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Abstract

The β-acyloxyalkyl radical rearrangement has been known since 1967 but its

mechanism is still not fully understood, despite considerable investigation.  Since the

migration of a β-trifluoroacetoxy group generally proceeds more rapidly and with more

varied regiochemistry than its less electronegative counterparts, this reaction was studied

in the hope of understanding more about the subtleties of the mechanism of the β-

acyloxyalkyl radical rearrangement.  The mechanism of the catalysed rearrangement of N-

alkoxy-2(1H)-pyridinethiones was also explored because preliminary studies indicated

that the transition state (TS) for this process was isoelectronic with TSs postulated for the

β-acyloxyalkyl radical and other novel rearrangements.

A kinetic study of the rearrangement of the 2-methyl-2-trifluoroacetoxy-1-heptyl

radical in solvents of different polarity was undertaken using a radical clock method.

Arrhenius equations for the rearrangement in each solvent were: hexane, log10[kr (s
-1)] =

11.8±0.3 – (48.9±0.7)/θ; benzene, log10[kr (s
-1)] = 12.0±0.2 – (43.7±0.8)/θ; and

propionitrile, log10[kr (s
-1)] = 11.9±0.2 – (42.0±0.3)/θ.  Rate constants at 75˚C were:

hexane, kr = 2.9 × 104; benzene, kr = 2.8 × 105; and propionitrile, kr = 4.0 × 105 s-1.

The equilibrium constant for the reversible rearrangement at 80°C in benzene was 15.1 <

K < 52.9.

A regiochemical study with oxygen-labelled radicals revealed that trifluoroacetoxy

group migration occurs with 66-83% label transposition (3,2 shift).  The proportion of

3,2 shift is decreased by polar solvent, high temperature and low concentration of the

reducing agent.  Results of labelling experiments were consistent with cooperative 1,2

and 3,2 shifts, the former having Ea 9.5 kJmol-1 higher than the latter in benzene

solution.

An esr study of nine β-oxygenated radicals revealed that the temperature-

dependent equilibrium conformation is controlled by a balance between steric and

stereoelectronic effects.  The influence of the latter is increased by electron-attracting β-

substituents.  Barriers to Cα–Cβ rotation in β-oxyethyl radicals are approximately the

same as for the propyl radical.  Consequently, there is no significant through-space
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interaction between the β-substituent and the unpaired electron.

Experimental results were consistent with a mechanism involving a combination

of polarized 1,2 and 3,2 concerted shifts.  The results may also be rationalised by the

intermediacy of a contact ion pair, as well as combinations of the three options.

The rearrangement of N-alkoxy-2(1H)-pyridinethiones is catalysed by oxidants,

Lewis acids and protic acids.  Pseudo first order kinetics are observed and there are

moderate solvent effects.  The migration of a 1,1-dideuteroallyl group occurs almost

exclusively in a 1,4 sense.  Migration of an enantiomerically enriched 1-phenylethyl

group proceeds with predominant retention of configuration in chloroform, but with

virtual racemisation in acetonitrile.  Migrating groups do not become diffusively free

during the rearrangement.  Substituents which stablise positive charge at C1 migrate more

rapidly.  The bulk of evidence indicates that a catalyst activates the pyridinethione for

rearrangement by promoting aromatisation.  Mass-spectrometric analysis of an isolated

intermediate and kinetic results are consistent with an intermolecular mechanism.
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Chapter 1: Introduction     2

1.1 Aims of this research

The primary objective of this research was to elucidate the mechanism of the β-

acyloxyalkyl radical rearrangement.  Generally, a β-trifluoroacetoxyalkyl radical is

known to rearrange more quickly and display more interesting regiochemistry than a β-

acetoxyalkyl radical.  Chapter 2 contains a study of the solvent effects upon the kinetics

of the rearrangement of a β-trifluoroacetoxyalkyl radical.  An investigation into the

solvent effects upon the regiochemistry of the same rearrangement is the topic of chapter

3.  In an attempt to probe stereoelectronic effects, chapter 4 describes an electron spin

resonance study of the temperature dependence of radical conformations and the barriers

to internal rotation of alkyl radicals bearing three different, oxygenated β-substituents.

Chapter 5 comprises an enquiry into the mechanism of the catalysed

rearrangement of N-alkoxy-2(1H)-pyridinethiones.  Preliminary investigations indicated

that this type of rearrangement may proceed via a pericyclic transition structure,

isoelectronic with that postulated for the β-acyloxyalkyl radical rearrangement.

A discussion of the experimental results, an analysis of the conformation of the β-

ester group, an investigation into the plausibility of a short-lived intermediate and a

summary of the chemistry of related rearrangements and β-eliminations are presented in

chapter 6.  Implications for the mechanism of the β-trifluoroacetoxyalkyl radical

rearrangement, and more broadly for the β-acyloxyalkyl radical and related

rearrangements in general, are discussed.

1.2 A review of the mechanism of the β-acyloxyalkyl radical
rearrangement

Like many other intriguing chemical reactions, the β-acyloxyalkyl radical

rearrangement (scheme 1.1) was discovered by accident.1  Its mechanism has been of

particular interest to investigators because it appeared to have no intermolecular analogue,

unlike ordinary radical rearrangements.  Forty-seven research papers dealing directly with

the chemistry the β-acyloxyalkyl radical rearrangement have been published.1-47  These

articles include a 1997 review of the β-acyloxyalkyl radical isomerization and related

rearrangements and fragmentations,35 ab initio computational studies,14,32,34,45,47 a
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mechanistic commentary25 and an Organic Syntheses procedure for the stereospecific

preparation of a 2-deoxy sugar.20

OO

R

R2
R1

OO

R

R2
R1

R4
R3

R4
R3• •

Scheme 1.1.  The general form of the β-acyloxyalkyl radical rearrangement

In 1967 Surzur and Tiessier1 reported an unexpected migration of an acetoxy

group whilst studying the dibenzoyl peroxide initiated addition of ethyl cyanoacetate to

1,1-dimethylallyl acetate.  In addition to the expected product 1.1 (70%), there was 30%

of product in which a 1,2 acetoxy shift had occurred (1.2).  When the reaction was

repeated with cyclohexane in the place of ethyl cyanoacetate, the yield of the

corresponding rearrangement product was 95%.  This result indicated that the acetoxy

shift was in competition with a hydrogen abstraction reaction.  The C–H bonds in

cyclohexane are stronger than that for the abstractable hydrogen in ethyl cyanoacetate.

OAc OAc

EtO2C

CN
•

EtO2C H

CN
•

+

EtO2C

CN

•

OAc

OAc

EtO2C

CN

EtO2C

CN OAc

1.1

1.2

ECA

ECA
ECA = CNCH2CO2Et

Tanner and Law, unaware of Surzur's and Tiessier's results, reported the

rearrangement of the 2-acetoxy-2-methyl-1-propyl radical (1.3) to the 1-acetoxy-2-

methyl-1-propyl radical (1.4) two years later.2  They suggested that a bridged dioxolanyl

radical (1.5) was an intermediate.
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CH2

OAc
•

•

OAc OO

CH3

•

1.3 1.4 1.5

In 1973 Beckwith and Thomas presented four possible mechanistic pathways for

the rearrangement.7  Mechanism A consisted of the β-elimination and subsequent α-

readdition of an acyloxy radical.  Mechanisms B and C were concerted 1,2 and 3,2 shifts

respectively.  The transition structures shown and were analogous to those observed in

carbocation chemistry.  Structure D is a 1,3-dioxolan-2-yl radical intermediate formed by

attack of the unpaired electron upon the carbonyl oxygen.  D may then fragment to give

the rearranged radical.

