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Abstract

This thesis describes a project in which algorithms are developed for the
rapid and accurate solution of Poisson’s equation in the presence of a dielec-
tric boundary and multiple point charges. These algorithms are then used to
perform Brownian dynamics simulations on realistic models of biological ion
channels. An iterative method of solution, in which the dielectric boundary
is tiled with variable sized surface charge sectors, provides the flexibility to
deal with arbitrarily shaped boundaries, but is too slow to perform Brow-
nian dynamics. An analytical solution is derived, which is faster and more
accurate, but only works for a toroidal boundary. Finally, a method is de-
veloped of pre-calculating solutions to Poisson’s equation and storing them
in tables. The solution for a particular configuration of ions in the channel
can then be assembled by interpolation from the tables and application of
the principle of superposition. This algorithm combines the flexibility of the
iterative method with greater speed even than the analytical method, and
is fast enough that channel conductance can be predicted. The results of
simulations for a model single-ion channel, based on the acetylcholine recep-
tor channel, show that the narrow pore through the low dielectric strength
medium of the protein creates an energy barrier which restricts the perme-
ation of ions. They further show that this barrier can be removed by dipoles
in the neck of the channel, but that the barrier is not removed by shielding
by counter-ions. The results of simulations for a model multi-ion channel,
based on a bacterial potassium channel, show that the model channel has
conductance characteristics similar to those of real potassium channels. Ions
appear to move through the model multi-ion channel via rapid transitions
between a series of semi-stable states. This observation suggests a possible
physical basis for the reaction rate theory of channel conductance, and opens
up an avenue for future research.



vi

List of Publications

Hoyles, M., S. Kuyucak, and S.-H. Chung. 1996. Energy barrier presented
to ions by the vestibule of the biological membrane channel. Biophys.
J. 70:1628-1642.

Kuyucak, S., M. Hoyles, and S.-H. Chung. 1998. Analytical solutions of
Poisson’s equation for realistic geometrical shapes of membrane ion
channels. Biophys. J. 74:22-36.

Li, S. C., M. Hoyles, S. Kuyucak and S.-H. Chung. 1998. Brownian dy-
namics study of ion transport in the vestibule of membrane channels.
Biophys. J. 74:37-47.

Hoyles, M., S. Kuyucak, and S.-H. Chung. 1998a. Computer simulation of
ion conductance in membrane channels. Phys. Rev. E. 58:3654-3661.

Hoyles, M., S. Kuyucak, and S.-H. Chung. 1998b. Solutions of Pois-
son’s equation in channel-like geometries. Computer Phys. Commun.
115:45-68.

Chung, S.-H., M. Hoyles, T. W. Allen, and S. Kuyucak. 1998. Study
of ionic currents across a model membrane channel using Brownian

dynamics. Biophys. J. 75:793-809.
Chung, S.-H., T. W. Allen, M. Hoyles, and S. Kuyucak. 1999. Permeation

of ions across the potassium channel: Brownian dynamics studies.
Biophys. J. 77:2517-2533.

Allen, T. W., M. Hoyles and S. Kuyucak, and S.-H. Chung. 1999. Molec-
ular and Brownian dynamics study of ion selectivity and conductivity
in the potassium channel. Chem. Phys. Lett. 313:358-365.



Contents

1 Ion Channels
1.1 The Role of Ion Channels . . . . ... ... ... .......
1.2 Jon Channel Function . . . . ... ... ... ... ......
1.3 Ion Channel Structure . . . . . ... ... ... ... .....

2 Conductance Theories
2.1 Reaction Rate Theory . . .. .. ... ... ... ... ....
2.2 Molecular Dynamics . . . . . .. .. ... .. L.
2.3 Ab Initio Molecular Dynamics . . . . . . . ... ... ... ..
2.4 Poisson-Nernst-Planck Theory . . . . .. .. .. .. ... ...
2.5 Brownian Dynamics . . . . ... ... ... ... ... ....

3 Iterative Method
3.1 Macroscopic Theory of Electrostatics . . . . . .. .. ... ..
3.1.1 Poisson’s Equation . . . .. ... ... ... ...
312 BornEnergy . .. .. ... 0.
3.1.3 Induced Surface Charge . . ... ... ... ......
3.1.4 Limitations of Macroscopic Electrostatics . . . . . . .
3.2 Outline Generation . . . . . . . ... ... ... .. ......
3.3 Tiling the Boundary . .. ... ... ... ... ........
3.3.1 Sector Spacing . . . ... ... L.
3.3.2 Ring Generation . . . .. .. .. ... ...
3.3.3 Sector Generation . . .. .. .. ... L.
3.4 Tterative Algorithm . . . . . .. . ... ... ... ... ... .
3.4.1 Basic Algorithm . . ... ... ... ... ... ...,
3.4.2 Convergence . . . . . ... e
3.4.3 Pre-Calculation of Interactions . . . .. .. ... ...
3.5 Curvature Compensation . . .. ... ... ..........
3.6 Testing and Performance . . . . . .. ... ... ... .....

