2

0 δθ2,

δR · n̂ =
1

2γ0

[
(r′0z

′′
0 − r′′0z′0) δt2 + r0z

′
0 δθ2

]
. (3.76)

The differential area dA is the product of the differential path lengths in the
t and θ directions given by

dA = |Rt,0||Rθ,0| dt dθ,

= γ0r0 dt dθ. (3.77)

Substituting Eqs. 3.76 and (3.77) into the integral (3.68) gives

Q =
PB

4πε0

1
2γ0

∫ θ0+∆θ

θ0−∆θ

∫ t0+∆t

t0−∆t

(r′0z
′′
0 − r′′0z′0) δt2 + r0z

′
0 δθ2

(γ2
0δt2 + r2

0δθ
2)3/2

γ0r0 dt dθ .

(3.78)
By making the substitutions t → t + t0 and θ → θ + θ0, this becomes

Q =
PBr0

8πε0

∫ ∆θ

−∆θ

∫ ∆t

−∆t

(r′0z
′′
0 − r′′0z′0) t2 + r0z

′
0 θ2

(γ2
0t2 + r2

0θ
2)3/2

dt dθ, (3.79)
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which can be integrated to yield

Q =
PB

2πε0

[
r0

γ3
0

(r′0z
′′
0 − r′′0z′0)∆θ sinh−1

(
γ0∆t

r0∆θ

)
+

z′0
r0

∆t sinh−1
(

r0∆θ

γ0∆t

)]
.

(3.80)

3.6 Testing and Performance

Our main way of verifying both the iterative and analytical methods is by
comparing the two solutions for the same boundary. Since these two methods
use completely different algorithms their close agreement is good evidence
that both are working correctly. This testing is described in the following
chapter, after the description of the analytical method. There are, however,
some tests that can be done using the iterative method alone, and they are
described here. The tests are performed for a catenary channel, as shown in
Fig 3.1. They are done for three different sector spacings: high resolution
(15500 sectors, λ = 1.0), medium resolution (6900 sectors, λ = 1.5), and
low resolution (3900 sectors, λ = 2.0). The convergence of the solution as
the number of sectors increases gives an indication of the accuracy of the
calculations.

The first set of tests is for an ion passing through the centre of the
channel. This is the most critical area of the solution. Conductance largely
depends on the energy barriers and wells in the constricted part of the chan-
nel, and repulsion from induced charges tends to keep the ions away from
the protein walls. The tests are for a line through the centre of the chan-
nel, from z = −50 Å to z = 50 Å with 1 Å intervals between positions.
They are done at low, medium, and high resolution, first with curvature
compensation turned off, then with it on. Fig. 3.6A shows the potential en-
ergy profiles. The profiles produced without curvature compensation can be
seen converging towards the profile produced with curvature compensation.
Only the medium resolution profile is shown with curvature compensation
on, since the traces overlap. Fig. 3.6B shows the potential energy at z = 0
for the six tests, and extrapolates to allow estimation of the potential energy
as sector spacing goes towards zero. The improvement in accuracy due to
the curvature compensation algorithm is evident from this figure: the error
at λ = 1.5 can be estimated at 9% without curvature compensation, but
only 1% with. The slow convergence of the method without curvature com-
pensation means that λ would have to be reduced to something like 0.1 to
produce accuracy similar to that with curvature compensation. This would
require an impractical number of sectors: curvature compensation is neces-
sary to make the algorithm sufficiently accurate with a realistic number of
sectors.

The second set of tests is for an ion close to the protein wall in the
neck region of the channel. This is the region where an ion is most likely
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Figure 3.6: Centreline potential energy profiles. Graph A shows the potential profiles
for ions traversing the centreline of the channel, at low, medium, and high resolution
with curvature compensation off, and at medium resolution with curvature compensation
on. For clarity only one profile is show with curvature compensation on, since the traces
overlap. Graph B show the convergence of the calculated potential energy as λ is reduced
towards zero. The points were calculated on the centreline with z = 0.
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Figure 3.7: Offset potential energy and force profiles. These graphs are for an ion track
in the neck region of the channel (z = −2 to 2 Å), offset from the centreline by 3 Å and
so only 1 Å from the boundary. Graph A shows the potential energy profile at low (solid
line), medium (filled circles), and high (open triangles) resolution. The finite spacing
of the boundary sectors creates bumps in the traces, especially at low resolution. The
fractional errors are, however, quite small: note the expanded vertical scale. Graph B
show the force profile at low (solid line), medium (filled circles), and high (open triangles)
resolution. This is the force in the x direction: the graph shows the repulsive force from
the nearby boundary. The vertical scale is again expanded, but the errors are larger
(around 10% at low resolution). The text explains why such errors in the repulsive force
are acceptable in the vestibules. This figure shows that in the neck region the error is
reasonable (< 2%) at medium resolution.
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Number of Time per Time per
Pre-Calculation Sectors Memory Iterations Iteration Position

OFF 3900 24 MB 26 1.7 s 44 s
OFF 6900 24 MB 24 5.5 s 132 s
OFF 15500 24 MB 36 29.3 s 1055 s

ON 3900 80 MB 26 28 ms 0.7 s
ON 6900 200 MB 24 89 ms 2.1 s
ON 15500 920 MB 36 444 ms 16.0 s

Table 3.1: Performance of the Iterative Method

to approach the wall. Curvature compensation is turned on for this set of
tests, but errors occur because the distance from the ion to the boundary is
comparable to the sector spacing. The tests are for a line from z = −2 Å to
z = 2 Å, but offset 3 Å from the centreline in the x direction, and so only
1 Å from the boundary. This is effectively in contact with the wall, since
inorganic cations have radii of around 1 Å. Fig. 3.7A shows the potential
energy profiles at low, medium, and high resolutions. The sector spacing in
the neck is 0.5 Å for high resolution, 0.75 Å for medium, and 1.0 Å for low.
The effect of this finite sector spacing can be seen in the figure. When the
ion is 2× the sector spacing from the boundary (high resolution) the profile
is reasonably smooth, but at 1.33× spacing the profile gets bumpy, and the
amount of variation increases at 1× spacing. The bumps in the profiles make
it impossible to extrapolate to zero spacing, but the maximum variation of
the medium resolution profile from the high resolution profile is less than
0.5% of the potential energy (note the expanded vertical scale of the graph).
Fig. 3.7B shows the force in the x direction: the repulsive force away from
the wall. The variations in this force are again quite reasonable, at around
1% at medium resolution. At the vestibule wall, where the sector spacing
is larger, the variation is more like that of the low resolution profile, and
errors in the repulsive force can be around 10%. These errors in the force are
acceptable, however, for two reasons. Firstly, ions tend not to approach the
protein walls this closely, because of the very repulsive force whose accuracy
is in doubt. Secondly, repulsion from the walls at such close ranges depends
on detailed interaction with the ion’s first hydration shell, which is not
accurately modeled by the macroscopic theory of electrostatics. There is
little point in going to great effort to calculate to 1% or 2% accuracy where
simplifications in the theory might be leading to an much larger error.

The performance of the iterative method on the VPP is outlined in ta-
ble 3.1. With the pre-calculation algorithm turned off the memory use is a
constant 24 MB. In fact there is a memory use proportional to the number
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of sectors, but it is insignificant compared to the approximately 20 MB over-
head of running any program on this machine: the VPP allocates memory
in 8 MB blocks, so the gradually increasing memory use does not appear in
the table. Memory use with pre-calculation turned on is proportional to the
square of the number of sectors. The constant of proportionality is 4 bytes,
for one single precision real number per matrix element. The time taken
per iteration is also proportional to the square of the number of sectors,
but with pre-calculation turned on the algorithm is 60 times faster. The it-
erative method achieves 99% vectorization with or without pre-calculation,
so this speedup is due to reducing the number of calculations, and is not
a reflection of the VPP’s poor scalar performance. However, the speedup
may not be as large on machines with less efficient memory architectures,
and if the algorithm is to run efficiently there has to be enough real memory
to hold the pre-calculation matrix. The number of iterations taken for the
algorithm to converge varies with the spacing of the points and the positions
of ions and fixed charges: it is generally around 30. The results in the table
are for a single ion in the neck region of a catenary channel. Even with pre-
calculation it takes 2.1 s for a single solution at medium resolution. This is
fast enough to calculate energy profiles, but it is far too slow for a BD simu-
lation. A typical run of 1,000,000 steps would take over 500 h of CPU time,
more than one run would be needed for an accurate conductance result, and
this is only for one point on a graph. A faster algorithm is needed.



Chapter 4

Analytical Method

As mentioned in the introduction to chapter 3, there are two approaches to
solving Poisson’s equation for a channel boundary: mathematical analysis
or an iterative algorithm. An analytical solution is usually preferred, if
available, because it is a more compact and elegant representation, and can
act as an aid to intuition. However, analytical solutions to Poisson’s equation
are only possible for a limited set of boundary geometries, only one of which
can be used to represent a channel: the toroidal boundary described in this
chapter. This chapter describes our analytical solution to Poisson’s equation
for a toroidal boundary, followed by the algorithm we use to calculate this
solution rapidly on a vector architecture machine.

4.1 Analytical Solution

4.1.1 Toroidal Coordinates

The system of toroidal coordinates (µ, η, φ) is illustrated in Fig. 4.1. The
coordinate µ is defined as log(PL′/PL), where L and L′ are the limiting
points of a set of coaxial circles. The constant µ = µ1 defines the surface
of a torus. When circles of progressively increasing radii are drawn (dotted
lines in Fig. 4.1), their centers move out on the x-axis towards infinity. Thus,
as µ decreases progressively from ∞ to 0, the circles grow from the point at
L (zero radius) to the z axis (infinite radius with center at infinity). The
coordinate η is defined by the angle LPL′ and has the range [0, 2π]. For
a given µ, η traces a circle of a fixed radius as it changes from 0 to 2π,
as indicated in Fig. 4.1. Finally, φ is the usual azimuthal angle about the
symmetry axis z with the range [0, 2π]. As a circle is revolved around the
z-axis by 360 o counter-clockwise, a toroidal shape is generated. A point
anywhere inside and outside of the torus, as well as on its surface, can be
represented by µ, η and φ.

The toroidal coordinates are related to the Cartesian ones through the
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Figure 4.1: Toroidal coordinate system. A torus is generated by rotating the two circles
shown in the upper panel by 180o along the z-axis. A point P anywhere in space can
be defined by (µ, η, φ). The coordinate µ describes a ring of circles. The radius of the
circle decreases progressively and its center moves in from ∞ to point L on the x-axis as
µ increases from 0 to ∞. For a given µ, η traces a circle of fixed radius as it goes from 0
to 2π, with η = 0 furthest from the z-axis, and η = π nearest. The coordinate φ is the
azimuthal angle about the z-axis.
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following set of equations [52]:

x =
a sinhµ cos φ

cosh µ − cos η
, y =

a sinhµ sinφ

cosh µ − cos η
, z =

a sin η

cosh µ − cos η
. (4.1)

The inverse relations, which are needed to transform the positions of the
charges and field points from Cartesian to toroidal coordinates, are given by

µ = tanh−1 2a
√

x2 + y2

x2 + y2 + z2 + a2
(4.2)

η = tan−1 2az

x2 + y2 + z2 − a2
(4.3)

φ = tan−1 y

x
. (4.4)

In the x-z plane, the circle describing the toroidal surface will intersect the
positive x-axis twice, x1 at η = 0 and x2 at η = π. Thus, the radius r of the
torus is related to the toroidal coordinates by the expression

r =
1
2
(x1 − x2)

=
1
2

(
a sinhµ1

cosh µ1 − 1
− a sinhµ1

cosh µ1 + 1

)

=
a sinhµ1

cosh2 µ1 − 1

=
a

sinhµ1
. (4.5)

Similarly, the distance from the origin to the centre of the torus R can be
expressed in terms of the toroidal coordinates as

R = x2 +
x1 − x2

2

= a

(
sinhµ1

cosh µ1 + 1
+

1
sinhµ1

)

= a

(
cosh µ1

sinhµ1

)
= a cothµ1. (4.6)

The inverse relations are

a =
√

R2 − r2

µ1 = cosh−1 R

r
. (4.7)

Thus, as η changes from 0 to 2π, constant µ1 follows a circle of the minor
radius, r = a/ sinhµ1, centered at the major radius R = a cothµ1. By
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rotating the two circles around the perpendicular z-axis, the full toroidal
boundary is generated.

We note that the ratio between the minor and major radii, r/R =
1/ cosh µ1 is independent of a and determines the diameter of the constricted
region of the model channel. For µ = 0, both r and R are infinite and the
circle becomes the z-axis. In the opposite limit, µ = ∞, the major and
minor radii coincide, i.e. R = a and r = 0, and the toroid becomes a ring of
radius a around the z-axis.

4.1.2 Solutions of Laplace’s and Poisson’s Equations

Solution of Laplace’s equation in toroidal coordinates is given in terms of the
trigonometric functions for η and φ, and the toroidal harmonics (Legendre
functions of half-order) Pm

n−1/2(cosh µ), Qm
n−1/2(cosh µ). The most general

solution can be written as

ϕ = f(µ, η)
∞∑

n=0

∞∑
m=0

[
AnmQm

n−1/2(cosh µ) + BnmPm
n−1/2(cosh µ)

]
× cos n(η − ηnm) cos m(φ − φnm), (4.8)

where
f(µ, η) =

√
cosh µ − cos η (4.9)

and the coefficients Anm, Bnm, ηnm, φnm are to be determined from boundary
conditions.

The potential due to a point charge q at r0 = (µ0, η0, φ0) is given in
reference [52] as:

q

|r − r0|
=

q

πa
f(µ, η)f(µ0, η0)

∞∑
n=0

∞∑
m=0

(2 − δn0)(2 − δm0)
Γ(n − m + 1/2)
Γ(n + m + 1/2)

× cos n(η − η0) cos m(φ − φ0)

×
{

Pm
n−1/2(cosh µ)Qm

n−1/2(cosh µ0), µ < µ0,

Qm
n−1/2(cosh µ)Pm

n−1/2(cosh µ0), µ > µ0.
(4.10)

The change in the µ solutions reflects the fact that Pm
n−1/2 diverges as µ → ∞

and Qm
n−1/2 diverges as µ → 0. Solution of Poisson’s equation for the system

of a point charge outside the toroidal boundary µ = µ1 > µ0, with dielectric
constants ε1 outside and ε2 inside the torus, can be found by superposing
the potentials in Eqs. 4.8 and 4.10. As usual in such boundary value prob-
lems, the φ solutions are decoupled, and the phases φnm in Eq. 4.8 must
be coherent with φ0, so that φnm = φ0 for all n, m. The same argument,
however, does not hold for the η solutions. Due to the square root factors
f (Eq. 4.9), there is coupling between different coefficients, and the phase
factors ηnm are not necessarily coherent with η0. This is a distinctive fea-
ture of the toroidal coordinates, and complicates solutions of electrostatic
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problems in comparison with other coordinate systems. With these caveats,
the superposed potential can be written as

ϕin = f(µ, η)
∞∑

n=−∞

∞∑
m=0

AnmQm
n−1/2(cosh µ) exp[in(η − η′nm)] cos m(φ − φ0),

ϕout = f(µ, η)
∞∑

n=−∞

∞∑
m=0

[
BnmPm

n−1/2(cosh µ) exp[in(η − η′′nm)]

+ CnmQm
n−1/2(cosh µ) exp[in(η − η0)]

]
cos m(φ − φ0), (4.11)

where

Cnm =
1

4πε0ε1

q

πa
f(µ0, η0)(2−δm0)

Γ(n − m + 1/2)
Γ(n + m + 1/2)

Pm
n−1/2(cosh µ0), (4.12)

are constant coefficients. In Eq. 4.11, we used µ > µ0 solution for the point
charge (Eq. 4.10) as it is the appropriate one for the boundary at µ = µ1.
Also, we replaced the cosines with exponentials for the η solutions because
it simplifies the boundary matching.

Applying the usual boundary conditions at µ = µ1

ϕin = ϕout, ε2
∂ϕin

∂(cosh µ)
= ε1

∂ϕout

∂(cosh µ)
(4.13)

we obtain the following equations for every m:

∞∑
n=−∞

AnmQ exp[in(η − η′nm)]

=
∞∑

n=−∞

[
BnmP exp[in(η − η′′nm)]

+ CnmQ exp[in(η − η0)]
]
, (4.14)

and

ε2

∞∑
n=−∞

Anm(fQ′ + f ′Q) exp[in(η − η′nm)]

= ε1

∞∑
n=−∞

[
Bnm(fP ′ + f ′P ) exp[in(η − η′′nm)]

+ Cnm(fQ′ + f ′Q) exp[in(η − η0)]
]
. (4.15)

Here we have introduced the compact notation for the constants, P =
Pm

n−1/2(cosh µ1), Q = Qm
n−1/2(cosh µ1) and f = f(µ1, η). Similarly, the

primes over P , Q and f denote derivatives with respect to cosh µ evaluated
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at µ = µ1. These equations can be further simplified by introducing the
complex coefficients:

A′
nm = Anm exp[−inη′nm],

B′
nm = Bnm exp[−inη′′nm],

C ′
nm = Cnm exp[−inη0]. (4.16)

Substituting the above coefficients in Eqs. 4.14 and 4.15, we obtain

∞∑
n=−∞

A′
nmQ exp[inη] =

∞∑
n=−∞

[
B′

nmP + C ′
nmQ

]
exp[inη], (4.17)

and

ε2

∞∑
n=−∞

A′
nm(fQ′ + f ′Q) exp[inη]

= ε1

∞∑
n=−∞

[
B′

nm(fP ′ + f ′P ) exp[inη]

+ C ′
nm(fQ′ + f ′Q) exp[inη]

]
. (4.18)

Eq. 4.17 now holds for each n, and hence we can solve for B′
nm in terms of

A′
nm

B′
nm = (A′

nm − C ′
nm)Q/P. (4.19)

Substituting B′
nm in Eq. 4.18 and collecting similar terms gives

∞∑
n=−∞

A′
nm

[
ε2(fQ′ + f ′Q) − ε1(fP ′ + f ′P )Q/P

]
exp[inη]

= ε1

∞∑
n=−∞

C ′
nmf(Q′ − P ′Q/P ) exp[inη]. (4.20)

Using f ′ = 1/2f and substituting back f2 = cosh µ1 − cos η, Eq. 4.20 can
be put in the form

2(cosh µ1 − cos η)
∞∑

n=−∞
A′

nm(ε2Q
′ − ε1P

′Q/P ) exp[inη]

+ (ε2 − ε1)
∞∑

n=−∞
A′

nmQ exp[inη]

= 2ε1(cosh µ1 − cos η)
∞∑

n=−∞
C ′

nm(Q′ − P ′Q/P ) exp[inη]. (4.21)

Notice that the cos η factors in the front leads to coupling of neighbouring co-
efficients, so that Eq. 4.21 cannot be solved trivially as typically encountered
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in boundary value problems involving spherical or cylindrical coordinate sys-
tems. Fourier analysis of the series in Eq. 4.21 in η, (i.e. multiplying by
either sinn′η or cos n′η and integrating from 0 − 2π), gives

∞∑
n=−∞

[(
2 cosh µ1(ε2Q

′ − ε1P
′Q/P ) + (ε2 − ε1)Q

)
δn′,n

− (ε2Q
′ − ε1P

′Q/P )(δn′,n+1 + δn′,n−1)
]
A′

nm

= ε1

∞∑
n=−∞

C ′
nm(Q′ − P ′Q/P )

[
2 cosh µ1δn′,n − (δn′,n+1 + δn′,n−1)

]
.(4.22)

Introducing further

Em
n = (ε2Q

′ − ε1P
′Q/P )A′

nm,

qm
n = 2 cosh µ1 +

(ε2 − ε1)Q
ε2Q′ − ε1P ′Q/P

,

λm
n = ε1(Q′ − P ′Q/P )C ′

nm, (4.23)

we obtain the following second order difference equation for the coefficients
Em

n

Em
n+1 − qm

n Em
n + Em

n−1 = λm
n+1 − 2 cosh µ1λ

m
n + λm

n−1. (4.24)

The real and imaginary parts of this equation must be satisfied separately
leading to two difference equations which, through Eqs. 4.16 and 4.23, de-
termine both the amplitude Anm and the phase η′nm. Eq. 4.24 also arises in
the problem of a dielectric torus in a uniform electric field [46], and can be
solved using techniques of the Green function.

4.1.3 Solution of the Difference Equation

Here we sketch the solution of the second order difference equation (Eq. 4.24).
For convenience, we will suppress the superscript m, but the same equation,
with different coefficients qm

n and λm
n , has to be solved for each value of m.