R2
R1

R4
R3

•

R2
R1

R4
R3•

OO

R

R2
R1

R4
R3

•

R2
R1

R4
R3

•
RCO2

O

COR ‡ ‡

A B C D

OO

R

Option A was considered by Tanner and Law, but was dismissed after the

rearrangement of 1.3 conducted in the presence of isobutylene, resulted in the complete

recovery of the alkene.  Tanner and Law knew that acyloxy radicals decarboxylate

extremely rapidly (now known that k ≈ 109s-1 at room temperature48), certainly much

faster than the migration of the acetoxy group occurred.  The failure to trap acetoxy or

methyl radicals with isobutylene meant that such species were not dissociatively free.  It

was known at the time that acetoxy radicals may be trapped by addition to alkenes.49-51  

Instances of the elimination of an acyloxy radical from a β-acyloxyalkyl radical,

resulting in the formation of an alkene, are also known but are very rare.35  A recent

example comes from a study of the chemistry of 2-oxetanon-4-ylcarbinyl radicals.36

When the β-bromolactone 1.6 was irradiated in the presence of Bu3SnH/AIBN the

isomeric cyclohexenes 1.9 and 1.10 were formed, in the ratio 7.3:1.  The results
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indicated that ring expansion of the highly-strained radical 1.7 by the β-acyloxyalkyl

radical rearrangement was an unfavourable process in this case, presumably because of

stereoelectronic and ring strain effects.

O

O

•

Bu3Sn •

Ph

Br

O

O Ph

• O

O Ph

Ph

•

PhPh

+

Bu3SnH

– CO2

β-fragmentation

1.6 1.7

1.101.9 1.8

Evidence against the intermediacy of D was obtained by esr spectroscopy.4  When

t-butyl acetate (1.11) was exposed to hydroxyl radicals in the cavity of an esr

spectrometer, spectra corresponding to both 1.12 and 1.13 were detected, but no

spectrum of the dioxolanyl radical 1.15 was present.  However, when the dioxolanyl

radical 1.15 was generated by the reaction of the hydroxyl radical with 1.14, the

spectrum of 1.13 could not be detected.  Therefore the workers concluded that radical

1.15 could not be an intermediate in the reaction of 1.12.

OO

CH3

CH2

OO

CH3

OO

CH3

OO

CH3

OO

CH3

HO

HO •

•
•

•

•

1.11 1.12 1.13

1.14 1.15
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A rate constant of 7 × 102 s-1 for the β-scission of 1.15 to 1.13 at 72˚C was later

determined by Perkins and Roberts by esr.8  This created a problem.  Beckwith and

Thomas had measured a rate constant for the 1.12→1.13 rearrangement at 75˚C of k =

6.2 ×  103 s-1 using a product-ratio/competition-clock method.7  Experimental

uncertainties associated with each of the measurements meant that the two values might be

of a similar magnitude.  Rigorous exclusion of D finally came with the aid an elegant esr

experiment.12  The radical 1.16 rearranged exclusively to the radical 1.17 in the esr

cavity with k = 1.2 × 102 s-1 at 75˚C.  The 2-dioxolanyl radical 1.18 did not undergo C–

O scission to radical 1.17, but instead underwent a rapid opening of the cyclopropyl ring

to form 1.19 with k = 8.7 × 105 s-1 at the same temperature.  Thus, radical 1.18 could

not possibly be an intermediate for the 1.16→1.17 rearrangement.  Jung and Xu have

recently used the same mechanistic probe to rule out the intermediacy of the dioxolanyl

radical in the migration of acyloxy groups in pentose sugar radicals.43  The intermediacy

of 1,3-dioxolanyl radicals in β-acyloxyalkyl radical rearrangements has also been

excluded by ab initio MO calculations.14,34,47

OO OO OO OO//

1.16 1.17 1.18 1.19

• •

•

•

In an effort to discriminate between the remaining options B and C, Beckwith and

Thomas studied the β-acyloxyalkyl rearrangement of radicals which were specifically

labelled with 18O at one of the two ester oxygens.7  A benzene solution of the 18O-

carbonyl labelled β-bromobenzoate 1.20 was heated with tributyltin hydride and AIBN

to give isobutyl benzoate (1.21) with virtually all the label in the ether oxygen.  This

translocation of ester oxygens was also observed when the β-bromoacetate 1.22

(labelled specifically in the ether oxygen) was heated with Bu3SnH/AIBN.  Only
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mechanism C was consistent with these results.  The question of mechanism appeared to

be answered.

OO

Ph

OO

Ph

Bu3SnH/AIBN

OO

CH3

OO

CH3

Ph

Bu3SnH/AIBN

Ph

1.20 1.21

1.22 1.23

Br

Br

70˚C

70˚C

However, in 1986 Kocovsky and coworkers stumbled upon a stereospecific

migration of an acetoxy group while attempting to replace the bromine in a β-

bromoacetoxy steroid with a hydrogen atom using tributyltin hydride.15  Intrigued by this

unexpected reaction, they studied the rearrangement of an acetoxy group labelled with

18O at the ether oxygen.  When compound 1.24 was heated in benzene with tributyltin

hydride, the rearrangement product (1.25) was isolated and found to contain 77% of the

label in the ether oxygen of the acetoxy group using mass spectrometric methods.  This

result meant that C could not be the only mechanism of the β-acyloxyalkyl radical

rearrangement.  Beckwith and Duggan immediately checked Kocovsky's result by

studying the migration in the same steroid of a butanoyloxy group specifically labelled

with 18O in the carbonyl oxygen.19,21  Their results equated with 76% of the label

remaining in the carbonyl oxygen of the rearranged product, confirming that there must

be an alternative mechanism to C.  A rate constant for the migration of the butanoyloxy

group was obtained (k = 1.9 × 106 s-1 at 75˚C), which indicated that the rearrangement

was several orders of magnitude faster than other β-acyloxyalkyl radical rearrangements

whose rate constants were known (k = 102-104 s-1).
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AcO

C8H17

O O

CH3

AcO

O

O
H3C

77%

(23%)
1.24 1.25

Br

H

Bu3SnH/AIBN

Ingold and coworkers had discovered that the β-acyloxyalkyl radical

rearrangement was facilitated by the use of a polar solvent and by electronegative

substituents on the migrating group during their kinetic esr spectroscopy experiments.13

At 75˚C, the rate constant for the rearrangement of 1.12→1.13 in t-butylbenzene was

