Mechanisms of the Intriguing Rearrangements of Activated Organic Species

A Thesis Submitted for the Degree

of

Doctor of Philosophy

of

The Australian National University

by

David Grant Harman

Department of Chemistry Faculty of Science Canberra

April 2003

ii

Declaration

This thesis is an original work. None of the work has been previously submitted by me for the purpose of obtaining a degree or diploma in any university or other tertiary education institution. To the best of my knowledge, this thesis does not contain material previously published by another person, except where due reference is made in the text. To those who tell me the truth in love, particularly when I do not want to hear it.

Acknowledgements

Many people, too numerous to mention individually, assisted in the production of this thesis. Corporately I wish to thank them and to express my deep and sincere gratitude. I would briefly like to mention those to whom I am particularly indebted and I apologise to anyone whom I have inadvertently omitted.

Professor Athel Beckwith was my supervisor while I was working in the laboratories of the Research School of Chemistry. Athel and his wife Kaye made me feel welcome in Canberra. I'm grateful to have worked on such challenging projects and to have had such expert guidance. Athel's love for chemistry, his vast knowledge, his view of the bigger picture and the humility to admit when he didn't know something have been the source of much inspiration.

My RSC advisers were Professor Lew Mander, Professor Rod Rickards and Dr John MacLeod. I would like to thank them and other academic, technical and administrative staff for valuable advice and assistance. Mr Robert Longmore deserves a particular mention for his laboratory prowess, his willingness to share his expertise and his friendship. So does Mrs Joan Smith—RSC Librarian Extraordinaire—for her helpfulness, patience, encouragement and continual grace when loans were overdue.

Dr Steven Brumby helped me record the esr spectra. My brother, Mr Ian Harman, helped me with the computer program used to determine the rotational barriers in β -substituted ethyl radicals. Ms Peta Simmonds, Mrs Tin Culnane and Mr Chris Blake of the ANU NMR Centre helped me with two-dimensional and ¹⁷O nmr. Drs Graham Heath, Richard Webster and Brett Yeomans assisted me with the recording and interpretation of cyclic voltammagrams.

I thank the Australian Government for a Commonwealth Postgraduate Research Award, known later as the Australian Postgraduate Research Award. I'm grateful to have received an Australian National University PhD Scholarship for six months upon the expiration of my APRA.

I'm one of the lucky few who have worked in both the Research School of Chemistry and the Department of Chemistry. Professor Jack Elix has been my supervisor during my time in the Department. I'd like to thank him for taking on a student from a field quite different to his own, for his efforts in correcting thesis drafts and for his gentle advice. Drs Christina Chai and Geoff Salem, my current advisers, I thank for their assistance. My passage into the Department was facilitated by past Heads Professor Jack Elix and Dr Gad Fischer. Thanks also to the current Head, Dr Geoff Salem, for his support. Mr Warren Griffiths provided tireless assistance with computer problems.

And last, but by no means the least, I'd like to acknowledge the unending support my parents Kay and Grant have given me in realms moral, spiritual and financial and for some proof reading.

Abstract

The β -acyloxyalkyl radical rearrangement has been known since 1967 but its mechanism is still not fully understood, despite considerable investigation. Since the migration of a β -trifluoroacetoxy group generally proceeds more rapidly and with more varied regiochemistry than its less electronegative counterparts, this reaction was studied in the hope of understanding more about the subtleties of the mechanism of the β acyloxyalkyl radical rearrangement. The mechanism of the catalysed rearrangement of *N*alkoxy-2(1*H*)-pyridinethiones was also explored because preliminary studies indicated that the transition state (TS) for this process was isoelectronic with TSs postulated for the β -acyloxyalkyl radical and other novel rearrangements.