The Green function corresponding to Eq. 4.24 satisfies (see [46])

Gn+1,N − qnGn,N + Gn−1,N = δn,N+1 − 2 cosh µ1δn,N + δn,N−1, (4.25)

for each value of N . Here δn,N denotes Kronecker delta. Solutions of
(Eq. 4.24) are then given by

En =
∞∑

N=−∞
Gn,NλN , (4.26)

as can be verified by substituting Eq. 4.26 in Eq. 4.24 and using Eq. 4.25.
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Construction of the Green function in Eq. 4.25 is conceptually similar
to the familiar cases in electrostatics. One first finds the solutions of the
homogeneous equation

Gn+1,N − qnGn,N + Gn−1,N = 0, (4.27)

and then implements the “boundary conditions” implied in Eq. 4.25. The
two independent solutions of Eq. 4.27 can be found from a study of its
asymptotic form as |n| → ∞. In that limit, q → 2 cosh µ1, and the ratios
Gn+1,N/Gn,N for the solutions tend to exp(±µ1). The solutions of Eq. 4.27
with the correct asymptotics are given in terms of the continued fractions
as (see, for details, [50])

Gn+1,N

Gn,N
=

1

qn+1 −
1

qn+2 −
1

qn+3 − · · ·

≡ αn+1,

Gn−1,N

Gn,N
=

1

qn−1 −
1

qn−2 −
1

qn−3 − · · ·

≡ βn−1. (4.28)

Eq. 4.28 can be written as recursion relations among αn and βn

αn =
1

qn − αn+1
, βn =

1
qn − βn−1

, (4.29)

which provide a simple method for their calculation by iteration. From the
symmetry properties of Pm

n−1/2, Qm
n−1/2 and their derivatives (they remain

invariant under n → −n), it follows that q−n = qn in Eq. 4.23. Using this
fact in Eq. 4.29, it is seen that αn = β−n, and therefore only one set of
coefficients need to be calculated. Rewriting Eq. 4.28 as

Gn+1,N = αn+1Gn,N , n ≥ N + 1,

Gn−1,N = βn−1Gn,N , n ≤ N − 1, (4.30)

Gn,N can be determined from Eq. 4.30 recursively, once GN+1,N and GN−1,N

are specified. To calculate these two quantities, we use the “boundary con-
ditions” on Eq. 4.25 at n = N − 1, N, N + 1, which gives the following
equations

(βN−2 − qN−1)GN−1,N + GN,N = 1,

GN−1,N − qNGN,N + GN+1,N = −2 cosh µ1,

GN,N + (αN+2 − qN+1)GN+1,N = 1, (4.31)
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where we have substituted GN−2,N = βN−2GN−1,N and GN+2,N = αN+2GN+1,N

from Eq. 4.30. These equations can be further simplified by using βN−2 −
qN−1 = −1/βN−1 and αN+2−qN+1 = −1/αN+1, which follow from Eq. 4.29.
Solution of the set of linear equations in Eq. 4.31 yields

GN−1,N =
(2 cosh µ1 − qN )βN−1

qN − αN+1 − βN−1
,

GN,N =
(2 cosh µ1 − αN+1 − βN−1)

qN − αN+1 − βN−1
,

GN+1,N =
(2 cosh µ1 − qN )αN+1

qN − αN+1 − βN−1
. (4.32)

Substituting Eqs. 4.30 and 4.32 in Eq. 4.26, we finally obtain for the coeffi-
cients En

En =
∞∑

N=−∞

λN

(qN − αN+1 − βN−1)

{
(2 cosh µ1 − αN+1 − βN−1)δn,N

+ (2 cosh µ1 − qN )
[
θ(n − N)

n∏
k=N+1

αk + θ(N − n)
N−1∏
k=n

βk

]}
(4.33)

where θ(x) is the step function, i.e., θ(x) = 1 if x > 0 and 0 otherwise.

4.1.4 Application of External Electric Field

The solution for a uniform electric field E0, applied along the symmetry axis
of the torus, follows the same lines as above but is much simpler [46]. Due
to the axial symmetry, the potential is independent of the coordinate φ.
Hence, the m-sums in Eq. 4.11 are suppressed. Further, there are no phase
differences in the η solutions, i.e., they are given by exp[inη] everywhere.
The potential for a uniform field in toroidal coordinates is given by

ϕap = E0z

= E0

√
8a

iπ
f(µ, η)

∞∑
n=−∞

nQn−1/2(cosh µ) exp[inη]. (4.34)

Superposing ϕap with the free fields in Eq. 4.8, and applying the bound-
ary conditions, one obtains again a second order difference equation as in
Eq. 4.24 but without the m indices. The coefficients En and qn are the same
as in Eq. 4.23 and λn is modified to

λn = ε1(Q′ − P ′Q/P )E0

√
8a

π
n. (4.35)
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4.1.5 Calculation of Force and Potential Energy

The electric potential and field from multiple ions and an applied electric
field are built up using the principle of superposition. Since we assume
the dielectrics are linear, any number of permanent charges, as well as the
applied field, can be included simply by adding together their solutions for
the same dielectric boundary. The electric field and potential at the position
of an ion is therefore the sum of that due to the other ions, the applied field,
the surface charges induced by these, and the surface charges induced by
that particular ion.

The force on the ion is simply the total field multiplied by the charge
on the ion, but there is a subtlety in the calculation of the ion’s potential
energy. The potential energy due to the other ions, the applied field, and the
charges they induce is the electric potential times the ion’s charge. However,
the potential energy due to the surface charges induced by the ion itself is
only half the electric potential times the charge. This can be seen by using
a Born charging process [10, 30]: that is by imagining the charge Q on
the ion being built up as infinitesimal charges dq being brought in from
infinity. While the electric potential due to the other ions remain the same
throughout, that induced by the ion increases from zero to its full value Q
as the charge is built up. This involves integrating q dq from 0 to Q, hence
the factor of one half. Our program takes account of this by calculating the
total field and potential at the position of an ion, as well as the potential
due only to the ion’s interaction with the boundary. It then subtracts half of
this self-potential from the total for the purpose of calculating the potential
energy.

Fixed charges in the protein wall are included in the same way as ions.
The only change is that they require a slightly different analytical solution,
since they are inside the toroidal boundary, not outside. The form of Eq. 4.10
with µ = µ1 < µ0 needs to be used, and corresponding changes need to be
made for the rest of the solution.

4.2 Algorithm

The situation then, is that we have a toroidal boundary between media
of different dielectric strengths, as well as a number of point charges, and
we want to know the electric field and potential at a number of points
of interest. This previous section describes the analytical solution to this
problem. The resulting expression is a complicated hierarchy of infinite
series, continued fractions, and associated Legendre functions. The question
of how to implement the solution efficiently as a computer program remains.
This section describes the algorithm.

The expression is evaluated from the bottom up, using a fixed number of
terms for all of the series and continued fractions. The intermediate results
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are stored in arrays as they are generated, and kept for possible reuse. The
calculation is divided into three pieces: the boundary, the charges, and the
potentials. Thus the calculations for the boundary do not have to be redone
if the positions of the charges change, and the calculations for the charges
do not have to be redone for each point of interest. Due to the fixed number
of terms, the calculations for each charge and each potential are the same,
and the algorithm can be easily vectorized.

The alternative top down approach is conceptually simpler, and allows
better control of precision, as each potential can be summed until the desired
accuracy has been reached and no further. It is hopelessly inefficient if im-
plemented naively, however, as many quantities are repeatedly recalculated,
and some of the recurrence relations do not run in the same direction as the
algorithm. We attempted to overcome these problems by storing interme-
diate results and reusing them when available, but the top down algorithm
does not generate intermediate results in a predictable order, and keeping
track of them severely complicated the code, resulting in a slow and unreli-
able program. In addition, because each calculation was treated differently,
the program was not vectorizable. The bottom up algorithm described here
is far superior.

4.2.1 Legendre Functions

The Legendre Functions are calculated using the recurrence relations [1]

Pm
n− 1

2
(z) =

1
n − m − 1

2

×
[
(2n − 2)zPm

n−1 1
2
(z) − (n + m − 1

1
2
)Pm

n−2 1
2
(z)

]
, (4.36)

Qm
n− 1

2
(z) =

1
n + m + 1

2

×
[
(2n + 2)zQm

n+ 1
2
(z) − (n − m + 1

1
2
)Qm

n+1 1
2
(z)

]
. (4.37)

Note that P is calculated for successively increasing values of n, while Q is
calculated for decreasing values. This is necessary for the recurrences to be
stable.

The key values used to start the recurrences are given by [55]

Pm
n− 1

2
(z) =

Γ(n + m + 1
2)

Γ(n − m + 1
2)

(z2 − 1)
1
2
mzn−m− 1

2

2mm!

×F

(
1
2
(m − n +

1
2
),

1
2
(m − n + 1

1
2
);m + 1;

z2 − 1
z2

)
(4.38)

Qm
n− 1

2
(z) =

Γ(1
2)Γ(n + m + 1

2)
Γ(n + 1)

(−1)m

√
2(z2 − 1)

1
4 (z +

√
z2 − 1)n
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×F

(
1
2

+ m,
1
2
− m;n + 1;−t

)
, (4.39)

where

t =
z −

√
z2 − 1

2
√

z2 − 1
, (4.40)

Γ is the gamma function, and F is the hypergeometric function. For infor-
mation on how to calculate Γ and F see [1, 58]. Recurrences for increasing
and decreasing m are unstable, so new key values are needed for each value
of m.

The derivatives of the Legendre functions P and Q are given by [55]

U ′m
n− 1

2
(z) =

1
z2 − 1

×
[
(n − 1

2
)zUm

n− 1
2
(z) − (n + m − 1

2
)Um

n−1 1
2
(z)

]
(4.41)

U ′m
n− 1

2
(z) =

1
z2 − 1

×
[
−(n +

1
2
)zUm

n− 1
2
(z) + (n − m +

1
2
)Um

n+ 1
2
(z)

]
, (4.42)

where U can be either P or Q.

4.2.2 Boundary

This section describes the calculation of quantities that depend only on the
boundary, that is the internal and external radii of the torus, r and R, and
the dielectric constants inside and outside the torus ε2 and ε1. The torus
scale factor a and boundary mu coordinate µ1 are given by

a =
√

R2 − r2 (4.43)

µ1 = cosh−1 R

r
. (4.44)

The values of and qm
n are calculated using Eq. 4.23. Then the values of

αm
n and βm

n are calculated from qm
n via the continued fractions, Eq. 4.28.

Values of Gm
n,N are calculated using the recurrence relations, Eq. 4.30,

with key values given by Eqs. 4.32. The next stage of calculation requires
values of Gm

n,N with N varying between n − lmax and n + lmax . These are
stored in an array indexed by m, n, and l, with N = n + l, so that as l goes
between −lmax and lmax , N goes between n− lmax and n+ lmax , as required.

The recurrence relations generate values of Gm
n,N for fixed N and increas-

ing and decreasing n, whereas what is needed are values for fixed n and
increasing and decreasing N . The recurrence series run diagonally across
the array (indexed by n and l), so care must be taken to generate all re-
quired values, and some key values outside the table have to be generated.
Values of Gm

n,N for negative values of N can be generated by observing that
qm
−n = qm

n , αm
−n = βm

n , and βm
−n = αm

n .
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4.2.3 Charges

This section describes the calculation of quantities that depend only on the
boundary and the positions of the charges. There are imax charges with
magnitude q0i and coordinates (µ0i, η0i, φ0i).

The expansion coefficients Enm in the potential, involve the Green func-
tion and λm

N , Eq. 4.23. In numerical evaluations, it is easier to deal with
real numbers, therefore we separate the real and imaginary parts of the
quantities in Eq. 4.26 using

�(λm
N ) = |λm

N | cos nη0, �(λm
N ) = |λm

N | sinnη0, (4.45)

and similar relations for Enm. The real part of Eq. 4.26 then becomes

�(Enm) =
n+lmax∑

N=n−lmax

�(λm
N )Gm

n,N . (4.46)

An identical equation follows for the imaginary part. Here we have truncated
the infinite sum to appropriately chosen minimum and maximum values. For
negative values of N , note that λm

−N (R) = λm
N (R) and λm

−N (I) = −λm
N (I). In

the same vein, we introduce the following quantities in place of the complex
A′

nm and B′
nm in the potentials, Eq. 4.11

�(Anm) = Anm cos nη′nm, �(Anm) = Anm sinnη′nm,

�(Bnm) = Bnm cos nη′′nm, �(Bnm) = Bnm sinnη′′nm. (4.47)

Once Enm is known the values of Anm and Cnm are obtained from Eq. 4.23,
and the values of Bnm then follow from Eq. 4.19. Terms in the sums for the
potentials can then be calculated using the relations

Anm cos n(η − η′nm) = �(Anm) cos nη + �(Anm) sinnη,

Bnm cos n(η − η′nm) = �(Bnm) cos nη + �(Bnm) sinnη. (4.48)

The effect of all charges on a single point can be evaluated with a single
sum by pre-calculating sums involving the Bnm for the different charges.
This process is described in the next section, but since they depend only on
the boundary and the positions of the charges, the sums are defined here.
They are

Rnm =
imax∑
i=1

�(Bnmi) cos mφ0i

Snm =
imax∑
i=1

�(Bnmi) cos mφ0i

Tnm =
imax∑
i=1

�(Bnmi) sinmφ0i

Unm =
imax∑
i=1

�(Bnmi) sinmφ0i (4.49)
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where the index i ranges over all the charges.

4.2.4 Potentials

This section describes the calculation of the electric potential at jmax points
of interest with coordinates (µj , ηj , φj).

The electric potential at point j due to charge i is

ψij = f(µj , ηj)
mmax∑
m=0

(2 − δ0m) cos m(φj − φ0i)

×
nmax∑
n=0

(2 − δ0n)[�(Bnmi) cos nηj

+ �(Bnmi) sinnηj ]Pm
n− 1

2
(cosh µj). (4.50)

This is only the potential due to the effect of the charge on the boundary. It
excludes the direct effect of the charge, which is calculated using Coulomb’s
law.

The potential at point j due to all charges is

ψj =
imax∑
i=1

ψij , (4.51)

which, by expanding cosm(φj − φ0i), is

ψj = f(µj , ηj)
imax∑
i=1

mmax∑
m=0

(2 − δ0m)[cos mφj cos mφ0i + sinmφj sinmφ0i]

×
nmax∑
n=0

(2 − δ0n)[�(Bnmi) cos nηj

+ �(Bnmi) sinnηj ]Pm
n− 1

2
(cosh µj). (4.52)

By expanding and rearranging this becomes

ψj = f(µj , ηj)
mmax∑
m=0

nmax∑
n=0

(2 − δ0m)(2 − δ0n)

×[(Rnm cos nηj + Snm sinnηj) cos mφj

+ (Tnm cos nηj + Unm sinnηj) sinmφj ]Pm
n− 1

2
(cosh µj).(4.53)

Hence potentials at jmax points due to imax charges can be calculated in
O(imax ) + O(jmax ) operations, rather than the O(imax × jmax ) operations
that would be required if equation 4.51 was used naively.

The partial derivatives of the potentials (needed to calculate the electric
field) can be found by differentiating equation 4.53. Note that ∂ψ

∂µ has a
singularity at µ = 0. This reflects the inability of the toroidal coordinate
system to describe the X − Y direction of the field for a point on the Z
axis. We solve this problem by moving any point on the Z axis a distance
of a × 10−6 off the axis for the purpose of calculation.
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4.2.5 Conversion of Derivatives

To find the electric field in Cartesian coordinates, the partial derivatives
with respect to the toroidal coordinates have to be converted to partial
derivatives with respect to cartesian coordinates. This is done using the
relations

∂ψ

∂x
=

(
α

∂ψ

∂µ
+ β

∂ψ

∂η

)
cos φ − γ

∂ψ

∂φ
sinφ

∂ψ

∂y
=

(
α

∂ψ

∂µ
+ β

∂ψ

∂η

)
sinφ + γ

∂ψ

∂φ
cos φ

∂ψ

∂z
= β

∂ψ

∂µ
− α

∂ψ

∂η
(4.54)

where

α =
1
a
(1 − cosh µ cos η)

β = −1
a

sinhµ sin η

γ =
1
a

(
cosh µ − cos η

sinhµ

)
. (4.55)

4.2.6 Charges Inside the Boundary

The description so far has been for both points and charges outside the
toroidal boundary. For charges inside the boundary (with points still all
outside) some modifications need to be made to the formulas. First, ex-
change P with Q and ε1 with ε2 when calculating qm

n and Cnm. Second,
omit the factor P/Q when calculating Bnm, that is

�(Bnm) = (�(Anm) − Cnm cos nη0)
�(Bnm) = (�(Anm) − Cnm sinnη0). (4.56)

The factor Pm
n− 1

2

(cosh µj) in the formula for potential is unchanged.

4.3 Testing

To test the precision of the analytical method we place an ion at points on
a grid which covers the neck and vestibule of a toroidal channel. Errors are
estimated by comparison with a grid calculated using the analytical method
with a large number of terms: mmax = 90, nmax = 180, and lmax = 20. The
channel has an internal radius of 40 Å and an external radius of 44 Å. The
grid runs from x = 0, z = 0 to x = 30 Å, z = 60 Å in the y = 0 plane.
It has a spacing of 1 Å. Points inside the boundary are excluded, as are
points outside the boundary but within 1 Å of it. This is the critical region
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mmax 30 45 60
nmax

30 18.8 46.0
45 10.5 32.0
60 6.6 23.4 4.8 17.4
75 4.7 18.3 2.7 11.6
90 3.8 15.3 1.7 8.1 1.2 5.9

105 1.2 6.1 0.7 3.8
120 0.9 4.9 0.4 2.5
135 0.3 1.8
150 0.2 1.3

Table 4.1: Convergence of the analytical method. The numbers in the table are the
maximum fractional error (in percent) for the grid of points described in the text. The
first number in each column is the error in the potential energy, the second is the error in
the force.

for the Brownian dynamics simulations described in the following chapter:
the influence of the boundary is small for z > 60 Å, and the region where
r > 30 Å is outside the reservoirs, and so not used in the simulations.

The precision of the analytical solution depends on the number of terms
included in the sums. We investigate its convergence characteristics by com-
paring the maximum fractional errors in the grid for different numbers of
terms. The results of varying mmax and nmax are summarized in Table 4.1:
the first number in each column is the error in potential energy, the second
is the error in the force. It can be seen that increasing mmax does not signif-
icantly reduce the error unless nmax is also increased. The best precision for
a given amount of computational effort occurs when nmax is roughly twice
mmax . For the BD simulations that follow we use mmax = 45 and nmax = 90.
Figure 4.2 shows the points on the grid where the errors are larger than 1%
and 5% for this number of terms. The maximum errors reported in Tab. 4.1
occur only for points very close to the boundary.

We also compare the iterative method with the analytical method. Fig-
ure 4.3 shows the point on the grid where the errors are larger than 1% and
5% for the iterative method at medium resolution (λ = 1.5). The cluster
of points at the top right of Fig 4.3 A represent only small absolute errors,
since the potential energy is small in this region. Similarly the point at
the origin of Fig 4.3 B is at the centre of the channel, where the force is
analytically zero (since the channel is symmetric around this point, and no
driving force is applied). However, round off and truncation errors in both
the iterative and analytical method produce calculated values very close to,
but not quite, zero at this point. The fractional difference between these
values is greater than 5%, but the absolute error is negligible. Other than
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Figure 4.2: Accuracy of the analytical method. Points on the grid where the fractional
error in the potential energy (A) and force (B) are greater than 1% and 5%. The number
of terms used is mmax = 45, nmax = 90, and lmax = 10. The comparison is with the
analytical method using a large number of terms as described in the text.
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Figure 4.3: Accuracy of the iterative method. Points on the grid where the fractional
error in the potential energy (A) and force (B) are greater than 1% and 5%. The iterative
method uses 6700 sectors, yielding λ = 1.5. The sectors are spaced more closely in the
neck region. The comparison is with the analytical method using a large number of terms
as described in the text. Although there are fractional errors > 1% to the top right of (A)
and > 5% at the origin of (B), the potential and force respectively are very small here,
and the absolute errors are negligible (see text).

this the errors > 1% are restricted to points close to the boundary, as was
the case for the analytical method, although the errors are more widespread
for the less accurate iterative method. Note that the errors occur mostly in
the vestibule of the channel, not the neck region. This is the effect of the
variable sector spacing described in section 3.3.1.

We have performed similar tests on grids on the z = 32 Å plane, as well as
tests involving multiple ions placed at random locations within the channel.
These tests all produce similar results to the ones described here: the errors
in the top quadrant of the y = 0 plane are representative of those throughout
the channel, and are not a special case. In general the fractional errors in
force and potential energy are less than 1%, except for ions placed very close
to the boundary (< 2 Å) in the vestibule. As explained in section 3.6, these
errors are not of great concern, since ions tend to stay away from the walls
of the vestibule, and in any case the results of macroscopic electrostatics are



4.3. TESTING 81

doubtful this close to the boundary (and extra numerical precision will not
solve this theoretical problem).
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Chapter 5

Brownian Dynamics

This chapter describes our first Brownian dynamics simulations, of a toroidal
channel, using the analytical method described in the previous chapter and
a Brownian dynamics algorithm due to van Gunsteren and Berendsen [72].
It provides a description of the theory and methods we use in performing
BD simulations. The analytical method is around 5 times faster than the
iterative method, but this is not yet fast enough to predict conductance.
However, it is fast enough to allow the tracks of individual ions to be studied,
and doing so yields a surprising amount of qualitative information about the
operation of the model channel. Thus the chapter also serves as an intuitive
introduction to the behaviour of our model channels, which is examined in
more detail in the following chapters.

5.1 Model

5.1.1 Shape of the Channel

The channel boundary is a toroid with a minor radius of 40 Å and a major
radius of 44 Å. The narrowest segment of this toroidal channel has the radius
of 4 Å, and two vestibules extend 40 Å from the midline. The radius we
selected for the constricted segment corresponds that of the potassium ion
with its first hydration shell. The shape of the ACh channel determined by
Toyoshima and Unwin [70] is better approximated by an hourglass than a
toroid, but analytical solutions for Poisson’s equation for such a dielectric
boundary are not available.

Our model is only of the channel, and does not explicitly include the
surrounding lipid membrane. The analytical solution is strictly for a toroidal
dielectric boundary, and cannot be extended to include an infinite slab as
well, as would be needed to represent the membrane. The model does have,
however, a large outside radius (84 Å) compared to that of the ACh channel
(∼ 25 Å), and the exterior surface of the channel could be considered to
include part of the surrounding membrane. We have ascertained that the

83
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omission of the membrane makes virtually no difference to the potential in
the pore. It is the inside boundary of the channel, between the water in the
pore and the protein wall, that contributes the majority of the potential.
To demonstrate the limited effect of the outside boundary, we reduced the
outside radius of a catenary channel (similar to the one in Fig. 3.1) from
43 Å to 28 Å, while keeping all other dimensions constant. The potential
barrier height was reduced only by 2 %. Similarly, when we increased the
catenary channel’s outside radius from 43 Å to 73 Å, the barrier height
increased by less than 1 %.