4.5 × 102 s-1, but in water k rose sharply to 2.1 × 104 s-1.  At the same temperature, the

migration of the trifluoroacetoxy group in the rearrangement of 1.26 to 1.27 proceeded

with k = 7.0 × 104 s-1 in the non-polar,52 halogenated solvent Freon 113.13  Since none

of the mechanisms A-D was consistent with the observed solvent and electronic effects, it

was proposed that charge-separation in canonical structures such as 1.28 played an

important role in the transition states of these rearrangements.12,13

CH2

OO

R

OO

R

•
•

1.12: R = CH3 1.13: R = CH3

1.26: R = CF3 1.27: R = CF3

OO

R

•+

–

1.28

The canonical structure represented by 1.28 later came to be interpreted by

Beckwith and Duggan as an intimate radical ion pair.21  This structure was used in

conjunction with mechanism C to explain Kocovsky's 18O-labelling results in the

rearrangement of the steroidal radical 1.24.21  They realised that the results were also

explicable by mechanism B operating in conjunction with C, but three-membered

transition structures such as B had no literature precedent.  Kocovsky and coworkers did

search for a 1,2 OH shift by treatment of a steroidal bromohydrin (from which 1.24 was
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prepared by acetylation) with tributyltin hydride/AIBN, but only observed the

replacement of the bromine atom with hydrogen.15  However 1,2 OH shifts were

reported to be observed in biological systems subject to the action of enzymes.53  In

addition, early ab initio MO calculations predicted that the 1,2 shift of a hydroxyl group

in a β-hydroxyalkyl radical is energetically feasible provided that the oxygen is

protonated.54  Gilbert and coworkers have observed the acid-catalysed interconversion of

β-hydroxyalkyl radicals in aqueous solution, but concluded that the mechanism involved

formation and subsequent solvent-hydration of an alkene radical cation.55

Beckwith and Duggan studied the rearrangement of the 3-

butanoyloxytetrahydropyran-2-yl radical (1.29),22 as a model for the a 1,2 acetoxy

group shifts Giese and coworkers had discovered in peracetylated hexose

radicals.17,18,20    Experiments with 17O- and 18O-labelled substrates indicated that the

rearrangement of 1.29→1.30 proceeded with 67% formal 1,2 shift.22   Since such a

large degree of formal 1,2 shift was no longer confined to the rearrangement of 1.24, it

was concluded that the three-membered transition structure B may possibly play a role in

the mechanism of other β-acyloxyalkyl radical rearrangements.22  However, the high

value of log10A/s-1 (12.7) obtained from analysis of the kinetics of the 1.29→1.30

rearrangement indicated that there was a considerable degree of bond breakage at the rate

limiting step, thereby favouring a dissociative mechanism.22

O •

O

O

Pr

O

O

PrO

•

1.29 1.30

Eventually, the course of mechanistic evolution resulted in the rejection of

transition structures B and C because they could not account for the observed solvent and

substituent effects.  To rectify this problem, these structures were replaced with the

polarized versions E and F respectively by Crich and Filzen in 1995.26  Previously, ab

initio MO calculations had indicated that structures like C possessed considerable dipolar

character.14  In 1994 Sprecher had argued in a Chemtracts commentary that the kinetic
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and oxygen-labelling results for all the β-acyloxyalkyl radical rearrangements known at

that time could be rationalised by a mechanism involving an intimate ion pair composed of

an alkene radical cation and a carboxylate anion (G).25  He claimed that the diversity in

rate constant and degree of formal 1,2 shift could be explained by a varying degree of

intimacy of the ion pair and the mutual orientation of the fragments, which in turn would

depend critically on the respective charge distributions.25

R2
R1

R4
R3•

OO

R

R2
R1

R4
R3

•

R2
R1

R4
R3•

O

COR ‡ ‡

E F G

OO

R

δ+

δ-

δ+

δ-

+

–

Beckwith and Duggan managed to establish a relationship between the electronic

environment, rearrangement rate constant and the degree of oxygen scrambling in a single

system from a study of the rearrangement of 2-acyloxy-2-arylpropyl radicals.33  They

discovered that the rate constant for the rearrangement of 1.31a→1.32a showed a

weak, yet significant, dependence upon solvent polarity.  A Hammett plot yielded a ρ

value of –0.71, which is small in comparison to that for ionic processes, yet clearly

demonstrates that aryl substituents which stabilise positive charge at the benzylic position

accelerate the rearrangement.  In benzene at 75˚C, the rate constant for the rearrangement

of 1.31d was 156 times that for 1.31c, demonstrating the facilitation of acyloxy

migration where electron-attracting substituents are present.  Oxygen-labelling

experiments revealed that in benzene, 1.31a migrated with essentially 0% 1,2 shift, but

in methanol the faster rearrangement proceeded with 25% 1,2 shift.

CH2

OO

R

OO

R

Ar Ar

•
•

1.31 1.32

a: Ar = C6H5, R = C3H7
b: Ar = p-MeO-C6H4, R = C3H7
c: Ar = p-CN-C6H4, R = C3H7
d: Ar = p-CN-C6H4, R = CF3
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In a thoughtful conclusion to their 1997 review, the authors stated that the β-

acyloxyalkyl radical rearrangement has a spectrum of mechanisms.35  The type of

mechanism(s) manifested depends primarily upon radical structure and the solvent.  Slow

rearrangements generally proceed via the relatively non-polarized, 5-membered transition

structure, F.  Fast rearrangements generally proceed via the polarized, 3-membered

transition structure, E .  In rare cases, it is possible that β-acyloxyalkyl radical

rearrangements proceed at least in part by caged, contact radical ions, G .  Most

fragmentations of β-acyloxyalkyl radicals occur via the permanent separation of the

carboxylate and alkene-radical-cation moieties of G .  Of course, rearrangements

proceeding at an intermediate rate were believed to proceed by a mixture of transition

structures E and F, possibly with a minor involvement of G.  It is a difficult undertaking

to devise ways of enabling experimental differentiation between these mechanistic

alternatives, yet since the mid-1990s this has been the major goal of workers in the field.

There have been a number of important recent developments.  Crich, Newcomb

and coworkers have measured rate constants for β-acyloxyalkyl radical rearrangements

directly by a laser flash photolysis technique, confirming that migrations are accelerated

by electron-donating groups on the alkyl framework, electron-withdrawing substituents

on the migrating group and more polar solvents.40  Rate constants were obtained directly

from time-resolved UV-vis spectra of the product radicals,40 thus addressing

Sprecher's25 reservations that kinetic parameters determined from competition methods

depend on some arguable assumptions.

Beckwith, Crich and coworkers have also studied the β-acyloxyalkyl-radical-

mediated ring contraction of lactones.31,41  Six-, seven- and eight-membered lactones

each contract entirely by a 1,2 shift, as indicated by 17O-labelling experiments.41

Radicals 1.33a,b and c each rearrange with k ≈ 106 s-1 at 80˚C, making these processes

among the fastest of the β-acyloxyalkyl radical rearrangements.41  The regiochemical

results are attributed to high energy barriers to transition structures of the type F.41
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O (CH2)n

O

•
Ph

O (CH2)n

O

•
Ph

a: n = 1
b: n = 2
c: n = 3

1.33 1.34

Renaud and coworkers have reported that β-acyloxyalkyl radicals which undergo

rearrangement in the presence of a Lewis acid can experience rate acceleration of up to

three orders of magnitude.38,44  The effect was attributed to the stabilisation of negative

charge in the migrating substituent upon complexation of the Lewis acid with the ester

group.