A kinetic study of the rearrangement of the 2-methyl-2-trifluoroacetoxy-1-heptyl radical in solvents of different polarity was undertaken using a radical clock method. Arrhenius equations for the rearrangement in each solvent were: hexane, $\log_{10}[k_r (s^{-1})] = 11.8\pm0.3 - (48.9\pm0.7)/\theta$; benzene, $\log_{10}[k_r (s^{-1})] = 12.0\pm0.2 - (43.7\pm0.8)/\theta$; and propionitrile, $\log_{10}[k_r (s^{-1})] = 11.9\pm0.2 - (42.0\pm0.3)/\theta$. Rate constants at 75°C were: hexane, $k_r = 2.9 \times 10^4$; benzene, $k_r = 2.8 \times 10^5$; and propionitrile, $k_r = 4.0 \times 10^5 \text{ s}^{-1}$. The equilibrium constant for the reversible rearrangement at 80°C in benzene was 15.1 < K < 52.9.

A regiochemical study with oxygen-labelled radicals revealed that trifluoroacetoxy group migration occurs with 66-83% label transposition (3,2 shift). The proportion of 3,2 shift is decreased by polar solvent, high temperature and low concentration of the reducing agent. Results of labelling experiments were consistent with cooperative 1,2 and 3,2 shifts, the former having *E*a 9.5 kJmol⁻¹ higher than the latter in benzene solution.

An esr study of nine β -oxygenated radicals revealed that the temperaturedependent equilibrium conformation is controlled by a balance between steric and stereoelectronic effects. The influence of the latter is increased by electron-attracting β substituents. Barriers to C_{α} - C_{β} rotation in β -oxyethyl radicals are approximately the same as for the propyl radical. Consequently, there is no significant through-space interaction between the β -substituent and the unpaired electron.

Experimental results were consistent with a mechanism involving a combination of polarized 1,2 and 3,2 concerted shifts. The results may also be rationalised by the intermediacy of a contact ion pair, as well as combinations of the three options.

The rearrangement of *N*-alkoxy-2(1*H*)-pyridinethiones is catalysed by oxidants, Lewis acids and protic acids. Pseudo first order kinetics are observed and there are moderate solvent effects. The migration of a 1,1-dideuteroallyl group occurs almost exclusively in a 1,4 sense. Migration of an enantiomerically enriched 1-phenylethyl group proceeds with predominant retention of configuration in chloroform, but with virtual racemisation in acetonitrile. Migrating groups do not become diffusively free during the rearrangement. Substituents which stablise positive charge at C1 migrate more rapidly. The bulk of evidence indicates that a catalyst activates the pyridinethione for rearrangement by promoting aromatisation. Mass-spectrometric analysis of an isolated intermediate and kinetic results are consistent with an intermolecular mechanism.

Abbreviations and symbols

А	adenine
Α	Arrhenius frequency factor
abs.	absolute
Ac	acetyl
ACS	American Chemical Society
AIBN	azobis(isobutyronitrile)
AM1	Austin Model 1
AM1-SM2	Solvation Model 2 based on the Austin Model 1
amu	atomic mass units
ANU	Australian National University
Ar	aryl
ASTM	American Society for Testing and Materials
B3LYP	Becke three parameter hybrid function, using the Lee-Yang-Parr
	correction
bp	boiling point
BP1	GC stationary phase consisting of dimethylpolysiloxane
BP5	GC stationary phase consisting of 5% phenyl / 95%
	dimethylpolysiloxane
BP10	GC stationary phase consisting of 14% cyanopropylphenyl / 86%
	dimethyl polysiloxane
BP20	GC stationary phase consisting of polyethylene glycol
BSTFA	bis(trimethylsilyl)trifluoroacetamide
Bu	<i>n</i> -butyl
cal	calorie
calc.	calculated
CIDNP	chemically induced dynamic nuclear polarisation
CIMS	chemical ionisation mass spectrometry
CIP	contact ion pair
conc.	concentrated or concentration
COSY	correlated nmr spectroscopy
СТ	charge transfer
Δ	heat applied
DMAP	dimethylaminopyridine
DME	1,2-dimethoxyethane
DMF	dimethylformamide
DMPO	5,5-dimethyl-1-pyrroline <i>N</i> -oxide