5.1.2 Water as a Continuum

We treat the water as a continuum and the ions as individual entities. Indi-
vidual ions are assumed to move under the influence of electrostatic forces
emanating from other ions, fixed charges, the applied electric field and the
dielectric boundary. In the Brownian dynamics simulations, the effects of
solvation and the structure of water are taken into account by frictional
and random forces. In applying the theory of macroscopic electrostatics to
describe long range interactions between particles, we use the bulk dielec-
tric constant. See section 3.1.4 for a discussion of the implications of using
macroscopic electrostatic theory and the bulk dielectric constant.

5.1.3 Smooth Water-Protein Interface

We model the water-protein interface as a single, sharp and rigid boundary
between dielectrics. In reality, however, the channel wall is not made of
a structureless dielectric material. Instead, its surface is likely to be lined
with hydrophilic and polar side-chains, although their type, orientation and
density remain to be determined. Owing to the presence of these polar
groups on the protein wall, there will be a gradual change in the orientation
of the water molecules, those water molecules located nearer to the water-
protein interface tending to be more ordered than those further away from it.
The polar groups and the ordered water near the interface are not explicitly
included in our model, being represented by the dielectric boundary. It is
possible to treat the interface more accurately by assuming that there is a
thin boundary layer with a dielectric constant intermediate between those
of protein and water. We have shown elsewhere that the magnitude of error
introduced by ignoring the intermediate dielectric layer is negligible [33].
Moreover, we show in the section 5.4.4 that ions in the vestibules tend to
be near the central axis, away from the channel wall.

As with the treatment of water as a continuum, these simplified walls
subsume the detailed molecular structure of the real protein. This is nec-
essary to make the simulation work, but it risks error if the conductance of
the channel depends on the detail of short range interactions between ions
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and the protein walls.

5.1.4 Dipole Rings

We investigate how the permeation of ions across the channel is influenced
by the presence and absence of dipoles on the protein wall. We assume
that these charged moieties are located near the constricted region of the
channel, as suggested by structural studies (e.g., Ref. [71]), and represent
them as a ring of 4 dipoles at each side of the membrane segment, oriented
perpendicular to the central channel axis. These fixed charges represent
the charged side chains thought to form a ring around the entrance of the
constricted region, and their nearby counter charges. For convenience we
adjust the amount of charge rather than the number or positions of the
charges, but in reality their side chains would have one electron charge each.
Polar groups located in the constricted segment of the channel that may
rotate in and out to form temporary hydrogen bonds with an ion navigating
across it, as found in gramicidin A pores, are not explicitly modeled in our
toroidal channel.

5.1.5 Applied Electric Field

There are two ways of providing the driving force that can move the ion
across the channel: a potential difference or a concentration gradient be-
tween the two faces of the channel. On a macroscopic level these two are
equivalent, being coupled by the Nernst-Planck equation, and concentration
differences are often expressed as an equivalent potential. On a microscopic
level, however, the physical processes are very different. An electric poten-
tial gradient applies a force to every ion, causing it to acquire an average
drift velocity. A concentration gradient causes no forces on the ions and no
average drift velocity, but their random Brownian motion carries the ions
down the concentration gradient. To mimic the real situation, the potential
gradient should be generated by a diffuse cloud of unpaired positive ions,
representing a surface charge density, in one reservoir and a cloud of un-
paired negative ions in the other. The number of unpaired ions must be,
to be consistent with the situation in real biological membranes, a small
fraction of the total number of the ionic species present. Thus, the clouds of
surface charges cannot be represented explicitly within the simulation unless
the size of the simulation is expanded by a factor of 100. It is impractical to
generate a potential difference with clouds of the ionic atmosphere, although
this method is self-consistent and theoretically correct.

We therefore provide the driving force by applying an external electric
field, which represents the average effect of the ionic clouds. From a number
of current-voltage relationships obtained with a different number of ions
in two reservoirs, we have ascertained that the reversal potential occurs
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at a potential close to that predicted by the Nernst equation (the electrical
potential needed to balance a particular combination of ionic concentrations,
so that no current flows, is called the reversal potential: it can be predicted
by the Nernst equation). In our simulation system, as in a macroscopic
system composed of an ensemble of real biological channels, the force driving
ions across the membrane can be provided either by an externally applied
electric field or by a concentration gradient.

5.2 Theory

5.2.1 Langevin Equation

Brownian dynamics offers one of the simplest methods for following the tra-
jectories of interacting ions in a fluid. The algorithm for BD is conceptually
simple: the motion of the i th ion with mass mi and charge qi is governed
by the Langevin equation

mi
dvi

dt
= −miγivi + FR(t) + qiEi. (5.1)

The first two terms on the right-hand side of Eq. 5.1 describe the effects of
collisions with the surrounding water molecules. The first term corresponds
to an average frictional force with the friction coefficient given by miγi:
1/γi is the relaxation time constant of the system. The second term, FR(t),
represents the random part of the collisions and rapidly fluctuates around
a zero mean. The frictional and random forces in Eq. 5.1 are connected
through the fluctuation-dissipation theorem [61], which relates the friction
coefficient to the autocorrelation function of the random force

miγi =
1

2kT

∫ ∞

−∞
〈FR(0)FR(t)〉dt, (5.2)

where k and T are the Boltzmann constant and temperature in degrees
Kelvin, respectively. Here and throughout angular brackets denote ensemble
averages. Finally, Ei in Eq. 5.1 denotes the total electric field at the position
of the ion arising from (i) other ions, (ii) fixed charges in the protein, (iii)
membrane potential, and (iv) induced surface charges on the water-protein
boundary. This term in Eq. 5.1 is computed by solving Poisson’s equation.
Note that in three dimensions, Eq. 5.1 has to be solved for each cartesian
component (x, y, z) of the velocity.

Here we give the basic steps in solution of the Langevin equation that
are implemented in the BD algorithm of van Gunsteren and Berendsen [72].
Using the the integrating factor eγt, the Langevin equation, Eq. 5.1, can be
integrated from an initial time tn to t to obtain for the velocity

v(t) eγt − v(tn) eγtn =
1
m

∫ t

tn
[F (t′) + FR(t′)] eγt′dt′. (5.3)



5.2. THEORY 87

Here and in the following, the indices referring to ions and Cartesian com-
ponents are omitted for convenience. The integral over the random force in
Eq. 5.3 can be obtained using the stochastic properties of FR(t). For the
electric force, we Taylor expand F (t) around tn

F (t) = F (tn) + Ḟ (tn)(t − tn) + . . . , (5.4)

where Ḟ (tn) denotes the derivative F (t) at t = tn. Here the first order
expansion of F (t) is sufficient as the positions in the BD algorithm are
exact to third order. Substituting Eq. 5.4 in 5.3 and integrating the force
terms gives

v(t) = v(tn) e−γ(t−tn) +
F (tn)
mγ

(
1 − e−γ(t−tn)

)

+
Ḟ (tn)
mγ2

(
γ(t − tn) − 1 + e−γ(t−tn)

)

+
e−γt

m

∫ t

tn
FR(t′) eγt′dt′. (5.5)

To find the position after a time step ∆t, we need to integrate Eq. 5.5
once more from tn to tn + ∆t. Integration of all the terms in Eq 5.5 are
straightforward except the last one which can be done by parts using du =
e−γt and v as the integral of FR∫ tn+∆t

tn

e−γt

m

∫ t

tn
FR(t′) eγt′dt′

=
1

mγ

∫ tn+∆t

tn

[
1 − eγ(t−tn−∆t)

]
FR(t)dt

≡ Xn(∆t), (5.6)

where we have defined the random variable Xn(∆t), which has the same
stochastic properties as FR(t). We refer to Ref. [72] for details of how Xn(∆t)
is implemented in the BD algorithm. Using Eq. 5.6, the position at time
tn+1 = tn + ∆t is found to be

x(tn+1) = x(tn) +
v(tn)

γ
(1 − e−τ ) +

F (tn)
mγ2

(τ − 1 + e−τ )

+
Ḟ (tn)
mγ3

(
τ2

2
− τ + 1 − e−τ

)
+ Xn(∆t). (5.7)

Here τ = γ∆t is a dimensionless parameter which signifies a diffusive regime
when τ >> 1 or a microscopic one when τ << 1. A more convenient form
for x(tn+1), which does not involve the velocity, can be obtained by adding
e−τ times x(tn−1) ≡ x(tn − ∆t) to Eq. 5.7

x(tn+1) = x(tn)(1 + e−τ ) − x(tn−1)e−τ +
F (tn)
mγ2

τ(1 − e−τ )
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+
Ḟ (tn)
mγ3

(
τ2

2
(1 + e−τ ) − τ(1 − e−τ )

)

+ Xn(∆t) − Xn(−∆t)e−τ . (5.8)

Similarly, a simple expression for the velocity follows by subtracting x(tn−1)
from Eq. 5.7

v(tn) =
2γ

sinh τ

[
x(tn+1) − x(tn−1) + 2

(
F (tn)
mγ2

− Ḟ (tn)
mγ3

)

× (sinh τ − τ) − Xn(∆t) + Xn(−∆t)

]
. (5.9)

Eqs. 5.8 and 5.9 provide the basic input for the BD algorithm used in the
simulations.

5.3 Methods

5.3.1 Algorithm

We solve the Langevin equation using the BD algorithm devised by van
Gunsteren and Berendsen [72], which consists of the following computational
steps:

• step 1. Compute the electric force F(t) = qiEi acting on each ion at
time tn and calculate its derivative [F(tn) − F(tn−1)]/∆t.

• step 2. Compute a net stochastic force impinging on each ion over a
time period of ∆t from a sampled value of FR(t).

• step 3. Determine the position of each ion at time tn + ∆t and its
velocity at time tn by substituting F(tn), its derivative F′(tn) and
FR(t) into the solutions of the Langevin equation (Eqs. 5.8 and 5.9).

• step 4. Repeat the above steps for the desired simulation period.

An advantage of the above algorithm over some earlier ones is that one
is not limited by the condition ∆t � 1/γ. For the Na ions, this condition
would require ∆t � 10 fs, which would severely limit the applicability of
BD to ion channels. With this algorithm only two factors limit the choice
of ∆t. The average distance a particle traverses in each time step must be
small compared to the dimensions of the system. Also, the time derivative
of the electric forces must be small relative to the absolute magnitude of
the force. In a preliminary series of simulations, we have systematically
increased the time step, ∆t, from 25 fs to 1.6 ps and examined the motion
of the test particle. As ∆t increased beyond 100 fs, the trajectory of the
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test particle began to deviate systematically from that obtained with a short
time step. In the current simulations, we have used ∆t = 50 fs. Using the
average thermal velocity for the sodium ions (see Fig. 5.2 A), the average
displacement of ions in time ∆t is found to be about 0.25 Å. (The radius of
the narrow segment of the toroidal channel, in contrast, is 4 Å.) The change
in the electric field during this time step is calculated to be at most a few
percent.

5.3.2 Reflective Boundaries

When the ionic concentration in the reservoirs is high, ions at times are able
to jump large distances and end up very close to another ion. The forces at
the next time step in such instances can be very large and the affected ions
may leave the system. To correct this problem, we check ion-ion distances
at each time step. If two ions are within a ‘safe distance’, chosen to be 3/4
of the sum of the ionic radii, then their trajectories are traced backwards
in time until such a distance is exceeded. By performing these checks and
corrections, the system is well behaved over the simulation, even for very
high concentrations. Such a minor re-adjustment of the position of an ion is
needed about once every 100 time steps when the reservoirs and the channel
contain 52 ions. The steep repulsive force at the dielectric boundary due
to the image charges and the ion-protein potential is usually sufficient to
prevent ions from entering the channel protein. We ensure that no ions
appear inside the channel protein by erecting an impermeable hard wall at
1 Å from the water-protein interface. Any ion colliding with this wall is
elastically scattered. A similar hard wall is implemented for the reservoir
boundaries.

5.3.3 Physical Parameters

The following physical parameters were employed in our calculations for the
toroidal channel:
Dielectric constants: εwater = 78.54, εprot = 2.
Masses: mNa = 3.8 × 10−26 kg, mCl = 5.9 × 10−26 kg.
Diffusion coefficients: DNa = 1.33×10−9 m2 s−1, DCl = 2.03×10−9 m2 s−1.
Relaxation time constants, γ−1: γNa = 8.1×1013 s−1, γCl = 3.4×1013 s−1.
Ion radii, rNa = 0.95 Å, rCl = 1.81 Å.
Room temperature: Tr = 298 oK.
Boltzmann constant: k = 1.38 × 10−23 JK−1.

Frictional coefficients γ are derived from the diffusion coefficients D by
the Nernst-Einstein relationship D = kT/mγ, that is γ = kT/mD. How-
ever, since the diffusion coefficients were calculated from the limiting equiv-
alent conductivities λ0 (from Robinson and Stokes [63]) by another form of
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this relation, D = RTλ0/zF 2, the frictional coefficients are in effect calcu-
lated from γ = zeF/mλ0. The limiting equivalent conductivities are strictly
only valid in the limit of infinite dilution. At the concentrations of 150-
300 mM used in the simulations the difference is around 10% (see appendix
11.2 of reference [63]). This difference is due to the effect of high concentra-
tions of ions on the structure of bulk water. Since the confined spaces of a
channel may have a completely different (and unfortunately unknown) effect
on water structure and diffusion coefficients, we do not include compensation
for the higher concentrations.

5.3.4 Testing

To confirm that the behavior of the interacting ions deduced from sim-
ulations accords with the physical reality, we examined the mean-square
displacement, 〈x2〉, the velocity distribution, and the velocity autocorrela-
tion function, 〈v(0)v(s)〉. These simulations were carried out on the toroidal
channel with two reservoirs, as described in section 5.1, except that the di-
electric constant of the protein was set equal to that of water. Thus ions are
scattered elastically from the boundary but otherwise there were no forces
acting on them due to the change in the dielectric constants.

Theoretically, the mean square displacement 〈x2〉 should obey the rela-
tion

〈x2〉 =
2kT

miγi
t, for t � γ−1

i . (5.10)

In Fig. 5.1, the mean-square displacement obtained for sodium (filled cir-
cles) and chloride (open circles) from one simulation lasting 500,000 time
steps (25 ns of real time) is plotted against time. These are compared with
the predicted slopes obtained from Eq. 5.10 (solid lines in Fig. 5.1). The
simulation results are about 7% lower than the predicted values for a bulk
solution, which is probably due to ions scattering back from the boundary,
retarding their free diffusion.

Figure 5.2 A shows the velocity distributions of sodium and chloride ions
in the system. From the equipartition theorem, the equilibrium distribution
of the velocity should be Maxwellian of the form [61]

F (v)dv = 4πn

[
mi

2πkT

]1/2

exp(−miv
2/2kT ) v2dv, (5.11)

where n is the number density of ions and F (v)dv is the mean number of
ions per unit volume with a speed in the range between v and v + dv. The
velocity distributions obtained from the BD simulations are seen to match
closely those computed from Eq. 5.11 (solid lines).

The velocity autocorrelation function is of the form [61]

〈v(0)v(s)〉 =
kT

mi
exp(−γi|s|). (5.12)
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Figure 5.1: Test of the Brownian dynamics algorithm: mean-square displacements. The
mean-square displacements, 〈x2〉, of chloride ions (◦) and sodium ions (•) are plotted
against time. The solid lines superimposed on the graph are derived from the relation,
〈x2〉 = 2 D t where the diffusion coefficients D for sodium and chloride ions are given in
section 5.3.3. The mean-square displacements determined from simulated data deviated
systematically from the predicted values. The reason for these discrepancies between the
theoretical and measured values is given in the text.
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Figure 5.2: Test of the Brownian dynamics algorithm: velocity functions. (A). The
Maxwellian velocities distributions, F (v)dv, of sodium (•) and chloride (◦) ions are nor-
malized for the volume of phase space and plotted. The solid lines superimposed on the
measured distributions are calculated from Eq. 5.11. (B). The velocity autocorrelation
functions, 〈v(0)v(s)〉, for sodium (•) and chloride (◦) ions decayed exponentially. The
continuous lines are calculated from Eq. 5.12.
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Thus, regardless of the initial velocity, the successive velocities will be corre-
lated over a time interval of the order of 1/γi, the relaxation time constant
of the system. To verify Eq. 5.12, we determined the velocities of the ions
at every 0.5 fs for 50,000 time steps. The autocorrelation functions shown
in Fig. 5.2 B decayed exponentially, as predicted from Eq 5.12 (solid lines).
Again, filled and open circles represent the calculated values of sodium and
chloride ions, respectively.

From a number of these preliminary simulations, we conclude that the
BD algorithm faithfully characterizes the motion of interacting ions in a
fluid confined with a reflective boundary.

5.4 Results

5.4.1 Repulsive Dielectric Force

When deliberately placed inside the toroidal channel, ions were rapidly ex-
pelled to the reservoir within 1 to 2 ns. A sodium ion in the system, the
test particle, was placed inside the channel, on the central axis of the pore
at z = 5 Å, as indicated in the inset of Fig. 5.3. The initial locations of the
remaining 99 ions were randomly assigned. The position of the ion placed
in the channel, as well as the remaining ones in the system, was calculated
at each discrete time step of 50 fs for 50,000 time steps. Thus, the total sim-
ulation time for one such trial was 2.5 ns. These computational steps were
repeated 5 times. For each trial, the positions of all ions, except the test
particle, at the last time step in the preceding trial were used as the initial
starting positions of the subsequent trial. The same series of simulations
were repeated for a chloride ion. A representative simulation from each set
is shown in Fig. 5.3 A, where the trajectories of the sodium and chloride
ions placed in the channel are plotted against time. Each of the consecutive
200 points plotted in Fig. 5.3 A represents an average of 100 time steps or
5 ps. The ensemble averages of 5 trials each for the sodium and chloride
ions are illustrated in Fig. 5.3 B. Here the positions of the ions during the
entire simulation period of 2.5 ns are plotted.

The speed with which the ionic species were ejected was different. Ow-
ing to their higher mobility, chloride ions were consistently expelled faster
than sodium ions. Once they were ejected from the channel, these or any
other ions in the upper reservoir rarely, if ever, drifted back inside of the
channel. These simulations demonstrate that the repulsive dielectric force
arising from induced surface charges on the protein wall renders the channel
vestibule for the most part devoid of ions.

The magnitude of the repulsive force presented to an ion by the dielectric
boundary is sufficiently large that a driving force provided by a transmem-
brane potential of 100 mV cannot counteract it. This conclusion is based on
the following series of simulations. After placing a sodium ion at z = −20 Å
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Figure 5.3: Ejection of ions from the vestibule. The filled circle in the inset indicates
the initial position of the input ion at the beginning of each set of simulations. Each
simulation lasted 50,000 time steps. For clarity, the reservoirs and the remaining 99 ions
are not shown. (A). The graphs show the positions of a sodium ion (•) and a chloride (◦)
ion during the first 1 ns. Each point represents the average of 100 consecutive time steps
or 5 ps. From the starting position at z = 5 Å, both anion and cation rapidly moved
out from the narrow segment of the channel towards the upper reservoir. (B). The mean
positions at each consecutive 5 ps are averaged over 5 trials and then plotted against time.
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Figure 5.4: Repulsive dielectric force and applied electric field. After placing the test
sodium ion at z = −20 Å, an electric field of 107 V/m was applied in the positive z
direction. Shown in (A) and (B) are, respectively, three examples of the trajectories of
the test particle and the average trajectory of 9 trials.
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(see the inset of Fig. 5.4), an electric field of 107 V/m was applied across
the channel in the positive z direction. In the absence of any dielectric force
opposing it, the ion would have drifted across the channel within 2 ns. In
Fig. 5.4 A, 3 trajectories of a sodium ion are illustrated. Again, each point
represents the average of 100 consecutive time steps, or 5 ps. In 7 out of
9 trials, the ion placed at z = −20 Å was either ejected from the channel
and entered the lower reservoir or remained in the channel vestibule. In
the remaining 2 trials, the ion was able to penetrate into the other side of
the channel. The average of all 9 trials is shown in Fig. 5.4 B. The driving
force provided by the applied electric field was effectively opposed by the
repulsive dielectric force.

5.4.2 Dipoles in the Transmembrane Segment

The previous simulations indicate that, unless the potential barrier arising
from the induced surface charges is counteracted by fixed charges or dipoles
in the channel protein, ions in the majority of trials are not able to permeate
the channel. In the following series of simulations, we explored the effects
of such residual charges on ion permeation, by placing a ring of four dipoles
at each end of the transmembrane segment, as described in the section 5.1.4
(see the inset of Fig. 5.5). The total strength of the dipoles on each side
was 100 × 10−30 Cm. This configuration of dipoles would be attractive to
cations but would create an additional repulsive force for anions.

Figure 5.5 demonstrates the effects of dipoles on the motion of sodium
and chloride ions that were deliberately placed inside the channel. A chloride
ion placed at z = 5 Å along the central axis was expelled from the chan-
nel vestibule. In contrast, a sodium ion, when placed at the same position,
remained in the vicinity of the dipoles, where the charges of the opposite po-
larity were providing an attractive potential for the ion. Sample trajectories
of a chloride ion (open circles), and a sodium ion (filled circles) are shown
in Fig. 5.5 A. The trajectories shown in Fig. 5.5 B are the averages of 5 such
trials. Averaging reduced the fluctuations, making the main trend clearer.
Thus, a chloride ion was expelled from the channel rather quickly (in less
than a nanosecond). For a sodium ion, on the other hand, the dipoles have
eliminated the repulsive dielectric force that would have impinged on it, and
hence it diffused freely in the channel.