The stereospecific shifts of a pivaloxy group from C1' to C2' in radicals generated

from modified uridines and adenosines have been studied.28,29,37  Chatgilialoglu and

coworkers have measured rate constants of 5-10 × 104 s-1 for these processes at 80˚C.37

These rearrangements produce C1' anomeric nucleoside radicals, illustrating their

importance in biochemistry.

A 1998 review of the free radical reactions of anomeric monosaccharide and C-

nucleoside radicals includes a section on the use of the β-acyloxyalkyl radical

rearrangement as a synthetic tool for the preparation of 2-deoxy sugars from readily

available precursors, illustrating the growing importance of this intriguing reaction.39

Ab initio molecular orbital calculations14,32,34,45,47 on the β-acyloxyalkyl radical

rearrangement have provided meaningful mechanistic information where laboratory-based

experiments reach the limit of their capacity to discriminate mechanisms E-G.  The way

forward will undoubtedly be a close collaboration of theory and experiment.  In a

comparison of the 3,3 acyloxy shift in allyl formate with the 3,2 acyloxy shift in the 2-

formyloxyethyl radical, Zipse found that the open-shell reaction had a barrier of 92 to 113

kJmol-1 lower than the closed-shell process, showing that the transition state F is

energetically viable.32  Both reactions could be viewed as intramolecular, nucleophilic

substitutions.32  The idea of these rearrangements being seen as intramolecular

displacements was expanded into a general "methylenology principal", which states that
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β-elimination initiated by nucleophilic attack upon a radical centre is an open-shell

analogy to the SN2' reaction.45  The source of the low barriers to these polar reactions in

open-shell systems is the mixing in behaviour of homolytic and heterolytic bond cleavage

processes.45  The similarity in the SRN2c ('c' represents cine regiochemistry) and SN2'

reactions is shown below, together with a diagram of valence electron delocalisation in

the β-acyloxyalkyl radical rearrangement, viewed as an SRN2i (intramolecular) reaction

(1.35) .

X

CH2 X

X

CH2 X

Nu ••
Nu ••+

•
Nu •• Nu ••+

SN2'

SRN2c
•

OO

R

•

1.35

In a computational exploration of the rearrangement of 2-acyloxyethyl radicals,

Zipse found that a 3,2 shift was always favoured over a 1,2 shift, that trifluoroacetoxy

migration possessed a lower barrier than acetoxy migration and that a 3,2 acyloxy shift

will proceed more quickly in water than in the gas phase, in conformity with most

experimental evidence.34  In addition, protonation of a formyloxy group was found to

lower the rearrangement barrier by more than 40 kJmol-1 compared with the unprotonated

species.34  However, the solvent effects predicted were much smaller than those

observed experimentally.34

The results most pertinent to the work of this thesis come from Zipse and Bootz,

who investigated the rearrangements of 2-acyloxy-2-methyl-1-propyl radicals

(1.12→1.13 and 1.26→1.27) with a variety of theoretical methods.47  They found no

evidence of an ion pair intermediate (G) for either acetoxy or trifluoroacetoxy migration.

The three-membered transition structure (E) was always slightly less favourable (by ca. 4

kJmol-1) than the five-membered transition structure (F), but became more competitive as

absolute reaction barriers were lowered by electron-withdrawing migrating groups and

polar solvents.  In effect, the amount of formal 1,2 shift is predicted to increase in polar
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solvents and the effect will be greater for a trifluoroacetoxy group than for acetoxy.65

Solvent effects were predicted to be minor for both E and F and the barrier difference

between acetoxy and trifluoroacetoxy migration was less than half the size of that

measured experimentally.  The large rate constant increase for acetoxy migration observed

experimentally in water was rationalised by protonation of the ester group.  Carboxylate

group charge in both acetoxy and trifluoroacetoxy groups varied little between transition

states E and F, contrasting with the assumption that E must be significantly more

polarized than F.26,30,33,35  Kinetic isotope effects calculated for structures E and F were

generally small except for the strong inverse KIEs (0.66-0.72) found upon dideuteration

of the radical centre (dideuteration at C1 accelerates the rearrangement).  It is claimed that

the ratio of the 18O KIEs of the ester oxygen atoms may be used to distinguish E from F,

but in practice the magnitude of such effects may be small compared with experimental

uncertainties.  Pertinent KIEs are provided in scheme 1.2.  Unfortunately, KIEs could

not be calculated for intermediate G since no transition structure for it could be found.

CH3

CH3
H
H•

OO

CH3

CH3

CH3
H
H

•O

H3C O 1.0064

1.0555

1.1295 0.7247

1.0422 1.0171

0.65881.1129

CH3

CH3
H
H•

OO

CF3

CH3

CH3
H
H

•O

F3C O 1.0040

1.0499

1.1574 0.7224

1.0400 1.0214

0.68661.1648

Scheme 1.2. Kinetic effects calculated for 16O/18O and 2H/1H isotopic substitutions

upon the transition states E and F for rearrangements of the 2-acetoxy-2-methyl-1-propyl

and 2-trifluoroacetoxy-2-methyl-1-propyl radicals.

1.3 The β-trifluoroacetoxyalkyl radical rearrangement

It is known that groups with electron-withdrawing substituents facilitate the β-

trifluoroacetoxyalky radical rearrangement and that faster rearrangements usually proceed



Chapter 1: Introduction     15

with a higher proportion of formal 1,2 shift.  Given that an acetoxy group migrates over

an aliphatic framework with approximately 0% 1,2 shift, the question of the degree of 1,2

shift which accompanies the faster trifluoroacetoxy group migration is an interesting one.

Despite the considerable theoretical interest in the β-trifluoroacetoxyalkyl radical

rearrangement,34,47 there is comparatively little experimental data available.

Kinetic data for the rearrangement of radicals 1.36a-d have previously been

obtained.  The Arrhenius parameters and/or rate constant, k, at 75˚C are supplied in table

1.1 and are extracted from table 2.1 (of chapter 2).  The isomerization of radical 1.36d is

the fastest β-acyloxyalkyl radical rearrangement yet reported.  Values of log10A are

approximately the same, indicating a similar degree of order in the transition state(s) of

the rate limiting step.  Faster rearrangements have lower activation energy, consonant

with more facile cleavage of the C–O alkoxy ester bond.

OO

R2
R1 R4

R3

CF3

•
OO

R2
R1 R4

R3

CF3

•

a: R1 = R2 = CH3, R3 = R4 = H

b: R1 = C6H5, R
2 = R3 = R4 = H

c: R1 = p-CN-C6H4, R2 = CH3, R3 = R4 = H

d: R1 = C6H5, R
2 = H, R3 = R4 = CH3

1.36 1.37

Table 1.1.  Kinetic data for the β-trifluoroacetoxyalkyl radical rearrangement

Rearrangement Solvent log10(A/s-1) Ea (kJmol-1) k at 75˚C (s-1) Ref.