DMSO	dimethylsulfoxide
DNA	deoxyribonucleic acid
ε	dielectric constant
Ea	Arrhenius activation energy
e.e	enantiomer(ic) excess
EI	electron impact
EIMS	electron impact mass spectrum/spectrometry
eq.	equivalent(s) or equation
esr	electron spin resonance spectroscopy
Et	ethyl
E_{T}	Dimroth-Reichardt parameter for the ionising power of a solvent
Fc	ferrocenium
F _r	fraction of retention of configuration upon rearrangement
FTIR or ftir	fourier transform infrared spectroscopy
G3(MP2)	Gaussian 3 theoretical calculations applied to a geometry determined
	by second order Moller-Plesset pertubation theory
GC	gas chromatography
GCMS	gas chromatography / mass spectrometry
HETCOR	heteronuclear correlated nmr spectroscopy
hfs	hyperfine splitting
HP1	GC stationary phase consisting of dimethylpolysiloxane
HPLC	high performance liquid chromatography
HRMS	high resolution mass spectrometry
I.D.	inner diameter
INDO	molecular orbital theory incorporating the intermediate neglect of
	differential overlap
ir	infrared spectroscopy
IUPAC	International Union of Pure and Applied Chemistry
J	symbol for nmr coupling constant
Κ	equilibrium constant
k	rate constant
KIE	kinetic isotope effect
lit.	literature value
LR HETCOR	long-range (2 and 3 bond) ¹³ C- ¹ H shift-correlated heteronuclear nmr
<i>m</i> -CPBA	<i>m</i> -chloroperbenzoic acid
m/z	mass to charge ratio
Me	methyl
min(s)	minute(s)

molecular orbital
melting point
mass spectrometry
methanesulfonyl
molecular weight
not detected
<i>n</i> -propyl
not resolved
nucleophile
<i>N</i> -bromoacetamide
<i>N</i> -bromosuccinimide
<i>N</i> -methylacetamide
nuclear magnetic resonance spectroscopy
perfluorokerosene
perfluoromethylcyclohexane
phenyl
third parametrisation of the Modified Neglect of Diatomic Differential
Overlap
parts per million
<i>n</i> -propyl
pyridinethione
Hammett parameter measuring the susceptibility of the reaction to
electronic effects
gas constant
alkyl radical or substituted alkyl radical
round-bottomed flask
proportion of original concentration of label remaining in the oxygen
of the same hybridisation in the product ester
chromatographic retardation factor
standard deviation
Hammett parameter describing the degree to which a para electron-
donating group interacts with a developing positive charge in the
transition state
sarcophagine
Scientific Glass Engineering (company)
singly occupied molecular orbital
solvent-separated ion pair

STO-3G	basis set consisting of Slater-type orbitals approximated by three
	primitive Gaussian functions
SVF	standard volumetric flask
Т	temperature
t	time
<i>t</i> -Bu	<i>tert</i> -butyl
TBAF	tetrabutylammonium fluoride
TBDMS	t-butyldimethylsilyl
TBTH	tributyltin hydride
TCD	thermal conductivity detector
TFAA	trifluoroacetic anhydride
tfc	3-(trifluoromethylhydroxymethylene)camphorato
TFE	trifluoroethanol
THF	tetrahydrofuran
TLC	thin layer chromatography
TMS	trimethylsilyl or tetramethylsilane
Tol	<i>p</i> -tolyl
Tos	<i>p</i> -toluenesulfonyl
triflic	trifluoromethanesulfonic
TS	transition state/structure
TTMSS	tris(trimethylsilyl)silane
U	uracil
UV	ultraviolet
Val	valine
vis	visible
VLC	vacuum liquid chromatography
w.r.t.	with respect to
WCOT	wall-coated open-tubular
[X]	concentration of substance X