4 Analytical Method
4.1 Analytical Solution . . . . . .. ... ... L
4.1.1 Toroidal Coordinates . . . . . .. .. ... ... ....

vii

10

15
16
20
22
23
27

31
32
32
35
36
37
40
43
47
48
o1
51
o1
93
53
54
58



viii

4.2

4.3

CONTENTS

4.1.2 Solutions of Laplace’s and Poisson’s Equations

4.1.3 Solution of the Difference Equation . . . . . . .. . ..
4.1.4 Application of External Electric Field . . .. ... ..
4.1.5 Calculation of Force and Potential Energy . . . . . . .
Algorithm . . . . . . . ...
4.2.1 Legendre Functions. . . . . . ... ... ... .....
4.2.2 Boundary . . ... ... ...
4.2.3 Charges . . . . . . ..o
4.24 Potentials . . . . . ...
4.2.5 Conversion of Derivatives . . . . . ... .. ... ...
4.2.6 Charges Inside the Boundary . . ... ... ... ...
Testing . . . . . . .

5 Brownian Dynamics

5.1 Model . . . . . . e
5.1.1 Shape of the Channel . . . ... .. ... .......
5.1.2 Water as a Continuum . . . . . ... ... ... ....
5.1.3 Smooth Water-Protein Interface . . .. .. ... ...
514 Dipole Rings . . . .. .. .. ... ... ...
5.1.5 Applied Electric Field . . . . ... ... ... ... ..

5.2 Theory . . . . . . .
5.2.1 Langevin Equation . . . . . . ... ... ... .....

5.3 Methods . . . . . . . . ..o
53.1 Algorithm . . . . ... ... .. ... .
5.3.2 Reflective Boundaries . . . ... .. ... .......
5.3.3 Physical Parameters . . . . .. . .. ... ... ...
5.3.4 Testing . . . . . . ..o

5.4 Results. . . . . . . . . .. e
5.4.1 Repulsive Dielectric Force . . . . . . . ... ... ...
5.4.2 Dipoles in the Transmembrane Segment . . . . . . . .
5.4.3 Permeation of Ion Through the Channel . . . . . . ..
5.4.4 Trajectory of lons . . . ... ... ... ... .....