1.36a→ 1.37a CF2ClCFCl2 11.0 41.0 7.0 × 104 13

1.36c→ 1.37c benzene 2.5 × 106 33

1.36d→ 1.37d THF 10.7 25.9 6.5 × 106 40

1.36d→ 1.37d CH3CN 11.2 24.7 3.1 × 107 40

Only one example of a labelled-oxygen study of trifluoroacetoxy migration has

been published.26  In benzene at 80˚C, the rearrangement 1.36c→1.37c proceeds with

19% 1,2 shift, demonstrating that a formal 3,2 shift is predominant but not exclusive.
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We saw the need to study the relationship between the degree of oxygen

scrambling and rearrangement rate as a function of solvent polarity in a single, simple

system.  Chapter 2 is concerned with the determination of the kinetics of a simply-

constituted, aliphatic β-trifluoroacetoxyalkyl radical in the solvents hexane, benzene and

propionitrile.  Chapter 3 is concerned with an investigation of solvent-dependent oxygen

scrambling behaviour in the same rearrangement studied in chapter 2.

Zipse's MO calculations have indicated that the β-acyloxyalkyl radical

rearrangement can be viewed as an intramolecular nucleophilic substitution reaction.32

Chapter 4 comprises an electron spin resonance study of the temperature-dependent

average conformation of a series of β-oxygenated alkyl radicals.  This work was

undertaken to evaluate whether there exists a significant electronic interaction between the

unpaired spin and the ester carbonyl oxygen, as suggested by theoretical calculations.

1.4 Other isomerizations which may share the same
mechanism: The rearrangement of N -a lkoxy-2(1H ) -
pyridinethiones

Since the discovery of the β-acyloxyalkyl radical rearrangement, there has been a

steadily growing number of rearrangements discovered which appear to have the same

type of mechanism.  Rearrangements which display a radical mediated 1,2 or 3,2 shift are

illustrated in table 1.2.

In 1989 the unexpected, oxygen-catalysed rearrangement of N-benzyloxy-2(1H)-

pyridinethione (1.38) was reported, in which a formal 1,4 benzyloxy group migration

had occurred.62  Since then reports of the facile rearrangement of other N-alkoxy-2(1H)-

pyridinethiones have appeared in the literature.63,64  With a growing awareness that

various rearrangements could plausibly proceed through a pericyclic transition state in

which five electrons were delocalised over five atoms, it was envisaged that the catalysed

rearrangement of N-alkoxy-2(1H)-pyridinethiones may proceed via a 5-electron, 5-centre

transition structure (1.40) resulting in 1,4 migration.  Chapter 5 describes attempts to

determine the mechanism of this interesting isomerization.
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Table 1.2. Some types of radical-mediated 1,2 and 3,2 rearrangements

Name of rearrangement Reaction type Ref.

β-chloroalkyl
Cl Cl

• •
56

β-hydroalkyla H2O OH2

• •

+ +
55

β-allyperoxidyl

O O O O

R R

• •

57

β-acyloxysilyl

SiMe2

OO

SiMe2

OO

CH3 CH3

•
•

58

β-allylnitroxyl

N O N O
t-Bu

•
•

t-Bu

59

β-phosphatoxyalkyl O
P

O O
P

O

OPh OPhPhO PhO

Ph
• •

Ph

60

β-nitroxyalkyl O
N

O O
N

O

Ph

O O

• •

Ph

60

β-sulfonatoxyalkyl
O

S
O O

S
O

Ph

Ph O Ph O

• •

Ph

60

β-allyloxyalkyl O O

Ph Ph

R R

• •

61

a: Mechanism may not be intramolecular
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N

S

O
N

S

O

1.38 1.39

Ph

Ph

O2

∆

N

S

O

1.40

R

+ •
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2.1 Introduction

This chapter is concerned with the kinetics of the β-trifluoroacetoxyalkyl radical

rearrangement.  To put the subject into perspective, this chapter begins with a review of

the kinetics of β-acyloxyalkyl radical rearrangements in general.  A description of the

search for an appropriately-structured radical for the study follows.   An equilibrium

constant is determined for the reversible rearrangement of the chosen radical in benzene

solution.  The kinetic scheme, experimental method and solutions to attendant analytical

complexities are described.  Arrhenius parameters, log10A and Ea, are obtained for the

rearrangement of the 2-methyl-2-trifluoroacetoxy-1-heptyl radical in each of three

solvents of varying polarity.  The kinetics results and their implications for the

rearrangement mechanism are discussed.

2.2 A review of β -acyloxyalkyl radical rearrangement

kinetics

A substantial contribution to the elucidation of the mechanism of the β-

acyloxyalkyl radical rearrangement has come from the determination of the kinetics of the

ester migration step.1-10,40  In particular, the relationship of radical structure and solvent

polarity to the rearrangement rate constant have yielded vital information about the nature

of transition states or intermediates.  For several rearrangements, the Arrhenius frequency

factor (A) and the activation energy (Ea) have been determined.  A high log10A value

(>13) can indicate that a radical frequently achieves a geometry similar to that of the

rearrangement transition state, whereas a characteristic such as a strong alkoxy C–O bond

between the carbon framework and the ester group will contribute to a high Ea.

A comprehensive review,11 incorporating the kinetics of the β-acyloxyalkyl

radical rearrangement, covers the literature up to mid 1997.  The amount of work in the

field is extensive but not exhaustive.  Accordingly, these kinetic results are reproduced

here (table 2.1), including work published to date.

The earliest kinetic results (entries 3,6,8 and 13) were obtained by Beckwith and

Thomas in 19732 who used a product ratios technique.  Ingold and coworkers1,3 who
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used kinetic esr spectroscopy (entries 1,2,4,5,7 and 9), discovered that comparable

rearrangement rate constants were an order of magnitude smaller than those of the initial

work.  However, when a fully integrated rate expression which allows for a changing

Bu3SnH concentration is applied to the earlier data, the rate constants decrease and thus

correspond better to those obtained by the esr technique.1

Considerable evidence on the rearrangement mechanism is provided by the results

in table 2.1.  It is clear that the rearrangement is thermodynamically favoured when the

product radical is more stabilised than the reactant radical.  Furthermore, a greater degree

of product stabilisation generally results in faster rearrangement.  This is exemplified by

the difference in rate constants for the rearrangement of the 2-acetoxy-2-methyl-1-propyl

radical (2.1→2.6, entry 4) and the 2-acetoxy-2-phenyl-1-propyl radical (2.11→2.16,

entry 13).  The latter rearrangement results in a highly stabilised benzylic radical.