5.4.3 Permeation of Ion Through the Channel

The channel that had been impermeable to both cations and anions (see
Fig. 5.4) becomes a cation-selective channel once dipoles are placed in the
transmembrane segment such that their negative poles would face the chan-
nel lumen. In Fig. 5.6 A, we illustrate the mean positions of a sodium ion
during successive 5 ps steps as it moves across the channel under the in-
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Figure 5.5: Cancellation of repulsive force by dipoles. The test particle, placed at z = 5 Å,
was released and its positions during the subsequent 2.5 ns were plotted. The procedures
of simulations were identical to those in Fig. 5.3, except that 4 dipoles with the total
moment of 100 × 10−30 Cm were placed on each side of the midline. The dipoles were
placed in the channel protein such that their negative poles would face the lumen. (A). The
trajectory of a chloride ion (◦) obtained from one trial shows that it was rapidly ejected
from the channel. In contrast, a sodium ion (•) remained in the constricted segment of
the channel. (B). The trajectories for the test ions, open circles for chloride and filled
circles for sodium, are obtained by averaging 5 successive trials.
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Figure 5.6: Permeation of sodium ions across the channel. A sodium ion was placed at
z = −20 Å, as indicated in the Inset, and then a potential difference of 100 mV was
applied across the channel. Dipoles on each side of the transmembrane segment had
the total moment of 100 × 10−30 Cm. (A). Three single trajectories show that the test
ions successfully traversed the channel under the influence of the driving force. (B). The
trajectory illustrated are the average of 9 trials. The mean drift velocity of the particles
was 2.6 m s−1.
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fluence of an applied electric field of 107 V/m. The three trajectories il-
lustrated in the figure were obtained from the first three consecutive trials.
The strength of the dipoles on each side of the transmembrane segment
was 100 × 10−30 Cm. In all 9 such attempts, a sodium ion, when released
from z = −20 Å, successfully navigated across the channel. The trajectory
averaged over 9 trials is shown in Fig. 5.6 B.

The sodium ion in these simulations had an average drift velocity of
2.6 m/s in the channel, which is about 5 times faster than that of a sodium
ion in bulk electrolyte solutions moving under the influence of the same
applied potential gradient. In part this is because the electric field in the
constricted segment of the channel, far from being constant, is enhanced
by the dielectric boundary and the presence of dipoles (see Ref. [42]). Also
noteworthy in Fig. 5.6 is that the ion was not detained at the two regions
where the rings of dipoles were located, indicating that the potential well
created by them was not deep enough to trap the ion in it for a prolonged
period of time.

5.4.4 Trajectory of Ions

The path taken by an ion as it journeys across the channel is predominantly
along the central axis. Figure 5.7 shows snapshots of the positions of a
sodium ion as it traversed across the channel under the influence of an
electric field of 107 V/m and in the presence of dipoles of strength 100 ×
10−30 Cm (these are the same simulations mentioned in Fig. 5.6). Each
dot in the figure represents the location of the ion on the z- and x-axes
averaged over 100 time steps. In the first example (Fig. 5.7 A), the ion was
slightly deflected towards the dipoles as it moved across the transmembrane
segment. In the second and third examples (Fig. 5.7 B, 5.7 C), the ions spent
longer periods of time in the vicinity of the rings of dipoles, as indicated by
the densities of dots. We have not expected, nor have we found, that an ion
would bind to binding sites on the channel protein. These findings are in
accord with those reported by Bek and Jakobsson [8].

5.5 Discussion

Despite their preliminary nature, the results in this chapter suggest a quali-
tative model for conductance in ligand gated cation channels. Although the
analytical method is not fast enough to allow the prediction of conductance,
by analyzing the trajectory of individual ions we have demonstrated some
important points about our model channel. Without dipoles in the channel
wall, the electrostatic barrier created by the channel is sufficient to repel
ions from the vestibules and neck, preventing ions from crossing the channel
even when a realistic driving force is applied (Figs. 5.3 and 5.4). However,
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Figure 5.7: The path of ions. The mean positions of the test ions, as they navigate across
the channel, are indicated as dots. Each dot represents the average of 100 consecutive
positions of the cation, as it drifts across the pore. The data were derived from those
illustrated in Fig. 5.6. Three different examples are shown. The small horizontal bars
inside the torus boundary indicate the position of the negative ends of the dipoles.
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if dipoles are added to the neck region with appropriate strengths and ori-
entations, then the barrier is removed for cations, and they are able to cross
the channel (Figs. 5.5 and 5.6). These same dipoles increase the barrier for
anions, which are rejected from the channel even more quickly than was the
case without dipoles (Fig. 5.5).

The picture that emerges for a ligand gated cation channel is of a device
which provides a path for cations by removing the electrostatic barrier of the
membrane. The wide vestibules and neck provide water which surround the
ion, and reduce the barrier due to dehydration. Some of the barrier remains,
however, especially in the neck region, where the pore is narrowest. Dipoles
in the neck region overcome this remaining barrier, and cations are able to
move through the channel by rapid diffusion. The result is a channel with
a large conductance, that is highly selective for anions over cations, but not
very selective between cations. This picture is consistent with structural
studies, which suggest the wide vestibules (around 12 Å radius) and neck
(around 4 Å radius), and the dipoles in the neck region [70, 71, 22]. It
is also consistent with patch clamp studies, which demonstrate the large
conductance and selectivity for cations (but not among cations) of this class
of channel [34, 27, 2]. The Brownian dynamics simulations begin to show
how the channel works, how the structural parameters are connected to the
conductance characteristics.

Some doubts remain, however. Trajectories of individual ions give a
good intuitive feel for the operation of the channel, but cannot yield quan-
titative predictions of conductance or its relation to structural parameters
(such as dipole strength). Although the model is based on realistic physical
assumptions, it contains many simplifications, and needs to be tested against
experiment before it can be fully believed. For this to happen it needs to be
capable of making quantitative predictions. Another area of concern is the
effect of the other ions. These are included in the simulations, but the initial
placement of the ion under examination is artificial, rather than emerging
out of the simulation. The other ions may not have time to react to such a
placement, and so shielding by counterions may have been ignored. This is
an important point, since the Poisson-Boltzmann and Poisson-Nernst-Plank
techniques predict that such shielding completely removes the electrostatic
barrier, without any need for compensating dipoles. We have done equilibra-
tion tests which indicate that this is not the case [45], but a fully convincing
demonstration requires a much longer simulation, in which the ions could
enter and leave the channel in a natural and realistic manner. Thus both of
these doubts could be removed by sufficiently long simulations, which would
be possible if only the electrostatic system could be solved more rapidly.
The next chapter describes how this can be achieved.
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Chapter 6

Lookup Table Method

The BD algorithm requires calculation of electric forces acting on ions at
each time step. Given the positions of ions, this can be achieved by solving
Poisson’s equation for an appropriate boundary. However, as emphasized
above, this direct approach is computationally too expensive to be useful in
the long time-scale simulations necessary for the calculation of conductance.
Here we adapt an alternative method where the electric field and potential
are pre-calculated on a grid of points for various configurations, and the
results are stored in a number of lookup tables. During simulations, the field
and potential at desired points are reconstructed by interpolating between
the table entries. Compared to the analytical solution of Poisson’s equation
in toroidal coordinates, the lookup method is 60 times faster. The lookup
method has the further advantage that one is not restricted to a toroidal
channel: numerical solutions of Poisson’s equation for more realistic channel
shapes can be as easily stored in tables.

6.1 Components of the Potential

For calculational purposes, it is convenient to break the total electric poten-
tial Vi experienced by an ion i into four pieces

Vi = VS,i + VX,i +
∑
j �=i

VI,ij +
∑
j �=i

VC,ij , (6.1)

where VS,i is the self potential due to the surface charges induced by the
ion i on the channel boundary and VX,i is the external potential due to the
applied field, fixed charges in the protein wall, and charges induced by these.
The next two terms in (6.1) take the influence of other ions into account,
namely, VI,ij is the image potential due to the charges induced by the ion
j, and VC,ij is the Coulomb potential due to the ion j, which is computed
directly from

VC,ij =
1

4πε0

qj

ε|ri − rj |
, (6.2)

103
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where ri and rj are the positions of the ions. The electric field experienced
by the ion is decomposed in the same way

Ei = ES,i + EX,i +
∑
j �=i

EI,ij +
∑
j �=i

EC,ij , (6.3)

each field component being defined as in the potential (6.1).

6.2 Generalized Coordinates

The first three components in Eqs. (6.1) and (6.3) depend on the boundary
and, in general, they are determined from numerical solutions of Poisson’s
equation (see chapter 3). Each of these components is calculated for a grid
of positions and stored in separate tables. To allow rapid look up, the pre-
calculated values must be on an evenly spaced grid. Because the use of a
rectilinear grid would result in many wasted points and a jagged edge near
the pore boundary, we use a system of generalized cylindrical coordinates
in constructing the look up tables. In terms of the cylindrical coordinates
(r, θ, z)

r =
√

x2 + y2, θ = tan−1(y/x), z = z, (6.4)

the generalized coordinates (ρ, θ, ζ) are defined as

ρ(r, z) = r/rmax(z), θ = θ, ζ(z) = (z − zmin)/(zmax − zmin), (6.5)

where rmax(z) is the limiting radius of the pore, and zmax and zmin are the
maximum and minimum z coordinates for the system. The coordinates ζ
and ρ are normalized and cover the range [0, 1]. For θ, we use the range
[−π, π] for convenience (see below). The limiting radius rmax(z) is offset
from the pore wall by the radius of the smallest ion in the simulation, which
defines the closest possible approach for an ion to the pore wall. Both the
analytical and iterative methods are unable to calculate the potential on
the pore wall, and both become less accurate the closer the boundary is
approached, so it makes sense to set the limit of the generalized coordinates
to the closest possible approach of an ion to the pore wall.

Besides providing a smooth edge near the boundary, the generalized co-
ordinates also allow the cylindrical symmetry of the channel to be exploited.
For example, the θ coordinate is redundant in the calculation of the self po-
tential VS,i, therefore it is stored in a 2 dimensional table V2d(ρm, ζn). Sim-
ilarly, the image potential VI,ij depends on the relative angle between the
ions i and j, and it is stored in a 5 dimensional table V5d(ρm, ζn, ρm′ , ζn′ , θk).
Due to reflection symmetry, θk and −θk lead to the same image potential.
Hence θk in V5d covers only the range [0, π]. The fixed charges do not possess
any particular symmetry, so the external potential VX,i is stored in a full 3
dimensional table V3d(ρm, ζn, θk). Here θk covers the whole range [−π, π].
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The electric field is stored in the same way as the potential, except that
three values are required for each point in a table, one for each Cartesian
component of the field. So while the field tables are indexed by the gen-
eralized coordinates, their contents are stored as Cartesian coordinates in
the tables E2d(ρm, ζn), E3d(ρm, ζn, θk), and E5d(ρm, ζn, ρm′ , ζn′ , θk). Note
that, in principle, these results could be combined and stored in the same
table. However, separate tables are more flexible and assist in minimizing
the interpolation error, and are therefore preferred.

6.3 Lookup Algorithm

Once the positions of the ions have been converted to generalized coordi-
nates, the extraction of the potential and field from the tables is relatively
straightforward, and therefore fast. The values of the electric potential and
field at the position of the ion are extracted from the tables by multidi-
mensional linear interpolation, a simple algorithm that generalizes easily to
dimensions greater than 2 [58]. Because the grid points are evenly spaced
in the generalized coordinates, the appropriate indices can be found by di-
vision, rather than by a time consuming binary search. For an ion i with
charge qi at the position ri = (ρi, ζi, θi) and another ion with charge qj at
rj = (ρj , ζj , θi), the potentials are given by

VS,i =
qi

e
V2d(ρi, ζi),

VX,i = V3d(ρi, ζi, θi),

VI,ij =
qj

e
V5d(ρi, ζi, ρj , ζj , |θi − θj |), (6.6)

where V2d(ρi, ζi), V3d(ρi, ζi, θi), and V5d(ρi, ζi, ρj , ζj , |θi − θj |) are obtained
by applying the interpolation algorithm to the 2 dimensional self potential
table, the 3 dimensional external potential table, and the 5 dimensional
image potential table, respectively. The self potential and image potential
tables are constructed assuming a positive unit charge as source, so the
results are rescaled to the actual source charge after lookup.

The symmetries used to reduce the size of the tables require that the
recovered electric field be rotated and reflected appropriately so that it cor-
responds to the simulation’s Cartesian axes. The fields are extracted from
the interpolated table values as follows

ES,i =
qi

e
Rz(θi)E2d(ρi, ζi)

EX,i = E3d(ρi, ζi, θi)

EI,ij =
qj

e
Ry(θi, θj)Rz(θi)E5d(ρi, ζi, ρj , ζj , |θi − θj |) (6.7)

where Rz(θi) denotes the rotation matrix around the z-axis by an angle θi
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and Ry(θi, θj) is a reflection operator on the x-z plane defined by

Ry(θi, θj) =

{
D(1, 1, 1), if π > θj − θi > 0,
D(1,−1, 1), if 0 > θj − θi > −π.

(6.8)

Here D denotes a diagonal matrix with entries as indicated in the arguments.
Once the field and potential are known, the force and potential energy

on ion i can be calculated from

Fi = qiEi, (6.9)

Ui = qi(Vi −
1
2
VS,i). (6.10)

Note that only half the self potential is used when calculating the potential
energy, as explained earlier.

6.4 Testing

To test the accuracy of the lookup method, we compare the interpolation
results for potential energy and force with those obtained from the analytical
solution of Poisson’s equation for a toroidal channel in a variety of situations.
The channel boundary is generated by rotating a circle in the x-z plane
around the z-axis. The radius of the circle is 40 Å and its center is located
at x = 44 Å, z = 0. Refer to chapter 4 for details of the analytical solution.
The results of electric potential and each Cartesian component of the field
for the self, external and image parts are stored in tables with dimensions
(37× 97), (10× 171× 40) and (7× 119× 7× 119× 14), respectively. These
dimensions are found after an optimization of the lookup program for the
toroidal channel. The catenary channel described in Fig. 3.1 has a similar
shape, and lookup tables with the same dimensions are used in the BD
simulations in the next chapter.

Among the three potential (or field) parts, the self potential displays
larger errors compared to the image and external potentials. Therefore, in
the following tests, we focus on the potential energy and the force on a
single ion in a toroidal channel which has no other fixed charges or external
fields. In Fig. 6.1, we show the potential energy and the z-component of the
force for a single ion moving parallel to the central axis but offset from it
by 3 Å. Since the z-component of the force provides the driving force in the
BD simulations, only that one is shown in this figure. The solid lines are
calculated from the analytical method, and the circles by interpolating from
the pre-calculated values stored in the lookup tables. The spacing between
points in the lookup table is 1.77 Å in the z-direction, and the circles are at
the midpoints of these intervals, where the maximum interpolation error is
expected to occur. The radius of the channel varies with z, and hence the
spacing between points in the r-direction changes. Therefore, the circles are
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not necessarily located at the midpoints of the interpolation intervals in the
radial direction.

The relative error for the potential and force are not shown in a separate
graph because they are less than 1% for all the points in Fig. 6.1. Almost
identical results are obtained for other ion trajectories parallel to the central
axis but with different radial offsets. In Fig. 6.2, we show a similar plot of the
potential energy and the radial component of the force in the z = 0 plane
as the ion is moved radially from the central axis towards the boundary.
Note that the closest approach is limited by the size of the ion. Here the
circles correspond to the midpoints of the interpolation intervals in both
the z and the radial directions. The relative error is again less than 1% for
all the points in Fig. 6.2. In Fig. 6.3, we show another comparison for the
potential energy and the radial component of the force on a radial trajectory
in the z = 30 Å plane. Again the circles are chosen at the midpoints of
the interpolation intervals. The relative error remains less than 1% for the
potential but rises to a few percent for the force for points near the boundary
in Fig. 6.3. The agreement between the analytic and lookup methods evident
in Figs. 6.1, 6.2, and 6.3 indicates that the interpolation error is negligible for
the potential energy and the z-component of the force in the most important
parts of the channel.

Tests carried out on a catenary channel yield a similar agreement between
the lookup method and the numerical solution results. The relative error is
slightly larger when an ion approaches the vestibular wall in the catenary
channel, but this is not of great concern in simulations since ions tend to
stay away from the water-protein boundary.

The system of generalized coordinates we use has a weakness at the
entrance to the pore, where the boundary runs horizontally, perpendicular
to the z-axis. The radius suddenly jumps from that of the reservoir to that
of the pore entrance. This results in spurious interpolation between points
near the channel’s top surface and points in the pore entrance. Errors in
the potential near the channel’s top surface are unlikely to affect the results
of simulations. Errors in the potential in the pore entrance are of greater
concern. The magnitude of the force is rather small in this region, however,
and we have checked in control runs that it has no effect on the simulations.
An improved system of generalized coordinates that avoids this problem
may be desirable in other applications of this method.

6.5 Performance

The use of lookup tables is practical despite the large number of points
at which the field needs to be calculated, because the time used by the
algorithms depends much more on the number of solutions needed rather
than the number of points per solution. Both the iterative and analytical
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Figure 6.1: Comparison of the potential energy and the z-component of force, obtained
from the lookup tables by interpolation (circles), with the analytical solutions (lines) for a
toroidal channel. An ion is moved along the trajectory that is parallel to the central axis
but is offset from it by 3 Å, as indicated by the arrow in the inset. The position of each
circle in the z-direction is located at the midpoint between two adjacent points stored in
the lookup table.
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Figure 6.2: Same as Fig. 6.1 but for a radial trajectory in the z = 0 plane. The lookup
results (circles) are calculated at the midpoints of the interpolation intervals in both the
z and the radial directions.
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Figure 6.3: Same as Fig. 6.2 but for a radial trajectory in the z = 30 Å plane (see inset).
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algorithms can easily generate the field at multiple points arising from many
charges at given positions (which we call one solution). On the VPP a
solution for 50 ions and 16 fixed charges takes 0.4 s (of CPU time) by the
analytical algorithm, 2 s by the iterative algorithm, but only 0.006 s by the
lookup table method. A BD simulation of 2 million steps would thus take
220 hours by the analytical algorithm, 46 days by the iterative method, and
3 hours by the lookup table method. The filling of the tables takes only an
hour using the analytical solution and 10 hours using the iterative solution.
To give an example, generating a 5d lookup table using the iterative method
(which is the most time consuming) requires only 833 solutions, each for a
single ion and at 12000 points. Each solution takes 21 s and the total time
required is about 5 hours. Another advantage of the method is that once
the tables are constructed for a given geometry, they can be used in many
simulations studying different aspects of channel conductance.
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Chapter 7

Single-Ion Channel

This chapter describes our BD simulations of a model catenary channel
based on the hour-glass shaped acetylcholine receptor channel [70].

7.1 Model

7.1.1 Shape of the Channel

A catenary channel was generated by rotating the closed curve shown in
Fig. 7.1 around the symmetry, z-axis. The vestibule of the channel, whose
shape is similar to that visible in the electron microscope picture of the
acetylcholine channel [70], was generated by a hyperbolic cosine function,
y = a cosh x/a, where a = 4.87 Å. The radius of the entrance of the vestibule
was fixed at 13 Å. Two identical vestibules were connected with a cylindri-
cal transmembrane region of length 10 Å and radius 4 Å. The total interior
volume of the model channel was 2.16×10−26 m3. We assumed, for simplic-
ity, that the two vestibules are identical in size, although the image of the
channel produced by Toyoshima and Unwin [70] shows that the extracellular
vestibule is larger than the intracellular vestibule.

7.1.2 Dipoles in the Protein Wall

To investigate how the permeation of ions across the channel is influenced
by the presence and absence of dipoles in the protein wall, we placed in
some simulations a set of 4 dipoles inside the protein boundary at z = 5 Å
and another set of 4 dipoles at z = −5 Å. Their orientations were per-
pendicular to the central axis of the lumen (z-axis). For each dipole, the
negative pole, placed 2 Å inside the water-protein boundary, was separated
from the positive pole by 5 Å. Thus, if 5/16 of an elementary charge was
placed on each pole, then the total moments of 4 such dipoles would be
100 ×10−30 Coulomb-meter. The same configuration of dipoles was used in
all the simulations, giving rise to an attractive potential for sodium ions and

113
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Figure 7.1: Idealized biological ion channel. A model channel with two catenary vestibules
was generated by rotating the closed curves along the symmetry z-axis by 180o. To
approximate the shape of the acetylcholine receptor channel, vestibules at each side of
the membrane were constructed using a hyperbolic cosine function, y = a cosh x/a where
a = 4.87 Å. The radius of the entrance of the vestibule was fixed at 13 Å and the cylindrical
transmembrane segment had a radius of 4 Å. Each cylindrical reservoir, 60 Å in diameter
and 22 Å in height, contained a fixed number of sodium and chloride ions. Unless stated
otherwise, the ionic concentration in the volume composed of the channel vestibules and
the reservoirs was 300 mM. The cylindrical reservoir had a glass boundary, in that an ion
moving out of the boundary was reflected back into the reservoir.
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a repulsive potential for chloride ions in the channel. These fixed charges
represent the charged side chains thought to form a ring around the entrance
of the constricted region [71], and their nearby counter charges. For conve-
nience, we adjust the amount of charge rather than the number or positions
of the charges, but in reality the side chains of charged amino acid residues
would have one electron charge each if they are fully ionized or unproto-
nated at neutral pH. Polar groups located in the transmembrane segment of
the channel that may rotate in and out to form temporary hydrogen bonds
with an ion navigating across it, as found in gramicidin A pores, are not
explicitly modeled in our single ion channel.