Chapter	Words
1	5263
2	15546
3	17761
4	15263
5	26896
6	6091
7	3272
Total	90092

Word Count

Contents

Declaratio	n	iii
Dedicatio	1	iv
Acknowled	Acknowledgements Abstract	
Abstract		
Abbreviatio	ons and symbols	ix
Word Cou	nt	xiii
		Xiii
	Chapter 1: Introduction	1
1.1	Aims of this thesis	2
1.2	A review of the mechanism of the β -acyloxyalkyl radical rearrangement	2
1.3	The β -trifluoroacetoxyalkyl radical rearrangement	14
1.4	Other isomerisations which may share the same mechanism: The rearrangement of N -alkoxy-2(1 H)-pyridinethiones	16
1.5	References	19
	Chapter 2: Kinetics of the eta –trifluoroacetoxyalkyl radical rearrangement	23
2.1	Introduction	24
2.2	A review of β -acyloxyalkyl radical rearrangement kinetics	24
2.3	The search for a suitable system for study	31
	2.3.1 2-Trifluoroacetoxy-1-hexyl radical	31
	2.3.2 Reaction of β -bromoester 2.50 with Bu ₃ SnH	32
	2.3.5 A faster rearrangement 2.3.4 Reaction of <i>B</i> -bromoester 2.59 with Bu-SnH	34
	2.5.1 Reaction of p brombester 2.57 with Dugshift	34
2.4	Determination of the equilibrium constant	34
	2.4.1 Theory	35

	2.4.2 Preparation of β -bromoester 2.66	36
	2.4.3 Reaction of β -bromoester 2.66 with Bu ₃ SnH	37
2.5	Kinetics experiments	38
	2.5.1 The kinetic scheme and analytical method	38
	2.5.2 Conducting the kinetic experiments and product analysis	41
	2.5.3 Management of analytical complexities	43
	2.5.4 Kinetics results	46
2.6	Discussion of results	53
2.7	Conclusions	57
2.8	Experimental	58
2.9	References	72

Chapter 3: A labelled-oxygen study of the regiochemistry of the β -trifluoroacetoxyalkyl radical rearrangement

3.1	Introduction	75
3.2	Literature review	75
3.3	Choice of a suitable system for study	79
3.4	An attempt to observe the 1,2 shift of a hydroxy group in a β -hydroxyalkyl radical	80
3.5	A study of the regiochemistry of the rearrangement of	
	3.32 \rightarrow 3.33 using ¹⁸ O-labelling techniques	81
	3.5.1 Preparation of an ¹⁸ O-labelled radical precursor	81
	3.5.2 Determination of ¹⁸ O enrichment in bromohydrin	
	3.30a	83
	3.5.3 Determination of ¹⁸ O enrichment of labelled β -	
	bromoester 3.31a	84
	3.5.4 Determination of the distribution of 18 O label in the ether	
	and carbonyl oxygens of the product esters 3.34 and	85
	3.35	

74

	3.5.5 Results	90
	3.5.6 Validation of the analytical method	91
	3.5.7 Experiments with a 92 % ¹⁸ O-enriched β -bromoester	93
3.6	Study of the regiochemistry of the rearrangement	of
	$3.32 \rightarrow 3.33$ using ¹⁷ O nmr	95
	3.6.1 Preparation and characterisation of 17 O-labelled bromohydrin 3 30 c and <i>B</i> bromoester 3 31 c	95
	2 C 2 D 1	
	3.6.2 Results	97
	3.6.3 Validation of the results	99
3.7	A crossover experiment	100
3.8	An attempt to trap an ion pair intermediate	105
3.9	Discussion of results with regard to mechanism	108
3.10	Conclusions	116
3.11	Experimental	118
3.12	References	131

	Chapter 4: An esr study of	100
	p-oxygenated alkyl radicals	133
4.1	Introduction	134
4.2	Estimation of the time-averaged dihedral angles	135
4.3	Recording of the esr spectra and extraction of g-values and	
	hyperfine splitting constants	138
4.4	Results	140
	4.4.1 Spectra of 2-(oxysubstituted)-1-hexyl radicals 4.1a-c	140
	4.4.2 Spectra of 3-(oxysubstituted)-2-butyl radicals 4.2a-c	142
	4.4.3 Spectra of 2-(oxysubstituted)ethyl radicals 4.3a-c	144
4.5	Calculations, analysis and discussion	146
	4.5.1 General	146