A comparison of entries 5 (2.1→ 2.6) and 9 (2.5→ 2.10) reveals that a

trifluoroacetoxy group migrates more than two orders of magnitude as fast as an acetoxy

group in an otherwise identically-structured radical.  This observation is corroborated by

a comparison of entries 21 and 22, as well as 31 and 32.  For an appropriate comparison

of the latter, at 20˚C in CH3CN, radical 2.22 rearranges with kr = 6.2 × 106 s-1.  This

effect can be attributed to the stabilisation of negative charge that -CF3 brings to the ester

group.  Renaud and coworkers report that Lewis acids can accelerate certain β-

acyloxyalkyl radical rearrangements by three orders of magnitude.12,13  For instance,

treatment of the lactate bromide 2.45 with tributyltin-hydride/AIBN in the absence of

Lewis acid affords only the directly-reduced product.  However, the same reaction in the

presence of one equivalent of scandium (III) triflate/2,6-lutidine affords the rearrangement

product 2.46 in 60% yield at the extraordinarily low temperature of –20˚C.  This rate

acceleration effect is consistent with the intermediacy of a complex of the type shown

(2.47), expected to stabilise developing negative charge in the migrating group.  Zipse's

theoretical calculations14 predict a large decrease in energy of the three-membered

transition state (i) for a β-acyloxyalkyl radical 1,2 shift upon protonation of the carbonyl

oxygen.
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Table 2.1. Kinetic data for the rearrangement of β-acyloxyalkyl radicals of varying

structure and in solvents of differing polarity

Entry Rearrangement Solvent T (˚C) kr (s
-1) log10A Ea (kJmol-1) Ref.

1 2.4→ 2 . 9 hydrocarbon 75 1.2 × 102 13.2 74.5 1

2 2.3→ 2 . 8 hydrocarbon 75 2.5 × 102 13.2 72.4 1

3 2.3→ 2 . 8 benzene 70 3.9 × 103 2

4 2.1→ 2 . 6 t-butylbenzene 75 4.5 × 102 13.9 74.9 3

5 2.1→ 2 . 6 hydrocarbon 75 5.1 × 102 13.2 70.3 1

6 2.1→ 2 . 6 benzene 75 6.2 × 103 2

7 2.1→ 2 . 6 H2O 75 2.1 × 104 12.3 53.1 3

8 2.2→ 2 . 7 benzene 75 3.6 × 103 2

9 2.5→ 2 .10 CF2ClCFCl2 75 7.0 × 104 11.0 41.0 3

10 2.31→ 2 .32 benzene 75 4.0 × 102 8.1 36.4 4

11 2.33→ 2 .34 benzene 75 5.4 × 103 11.8 53.6 4

12 2.35→ 2 .36 benzene 75 1.0 × 104 12.7 58.0 5

13 2.11→ 2 .16 benzene 70 4.1 × 104 2

14 2.12→ 2 .17 cyclohexane 75 3.7 × 104 6

15 2.12→ 2 .17 DME 75 5.8 × 104 6

16 2.12→ 2 .17 benzene 75 6.3 × 104 11.7 46.0 6

17 2.12→ 2 .17 DMF 75 8.4 × 104 6

18 2.12→ 2 .17 EtOH 75 1.3 × 105 6

19 2.12→ 2 .17 MeOH 75 1.6 × 105 6

20 2.13→ 2 .18 benzene 75 1.7 × 105 6

21 2.14→ 2.19 benzene 75 1.6 × 104 6

22 2.15→ 2 .20 benzene 75 2.5 × 106 6

23 2.37→ 2 .38 C6D6 80 6.6 × 104 7

24 2.39→ 2 .40 C6D6 80 5.5 × 104 7

25 2.41→ 2 .42 C6D6 80 1.3 × 105 7

26 2.43→ 2 .44 benzene 75 1.9 × 106 14.8 56.9 8

27 2.25→ 2 .28 benzene 80 9.9 × 105 9

28 2.26→ 2 .29 benzene 80 1.7 × 106 11.8 37.7 9

29 2.27→ 2 .30 benzene 80 1.1 × 106 9

30 2.68→ 2 .69 benzene 75 3.2 × 106 8.2 11.3 40

31 2.21→ 2 .23 CH3CN 20 < 1 × 104 10

32 2.22→ 2 .24 THF 75 6.5 × 106 10.7 25.9 10

33 2.22→ 2 .24 CH3CN 75 3.1 × 107 11.2 24.7 10
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Larger rate constants will also result if the alkoxy carbon framework can stabilise

a developing positive charge.  A Hammett plot of log10(kX/kH) against substituent

parameter σp
+ for the p-substituted radicals 2.12-2.14 yielded a slope of ρ = –0.71,

quite significant for a radical reaction.6  However, this value is small considering that ρ is

typically –4.5 for SN1 solvolysis of tert-cumyl chlorides.15  Nevertheless, the slightly

negative slope indicates that stabilisation of positive charge at the benzylic position

accelerates rearrangement.

As might now be expected, acceleration of the rearrangement is also promoted by

polar solvents.  Rearrangement 2.1→2.6 (entry 5) in hydrocarbon solvent at 75˚C

proceeds with kr = 5.1 × 102 s-1.1  With water as solvent (entry 7), kr increases to 2.1 ×

104 s-1.3  In a study of rearrangement of 2-butanoyloxy-2-phenyl-1-propyl radical

(2.12→2.17), the logarithm of rate constant shows a weak linear dependence upon the

solvent polarity parameter ET,22 as given by an equation of the form log10kr = 0.024ET +

3.882 (r = 0.978).6  A coefficient of 0.024 is substantial for a radical reaction.  Again, a

comparison of entries 32 and 33 illustrates how radical 2.22 rearranges more quickly in

acetonitrile than in the less polar solvent THF.

Stereoelectronic requirements are also important kinetically, as exemplified by the

difference in kr between the rearrangements of the tetra-O-acetylgalactosyl radical (2.33)

and the tetra-O-acetylglucosyl radical (2.31).  Giese and coworkers have studied the

kinetics of the rearrangements of 2.31 and 2.33 and have used esr spectroscopy to

determine the conformation of the radicals.4  Esr coupling constants reveal that both the

product radicals, 2.34 and 2.32 respectively, exist in a standard 4C1 chair formation.

Above –30˚C, radical 2.31 resides in a boat conformation, in which there is periplanarity
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of the SOMO and the C2 acetoxy group.  Radical 2.33 rearranges faster, and has a much

larger log10A  value than that for 2.31.  A larger A  suggests that 2.33 favours a

conformation which is preoriented towards rearrangement.    Above –15˚C radical 2.33

occupies a half-chair conformation in which the radical orbital and the C2 acetoxy group

are no longer periplanar, but there is planarity of O-C1-C2-C3.  Such a conformation

might be expected to facilitate scission of the C2–O bond by the formation of an alkene

radical cation, or alternatively provide an optimal geometry for passage into transition

states i and/or ii.
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A similar stereoelectronic effect may exist in the very fast rearrangement of

steroidal radical 2.43 (entry 26).  The extremely high log10A value of 14.8 implies that

the geometry of the radical is strongly preoriented towards rearrangement. Models

demonstrate that carbons 4,5,6 and 7 lie in approximately the same plane, thus providing

a favourable alignment for the formation of a cholesteryl acetate alkene radical cation, or

alternatively for passage into transition structures i or ii.  Additionally, at 80˚C,

nucleoside radical 2.39 rearranges with a rate constant of 5.5 × 104 s-1.  The epimeric

radical 2.41, rearranges approximately twice as fast, with kr = 1.3 × 105 s-1.  The exact

cause of this reactivity difference is unknown, but it is possible that in 2.39 steric

hindrance between the bulky C-1' pivaloyloxy group and the cis C-3' TBDMSO group

makes it more difficult for the C-1' adenosine substituent to achieve a favourable position

(closer to the pentose ring plane) than for 2.41.