7.1.3 Energy Barrier in the Transmembrane Segment

An ion in the vestibule needs to surmount an energy barrier to traverse the
narrow, constricted segment of the channel. The presence of such an addi-
tional energy barrier in the gramicidin pore has been revealed by molecular
dynamics calculations. Intuitively, this barrier arises from the interactions
between the protein wall and the hydrated ion as the ion negotiates its way
into the narrow, cylindrical, transmembrane pore. To enter the narrow seg-
ment, the hydration shell of an ion needs to be re-arranged or some of the
water molecules in the primary or secondary hydration shell need to be sub-
stituted with polar groups on the protein wall. To re-arrange the ion-water
geometry requires an additional energy, and the ion can surmount such a
barrier only when it gains a sufficient kinetic energy. To mimic a barrier
present in the ion channel, we placed in some simulations a potential step
near the constricted segment of the channel. The energy must be paid to
enter the neck, and is returned when the ion exits. The method we used for
implementing such a potential barrier in the Brownian dynamics algorithm
is detailed below.

7.1.4 Applied Electric Field

A potential difference across a lipid membrane is produced by a surface
charge density on each side of the membrane. In microscopic terms, the
surface charge density is a cloud of unpaired ions on either side of the mem-
brane. Because these clouds are too diffuse to be explicitly included in our
simulation, we apply an external electric field E of a constant strength to
represent the average effect of the ionic clouds. In the absence of any dielec-
tric boundary, the potential difference across a channel with the length d is
E/d. The presence of a dielectric boundary, however, severely distorts the
field, enhancing it in the transmembrane segment and attenuating it in the
vestibule. Thus, the precise potential difference will depend on the selected
reference points at the two sides of the catenary channel. For simplicity, we
apply a field strength of 107 V m−1 and refer to it as an applied potential
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of 100 mV.

7.2 Theory

7.2.1 Pöschl-Teller Function

If the ionic concentrations on the two faces of the channel are the same, the
current-voltage relationship obtained from patch-clamp recordings is in gen-
eral ohmic. The current-voltage relationship deduced from our simulations
becomes nonlinear whenever there is a potential barrier for the ions to sur-
mount in order to cross the channel (Fig. 7.8). This deviation from Ohm’s
law is more pronounced when the potential barrier is large. Although the
precise shape of the curve cannot be deduced a priori, it is easy to see how
such a curvature in the current-voltage relationship would arise. The pres-
ence of a barrier is less of an impediment when the driving force is large.
This intuitive observation suggests a modification of Ohm’s law with the
Pöschl-Teller function

I =
γV

1 + β/ cosh(eV/VB)
, (7.1)

where γ is the conductance, VB is the barrier height, and β is a dimen-
sionless constant. When eV � VB, the denominator goes to 1, and one
recovers Ohm’s law. For eV � VB, Eq. (7.1) is again linear but with a
conductance reduced to γV/(1 + β). The nonlinearities in the I − V curves
become apparent only when eV > VB, which corresponds to the region
V ≈ 100 ∼ 200 mV for our model channel.

7.2.2 Michaelis-Menten Equation

Experimentally it has been shown that the current first increases with an
increasing ionic concentration and then saturates [59, 31]. Such a relation-
ship is expected to be found when the transport of ions across the channel
is determined by two independent processes, one of which depends upon ion
concentration and one that does not. In our simulations, for example, the
time τ1 it takes for an ion to arrive near the constricted segment is inversely
proportional to the electric field E and ionic concentration [c], whereas the
time τ2 it takes for the ion to acquire a sufficient kinetic energy to surmount
the barrier placed near the transmembrane segment and traverse the second
half of the channel is relatively independent of the ionic concentration but
dependent only on the electric field. Thus, assuming a uniform electric field,
the transit times can be written as

τ1 =
k1

[c] E
, τ2 =

k2

E
, (7.2)
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where k1 and k2 are constants. The total time τ it takes an ion to traverse
the channel is τ = τ1 + τ2, and the current flowing across it will be I = nze,
where the number n of ions carrying charges ze is 1/τ . Thus, the current is
inversely proportional to the total transit time, that is,

I ∝ ze

(τ1 + τ2)
=

zeE

k1/[c] + k2
. (7.3)

For large concentrations, Eq. (7.3) approaches to a maximum value that we
denote by Imax = zeE/k2. Factoring out k2 and introducing Ks = k1/k2,
Eq. (7.3) can be written in the form

I =
Imax

1 + Ks/[c]
. (7.4)

The form of this equation is identical to that of the Michaelis-Menten equa-
tion, which is derived under an entirely different set of assumptions. The
curves calculated from Eq. (7.4) fit the current-concentration relationships
obtained from our simulations reasonably well (see Fig. 7.9).

7.3 Methods

7.3.1 Stochastic Boundaries

To ensure that the desired intracellular and extracellular ion concentrations
were maintained throughout the simulation, a stochastic boundary was ap-
plied. When an ion crossed the transmembrane segment, an ion of the same
species was transplanted so as to maintain the original concentrations on
both sides of the membrane. For example, if a sodium ion from the left-
hand side of the channel crossed the narrow transmembrane segment and
reached the imaginary plane at z = 10 Å, then a sodium ion located at
the furthermost right-hand reservoir was taken out and placed in the far
left-hand side of the left reservoir. When transplanting ions, we chose a
point no closer to another ion than the defined safe distance. The stochastic
boundary trigger points, located at z = ±10 Å, were checked at each time
step of the simulation.

7.3.2 Short Timestep Algorithm

The use of a long time step causes a problem in implementing potential
barriers and steps in Brownian dynamics as short range forces. In our sim-
ulations, the Brownian dynamics algorithm operates predominantly in the
diffusive regime. In other words, random forces are far more important than
the velocity on the previous step in determining an ion’s new velocity and
position. The algorithm devised by van Gunsteren and Berendsen [72] uses
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the factors [exp(−γ∆t)] and [1− exp(−γ∆t)] to switch between kinetic and
diffusive regions. With the long time step (∆t = 100 fs) that we use,

1 − exp(−γNa∆t) = 0.9997,

1 − exp(−γCl∆t) = 0.9666.

Thus, for chloride ions only 3% of the previous velocity remains after one
time step, while the motion of sodium ions is in effect purely diffusive, with
no velocity correlation between steps. Since an ion can move a large fraction
of the barrier width in a single time step (around 0.3 Å on average), the effect
of the barrier force on the ion’s motion will not be accurately integrated.
Also, in the diffusive regime, external forces cause only an average drift
velocity which does not move the ion far in a single time step. For example,
a repulsive force of 120 × 10−12 N (3 kTr over 1 Å) produces a drift velocity
of 39 ms−1 for sodium, and a displacement of 0.04 Å in one time step. This
is only 1/7 of the average random displacement in one time step—an ion can
diffuse right through a potential barrier before the barrier force has time to
act.

To obviate these problems, we used two different time steps: a short
time step of 1 fs when an ion was in the process of climbing or descending
the barrier and the long time step of 100 fs otherwise. A smooth potential
barrier of height VB was erected at z = ±10 Å (5 Å from the entrance of
the cylindrical segment), with the profiles at the ends as

U(s) = VB(10s3 − 15s4 + 6s5), (7.5)

where
s =

z − zb

∆z
+

1
2
. (7.6)

Here zb = ±10 Å is the location of the center of the profile and ∆z = 1 Å
is the width of the profile. The potential profile U(s) is chosen such that it
rises from zero at z = ±10.5 to VB at z = ±9.5, and the first and second
derivatives of U(s) vanish at z = ±9.5 and z = ±10.5. The force due to the
barrier is obtained by differentiating Eq. (7.5).

We included a safety distance of 0.5 Å in the potential profile. Thus,
whenever ions were in the band of z = 9 - 11 Å or z = −9 to −11 Å,
we switched from long time steps to an equivalent sequence of short time
steps for those ions. Trajectories of ions in these bands were determined
by a sequence of 100 short time steps for the subsequent 100 fs. In the
meantime, all the other ions were simulated for a single long time steps
in the normal way. The long range (electrostatic) forces on the ion were
calculated at the start of the sequence of 100 short steps, and held constant
thereafter. Similarly, reflection from the boundary walls was done once at
the end of the sequence of short steps. The force from the barrier, however,
was recalculated for each short step, thus ensuring that the effect of the
barrier on the ion’s motion would be accurately simulated.
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7.3.3 Procedure for Calculating Conductance

Simulations under various conditions, each lasting between 500,000 and
2,000,000 time steps, were repeated many times, from 5 to 9 trials. For
the first trial, the positions of ions in the reservoirs were assigned randomly
with the proviso that the minimum ion-ion distance should be 2.7 Å, or 1.5
times the radius of a chloride ion. For successive trials, the positions of the
ions in the last time step were used as the initial starting positions of the
following trial. The current given in pA was extrapolated from the total
number of ions traversing the channel over the simulation period.

On each side of the vestibule, a cylindrical reservoir with radius 30 Å
and an adjustable height was placed. A fixed number of sodium and chloride
ions were placed in each reservoir, and the height of the cylindrical reservoir
was adjusted to give a desired ionic concentration. As ions were forbidden
to approach the wall of the reservoir within 1 Å, the effective radius of the
cylindrical reservoir was 29 Å. For example, if 13 sodium and 13 chloride
ions were placed in each reservoir and the desired ionic concentration was
300 mM, the height of each of the two cylindrical reservoirs was adjusted to
22 Å.

7.4 Results

7.4.1 Dipoles in the Channel

In the absence of any dipoles in the protein wall, the potential barrier pre-
sented to an ion moving under the influence of an applied potential of 100 mV
is shown in Fig. 7.2 (top curve, labeled 0). The potential profile presented to
the ion as it moved from outside (left-hand side) to inside (right-hand side)
increased slowly, peaking at the center of the cylindrical transmembrane seg-
ment (labeled 0 Å), and then decreased steadily as it traversed the second
half of the channel. Without the membrane potential, one would have ob-
tained a symmetrical, bell-shaped barrier with a peak height of 14.5×1021 J.
The presence of the membrane potential had lowered the relative height of
the barrier to 3.5×1021 J and distorted the shape of the profile to an asym-
metrical curve.

Two rings of dipoles, together with an applied electric potential of 100 mV,
eliminated the repulsive dielectric force. The number accompanying each
curve in Fig. 7.2 represents the total strength of 4 dipoles (×10−30 Cm) in
each ring. Since there were two rings of dipoles, one at z = −5 Å and the
other at z = +5 Å, the strength of dipoles placed on the entire channel wall
was twice the value indicated in the figure. In the presence of dipoles, an
ion traversing from outside to inside would encounter an attractive potential
throughout its trajectory. With each stepwise increase in dipole strength,
what used to be a potential barrier became a potential well whose depth



120 CHAPTER 7. SINGLE-ION CHANNEL

E

Axial  distance  ( Å )

-40 -20 0 20 40

P
ot

en
tia

l  
en

er
gy

  (
 x

 1
0 -

21
 J 

)

-60

-40

-20

0

20

-+

-
+

-
+

-+

0

50

100

200

300

Figure 7.2: Changes in the potential profile with dipole strength. The potential barrier
presented to a cation is plotted against its position along its trajectory. A membrane
potential of 100 mV was applied such that inside (right-hand side) was negative with
respect to outside (left-hand side). The value at each position was computed from a
numerical method of solving Poisson’s equation. The uppermost curve, labeled 0, was
obtained in the absence of dipoles on the channel wall. The next four curves represent
the potential profiles encountered by a cation traversing the channel in the presence of
dipoles with strengths of, respectively, 50, 100, 200 and 300×10−30 Cm. The approximate
positions of four of the 8 dipoles in the channel are indicated in the inset. The remaining
four dipoles are on the orthogonal plane to those shown.
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increased with the strength of dipole moments.
In Fig. 7.3, the number of ions that traversed the channel under the

driving force of 100 mV during a simulation period of 0.45 µs (4.5 million
time steps) is converted to current in pA and plotted against the dipole
strength. On the right-hand ordinate of Fig. 7.3, current in pA are converted
to conductance in pS at the physiological concentration of 150 mM. Since
the current in these ranges of ionic concentrations increases almost linearly
with concentration (see later), such an extrapolation of conductance results
is justified. With no dipoles placed on the channel wall, the number of
sodium ions that traversed from outside to inside in 0.45 µs was 10, which
corresponds to a current of 3.6 pA. The net current increased rapidly with
the increasing dipole strength up to 100×10−30 Cm (filled circles in Fig. 7.3).
The number of ions crossing the channel increased further with a further
increase in the dipole strength, but many ions were also traversing in the
opposite direction, against the direction of the applied electric field. The
current flowing from inside to outside is indicated as open circles in Fig. 7.3.
As a result, the net current actually decreased as the dipole strength was
increased further from 300 to 600 × 10−30 Cm.

7.4.2 Ionic Concentrations in the Channel

In the volume of our model channel, which is 2.16×10−26 m3, there would be
720 water molecules. At a concentration of 300 mM, a similar bulk volume
would contain 4 sodium and 4 chloride ions. Here we examine the number
of sodium and chloride ions inside the channel under various conditions. To
compute the average number and concentration of sodium and chloride ions
inside the channel, we divided the model catenary channel, whose length
is 80 Å, into sixteen 5-Å-thin sections as shown in the inset of Fig. 7.4.
The volumes of the slices from the outermost layer to the smallest layer in
the transmembrane segment are 2.94, 2.18, 1.88, 1.54, 1.16, 0.71, 0.25 and
0.15 × 10−27 m3.

In the absence of a membrane potential and dipoles in the protein, ions
were virtually excluded from entering the vestibule neck owing to the repul-
sive dielectric force presented to them by the dielectric wall. In Fig. 7.4 A
and Fig. 7.4 B, the time averages of sodium and chloride concentrations in
the channel are illustrated. The number of ions present in each layer per
unit time was first tabulated (filled and open circles) and then the concen-
tration in each layer was derived by taking into account its volume. The
average ionic concentration in each of the two outermost layers was about
10% lower than that in the adjoining reservoir, which was 300 mM. The
ionic concentration in successive layers declined progressively, dropping to
less than 10% of the reservoir value in the neck region.

When a membrane potential of 100 mV was applied across the channel,
such that the right-hand side reservoir was made negative with respect to the



122 CHAPTER 7. SINGLE-ION CHANNEL

Dipole  moment  ( x 10-30 Cm )

0 200 400 600

C
ur

re
nt

  (
 p

A
, 3

00
 m

M
 )

0

10

20

30

40

C
on

du
ct

an
ce

  (
 p

S
, 1

50
 m

M
 )

0

50

100

150

200

-+

-
+

-
+

-+

E

Figure 7.3: Channel conductance as a function of dipole strength. The magnitudes of
sodium currents flowing across the channel in the presence of a membrane potential of
100 mV are plotted against strengths of dipoles. The ionic concentration of the reservoir
was 300 mV. The left-hand side of the ordinate indicates the current in pA at 300 mM,
whereas the right-hand side of the ordinate indicates the conductance in pS at 150 mM.
The filled circles show the net current, i.e., the sum of currents in both directions, which
flows from outside to inside. The open circles show the current flowing against the potential
gradient, namely, from inside to outside. Simulation time for each data point was 0.45
µs, except the value for 100 ×10−30 Cm, which was 2 µs. The points were fitted with a
polynomial function.
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Figure 7.4: Concentrations of sodium and chloride ions in the channel. The model channel
was divided into sixteen 5-Å-thick sections, as indicated in the inset, and the average
number of ions present over the simulation period of 0.45 µs in each section was tabulated
(filled and open circles). The ionic concentration in each section was then calculated by
dividing the average number of ions in each section by its volume (bars). The concentration
of sodium (and chloride) ions in the reservoirs was 300 mM in this and the following 3
figures. With no dipoles on the channel wall and no applied electric field, the probability
of sodium ions (A) and chloride ions (B) being in each section decreased steadily with its
distance from the reservoir.
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Figure 7.5: Concentrations of sodium and chloride ions in the channel in the presence of a
membrane potential E. When a membrane potential of 100 mV was applied, as shown in
the inset, there was a small increase in the concentration of sodium ions in the left-hand
side vestibule (A) and a similar but slightly larger increase in chloride ions in the right-
hand side vestibule (B). The difference is due to the larger diffusion coefficient of chloride
ions compared to that of sodium ions.
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left-hand side, there was a small but consistent increase in the concentration
of sodium ions in the left vestibule and in the concentration of chloride ions
in the right vestibule (Fig. 7.5). Other than this small asymmetry in the
concentrations and a slight increase in the probability of ions being present
in the constricted segment, the applied field had little effect on the average
concentrations in the channel. A drastic change in the pattern of charge
densities occurred when, instead of applying an electric potential across the
channel, two rings of dipoles were placed on the channel wall. As shown
Fig. 7.6, there was a marked increase in the concentration of sodium ions
in the constricted region of the channel. Sodium ions entering the channel
occasionally would become detained in the potential well created by the
dipoles on the wall. Some ions travelled from one well to the other and
drifted across to the other side, but because there was no potential gradient,
the number of ions drifting in one direction (11.7 ± 1.3 pA) was about the
same as that in the opposite direction (10.7 ± 1.3 pA).

To mimic the concentration gradient in the channel during its open state,
we placed an energy barrier of 1.5 kTr at the constricted segment and ap-
plied a membrane potential of 100 mV. As shown in Fig. 7.7, the sodium
concentration in all layers of the channel was approximately constant under
these conditions and ions steadily moved from outside to inside, without
being detained by the dipoles on the channel wall. In contrast, chloride ions
were virtually excluded from entering the inside of the channel (Fig. 7.7 B).
The conductance of the channel under this condition was 78 ± 4 pS at
150 mM (or 15.5 ± 0.7 pA at 300 mM), and no sodium ions traversed
against the potential gradient.

7.4.3 Current-Voltage Relationships

The current-voltage relationships obtained from excised single channels are
in general ohmic, although some show pronounced inward or outward rectifi-
cation. The reversal potential observed in asymmetric ionic solutions closely
matches that predicted by the Nernst equation. Here we show how the pres-
ence of an energy barrier in the channel can distort the linear current-voltage
relation.

The current increased linearly with the applied voltage, as shown in
Fig. 7.8 A, when there was no additional potential barrier in the channel
presented to ions for penetrating the transmembrane segment. In this and
all subsequent current-voltage curves, we used the total strength of 4 dipoles
in each ring of 100 × 10−30 Cm. The core conductance of the channel,
deduced from the regression line of the form, I = γ V , fitted through the
data points, was 232 ± 4 pS (or 116 pS at 150 mM). When an energy
barrier of 3.0 kTr was erected at the entrance of the constricted segment,
the current was attenuated, but not by a constant proportion at all voltages.
For example, the currents in the absence and presence of this barrier at
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Figure 7.6: Concentrations of sodium and chloride ions in the channel in the presence of
two dipole rings. Each dipole ring, with the total moment of 100× 10−30 Cm, was placed
in the positions indicated in the inset. There was a large increase in the concentrations of
sodium ions in the innermost sections of the channel (A). In contrast, chloride ions were
excluded from the innermost sections (B).
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Figure 7.7: Concentrations of sodium and chloride ions in the presence of dipoles and
an applied electric field. Two potential barriers of 1.5 kTr were placed at the positions
indicated in the inset. With two rings of dipoles canceling the repulsive dielectric force
and a driving force provided by a membrane potential of 100 mV, sodium ions steadily
traversed the channel. The concentrations of sodium ions in all sections of the channel
remained approximately constant (A). In contrast, chloride ions were virtually excluded
from the transmembrane sections (B).
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Figure 7.8: Current-voltage relationships obtained with symmetrical solutions. (A) The
currents flowing across the channel that had no potential barrier near the entrance of
the transmembrane segment were measured at different applied potentials. Two rings of
dipoles, each ring with the strength of 100 × 1030 Cm, were placed on the channel wall.
The current-voltage relationship obtained under these conditions is ohmic. The slope of
the line drawn through the data points is 232± 4 pS. (B) When potential barriers 3.0 kTr

was erected, the current-voltage relationships became nonlinear. The data points were
fitted with a modified Ohm’s law which takes the barrier into account (see Eq. (7.1). The
values of γ and β used to fit the curve were, respectively, 142 ± 4, and 3.5 ± 0.4. The
simulation period used to obtain each data point was 1 µs.
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200 mV were, respectively, 46.0 pA and 18.2 pA (39.6%). With the applied
potential of 50 mV, however, the current was reduced from 14.0 pA to 2.2 pA
(15.7%), thus indicating that the barrier of the same height became less of
an impediment when the driving force was large. With a 3.0 kTr barrier,
the current-voltage relationship became nonlinear, deviating markedly from
Ohm’s law, as shown in Fig. 7.8 B. The solid line fitted through the data
points in Fig. 7.8 B was calculated from the Pöschl-Teller function of the
form, I = γ V/[1 + β sech x], where x = eV/VB and VB is the barrier
height. The justification for fitting the data with this function is given in
section 7.2.1. The values of γ and β used to generate the curves shown in
solid lines are given in the figure legend.

7.4.4 Conductance-Concentration Curve

Experimentally, current across a biological ion channel increases monotoni-
cally with an increasing ionic concentration initially and then saturates with
a further increase in concentration [31]. Saturation of channel currents oc-
curs when there is a rate-limiting permeation process that is independent of
ionic concentrations. For example, an ion arriving near the constricted mem-
brane segment will be detained there for a period of time if, before traversing
the narrow pore, it needs to gain sufficient kinetic energy to climb over an
energy barrier. The reason for the presence of such a barrier is explained in
the section 7.1.3.