	4.5.2 2-(Oxysubstituted)hexyl radicals 4.1a-c	152
	4.5.3 3-(Oxysubstituted)-2-butyl radicals 4.2a-c	157
	4.5.4 2-(Oxysubstituted)ethyl radicals 4.3a-c	160
4.6	Estimation of the energy barrier to internal rotation about the $C_{\alpha} - C_{\beta}$ bond in the β -oxygenated ethyl radicals 4.3a-c	170
4.7	Final discussion	176
4.8	Conclusions	180
4.9	Experimental	181
4.10	References	187

	Chapter 5: The mechanism of the catalysed rearrangement of	
	<i>N</i> -alkoxy-2(1 <i>H</i>)-pyridinethiones	192
5.1	Introduction	193
5.2	Review of the chemistry of N-alkoxy-2(1H)-pyridinethiones	
	and related compounds	193
	5.2.1 Prevalence of <i>N</i> -alkoxy-2(1 <i>H</i>)-pyridinethione research	193
	5.2.2 Barton esters and related classes of compounds	194
	5.2.3 Radical chemistry of <i>N</i> -alkoxy-2(1 <i>H</i>)-pyridinethiones	195
	5.2.4 Related rearrangements	199
	5.2.5 Catalysed <i>N</i> -alkoxy-2(1 <i>H</i>)-pyridinethione rearrangement	202
	5.2.6 The chemistry of 4 and 6 electron 1,4 sigmatropic shifts	
	and 5-electron, 6-centre electrocyclic processes	204
5.3	The mechanism of the rearrangement of N -alkoxy-2(1 H)-	
	pyridinethiones	206
	5.3.1 The mode of catalysis	206
	5.3.1.1 Can the rearrangement of 2-alkoxypyridine N-	
	oxides be catalysed in the same manner?	211
	5.3.2 Kinetics	212
	5.3.3 A study of rearrangement regiochemistry	219
	5.3.4 A study of rearrangement stereochemistry	224

	5.3.4.1 Preparation of optically active reactants and	
	products	225
	5.3.4.2 Results	230
	5.3.4.3 Determination of the extent of solution-phase	
	racemisation of both the pyridinethione 5.1d	
	and the <i>N</i> -oxide 5.2d	232
	5.3.4.4 Discussion of results	233
	5.3.5 Electronic structure of the migrating group at C1 during	
	rearrangement	234
	5.3.6 Substituent effects	237
	5.3.7 Attempted detection and isolation of intermediates	239
	5.3.7.1 Addition of a radical scavenger	239
	5.3.7.2 Esr spectroscopy	240
	5.3.7.3 Cyclic voltammetry	241
	5.3.7.4 Isolation and attempted identification of	
	intermediates	244
5.4	Conclusions	247
5.5	Future work	249
5.6	Experimental	250
5.7	References	277

Chapter 6: General discussion and conclusions 284

6.1	Introduction	285			
6.2	The β -trifluoroacetoxyalkyl radical rearrangement	285			
	6.2.1 What is known about the rearrangement of the 2-methyl-				
	2-trifluoroacetoxy-1-heptyl radical?	285			
	6.2.2 Migrating group electronic effects	287			
	6.2.3 Relationship between rearrangement regiochemistry and				
	kinetics	288			
	6.2.4 Is the regiochemistry controlled by the conformation of				
	the ester group?	289			
	6.2.5 Predicted dynamics for a radical ion pair intermediate	291			

	6.2.6 The mechanism of the rearrangement of β -	
	trifluoroacetoxyalkyl radicals	295
6.3	Related radical-mediated rearrangements and β -eliminations	297
6.4	The mechanism of the rearrangement of N -alkoxy-2(1 H)- pyridinethiones	301
6.5	Final remarks	301
6.6	References	303