The low log10A value (8.2) for the rearrangement of 2.68 (entry 30) indicates

that the radical does not achieve a favourable geometry for rearrangement as frequently as

most of the other radicals.  However, the activation energy (Ea = 11.3 kJmol-1) is the

lowest yet measured and is attributable to the high degree of ring strain relief upon
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rearrangement.  The low activation energy term (weak C–O ether bond) more than

compensates for the poor stereoelectronic situation, making this rearrangement one of the

fastest yet measured (kr (75˚C) = 3.2 × 106).

Although rate constants for β-acyloxyalkyl radical rearrangements show

significant electronic and solvent effects for radical reactions, such influences are small in

comparison to those associated with ionic reactions.  The cooperation of polarized 1,2 (i)

and 2,3 (ii) shifts is a mechanism which is consistent with kinetic data.  Alternatively, a

mechanism involving solely an alkene radical cation/carboxylate ion pair intermediate (iii)

also fits the data, as do various combinations of the three possibilities.
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In this current work the kinetics of the β-trifluoroacetoxyalkyl radical

rearrangement in simple, aliphatic systems is investigated.  The Arrhenius parameters,

log10A and Ea, have been determined in the solvents hexane, benzene and propionitrile.

A limited amount of kinetic data for a 1,2 trifluoroacetoxy group shifts have previously

been collected (entries 9,22,33 and 33).  In fact, the rearrangement of 2.22→2.24 is the

fastest β-acyoxyalkyl radical rearrangement yet recorded.  However, much of the data

(entries 22,32 and 33) were obtained from systems containing aromatic α-substituents in

which the complicating neophyl rearrangement can occur coincidentally with the target

rearrangement.6,10  In a purely aliphatic system (entry 9), the data was obtained by the

integration of complex esr signals.  Occasionally this technique suffers from experimental

difficulties which give rise to errors.  We wanted to obtain rate data by a product-

studies/competitive-clock method to validate that obtained by esr.  And finally, there has

not yet been a systematic study of a β-trifluoroacetoxyalkyl radical rearrangement where

both kinetic and labelling data have been obtained as a function of solvent polarity.  Thus,

a reaction system was chosen where both sets of data could also be obtained.
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2.3 The search for a suitable system for study

2.3.1  2-Trifluoroacetoxy-1-hexyl radical

We sought a radical precursor which could be easily prepared, would react readily

with tributyltin radicals, would provide scope for the introduction of an oxygen isotopic

label and would yield products that are sufficiently involatile so as to permit

straightforward laboratory manipulation.  The tributyltin radical is known to react readily

with an alkyl bromide to produce an alkyl radical and tributyltin bromide.16-18

Accordingly, 1-bromo-2-trifluoroacetoxyhexane (2.50) was prepared in order to provide

access to 2-trifluoroacetoxy-1-hexyl radicals (2.51).

Br

O

CF3

O

2.50

CH2

O

CF3

O

2.51

•SnBu3• Br–SnBu3+ +

A moist DMSO solution of 1-hexene was treated with N-bromosuccinimide,

according to an established procedure,19 to give a mixture of the regioisomeric

bromohydrins 2.48 and 2.49 in the ratio 2.5:1 by nmr.  Upon separation by flash

chromatography, the isolated yields were 53% and 15% respectively.  The bromohydrin

with the tertiary hydroxyl group (2.48) was esterified with trifluoroacetic anhydride and

sodium trifluoroacetate, yielding the desired β-bromoester, 2.50.

Br

Br OH

OH
a

a: NBS, H2O in DMSO;  b: (CF3CO)2O, NaOCOCF3
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+
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Ob
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2.3.2 Reaction of β-bromoester 2.50 with Bu3SnH

To a 4.3 mM deoxygenated solution of 2.50 in benzene at reflux was added a

benzene solution containing one equivalent of Bu3SnH (13.8 mM) and catalytic AIBN

over 106 minutes.  After a total time of 3 hr, GC revealed that all the tributyltin hydride

had been consumed and only a trace of 2.50 remained.  The products included 2-

trifluoroacetoxyhexane (2.53),  resulting from direct reduction of 2.50 and 1-

trifluoroacetoxyhexane (2.54), resulting from a 1,2 trifluoroacetoxy group shift.

Unfortunately the ratio of 2.54:2.53 was only 1:22.7, demonstrating that the

rearrangement is slow.  When a 0.5 M solution of 2.50 in tert-butylbenzene was heated

at the higher temperature of 130°C and treated with one equivalent of tributyltin hydride

over 30 min, the ratio of 2.54:2.53 increased only modestly to 1:18.8.  Thus, the

rearrangement is too slow to give yields of 2.54 high enough for labelling and kinetic

purposes.  A faster rearrangement was therefore sought.

O
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O O

CF3

O CF3
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1

2.50 2.53

2.54
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CH2
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•
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group shift

2.51
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Scheme 2.1.  Generation and reactions of β-trifluoroacetoxyalkyl radical 2.51

2.3.3 A faster rearrangement

Since tertiary alkyl radicals are more stabilised by hyperconjugation than

secondary radicals, the 1,2 migration of an ester group from a tertiary to a primary carbon

is generally faster than that from a secondary to a primary terminus.  Accordingly, the
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tertiary ester 1-bromo-2-methyl-2-trifluoroacetoxyheptane (2.59) was prepared.

A Wittig reaction of Ph3P=CH2 and 2-heptanone (2.55) gave 2-methyl-1-heptene

(2.56) in reasonable yield.  Conversion to the bromohydrin 2.57 was effected by

treatment of a wet DMSO solution of 2.56 with NBS.19  As expected, the regioisomer 2-

bromo-2-methylheptan-1-ol (2.58) was also formed, although nmr indicated that the

ratio of 2.57 :2.58  was ≥ 20:1.  Purification of the desired isomer by flash

chromatography was straighforward since 2.57 had the higher Rf, eluting before 2.58.

The β-bromoester 2.59 was obtained in high yield by esterification of 2.57.

O

BrBr

HOO O

CF3

a

71%

b 88%

c

92%

a: Ph3P=CH2, diglyme;  b: NBS, H2O in DMSO;  c: (CF3CO)2O, pyridine, CH2Cl2.