5.5 Discussion . . . .. .. Lo Lo

6 Lookup Table Method

6.1 Components of the Potential . . . .. ... ... .......

6.2 Generalized Coordinates . . . . . . . . ... ... ... ....

6.3 Lookup Algorithm . . . ... .. ... ... ... ... ...

6.4 Testing . . . . . . . .

6.5 Performance. . . .. ... ... oo

66
69
71
72
72
73
74
75
76
77
77
77

83
83
83
84
84
85
85
86
86
88
88
89
89
90
93
93
96
96
99
99



CONTENTS ix

7 Single-Ion Channel 113
7.1 Model . . . .. L 113
7.1.1 Shape of the Channel . . . .. ... ... ....... 113
7.1.2 Dipoles in the Protein Wall . . . . .. ... ... ... 113
7.1.3 Energy Barrier in the Transmembrane Segment . . . . 115
7.1.4 Applied Electric Field . . . . ... ... ... ..... 115
7.2 Theory . . . . . . . o 116
7.2.1 Poschl-Teller Function . . . . .. .. ... .. ..... 116
7.2.2 Michaelis-Menten Equation . . . . .. ... ... ... 116
7.3 Methods . . . . . . . . . ... 117
7.3.1 Stochastic Boundaries . . . . ... ... ... ..... 117
7.3.2 Short Timestep Algorithm . . . . . .. ... ... ... 117
7.3.3 Procedure for Calculating Conductance . . . .. ... 119
74 Results. . . . . .. . . . e 119
7.4.1 Dipoles in the Channel . . . . . . . .. ... ... ... 119
7.4.2 lonic Concentrations in the Channel . . . . .. .. .. 121
7.4.3 Current-Voltage Relationships . . . . ... ... ... 125
7.4.4 Conductance-Concentration Curve . . . . .. .. ... 129
7.5 Discussion . . . . . . .. e 131
8 Multi-Ion Channel 133
81 Model . . . . . 135
8.1.1 Shape of the Channel . . . ... ... ... ...... 136
8.1.2 Dipoles . .. . ... 137
8.1.3 Brownian Dynamics . . . .. .. ... ... ...... 138
8.1.4 Dielectric Constant . . . . . . .. .. .. ... ... .. 139
8.2 Methods . . . . . . . . .. 140
8.2.1 Energy Profiles . . . . . . .. ... ... 140
83 Results. . . . . . . . . . 140
8.3.1 Dipoles and Energy Profiles . . . . . . ... ... ... 140
8.3.2 Dependence of Conductance on Dipole Strengths . . . 143
8.3.3 Effects of Dielectric Constant and Diffusion Coeffi-
cient on Currents . . . . . . . .. ... L. 146
8.3.4 Current-Voltage Relationships . . . . ... ... ... 149
8.3.5 Ions in the channel . . . . . . .. .. .. ... ... .. 153
8.3.6 Conductance-Concentration Relationships . . . . . . . 155
84 Discussion . . . . .. ... 157
9 Conclusion 163

Bibliography 167



CONTENTS



List of Figures

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3

5.1

5.2
5.3
5.4
5.5
5.6
5.7

6.1
6.2
6.3

7.1
7.2
7.3
7.4
7.5

7.6

7.7

Channel outlines . . . . . ... ... ... ... .. 41
Catenary and bicone parameters . . . . . ... ... .. ... 44
Torus and cylinder parameters . . . .. .. .. .. ... ... 45
Effect of changing channel parameters . . . . . .. ... ... 46
Sector spacing for a catenary channel . . . . . . ... ... .. 50
Centreline potential energy profiles . . . . . . . .. ... ... 59
Offset potential energy and force profiles . . . . . . . ... .. 60
Toroidal coordinate system . . . . . .. .. .. ... ... .. 64
Accuracy of the analytical method . . . . . . ... ... ... 79
Accuracy of the iterative method . . . . . . . ... ... ... 80

Test of the Brownian dynamics algorithm: mean-square dis-

placements . . . . . ... .. 91
Test of the Brownian dynamics algorithm: velocity functions 92
Ejection of ions from the vestibule . . . ... ... ... ... 94
Repulsive dielectric force and applied electric field . . . . . . 95
Cancellation of repulsive force by dipoles . . . . . . . ... .. 97
Permeation of sodium ions across the channel . . . . . . . .. 98
The path ofions . . . . . . . .. ... . 100
Testing of the lookup table method: parallel trajectory . . . . 108

Testing of the lookup table method: radial trajectory, z =0 . 109
Testing of the lookup table method: radial trajectory, z =30 110

Idealized biological ion channel . . . .. ... ... ...... 114
Changes in the potential profile with dipole strength . . . . . 120
Channel conductance as a function of dipole strength . . . . . 122
Concentrations of sodium and chloride ions in the channel . . 123
Concentrations of sodium and chloride ions in the channel in

the presence of a membrane potential £ . . . . . .. ... .. 124
Concentrations of sodium and chloride ions in the channel in

the presence of two dipolerings . . . . . . ... ... ... .. 126
Concentrations of sodium and chloride ions in the presence of

dipoles and an applied electric field . . . . . .. ... ... .. 127

xi



xii

7.8

7.9

8.1
8.2

8.3

8.4

8.5
8.6
8.7
8.8
8.9

LIST OF FIGURES

Current-voltage relationships obtained with symmetrical so-

lutions . . . . . . L 128
Conductance-concentration curve . . . . . . . . ... .. ... 130
Idealized potassium channel . . . . . . ... .. ... ... .. 136
Electrostatic energy profile of a potassium ion traversing the

channel . . . ... ... ... 141
Changes in channel conductance with the strength of carbonyl

BIOUPS - v v o v e e e e e e e e e e e e e e 144
Changes in channel conductance with the strength of mouth

dipoles and helix dipoles . . . . . . . ... ... ... ... .. 145
Effects of the effective dielectric constant on conductance . . 147
Effects of the diffusion coefficient on conductance . . . . . . . 148
The current-voltage relationships: symmetrical solutions . . . 150
The current-voltage relationships: asymmetric solutions . . . 151
Concentrations of potassium ions in the channel . . . . . . . . 154

8.10 The conductance-concentration curves . . . . . . . . . .. .. 156