In Fig. 7.9, the conductance of the channel is plotted against the concen-
trations of sodium ions in the reservoirs. The two reservoirs contained an
equal number of sodium-chloride pairs, and an applied membrane potential
of -100 mV provided the driving force for sodium ions to move inward. The
presence of 2 rings of dipoles, with their negative poles pointing to the lumen,
ensured that the channel was selectively permeable to sodium ions. When
the channel had no potential barrier, the ionic current carried by sodium
ions increased linearly with concentration, as shown in Fig. 7.9 A. Since the
magnitude of the current in this series of simulations was large, we used the
total simulation period of 0.225 µs for each point shown in Fig. 7.9 A. The
linear conductance-concentration relation became distorted when a barrier
was placed at 5 Å from each end of the cylindrical pore. Figure 12B illus-
trates the conductance-concentration curve obtained from the channel with
a step potential barrier of 3.0 kTr. The ordinate of Fig. 7.9 B is expanded,
since the currents were greatly attenuated by the presence of the barrier.
At a low ionic concentration, the conductance was nearly proportional to
the ionic concentration. As the ionic concentration was increased, however,
the conductance increased less with increasing concentrations. We fitted the
points with the curve calculated from the Michaelis-Menten equation of the
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Figure 7.9: Conductance-concentration curve. The ionic concentrations in the two reser-
voirs were systematically increased while keeping the strength of dipoles and an applied
membrane potential constant at 100 × 10−30 Cm and 100 mV, respectively. The number
of ion pairs in each reservoir, with the radius of 30 Å, ranged from 3 (for 75 mM) to 78
(for 1,800 mM). (A) With no barrier present, the current increased linearly with ionic con-
centrations. Each point represents the average of 9 trials, each trial lasting 250,000 time
steps or 0.225 µs. (B) When a step barrier, whose height was 3.0 kTr, was erected at 5 Å
from the entrance of the transmembrane segment, the conductance-concentration relation
became nonlinear. The current increased linearly with an increasing ionic concentrations
at first and then began to saturate. The data points of (B) were fitted with Eq. (7.7).
The simulation period for each point in (B) were 1 µs, except for those representing 1.2,
1.5 and 1.8 M, for which the simulation periods of 0.3 µs were used.
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form

I =
Imax

1 + Ks/[c]
(7.7)

where Imax and Ks are the fit parameters. For the solid line drawn through
the data points of Fig. 7.9 B, the numerical values of these two parameters
are Imax = 25 ± 5 pA and Ks = 996 ± 351 mM. In section 7.2.2, we give
a possible physical interpretation of Eq. (7.7).

7.5 Discussion

The idea that dipoles are needed to allow free permeation through the
model channel is confirmed by the results in this chapter, with the pro-
viso that some current flows even without dipoles. In the absence of dipoles
permeation through the channel is severely retarded: the conductance is
around 20 pS as compared to a maximum of around 175 pS with dipole
rings (Fig. 7.3). This reduction in conductance can be attributed to the
electrostatic energy barrier created by the dielectric boundary in the ab-
sence of dipoles (Fig. 7.2). This barrier reduces the concentration of ions in
the neck region to around 40 mM, compared to 300 mM in the reservoirs
(Fig. 7.5). However, when dipole rings are added the energy barrier is re-
placed by an energy well (Fig. 7.2), the concentration in the neck region
increases to around 750 mM (Fig. 7.6), and a substantial current can flow
(Fig. 7.3). The results of the long simulations confirm the picture hinted at
by the ion trajectories of the previous chapter, but add detail and provide
quantitative predictions.

These results also give support to another explanation for the presence of
ions in the neck region of channels: that they serve to increase the concentra-
tion of ions in the neck, increasing conductance in the narrowest part of the
channel, so overcoming a bottle-neck and producing a channel with a large
conductance [31]. Even the small energy well created by 100 × 10−30 Cm
dipole rings increases the concentration of cations in the neck region to 2.5×
the bulk concentration. Dipole rings of 200 × 10−30 Cm strength produce
a much bigger well and increase conductance from 115 pS to 175 pS. How-
ever, increasing dipoles beyond this strength does not increase conductance,
and actually reduces it slightly for strengths of 400 × 10−30 Cm or more
(Fig 7.2). The two explanations for the dipoles need not be mutually exclu-
sive: it is quite possible that dipoles in the neck region of a channel serve
firstly to overcome the membrane energy barrier and allow conductance, and
secondly to increase ion concentration in the narrowest part of the channel
and increase conductance through this bottle-neck. Indeed if permeation
through the channel is considered to be one-dimensional, and entropy is in-
cluded, then the narrow neck region becomes an entropic barrier in addition
to the electrostatic membrane barrier, and dipoles are needed to overcome
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the combined barrier. This may explain why increasing the strength of the
dipoles beyond a certain point does not increase conductance. Note that the
simulations are three-dimensional, so that the entropic effects of a narrowing
channel emerge implicitly from the motion of the ions, and do not need to
be included explicitly.

Shielding by counter-ions seems to be having some effect, but does not
completely remove the electrostatic barrier. This can be seen by compar-
ing concentrations in the neck region with the electrostatic energy profiles.
Without dipoles the height of the barrier is around 4 kT which, by applying
the Boltzmann factor, would suggest a dilution to 1/50 bulk concentration
or around 6 mM for both cations and anions. In Fig. 7.4, however, the con-
centrations are around 20 mM, suggesting that shielding has reduced the
barrier by about 30%. Dipoles of 100 × 10−30 Cm create a well of around
2.5 kT, which should increase their concentration by a factor of 12, but
Fig. 7.6 shows that the increase is only by a factor of 2.5, suggesting that
interactions with other ions have reduced the depth of the well to about
1 kT. Fig. 7.5 is interesting, in that the applied field reduces the height of
the barrier to 2 kT (Fig. 7.2), which by the Boltzmann factor suggests a
concentration of around 40 mM, which is what is seen in the figure. This
might indicate that shielding has a much smaller effect when current is flow-
ing and ions are moving through the channel, but it is difficult to be sure,
as the use of the Boltzmann factor is inappropriate in this non-equilibrium
situation.

Without an additional energy barrier both current-voltage (Fig 7.8) and
conductance-concentration (Fig 7.9) curves are linear, indicating that ions
navigate the channel independently, without multi-ion interactions playing
an important role. When an sharp energy barrier is added in the neck region
both curves become non-linear. The conductance-concentration curve shows
saturation with increasing concentration, and can be fitted to the Michaelis-
Menten equation. The current-voltage curve shows a particular pattern of
non-linearity, with a switch from a region of lower conductance to one of
higher conductance at around 100 mV of applied potential. This curve can
be fitted to a Pöschl-Teller function, as described in section 7.2.1. Thus,
without an energy barrier the model is of a high-conductance single ion
channel with linear conductance characteristics, while with energy barriers
the model predicts a lower conductance and specific types of non-linearity.



Chapter 8

Multi-Ion Channel

In this chapter we describe the construction of an approximate model of
a potassium channel and its use to perform BD simulations. The model
is based on the structure of the KcsA channel as described by Doyle et.
al. [21]. This is done with the primary aim of seeing if it is possible to build
a working model of a multi-ion channel using only a diffusive mechanism. A
secondary aim is to test the plausibility of some of the conductance mech-
anisms proposed by Doyle et. al., but since these mechanisms are deduced
in a quite straightforward way from the experimental structure, this might
equally be regarded as a test of the plausibility of our model and techniques.

Although their gating characteristics differ, most potassium channels
show similarities in amino acid sequence, conductance characteristics, selec-
tivity, and blocking agents. These common characteristics identify them as
a group and strongly suggest a common pore structure. Thus, even though
KcsA is a bacterial channel, its structure can be taken as representative of
the pore structure of all the potassium channels with similar characteristics.
The conductance characteristics of potassium channels, specifically ionic flux
coupling and saturation at high concentrations, are strong evidence that
potassium channels contain between 2 and 3 ions when conducting. They
are also taken as evidence that potassium channels contain binding sites,
and that conductance is by hopping between these sites, with any diffusion
that occurs being irrelevant or incidental (see chapter 14 of Hille [31]). This
is because the theories that best describe these characteristics (RRT and the
Michaelis-Menten mechanism) are theories about chemical reactions which,
as applied to enzymes, involve the binding of a substrate to an enzyme. The
explanation in terms of binding sites is reasonable, given that no diffusion
based theory has been able to adequately explain conductance in multi-ion
channels, but it does not take into account the theoretical problems with
RRT as applied to channels (see section 2.1), and does not explain the far
greater turnover rate of channels compared to enzymes and carriers (see
section 1.2 and chapter 11 of Hille [31]). By attempting to build a diffusion
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based model of a multi-ion channel we hope to shed some light on this issue.
The structure of the KcsA channel contains several clues to its conduc-

tance mechanisms [21]. At the top (extracellular) end of the channel is a
very narrow, 12 Å long section of pore lined by hydrophilic protein backbone
much like a gramicidin pore, although the protein chains are straight, not
arranged in a helix. This is recognizably a selectivity filter and must hold
the key to explaining the extreme selectivity of potassium channels. Doyle
et. al. suggest a possible mechanism, but this cannot be investigated by the
techniques described here, as macroscopic electrostatics completely ignores
the subtle close-range interactions essential for selectivity between ions of
the same valence (see section 1.2). The x-ray crystallography used to find
the structure of the channel also shows the preferred positions of ions in
the pore. There are two such positions in the selectivity filter, located near
each end, 7.5 Å apart. These could be interpreted as binding sites, specific
locations with a high affinity for potassium ions, but this does not readily
explain the high conductance of the channel, as a hop of 7.5 Å (carrying the
intervening water with it) seems unlikely, and the selectivity filter is too nar-
row for diffusion to be considered irrelevant. The interpretation of Doyle et.
al. is different: they suggest that the whole selectivity filter has a high affin-
ity for potassium ions, and would trap a single ion, preventing conductance.
However, the two ions in the filter destabilize each other by electrostatic
repulsion (hence their locations near the ends of the filter), and this allows
ions to escape and conductance to occur. We test the plausibility of this
mechanism in our BD simulations by placing small dipoles representing car-
bonyl groups around the model selectivity filter. This creates the necessary
high affinity for cations, and transport is provided by the simulated diffusion
of the BD motion algorithm.

This model of the selectivity filter may be quite unrealistic. The real car-
bonyl groups have some freedom to move, a hydrogen bond is not completely
representable as a dipole interaction, and calculations by macroscopic elec-
trostatics in such a confined space can be no more than an estimate. The
selectivity filter may be more like a series of 4-6 connected binding sites than
a continuous attractive region, transport might be through a series of short
hops rather than by diffusion, and the single file nature of the filter means
that ions and water should move in a coordinated manner, whatever the
transport mechanism. All of these issues need to be studied using MD or
similar microscopic simulation techniques. However, despite these reserva-
tions, and crude as it is, the BD model captures the essential features of the
proposed mechanism: a selectivity filter with a high affinity for ions, and
mutual destabilization by long-range electrostatic repulsion.

Below the selectivity filter lies a central cavity, and below that an inner
pore leading to the cytoplasmic mouth of the channel. The central cavity
is an elongated spheroid, about 10 Å across and 12 Å long. The inner
pore is around 18 Å long and wide enough for a potassium ion to move
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through ‘and still remain mostly hydrated’ [21]. The linings of both of these
regions are predominantly hydrophobic, which raises the question of how
the electrostatic barrier created by the membrane is overcome. Doyle et. al.
propose mechanisms to reduce the barrier. They suggest that the central
cavity and inner pore provide water to surround the ion and thus reduce
the barrier, while the hydrophobic walls do not interact greatly with the
ion, allowing it to diffuse without impediment. The wider cavity is in the
centre of the pore, providing the most hydrating water where the barrier is
greatest. They also observe that the pore helices (four short alpha helices
that support the selectivity filter) point directly towards the central cavity
and (as do all alpha helices) posses significant dipole moments. The negative
ends of these large dipoles are closest to the central cavity, and thus they
are expected to attract cations. Another preferred ion position is located
at the centre of the cavity, although it is more diffuse than the ones in the
selectivity filter: this supports the idea that the water filled cavity and helix
dipoles overcome the membrane barrier and create instead an energy well
which attracts ions. Doyle et. al. point out that this preferred ion position
in the cavity does not represent a binding site in the conventional sense, but
rather ‘a hydrated cation cloud’.

Three-dimensional BD seems well suited to the task of investigating con-
ductance in the inner pore and central cavity. The mechanism that Doyle
et. al. propose for transport in this region is diffusion, with the electrostatic
barrier overcome by a combination of shielding by water molecules and long
range electrostatic interactions with the channel structure. These are ex-
actly the physical phenomena that the methods described in this thesis are
designed to reproduce (although the accuracy of this reproduction may be
far from perfect due to the use of macroscopic electrostatics and other sim-
plifications). This region of the channel represents around 70 percent of its
length, and if Doyle et. al. are right about the purpose of the central cavity
and helix dipoles, is relevant to the channel’s conductance. Of course the
conductance of a channel depends on its entirety, not just particular regions,
so the selectivity filter must be included in any simulation expected to repro-
duce conductance. Although our model of the selectivity filter is necessarily
crude, and other techniques are better suited to investigating this region of
the channel, the conductance mechanism proposed by Doyle et. al. is not
incompatible with a BD simulation or macroscopic electrostatics.

8.1 Model

This model was derived from the structural descriptions and figures in the
paper by Doyle et. al. [21], not the molecular coordinates: at the time it
was built we did not have the ability to analyze such coordinates to produce
a model.
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Figure 8.1: Idealized potassium channel. The channel shape is generated by rotating the
curves outlined along the symmetry z-axis by 180o. The positions of the negative ends
of the dipoles in the channel wall are indicated: filled circles show 8 of the 16 carbonyl
oxygen atoms; open circles the helix dipoles, and filled diamonds, the mouth dipoles.

8.1.1 Shape of the Channel

The shape of our model channel is a simple, geometric representation of the
pore structure (see Fig. 8.1). The three-dimensional shape of the channel is
generated by rotating the curves shown around the symmetry axis (z axis)
by 180o. The total length of the model channel is 50 Å, compared to 45 Å
for the real channel. The model channel is slightly longer due to the need
to add curved sections at each mouth of the channel (the iterative method
of solution does not deal well with sharp corners). These curves are quarter
circles with a radius of 5 Å.

The selectivity filter is represented by a cylindrical section 1.5 Å in ra-
dius and 10 Å long. The real selectivity filter is around 12 Å long, but in
our model the inner 2 Å of the curved extracellular mouth is very narrow
(maximum radius 1.9 Å), and can be regarded as part of the filter. The ra-
dius of the selectivity filter is deduced from the ions that can pass through
it (see chapter 13 of Hille [31]). Potassium ions (radius 1.33 Å) can pass
through easily, as can rubidium ions (radius 1.48 Å). Caesium ions (radius
1.69 Å) can enter the filter but tend to get stuck: presumably some areas of
the filter are wider than others, and the filter has some flexibility. For our
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very simplified model for use with BD, 1.5 Å seems a reasonable average
radius.

The central cavity and inner pore are represented in our model by a
hemisphere and a truncated cone. The hemisphere has a radius of 5 Å,
corresponding to the 10 Å width of the central cavity. The truncated cone
is 25 Å long and has a radius of 5 Å where it meets the hemisphere reducing
to 3 Å where it meets the cytoplasmic mouth. The cytoplasmic mouth of
the channel admits tetraethylammonium (TEA) ions to the inner pore when
the channel is open [21]. This suggests a width of at least 5-6 Å, since a
TEA ion (chemical formula (CH3)4N+) consists of four carbon atoms in a
tetrahedron bonded to the central nitrogen atom, and carbon atoms have
a hard-sphere radius of 1.4 Å. The total length of hemisphere and cone is
30 Å, corresponding to the total length of central cavity (12 Å) and inner
pore (18 Å) in the real channel.

Small curved sections join the selectivity filter, hemisphere, truncated
cone, and cytoplasmic mouth without sharp corners. In our coordinate
system the model channel runs from z = −25 Å on the cytoplasmic side to
z = 25 Å on the extracellular side. The narrowest point in the inner pore
is at z = −20 Å, the centre of the cavity is at z = 5 Å, and the selectivity
filter runs from z = 10 Å to z = 22 Å.

8.1.2 Dipoles

The positions of fixed charges and dipoles in our model are based, where pos-
sible, on the structure described by Doyle et. al. We regard their strengths
as adjustable parameters, however. This is done in order to give the model
flexibility to cope with the possible inaccuracies in the calculation of energy
barriers and wells which might arise due to the use of macroscopic elec-
trostatics. We place four sets of dipoles in the model protein wall, each
with four-fold symmetry around the z axis. Two of these sets are mouth
dipoles, representing the negative charges at each entrance of the channel
reported by Doyle et. al. [21]. The negative ends of these dipoles are placed
at z = 22.83 Å and z = −20 Å, just inside the protein wall (filled diamonds
in Fig. 8.1). For each mouth dipole we place a counter-charges 5 Å further
in, but this is a guess, as it is not clear from the descriptions or diagrams in
the paper whether there are counter-charges for the negative charges near
the channel entrances, or if so where they are. The third set are the helix
dipoles, representing the dipole moments of the pore helices. The position
and orientation of these dipoles is known from the structure: their negative
ends are 8 Å from the centre of the cavity (open circles in Fig. 8.1), they are
aligned at 45o from the channel axis, and they point directly towards the
centre of the cavity [21]. Their length can be deduced to be 16 Å based on
number of residues in each helix. The fourth set are the carbonyl dipoles,
representing the carbonyl groups that line the selectivity filter. As explained
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above, these are only a rough approximation of the hydrophilic lining of the
filter. Four carbonyl dipoles are placed along the selectivity filter, spaced
evenly along a distance of 10 Å and oriented perpendicularly to the z axis.
With the four-fold symmetry around the z axis this gives a total of 16 small
dipoles. The dipoles are located at z = 10, 13.33, 16.67 and 20 Å with
the negative pole of each placed 1 Å from the boundary (filled circles in
Fig. 8.1), and the positive pole 1.2 Å further away. The dipole length of
1.2 Å is chosen to correspond to that typically used for carbonyl groups in
MD simulations [11].

8.1.3 Brownian Dynamics

We use our multiple time step algorithm (see section 7.3.2) to simulate the
motion of ions more accurately and allow non-reflective repulsion from the
walls in the narrowest regions of the pore. A short time step of 2 fs is used
in the mouth regions of the channel and the selectivity filter. A long time
step of 100 fs is used elsewhere. Specifically, there are two short time step
bands, −25 < z < −15 and 7.5 < z < 25, comprising both entrances and
the selectivity filter. If an ion is in one of these bands at the beginning of
a 100 fs period, it is simulated by 50 short steps instead of one long step;
so synchronization between the ions is maintained. Long-range forces are
calculated normally at the start of the 100 fs period, and are assumed to be
constant throughout. Short range forces are calculated every 2 fs. Coulomb
interactions between ions are calculated at the start of each long time step
except where both ions are in the same band, when they are recalculated
for each 2 fs step. Forces due to the Born energy barriers described in the
next section are also calculated every short time step.

The short range forces represent the repulsion that occurs when electron
clouds overlap. They are approximations, primarily intended to prevent ions
from interpenetrating each other or the protein walls, but they do provide
more accurate motion than the reflection algorithm which serves this purpose
in the long time step regions. We do not expect that short range forces
have a large role in conductance in the inner pore and central cavity, as
these regions have a hydrophobic pore lining. Short range forces obviously
are important in the selectivity filter, but our techniques cannot reproduce
them accurately, so we must be content with a crude model of this region.
As explained above, even such a simplified model may well be useful.

The ion-ion interaction is given by the potential function

UII(r12) =
F0

9
(R1 + R2)10

r9
12

, (8.1)

where r12 is the ion-ion distance, Ri, i = 1, 2, are the Pauling radii of the
ions and F0 is the magnitude of the short range force at contact. For the
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ion-protein wall potential UIW , a similar form is used

UIW (r) =
F0

9
(Ri + RW )10

(ρ(z) + RW )9
, (8.2)

where RW is the radius of the atoms making up the wall and ρ(z) = RC(z)−r
is an estimate of the distance from the ion to the channel wall, r being the
radial coordinate of the ion and RC(z) being the radius of the pore at the
ion’s z coordinate. We use RW = 1.4 Å (the Pauling radius of a carbon
atom) and F0 = 2 × 10−10 N (estimated from the ST2 water model used in
molecular dynamics [69]).

8.1.4 Dielectric Constant

Conditions in the pore may be quite different from those in a bulk electrolyte
solution (see section 3.1.4) so we regard the dielectric constant in the pore
as an adjustable parameter. Unfortunately, due to the limitations of our
iterative method, the dielectric constant for the model water must be the
same throughout the simulation: the dielectric constant can only change
at dielectric boundaries, and the iterative method does not give meaningful
results if an ion crosses such boundaries. This means that when we reduce
the dielectric constant in the pore, the dielectric constant in the reservoirs
is also reduced, whereas in reality it should probably be close to the bulk
value. One consequence is that the energy barrier due to the ion moving
from a high dielectric strength region (the reservoir) to a lower one (the
pore) is not reproduced by our electrostatic calculations.

In an attempt to compensate for this omission, we add an extra energy
barrier in the form of a step at each entrance of the channel. The height of
this energy barrier is given by the Born energy (see section 3.1.2)

EB =
q2

8πε0RB

(
1
ε
− 1

80

)
. (8.3)

We use RB = 1.93 Å which is derived from the estimated enthalpy of hy-
dration for K+ ions [10]. The shape of the potential step is given by the
smooth switching function

UB(s) = (EB/16)(3s5 − 10s3 + 15s) + (EB/2), s =
z − zc

∆z
, (8.4)

which has continuous first and second derivatives and rises gradually from
0 to EB as s changes from −1 to 1. Here, zc = ±22.5 Å is the location
of the center of the profile and ∆z = ∓1.5 Å is its half-width. To give an
indication of the barrier heights involved, we note that for ε = 20, 40 and
60, EB = 5.4 kT, 1.8 and 0.6 kT, respectively.
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8.2 Methods

8.2.1 Energy Profiles

In the results section we calculate both single-ion and multi-ion energy pro-
files. The potential profile of an ion is constructed by solving Poisson’s
equation with the ion fixed at a series positions spaced at 1 Å intervals
along the z-axis. This is done using the lookup tables in the same way as in
the BD simulations. This is a simple process for a single-ion profile, but the
channel contains more than one ion while it is conducting, and so we need
to be able to calculate energy profiles in the presence of additional ions.

