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Abstract

The β-acyloxyalkyl radical rearrangement has been known since 1967 but its

mechanism is still not fully understood, despite considerable investigation.  Since the

migration of a β-trifluoroacetoxy group generally proceeds more rapidly and with more

varied regiochemistry than its less electronegative counterparts, this reaction was studied

in the hope of understanding more about the subtleties of the mechanism of the β-

acyloxyalkyl radical rearrangement.  The mechanism of the catalysed rearrangement of N-

alkoxy-2(1H)-pyridinethiones was also explored because preliminary studies indicated

that the transition state (TS) for this process was isoelectronic with TSs postulated for the

β-acyloxyalkyl radical and other novel rearrangements.

A kinetic study of the rearrangement of the 2-methyl-2-trifluoroacetoxy-1-heptyl

radical in solvents of different polarity was undertaken using a radical clock method.

Arrhenius equations for the rearrangement in each solvent were: hexane, log10[kr (s
-1)] =

11.8±0.3 – (48.9±0.7)/θ; benzene, log10[kr (s
-1)] = 12.0±0.2 – (43.7±0.8)/θ; and

propionitrile, log10[kr (s
-1)] = 11.9±0.2 – (42.0±0.3)/θ.  Rate constants at 75˚C were:

hexane, kr = 2.9 × 104; benzene, kr = 2.8 × 105; and propionitrile, kr = 4.0 × 105 s-1.

The equilibrium constant for the reversible rearrangement at 80°C in benzene was 15.1 <

K < 52.9.

A regiochemical study with oxygen-labelled radicals revealed that trifluoroacetoxy

group migration occurs with 66-83% label transposition (3,2 shift).  The proportion of

3,2 shift is decreased by polar solvent, high temperature and low concentration of the

reducing agent.  Results of labelling experiments were consistent with cooperative 1,2

and 3,2 shifts, the former having Ea 9.5 kJmol-1 higher than the latter in benzene

solution.

An esr study of nine β-oxygenated radicals revealed that the temperature-

dependent equilibrium conformation is controlled by a balance between steric and

stereoelectronic effects.  The influence of the latter is increased by electron-attracting β-

substituents.  Barriers to Cα–Cβ rotation in β-oxyethyl radicals are approximately the
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same as for the propyl radical.  Consequently, there is no significant through-space

interaction between the β-substituent and the unpaired electron.

Experimental results were consistent with a mechanism involving a combination

of polarized 1,2 and 3,2 concerted shifts.  The results may also be rationalised by the

intermediacy of a contact ion pair, as well as combinations of the three options.

The rearrangement of N-alkoxy-2(1H)-pyridinethiones is catalysed by oxidants,

Lewis acids and protic acids.  Pseudo first order kinetics are observed and there are

moderate solvent effects.  The migration of a 1,1-dideuteroallyl group occurs almost

exclusively in a 1,4 sense.  Migration of an enantiomerically enriched 1-phenylethyl

group proceeds with predominant retention of configuration in chloroform, but with

virtual racemisation in acetonitrile.  Migrating groups do not become diffusively free

during the rearrangement.  Substituents which stablise positive charge at C1 migrate more

rapidly.  The bulk of evidence indicates that a catalyst activates the pyridinethione for

rearrangement by promoting aromatisation.  Mass-spectrometric analysis of an isolated

intermediate and kinetic results are consistent with an intermolecular mechanism.
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lit. literature value
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Me methyl

min(s) minute(s)



xi
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σp
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SGE Scientific Glass Engineering (company)

SOMO singly occupied molecular orbital

SSIP solvent-separated ion pair
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SVF standard volumetric flask

T temperature

t time

t-Bu tert-butyl
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TCD thermal conductivity detector
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