	Chapter 7: General experimental	306
7.1	Melting points	307
7.2	Elemental analyses	307
7.3	Infrared spectroscopy	307
7.4	Optical rotations	307
7.5	Molecular ultraviolet and visible spectra	307
7.6	Bulb to bulb distillations	307
7.7	Liquid chromatography	307
	7.7.1 Flash chromatography	307
	7.7.2 Vacuum-liquid chromatography	307
	7.7.3 Analytical thin layer chromatography	308
	7.7.4 Preparative scale thin layer chromatography	308
	7.7.5 Radial chromatography	308
7.8	Gas chromatography	308
	7.8.1 Analytical gas chromatography	308
	7.8.2 Chiral analytical gas chromatography	309
	7.8.3 Preparative scale gas chromatography	309
7.9	Mass spectrometry	309
	7.9.1 EIMS	309
	7.9.2 HRMS	309

	7.9.3 CIMS	310
	7.9.4 GCMS	310
	7.9.5 FAB	310
	7.9.6 Electrospray	310
7.10	Electron spin resonance spectroscopy	310
7.11	Nuclear magnetic resonance spectroscopy	310
	7.11.1 ¹ H nmr	310
	7.11.2 ² H nmr	311
	7.11.3 ¹³ C nmr	311
	7.11.4 ¹⁷ O nmr	311
	7.11.5 ¹⁹ F nmr	312
	7.11.6 2-Dimensional nmr	312
7.12	Cyclic voltammetry	312
7.13	Purification of solvents for radical reactions	312
	7.13.1 Hexane	313
	7.13.2 Benzene	313
	7.13.3 Toluene	313
	7.13.4 <i>tert</i> -Butylbenzene	313
	7.13.5 Acetonitrile	313
	7.13.6 Propionitrile	313
	7.13.7 <i>N</i> -methylacetamide	314
	7.13.8 Perfluoromethylcyclohexane	314
7.14	Purification of solvents for other purposes	314
	7.14.1 Chloroform for pyridinethione rearrangements	314
	7.14.1 Acetonitrile for electrochemistry	314
7.15	Reagents for synthesis	314
7.16	Evaporation of solvents	314
7.17	Drying of extract solutions	315
7.18	Nomenclature	315
7.19	References	316

Appendix A:

ļ	A description of the analytical method used to obtain rearrangement rate constants and a derivation of the integrated rate expression	317
A.1	Analytical method	317
A.2	Derivation of the integrated rate expression	318
A.3	References	320

Appendix B: ¹⁷O nmr spectroscopy: Optimisation of acquisition parameters for accurate quantification of the ratio of ¹⁷O label in carbonyl and alkoxy oxygens of esters 322 B.1 Introduction 322 B.2 Overcoming transmitter breakthrough 324 B.3 Spectrometer parameters and method of acquisition 325 B.3.1 Spectrometer parameters 325 B.3.2 Method for obtaining spectra 326 B.4 ¹⁷O nmr spectra 328 **B.5** References 331

Appendix C:The assignment of the ¹³C and ¹H nmr chemical
shifts of the heterocyclic ring systems of
N-alkoxy-2(1H)-pyridinethiones and
2-(alkylsulfanyl)pyridine N-oxidesC.1 Introduction333C.2 Assignment of the chemical shifts of N-cyclohexylmethoxy-

2(1H)-pyridinethione

334

C.3	Assignment	of	the	chemical	shifts	of	2-	
	(cyclohexylmet)	hylsul	lfanyl)j	pyridine <i>N</i> -oxi	de			340
C.4	References							343

Appendix D: The preparation, purification, purity determination and storage of tributyltin hydride

D.1	Introduction	344
D.2	Preparation	345
D.3	Purification	346
D.4	Purity determination	347
D.5	Storage	348
D.6	References	349

344

I had learned that all the greatest and most important problems of life are fundamentally insoluble. They must be so, for they express the necessary polarity in every self-regulating system. They can never be solved, but only outgrown....What a fool I was! How I tried to force everything to go the way I thought it ought to!

C. G. Jung

Commentary on 'The Secret of the Golden Flower', Collected Works 13 (1938).