To visualize the shape of the energy barrier an ion encounters as it at-
tempts to enter a channel that is occupied by one or more ions, we have
constructed multi-ion energy profiles. We move one of the ions from the
intracellular space into the channel in 1 Å steps, holding it fixed at each
step. We then allow the other ions in the selectivity filter to adjust their
positions so that the force on them will be zero, thus minimizing the total
energy of the system. The minimization is performed at each step and the
positions of the ions and the total energy are recorded. The total energy
corresponds to the total electrostatic energy required to bring in the charge
on the ions from an infinite distance in infinitesimal amounts, and it is given
by

Utotal =
∑

i

qi

2


2VX,i + VS,i +

∑
j �=i

(VI,ij + VC,ij)


 + UB,i, (8.5)

where the indices i and j range over all the ions. The potential terms in
Eq. (8.5) are described in section 6.1 and section 8.1.4. The factors of 1/2 in
the middle three terms arise from the integration of charge during build up.
Using a modified version of the steepest descent algorithm (see [58]), the
total energy of a multiply-occupied channel given in Eq. (8.5) is successively
minimized until the forces on the free ions vanish.

8.3 Results

8.3.1 Dipoles and Energy Profiles

As an ion approaches the boundary between an aqueous solution and the
protein wall, it experiences an electrostatic repulsion due to induced charges
at the boundary. In computing the potential energy of an ion as it moves
along the central axis, we assume initially that the dielectric constant ε in
the reservoirs and the pore is 60. The energy of transition from bulk water,
estimated from the Born energy, is incorporated as a potential barrier at the
channel entrance as explained in the section 8.1.4.

In the absence of any charge moieties on the protein wall, an ion at-
tempting to traverse the channel encounters a significant energy barrier.
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Figure 8.2: Electrostatic energy profile of a potassium ion traversing the channel. (A)
The potential energy of an ion along the central axis. The profile a is the potential
energy seen by the ion, in the absence of any charge moieties on the channel wall, profile
b is obtained with 4 sets of 4 carbonyl groups (filled circles in the inset), profile c is
obtained with 4 helix macrodipoles (open circles in the inset), and profile d is obtained
with the carbonyl groups, helix dipoles and 2 rings of mouth dipoles (filled diamonds in
the inset). (B) Potential profiles seen by individual ions while the other is fixed at the
equilibrium position (indicated by arrows). The applied field corresponds to a potential
difference of about 150 mV between the channel entrances. The first ion is placed at the
equilibrium position z = 10 Å and the profile seen by the second ion is computed (solid
line). The second ion is now placed at z = 19.75 Å and the profile seen by the first ion
is computed. (C) The potential profile encountered by a third ion, as it moves from left
to right. At each fixed position of the third ion, the stable configuration of the first two
ions is determined iteratively and then the total energy of the assembly is computed. The
strengths of each carbonyl group, mouth dipole and helix dipole are, respectively, 7.2, 30
and 96.3 ×10−30 Cm.



142 CHAPTER 8. MULTI-ION CHANNEL

The potential energy at a fixed position of an ion is computed numerically
and the calculation is repeated at 1 Å intervals. The profile presented to
the ion as it moves from inside (left) to outside (right) increases slowly at
first and then rises steeply in the narrow selectivity filter, reaching a peak of
20 kT, as shown in Fig. 8.2 A (curve labeled a). Four rings of dipoles, with 4
carbonyl groups in each ring, placed along the selectivity filter, transform a
section of the barrier into a well (b) as do 4 helix dipoles placed just below
the selectivity filter (c). As it will be shown later, two sets of additional
mouth dipoles are needed to render the channel permeable to ions. When
all three sets of dipoles – 16 carbonyl groups, 4 helix macrodipoles and 8
mouth dipoles – are placed along the channel wall, the profile an ion en-
counters while traversing the central axis of the channel is a deep potential
well (d).

The potential well created by the dipoles, reaching a depth of nearly
30 kT, attracts cations. An ion, upon entering the channel, will proceed
towards the bottom of this well. A second ion entering the channel sees a
different profile, altered by the presence of the first ion. The well in Fig. 8.2 A
(d) is deep enough to hold two ions in a stable configuration. Through an
iterative energy minimization procedure, one can determine the equilibrium
positions of the pair of ions in the well. The potential profile seen by either
ion while the other is fixed at the equilibrium position, in the presence of
an applied field of 1.5× 107 V/m, is shown in Fig. 8.2 B. At these positions
(indicated by arrows), the z-component of the force experienced by the ions
is zero. The two-ion potential profiles exhibit relatively deep wells that may
attract a third ion. In Fig. 8.2 C we show the potential profile seen by a third
ion moving into the channel from the left. Here the potential is calculated
at a given position of the third ion after finding the equilibrium positions of
the first two ions. There is a shallow well near the entrance of the channel,
produced by the ring of mouth dipoles. Once in the well, the third ion will
be delayed until random Brownian motion allows it to escape. We note here
that the potential minimum is along the central channel axis, so that ions
are preferentially funneled along it. The repulsive force from the induced
surface charges swings into action whenever an ion strays from the central
axis, pushing it back to the axis. The corresponding electric potential profile
along the radial axis is similar in appearance to a harmonic well, except that
it rises much more sharply near the boundary (see Ref. [33]).

From these electrostatic calculations, we deduce that the channel is nor-
mally occupied by two cations. Conduction is unlikely to take place unless
these ions are resident in the pore to reduce the energy well created by the
charge moieties.
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8.3.2 Dependence of Conductance on Dipole Strengths

For the channel to conduct ions, there is a narrow range of moments various
dipole groups must possess. Using BD simulations, we have determined
how the magnitude of currents flowing across the channel varies with dipole
strengths and the effective dielectric constant in the channel lumen.

As shown in Fig. 8.3 A, the conductance increases rapidly as the moment
of each carbonyl group is increased from 0 to 7.2 × 10−30 Cm. The current
begins to decline when the moment is further increased to 14.4× 10−30 Cm.
The three curves illustrated in Fig. 8.3 A are obtained by letting the effective
dielectric constant of the pore be 80 (top curve), 70 (middle curve) and 50
(bottom curve). The charge placed on the terminals of each helix dipole and
the strength of each mouth dipole are kept constant at 0.6 × 10−19 C and
30 × 10−30 Cm, respectively. In this and subsequent figures, unless stated
otherwise, each point is the average of five simulations, each simulation pe-
riod lasting for 100 ns. The error bar accompanying a data point is one
standard error of means and is not shown if it is smaller than the size of the
data point. Again, unless noted otherwise, 13 potassium and 13 chloride ions
are placed in the left-hand reservoir (representing the intracellular space),
whose volume is adjusted so as to give the ionic concentration of 300 mM,
and the same number of ions is placed in the right-hand side reservoir (rep-
resenting the extracellular space). The applied electric field between the
two ends of the reservoirs produces a potential difference of about 150 mV,
inside positive with respect to outside. The peak current is always obtained
when the strength of the carbonyl groups is fixed at 7.2 × 10−30 Cm (2.16
Debye), irrespective of the assumed dielectric constant. In Fig. 8.3 B, the
variation of currents with the dipole moment is determined at 3 different
applied potentials, 150 mV, 200 mV and 250 mV, while keeping ε = 60
throughout. Again the current peaks at about the same dipole strength.

The results of simulations showing the variation of current with the
strengths of mouth dipoles (A) and helix dipoles (B) are illustrated in
Fig. 8.4. The dipole moment of each carbonyl group in the selectivity filter is
kept at 7.2× 10−30 Cm throughout. The current flowing across the channel
is largest when the charge on each of the four helix dipoles is 0.6× 10−19 C.
Similarly, the current is maximum when the strength of each of the mouth
dipoles is 30 × 10−30 Cm. Fig. 8.4 reveals, as does the previous figure, that
the dielectric constant of the channel has pronounced effect on the perme-
ability of the channel. With optimum pore helix and mouth dipole strengths,
ε = 60 gives the physiological conductance of approximately 40 pS, as found
experimentally [67]. The channel conductance is progressively suppressed
when the dielectric constant in the pore is lowered and no conduction takes
place, with the driving force of 150 mV, when ε ≤ 40.

Here and in all subsequent series of simulations, we assume that the
channel possesses the strengths of various dipole groups that enables the
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Figure 8.3: Changes in channel conductance with the strength of carbonyl groups. Sim-
ulations under various conditions, each lasting 100 ns, are repeated 5 times. The height
of each reservoir is adjusted to give an ionic concentration of 300 mM, and inside is made
150 mV positive with respect to outside. The current (in pA) is determined from the total
number of ions traversing the channel over the simulation period of 0.5 µs. (A) Keeping
the moments of each helix dipole and mouth dipole constant at 96.3 and 30 ×10−30 Cm,
the strength of each carbonyl group is systematically changed. The current (in pA) is
plotted against dipole strength for three values of the dielectric constant, ε = 50, 70 and
80. (B) The current is plotted against the strength of carbonyl groups for three values of
applied potential, 150 mV, 200 mV and 250 mV, while keeping ε constant at 60.
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Figure 8.4: Changes in channel conductance with the strength of mouth dipoles (A)
and helix dipoles (B). (A) The strength of each mouth dipole is changed systematically
while keeping the moments of each carbonyl group and helix dipole constant at 7.2 and
96.3 ×10−30 Cm. The current is plotted against the strength of mouth dipoles for three
different values of dielectric constant, ε = 60, 70 and 80. (B) The charge placed on each
helix dipole is changed systematically while keeping the moments of each carbonyl group
and mouth dipole constant at 7.2 and 30 ×10−30 Cm. The current (in pA) is plotted
against dipole strength for three values of the dielectric constant, ε = 50, 60 and 70.
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maximum number of ions to be translocated across the channel for a given
driving force, that is, the dipole strengths for each of 8 mouth dipoles,
16 carbonyl groups and 4 helix dipoles are, respectively, 30, 7.2 and 96.3
×10−30 Cm.

8.3.3 Effects of Dielectric Constant and Diffusion Coefficient
on Currents

From the results given in the previous section, it is clear that, for the channel
to conduct, the effective dielectric constant ε in the pore must be high. In
other words, water molecules resident in the pore must not be tightly bound
to the protein but be able to rotate relatively freely so as to reduce the
interaction energy between the ions and the charges located on the channel
wall. In Fig. 8.5, we examine further the influence of ε on the magnitude
of current flowing across the channel. The depth of the energy well created
by dipoles increases as ε is lowered. An example of the energy well created
by four mouth dipoles located near the channel entrance, when there are
two ions resident in the selectivity filter (c.f., Fig. 8.2 C), is illustrated in
Fig. 8.5 A. Here, ε is assumed to be 30 and a potential of 300 mV is applied
across the channel. An ion attempting to cross this well encounters a barrier
VB, the height of which decreases monotonically with increasing ε, as shown
in Fig. 8.5 B. Increasing the applied potential from 150 mV to 300 mV
reduces the barrier height by about 1.5 kT. A steep increase in the barrier
height as ε is lowered suggests that the channel will not conduct ions if ε in
the pore is less than 40. The inference drawn from electrostatic calculations
is in accord with the results obtained from BD simulations. The current
across the channel under the driving force of 150 mV, 200 mV, 250 mV and
300 mV is plotted against ε in Fig. 8.5 C. These four curves broadly mirror
the way the barrier height increases with ε. The current ceases to flow when
the barrier height reaches 7 kT.

The diffusion coefficient of potassium ions DK in bulk electrolyte solu-
tions is 1.96 ×10−9 m2/s. This value is reduced when an ion is diffusing
through a narrow tube [64, 17, 47, 68, 5]. The magnitude of the diffusion
coefficient of an ionic species depends, among others, on the radius of the
cylinder and the composition of the wall. A molecular dynamics simulation
of the KcsA channel [6] shows that DK in the wider segment, including the
oval chamber, in nearly the same as that in bulk solutions, whereas that in
the selectivity filter is on average 1/3 of the bulk value. The following series
of simulations are carried out to assess how much the channel conductance
is suppressed by a low DK in the narrow filter.

When ions enter the channel segment extending from z = 7.5 to z =
25 Å, their motions are determined by a DK that is lower than the bulk
value. Fig. 8.6 shows the current across the channel as a function of DK at
three different values of dielectric constants, ε = 60 (A) and ε = 50 and 70
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Figure 8.5: Effects of the effective dielectric constant on conductance. (A) A energy well
near the channel entrance created by four mouth dipoles is encountered by an ion given
that there are two resident ions in the selectivity filter. The energy minimization is carried
out with ε = 30 and an applied potential of 300 mV. An ion upon entering the well must
surmount a barrier of height VB to traverse the channel. (B) The height of the barrier
VB is plotted against the effective dielectric constant for two different values of applied
potential, 150 mV (filled circles) and 300 mV (open circles). (C) The inward currents
under the driving force of 300 mV (open circles), 250 mV (filled circles), 200 mV (open
circles) and 150 mV (filled circles) are plotted against the effective dielectric constant.
Each point is derived from a simulation period of either 1 µs (150, 200 and 250 mV) or
2 µs (300 mV).



148 CHAPTER 8. MULTI-ION CHANNEL

0

10

20

30

D K  ( 1.96 x 10 -9 )

0.00 0.25 0.50 0.75 1.00

C
ur

re
nt

  (
 p

A
, 3

00
 m

M
 )

0

10

20

30

40

 = 60

∋

 = 70

∋

 = 50

∋

A

B

Figure 8.6: Effects of the diffusion coefficient on conductance. The diffusion coefficient of
potassium ions in the selectivity filter, extending from z = 7.5 to 25 Å, is progressively
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(A) The outward (filled circles) and inward (open circles) current is plotted against diffu-
sion coefficient in the selectivity filter, with ε = 60 and an applied potential of 200 mV.
(B) The outward current is plotted against diffusion coefficient in the selectivity filter for
ε = 70 (upper curve) and 50 (lower curve). Each point in (A) and (B) is derived from a
simulation period of 1 µs.
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(B). The filled and open circles in (A) represent, respectively, the outward
and inward currents. The applied potential across the channel and the ionic
concentration in the reservoir are kept constant at 200 mV and 300 mM,
respectively. In contrast to bulk conductance, where current is proportional
to the diffusion coefficient, the current in the potassium channel depends
on DK in a non-linear fashion. It decreases with decreasing DK at a very
slow rate at first (until DK is reduced about 0.5 of its bulk value), and then
becomes more or less proportional to DK. When DK is reduced to 1/3 of
the bulk value, the current is only suppressed by about 30%.

8.3.4 Current-Voltage Relationships

The current-voltage relationships, shown in Fig. 8.7, are obtained with sym-
metrical solutions of 300 mM in both reservoirs. The diffusion coefficient in
the selectivity filter is assumed to be the same as that in bulk electrolytes.
Because the effective dielectric constant ε of the channel is unknown, we have
determined the current-voltage curves, assuming ε to be 60, 70 and 80. The
curves derived from these three conditions all reveal several distinct features.
First, at any given applied potential, the outward current is larger than the
inward current. Secondly, the magnitude of current across the channel at
any given driving force increases steadily with increasing dielectric constant.
The outward current at 100 mV is 6.7 ± 1.2, 11.8 ± 2.1 and 15.0 ± 1.0 pA
when ε is assumed to be 60, 70 and 80, respectively (Fig. 8.7 A, B, & C).
Because the current begins to saturate with increasing ionic concentrations
(see later), the conductance at 150 mM K+ will be slightly larger than 33, 59
and 75 pS at these three values of dielectric constants. Thirdly, the relation-
ship is approximately linear when the applied potential is less than 100 mV,
but it deviates systematically from Ohm’s law with a further increase in the
membrane potential. Given the results described in chapter 7 (see Fig. 7.8)
and the preceding section (see Fig. 8.5), it seems reasonable to assume that
this nonlinearity results from the presence of an energy barrier in the model
channel.

To provide the solid lines in Fig. 8.7 we use a modification of the Pöschl-
Teller function described in section 7.2.1:

I =
γV

1 + β/[exp(eV/VB1) + exp(−eV/VB2)]
, (8.6)

where γ is the limiting conductance at large V , β is a dimensionless param-
eter and VB1 and VB2 are the right and left barrier heights. This function
reduces to Ohm’s law at very small and very large voltages, with conduc-
tance γ/(1 + β/2) when the voltage is close to zero, and conductance γ
when the voltage is positive and much greater than VB1 or negative and
much smaller than VB2. The solid lines are intended only to help visualize
the conductance data, not to provide a physical interpretation, and for this
reason the fit parameters are not given.



150 CHAPTER 8. MULTI-ION CHANNEL

-200 100 200 mV

pA

20

10

-10

A

pA

mV

30

15

-15

100 200-200 mV

pAB

40

20

-20

-200 100 200

C

 = 60

∋

 = 80

∋

 = 70

∋

Figure 8.7: The current-voltage relationships. The current measured at various applied
potentials is obtained with symmetrical solutions of 300 mM in both reservoirs. The solid
lines fitted through data points are calculated from Eq. (8.6). The values of ε used for
(A), (B) and (C) are 60, 70 and 80, respectively.
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Figure 8.8: The current-voltage relationships. The current measured at various applied
potentials is obtained with asymmetric solutions for ε = 60 (A) and 70 (B). The con-
centration in the reservoir representing the intracellular space is 500 mM, whereas that
representing the extracellular space is 100 mM. The solid lines drawn through the data are
calculated with Eq. (8.6) multiplied by the Goldman factor, Eq. (8.7). For (C), obtained
with ε = 80, the measured concentrations in the intracellular and extracellular reservoirs
are 482.0 mM and 71.5 mM (open circles) and 385.3 mM and 176.2 mM (filled circles).
The open downward arrows indicate the reversal potential calculated from the Nernst
equation. The predicted Nernst potentials taking the activity coefficients into account are
indicated with filled downward arrows. The values of activity coefficients used for 71.5,
176.2, 386.3 and 482.0 mM are, respectively, 0.79, 0.73, 0.67 and 0.63.
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The current-voltage relationships obtained with asymmetrical ionic so-
lutions in the two reservoirs are shown in Fig. 8.8. The curves exhibited in
the figure are obtained by assuming that ε in the channel is, respectively,
60 (A) and 70 (B). The ionic concentrations inside and outside are 500 mM
and 100 mM. As expected, the asymmetry between the inward and outward
currents is accentuated. As with the symmetrical solutions, an increase
of ε from 60 to 70 causes an increase in the magnitude of currents flowing
across the channel. The zero current of the two current-voltage relationships
appears to be somewhere between −25 mV and −50 mV.

The solid lines fitted through the data points are obtained from Eq. (8.6)
multiplied by a factor of the form:[

5 − exp(−eV/kT )
1 − exp(−eV/kT )

]
. (8.7)

This factor comes from the Goldman-Hodgkin-Katz (GHK) equation which
is usually used to fit the current-voltage curves of ion channels (see chap-
ter 13 of Hille[31]). In the situation under discussion it is possible to express
the GHK equation in the form:

I = KV
1 − 5 exp(−eV/kT )
1 − exp(−eV/kT )

, (8.8)

where K is a constant and the factor of 5 arises from the outside to inside
ratio of concentrations [18]. The GHK equation is derived under assump-
tions of a constant electric field and independent ion motion, which certainly
do not apply to the model channel: as with the symmetric current-voltage
results, the solid lines are only intended to help visualize the data.

To ascertain how closely the measured reversal potentials match with
those predicted by the Nernst equation, we estimate currents flowing across
the channel with two different ionic concentrations in the reservoirs and
under various applied potentials. The concentrations of K+ in the extracel-
lular and intracellular aspects of the channel are computed from the average
number of ions in the reservoirs throughout the simulation periods. The
measured ionic concentrations in the left and right reservoirs in one series of
simulations are 71.5 and 482.0 mM and in another series of simulations are
176.2 and 385.3 mM. Figure 8.8 shows the currents flowing across the chan-
nel at various applied potentials. Because the net current for these driving
forces is small, the total simulation period of 3 µs is used to derive each data
point. For the same reason, we use ε = 80 for the effective dielectric constant
of the channel, which results in a larger current flow. The reversal potential
for each asymmetrical solutions is estimated by fitting a polynomial curve
through the data points (solid line in Fig. 8.8 C). There are small but consis-
tent discrepancies between the reversal potentials deduced from simulations
and those predicted from the Nernst equation (indicated with open down-
ward arrows). The zero currents occur at −45 mV and −17 mV when the
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concentration ratios in the two reservoirs are, respectively, 6.7:1 and 2.2:1.
The predicted reversal potentials are −48.1 mV and −19.7 mV. These dis-
crepancies between the predicted and measured zero currents disappear if
we take the activity coefficients of KCl at the measured ionic concentrations
into account [73], as indicated by the filled arrows in Fig. 8.8 C. From a
number of I-V curves obtained with asymmetrical solutions, we conclude
that the zero current occurs at a potential predicted by the Nernst equation
within the errors of simulations.

8.3.5 Ions in the channel

It is of interest to note where in the channel ions dwell predominantly. To
compute the average number of ions inside the channel, we divide the channel
into 32 thin sections and compute the time averages of potassium ions in
each section. When a potential of 200 mV is applied so as to produce an
outward current, two ions on average tend to reside in the channel. The
preferred positions where ions dwell are in the selectivity filter at z = 9.4,
14.1 and 23.4 Å, as shown in Fig. 8.9 A. We note here that, although the
histogram (Fig. 8.9 A) shows three distinct peaks near the selectivity filter,
there are on average 1.5 ions in this region, as can be deduced by summing
the heights of the bars. A similar sum for the peak near the intracellular
entrance gives 0.5 ions, that is, an ion is present there 50% of the time. The
preferential positions of the ions in the channel are shifted when the direction
of the current is reversed by making inside negative with respect to outside.
Under this condition, two ions mainly linger around z = 9.4 and 17.2 Å
(Fig. 8.9 B). Thus, the preferred locations of ions in the channel depend on,
among other factors, the direction and the strength of the applied field.

To better illustrate the behavior of ions under the influence of the electric
and stochastic forces, we bisect the channel and denote the number of ions
on the left and right hand sides by [nl, nr]. The occupation probabilities
of distinct states are tabulated in Table 8.1 for five different potentials. At
the bottom of the table, we give the average number of ions resident in the
channel, which is about 2 regardless of the applied potential.

When the applied potential is 100 mV, which is relevant for the operation
of the potassium channel, the most common occupation pattern is [0, 2].
That is, no ion is present in the first half (intracellular side) of the channel,
while 2 ions are present in the second half (extracellular side). In addition
to the patterns listed in Table 8.1, there are five other distinct patterns that
are observed during the total simulation period of 0.5 µs (or 5 million time
steps), but the frequencies of their occurrences are less than 1%. About
32,000 transitions occur between these patterns when the snapshot of the
channel configuration is taken once every pico-second. The most common
transitions are between [0, 2] and [0, 1], and between [1, 2] and [1, 1], which
corresponds to the following process: driven by thermal energies, one of the
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Figure 8.9: Concentrations of potassium ions in the channel. The channel is divided into
32 sections, as indicated in the inset, and the probability of ions present in each section
over a simulation period of 0.5 µs is tabulated (bars). The ionic concentration in the
reservoirs is 300 mM. The applied electric field in (A) is 2 × 107 V/m such that inside
(left-hand side) is about 200 mV positive with respect to outside (right-hand side). The
direction of the field is reversed to obtain the distribution shown in (B).
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Table 8.1: Occupation probabilities of multi-ion states [nl, nr] and the average number of
ions in the channel 〈nl + nr〉 for different applied potentials.

[nl, nr] -200 mv -100 mV 100 mV 200 mV 300 mV

[0, 1] 3.5 3.4 12.1 15.2 17.2
[1, 1] 6.6 3.3 19.2 36.6 41.9
[0, 2] 78.9 78.2 49.2 30.3 25.3
[1, 2] 6.8 12.5 18.4 17.2 14.8
[0, 3] 3.8 2.4 - - -

Total % 99.6 99.8 98.9 99.3 99.2

〈nl + nr〉 2.07 2.11 2.06 2.02 1.98

two ions in the second half of the channel escapes and then re-enters. The
forward and backward transitions between these two sets account 64% of
the total transitions. Less frequent transitions, occurring about 20% of all
transitions, are between [0, 2] and [1, 2]. Finally, transitions between [0, 1]
and [1, 1] account for 6% of the total transitions, while the forward transition
between [1, 1] to [0, 2] accounts only for 0.3% of the total transitions.

8.3.6 Conductance-Concentration Relationships

If the transport of ions across the channel is determined by two independent
processes, one of which depends on ionic concentration in the reservoir and
one of which does not, then we expect that the current I will first increase
with an increasing ionic concentration [c] and then saturate, leading to a
current-concentration relationship of the Michaelis-Menten form:

I =
Imax

1 + Ks/[c]
, (8.9)

so that the current approaches the saturation current Imax when [c] � Ks.
The magnitude of current across the channel plotted against the concen-

trations of potassium ions in the reservoirs, shown in Fig. 8.10, has the same
shape as those observed experimentally [19, 59]. The two curves in (A) and
(B) are the outward (filled circles) and inward (open circles) currents deter-
mined by assuming ε = 60 (A) and ε = 70 (B). The applied potentials used
for (A) and (B) are, respectively, 200 mV and 150 mV. The conductance
increases rapidly with an increasing ionic concentration at first and then sat-
urates with a further increase in concentrations. The values of Imax and Ks
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Figure 8.10: The conductance-concentration curves. The outward (filled circles) and
inward (open circles) are obtained with symmetric solutions of varying concentrations in
the two reservoirs. An applied potential of 200 mV and ε = 60 are used for (A), while a
potential of 150 mV and ε = 70 are used for (B). The lines fitted through data points are
calculated with Eq. (8.9).
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used to fit the data points are: for A, 41± 1 pA and 151± 11 mM (outward
currents), 24.2±0.8 pA and 127±11 mM; for B, 36±1 pA and 169±15 mM
(outward currents) and 20.6±0.5 pA and 77±9 mM. The concentrations for
half-maximal currents Ks we derive are slightly higher than the experimen-
tally determined value for a potassium channel from sarcoplasmic reticulum
by Coronado et al. [19].

8.4 Discussion

The fixed charges in the model, as adjusted to give maximum conductance,
are somewhat smaller than expected. The helix dipoles have charges of
0.6 × 10−19 C (giving a dipole moment of 96 × 10−19 Cm over a length of
16 Å), compared to a value of 0.8 × 10−19 C (or 12 × 10−19 Cm per 1.5 Å)
calculated from the structure of an alpha helix [32]. The mouth dipoles also
have charges of 0.6 × 10−19 C, where 1.6 × 10−19 C (one elementary charge)
might be expected. However, it is possible that in a ring of negative charges
like this some of the side chains would become protonated and lose their
negative charge [3]. If only two of the side chains were charged this would
be consistent with four mouth dipole charges of 0.8× 10−19 C, although two
charges of 1.6 × 10−19 C would be a better representation. The carbonyl
dipole charges of 0.6 × 10−19 C are as expected for a carbonyl group [11],
but considering the crudeness of the filter model and the doubts about the
electrostatic calculations in this region, this must be considered fortuitous.

The adjusted dielectric constant of 60 for the water in the channel is not
in agreement with molecular dynamics studies. The dielectric constant must
be at least 60 for the model channel’s conductance to agree with experiment.
When the dielectric constant is reduced to 40 the model channel effectively
ceases to conduct, at least for realistic voltages. Molecular dynamics studies
of water in spherical cavities [74] and narrow pores [66] suggest that the
dielectric constant in confined spaces is substantially reduced compared to
the bulk value.

Given the high dielectric constant the conductance characteristics of the
model channel are reasonable, but they have not been compared in detail to
the characteristics of real KcsA channels, as the comprehensive electrophys-
iological data required to do so is not yet available. The overall conductance
of the model channel of around 33 pS (at 150 mM potassium and for ε = 60)
is in reasonable agreement with the experimental single channel conductance
of around 40 pS (at 200 mM potassium) for the most common conductance
state [67]. The model channel’s conductance saturates in a manner similar
to real potassium channels, showing the expected Michaelis-Menten form.
The partial rectification shown by the model channel for symmetric solu-
tions is interesting, as it is probably a multi-ion effect, but it is difficult to
compare with results from real channels. Most potassium channels rectify,
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but they do so by gating or ionic block, meaning that usually only one half
of the current-voltage curve is available.

The x-ray crystallography done on the KcsA channel [21] shows three
preferred ion positions: two in the selectivity filter and one in the central
cavity. As described below, the model channel seems to have stable states
in which the ions preferentially occupy particular positions depending on
the applied voltage and the number of ions in the channel. If so this is
consistent with the presence of sharply defined ion positions. The model
channel contains an average of around two ions, but this is not in itself
inconsistent with a channel with three ion positions, since the positions
need not be occupied all the time. Nor is it inconsistent with ionic flux
coupling results which suggest more than two ions in a conducting potassium
channel [31], since the model channel may be more likely to conduct when it
contains three ions, and almost certainly does not conduct when it contains
one. Averages need to be interpreted with care; the real story is in the
distribution and this is where a discrepancy shows up. In the model channel
ions are concentrated in three areas, the selectivity filter, the cytoplasmic
mouth, and the extracellular mouth, but never in the central cavity. This is
a clear difference between the model channel and experimental results.

The likely causes of this discrepancy and the requirement for a high di-
electric constant are inaccuracies in estimation of the electrostatic forces and
problems with charge positions in the model channel. It is possible that the
whole concept of modelling this channel with diffusion and electrostatics is
wrong, and binding sites and hopping really are essential to its operation.
This seems to us unlikely, however, since the model channel does show many
similarities with the real channel, and multi-ion channels in general. Also
the main problem, the lack of ion concentration in the central cavity, is in
a region expected to be controlled by electrostatics and diffusion. Possible
improvements to the electrostatics techniques are described in section 3.1.4,
and these may be needed to provide an accurate description of the channel.
Surprisingly the crude selectivity filter model works reasonably well, concen-
trating ions but allowing conductance by mutual destabilization. However,
it may be that the small dipoles in the filter (which have some ability to
move in the real channel) need to be represented in part by a locally in-
creased dielectric constant rather than fixed charges. This could lead to a
reduction of their long range effect in the central cavity without removing
their ability to concentrate ions in the selectivity filter. Another possibility
is that the arbitrarily placed counter charges in the mouth dipoles are too
close to the negative charges surrounding the mouths of the channel. This
could result in artificially sharp energy wells, leading to the barrier near the
cytoplasmic mouth which seems to cause of the need for a large dielectric
constant. A good start towards a better model channel would be to generate
the shape and charge positions directly from the molecular structure, rather
than in the rather ad-hoc way described above. This would also have the
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advantage of reducing the number of adjustable parameters.
It seems we have constructed a working model of a multi-ion channel,

albeit with an unrealistically high dielectric constant, but not a functional
replica of the KcsA channel. After optimization of dipole strengths and the
dielectric constant the model channel has a conductance comparable with
the KcsA channel and other potassium channels. The concentration profiles
(Fig. 8.9) and occupation probabilities (Table 8.1) show that the channel
is usually occupied by two ions, and almost always by at least one, and
this suggests that the channel contains at least two ions while conducting,
since a single ion traversing the channel would leave it unoccupied when it
exited. The current through the model channel saturates with increasing
concentration (Fig. 8.10), as is characteristic of multi-ion channels. The
channel also shows partial rectification with symmetrical solutions (Fig. 8.7),
and it seems likely that this is an effect of the interactions between multiple
ions within the channel.

So the model channel is multi-ion, and it shows conductance character-
istics similar to real multi-ion channels. Its operation cannot, however, be
explained in terms of hopping between binding sites as is usual for multi-ion
channels. The model channel contains no binding sites, only a broad energy
well (Fig 8.2 A), and all transport is by simulated diffusion. If an expla-
nation of its conductance is desired, a different mechanism must be found.
The existence of such a mechanism is useful because, if understood, it might
lead to an alternative theory to RRT for conductance in multi-ion channels.
Although RRT is the best available theory for summarizing experimental
conductance data from a channel, and provides intuitive explanations for
aspects of the the conductance of multi-ion channels that other theories
cannot, the physical basis for its application to channels is doubtful (see
section 2.1).

The concentration profile for an outward electric field (Fig. 8.9 A) shows
that ions spend most of their time in particular regions of the model chan-
nel. Ions are concentrated in the selectivity filter and the cytoplasmic and
extracellular mouth regions: they are rarely found in the inner pore or cen-
tral cavity. Since ions must travel through the inner pore for the channel to
conduct (which it does), the low concentration in this region suggests that
the ions move through rapidly, and that transitions are relatively infrequent
compared to the time spent in the channel mouths and selectivity filter.
The concentration of ions in particular locations in the model channel (as
evidenced by peaks in the concentration profiles) is consistent with the idea
of binding sites. However, the single ion energy profile (Fig. 8.2 A, curve d)
is smooth, showing only a broad energy well centred on the selectivity filter,
and a very shallow well near the cytoplasmic mouth. There is no sign of the
sharp localized wells that would indicate binding sites. This is not surprising
given the method used to calculate the electrostatic potential (macroscopic
electrostatics). The real channel may or may not contain ion binding sites,
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but the concentration profiles are for the model channel and so the peaks in
them cannot be explained in this way. A likely explanation is that the broad
energy well attracts more that one ion to the channel, these ions change the
energy profile experienced by each other (as they must), and that the in-
teractions between the ions and the channel create temporary energy wells
which confine the ions and cause the peaks. In other words the ions self-
organize into particular positions in the channel depending on the number
of ions present and the strength and direction of the applied field.

The multi-ion energy profiles (Figs. 8.2 and 8.5) support this interpreta-
tion. In Fig. 8.2 B energy profiles are calculated while another ion is fixed
in the selectivity filter. The energy wells are sharper then that of the single
ion profile (Fig. 8.2 A, curve d), and are consistent with two ions residing
in particular locations at either end of the selectivity filter, and producing
two separate peaks in the concentration profile. In Fig 8.2 C the energy
profile is calculated for an ion entering the channel from the cytoplasmic
end with two other ions already in the selectivity filter. These two ions have
their positions altered to minimize energy as the first ion is moved into the
channel (see section 8.2.1). The energy profile shows a well near the cyto-
plasmic mouth and a barrier centred on the inner pore. This is consistent
with the peak in the concentration profile (Fig 8.9 A) just inside the cyto-
plasmic mouth, and the low concentrations in the inner pore. The height of
the barrier in the multi-ion profile depends on the dielectric constant used
for the simulation (Fig. 8.5 B): as the dielectric constant is increased, the
inner pore and central cavity become more effective at hydrating the ion (as
simulated by macroscopic electrostatics), and the barrier is reduced. This
in turn increases the conductance of the channel (Fig. 8.5 C). Considering
a single ion at at time does not provide such a direct explanation: as the
dielectric constant increases, so does the depth of the well in the single ion
profile, but it is not clear why this should cause the conductance of the
channel to increase. The multi-ion energy profiles, based on the assumption
of multiple ions self-organizing in the model channel, provide an explana-
tion for the peaks in the concentration profiles, as well as the increase of
conductance with increasing dielectric constant.

If the ions in the model channel self-organize into stable states, then
transition between these states is probably by rapid diffusion, as indicated
by the low concentration of ions in the inner pore. This suggests an over-
all picture of relatively stable states with rapid transitions between states.
This is similar to RRT but with different physical causes. The occupation
probabilities summarized in table 8.1 are a preliminary attempt to recog-
nize possible states. Since the division between right and left halves of the
channel is in the rarely occupied inner pore, an ion in the left half is prob-
ably in the well near the cytoplasmic mouth, while ions in the right half
are probably in the selectivity filter or extracellular mouth. Unfortunately,
while the occupation probabilities give some idea of possible states, they do
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not give clear information about transitions between states. Some examples
of transition probabilities are given in the text (section 8.3.5), but most
of the transitions consist of ions briefly entering the mouth regions of the
channel and immediately leaving. The problem is that the occupation prob-
abilities do not represent identified stable states, but simply the very rough
positions of the ions: each occupation pattern may represent zero or more
stable states as well as various transient events. If there are stable states,
then the patterns containing them will dominate the probabilities. Thus the
distribution of probabilities in the table is some evidence that stable states
exist in the model channel. Transitions between stable states are relatively
rare, however, and cannot easily be picked out of the occupation probabil-
ity data. Clearly a more sophisticated method of state identification and
analysis is needed.

If ions in the model channel self-organize to form stable states this implies
that the preferred positions of ions may change depending on the number of
ions in the channel and the strength and direction of the electric field. There
is evidence of this happening in the concentration profiles (Fig. 8.9) and the
occupation probabilities (Table 8.1). The concentration profile for +200mV
(Fig. 8.9 A) shows a peak near the cytoplasmic mouth and one main peak in
the centre of the selectivity filter, with subsidiary peaks on either side in the
extracellular mouth and at the cytoplasmic end of the filter. In contrast the
concentration profile for -200 mV (Fig. 8.9 B) shows two strong peaks in the
selectivity filter, with not many ions elsewhere. This seems to correspond
to the dominant [0, 2] pattern for occupancy under these conditions, which
has about 80% probability. It is possible that this concentration profile
represents a stable state which gives rise to the prominence of the [0, 2]
pattern. The occupancy patterns for +200 mV have a more even spread of
probabilities, indicating that the concentration profile may be an amalgam
of several states. The patterns [1, 1] and [1, 2] make up over 50% of the
probability, which could explain the peak near the cytoplasmic mouth. All
four dominant patterns have ions in the right half of the channel: these ions
may be in different places and this could explain the confusion of peaks in
and near the selectivity filter.

In summary, this attempt to model the KcsA channel by Brownian dy-
namics simulation can only be regarded as a mixed success. The lack of ion
concentration in the central cavity is a major deviation from experimental
results, and the requirement for a large dielectric constant is probably wrong.
However, the model channel has many similarities to the real channel. It has
comparable conductance, and current through it saturates as in a real potas-
sium channel. It also has sharp concentrations of ions in the selectivity filter
similar to those in the KcsA channel. The values of the fixed charges, fitted
to maximize conductance, are quite reasonable. These similarities suggest
that the basic approach is sound, but that the model channel needs to be
improved and made closer to the experimental structure, and that methods
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of estimating the electrostatic forces need to be improved. Nevertheless, the
effort has established that a model based on diffusion and electrostatics can
produce a working multi-ion channel. In addition the way that the model
channel seems to conduct by states and transitions may provide insight into
conductance in multi-ion channels in general, and the reasons for the success
of RRT in channels despite its dubious physical assumptions.
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Conclusion

The major technical challenge of this project was the production of fast, flex-
ible, and accurate solutions to Poisson’s equation. The iterative method is
flexible but slow: it produces solutions for a wide variety of channel shapes,
but can not produce these solutions quickly enough to allow useful BD sim-
ulations. The analytical method is faster and more accurate, but is limited
to a toroidal channel boundary, and is still not quick enough for a BD sim-
ulation to predict conductance. The lookup table method gives access to
the flexible solutions of the iterative method with sufficient speed to allow
long BD simulations capable of predicting conductance. Although the ana-
lytical method might seem to be rendered obsolete, it is still very useful for
checking the iterative and lookup table methods. The ability to compare
solutions of Poisson’s equation arrived at by completely different methods
gives us a high level of confidence in the correct operation of our programs.

When used in Brownian dynamics simulations, these techniques for rapidly
solving Poisson’s equation produce quantitative predictions from model chan-
nels. The results from a single ion channel show that a narrow pore through
a low dielectric medium presents a large energy barrier to permeating ions.
Dipoles in the channel wall are needed to overcome this barrier, which is not
removed by the presence of counter-ions free to diffuse. The results for a
multi-ion channel show reasonable agreement with the conductance charac-
teristics of real channels. They also suggest that multiple ions form states in
the channel, with permeation occurring by transition between these states.
Although complicated and computer intensive, our theory of conductance
in ion channels is based on physical principles, and makes quantitative pre-
dictions from channel structure. In addition, the predictions made from
an experimentally based channel model are at least similar to the expected
values.

Despite this progress, there are many improvements that could be made
to the theory, and much more work that should be done. An obvious need
is for detailed comparison with experimental conductance results, to rigor-
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ously test the theory. One difficulty here is finding good conductance data
and structural data for the same channel. Now that the structure of the
KcsA channel has been determined, this channel will likely become the sub-
ject of many experimental studies, so this is one good prospect. Another
approach is structural modelling, attempting to match the experimental
characteristics of a channel by guessing the structure. This requires a good
understanding of how changes to the structure of the model affect its con-
ductance, an understanding that we do not yet have. It also tends to rely on
the accuracy of predictions from the theory, rather than verifying these pre-
dictions. Nevertheless, attempts at structural modelling may draw attention
to weaknesses in our theory and techniques, and start to produce an intuitive
understanding of the link between channel structure and conductance.

Improvements could be made to the iterative and lookup table meth-
ods, and the Brownian dynamics techniques. A new iterative algorithm
based on a three dimensional grid would be desirable, as it would be able
to accommodate changes in dielectric constant throughout the simulation
in a self-consistent way. Some difficulties would be dealing with a smoothly
curving dielectric boundary, and providing enough accuracy in the critical
neck region of the channel. The lookup table algorithms need to be revised,
to avoid the interpolation errors that can occur at the mouth of the chan-
nel, to improve the accuracy of interpolation for the 2d table, and perhaps
to reduce the size of the tables to the extent that the algorithm is efficient
on a RISC architecture machine. While the basic BD algorithm is a good
one, able to cope with timesteps of any length, the algorithms describing
the boundaries of the simulation are somewhat arbitrary. Better stochastic
boundaries would allow the electro-chemical potentials of the reservoirs to
be set, rather than estimated. Note that in Fig 8.8 the concentrations in
the reservoirs have to measured from the simulations in order to correctly
predict the reversal potential. The reflective boundaries and ion exclusion al-
gorithms (section 5.3.2) are also undesirable. This problem could be solved
by an adaptive timestep algorithm that varied the timestep from long to
short depending on the proximity of ions to each other or the boundary.
Such an algorithm would allow the reflective boundaries to be replaced by
short range forces.

However, one of the ideas produced by the current algorithms shows
great promise for future research, perhaps of more significance than mak-
ing incremental improvements the existing theory. The observation that
the model potassium channel may exhibit states and transition probabilities
raises the prospect of providing reaction rate theory with a physical basis in
channels, perhaps resulting in a simple theory of channel conductance with
better explanatory power than a complex simulation. The first step would
be to confirm the link between RRT and the potassium channel model, by
doing an RRT analysis of the model’s conductance, and comparing this to
an improved state analysis of the movement of ions in the model channel.
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Turning such a link into a useful theory would be harder, as diffusion over
a barrier is theoretically much more complicated than hopping over a bar-
rier. In kinetic hopping, energy is conserved, so the probability of crossing
depends only on the barrier’s height. Diffusion, however, is a dispersive
process, and the shape and width of the barrier affect the probability of
crossing. Nevertheless, this avenue should be pursued.
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