2.55

2.59 2.57

2.56

Authentic samples of the esters 2.64 and 2.65—both products expected from the

reaction of the β-bromoester 2.59 with Bu3SnH—were prepared.  Treatment of 2-

heptanone (2.55) with methylmagnesium bromide in diethyl ether afforded the tertiary

alcohol, 2.62.  Hydroboration of 2-methyl-1-heptene (2.56) in THF, followed by

treatment with basic hydrogen peroxide gave the primary alcohol 2.63.  Alcohols 2.62

and 2.63 were converted to their respective esters 2.64 and 2.65 in high yield by

standard trifluoroacetylation.
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d: (CF3CO)2O, NaOCOCF3.

92%
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2.3.4 Reaction of β-bromoester 2.59 with Bu3SnH

A 4.2 mM, deoxygenated solution of 2.59 in benzene was heated to reflux and

one equivalent of Bu3SnH and catalytic AIBN were added over 30 min.  After a total of

100 min, GC analysis showed the reaction to be virtually complete.  The ratio of 2.65 to

2.64 was 11.0:1, indicating that the rearrangement step was much faster than that for the

2-trifluoroacetoxy-1-hexyl radical (2.51).  This system was deemed highly suitable for

both kinetic and labelling studies since it gave high, but not exclusive, yields of

rearranged product 2.65.

Br
O O

CF3

O O

CF3

O CF3

O

Bu3SnH

AIBN
 80˚C

+

: 11.01

2.59 2.64 2.65

2.4 Determination of the equilibrium constant

Aware that the rearrangement of 2.60→2.61 may be reversible and might

therefore affect kinetic results at low concentrations of tributyltin hydride, an experiment

was designed to determine the equilibrium constant, K, in benzene solution at 80˚C.
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CH2O

CF3

O

•
•

O CF3

O

kr

k–r
2.60 2.61

Scheme 2.2. The equilibrium between radicals 2.60 and 2.61.

2.4.1 Theory

For equilibria in which the forward and reverse reactions are both first order, K is

equal to the forward rate constant (kr) divided by the reverse rate constant (k–r), as given

by equation 2.1.

K  =  
k

k
r

–r

 
                                                          (2.1)

A rate law for the equilibrium reaction 2.60↔2.61 may be written:

d

dt

[ ]2.60
  =  [2.60]kr  –  [2.61]k–r                                        (2.2)

Under conditions of infinite Bu3SnH dilution, where the reaction is at

equilibrium, the rate of change of concentration of reactants is zero, so that equation 2.2

becomes:

0  =  [2.60]kr  –  [2.61]k–r                                        (2.3)

       ∴                                [2.60]kr  =  [2.61]k–r

and so                                   
k

k
r

–r

 
  =  

[ ]
[ ]
2.61
2.60

                                       (2.4)

Since the reaction of carbon-centred radicals with tributyltin hydride is

irreversible, the concentrations of radicals 2.60 and 2.61 are directly proportional to the
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product esters 2.64 and 2.65 respectively.  Thus, K is equal to the ratio of products,

according to equation 2.5.

K   =   
k

k
r

–r

 
   =   

[ ]
[ ]
2.65
2.64

                                             (2.5)

2.4.2 Preparation of β-bromoester 2.66

O

OH

Br

Br

OH

2.56 2.67

2.58

2.57

1

:

1

+

OH

Br

Br

OH

2.58

2.57

4.7

:

1

+

c

OCOCF3

Br

Br

OCOCF3

2.66

2.59

2.67
O

a b

d

99.01%

0.23%

0.76%

a: m-CPBA, CH2Cl2;  b: conc. HBr (aq);  c: flash chromatography;

d: 0.5 eq. (CF3CO)2O, 0.5 eq. pyridine, CH2Cl2, -78˚C → RT, flash chromatography.

56% 81%

45%

The β-bromoester, 2-bromo-2-methyl-1-trifluoroacetoxyheptane (2.66), was

prepared in three reaction steps from 2-methyl-1-heptene (2.56).  Oxidation of alkene

2.56 with m-CPBA in dichloromethane gave the epoxide 2.67.  Treatment of the

epoxide with concentrated HBr yielded the expected mixture of regioisomeric

bromohydrins, 2.57  and 2.58 , in approximately equal proportions.  Flash

chromatography enabled significant enrichment (82.5 mol%) in the desired, more polar
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isomer,  2-bromo-2-methylheptan-1-ol (2.58).  Selective esterification of the major

isomer was achieved by treatment of a cold, dichloromethane solution of the

bromohydrins with  trifluoroacetic anhydride (0.5 eq.) and pyridine.  Flash

chromatography enabled the desired β-bromoester 2.66 to be separated from the

unreacted bromohydrins.

Analysis of the purified product by GC showed it to consist of 2-bromo-2-methyl-

1-trifluoroacetoxyheptane (2.66, 99.01%), 1-bromo-2-methyl-2-trifluoroacetoxyheptane

(2.59, 0.23%) and 1,2-epoxy-2-methylheptane (2.67, 0.76%).

2.4.3 Reaction of β-bromoester 2.66 with Bu3SnH

A stirred 2.8 mM solution of 2-bromo-2-methyl-1-trifluoroacetoxyheptane (2.66)

in dry benzene was deoxygenated with a stream of nitrogen, heated to 80°C and injected

quickly with one equivalent of tributytin hydride followed by catalytic AIBN.  After two

hours the reaction was concentrated and analysed by GC.  All of the β-bromoester 2.66

had been consumed.

Unfortunately, retention times for the epoxide impurity 2.67 and the product

tertiary trifluoroacetate 2.64 were identical on a dimethylpolysiloxane (BP1) capillary

column, making the indicated proportion of 2.64 higher than its true value. Under these

conditions, the lower limit for the equilibrium constant was calculated to be 15.1.

However, these compounds did separate well on a polyethyleneglycol (BP20) stationary

phase, yielding a ratio of the product esters of 52.9:1, in favour of the primary

trifluoroacetate 2.65.  There were small amounts of 2-methyl-1-heptene (2.56) and 2-

methyl-2-heptene (2.56a) present in the mixture, from the eliminative decomposition of

2.64.  Therefore, K < 52.9.

It was assumed that the low concentration of Bu3SnH used in this experiment

allowed radicals 2.60 and 2.61 to reach equilibrium prior to their hydrogen atom

transfer reaction with tributyltin hydride.  The small amount of 1-bromo-2-methyl-2-

trifluoroacetoxyheptane (2.59) present initially in the sample of 2.66 is therefore

deemed insignificant.
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In conclusion, the equilibrium constant at 80°C in benzene is 15.1 < K < 52.9, in

favour of the tertiary 2-methyl-1-trifluoroacetoxyheptan-2-yl radical (2.61).  It was

deemed desirable to check this result using a different analytical method (e.g. HPLC) and

to determine K at a number of temperatures in solvents of widely differing polarity.

2.5 Kinetics experiments

2.5.1 The kinetic scheme and analytical method

Scheme 2.3 illustrates the kinetically important reaction steps from which a

numerical method of analysis may be derived.  Removal of the bromine atom from

bromoester 2.59 by a tributyltin radical forms the incipient radical 2.60 in a kinetically

unimportant step.  Disregarding the very small proportion of radical-radical termination

events which occur, radical 2.60 may react in two possible ways.  The first of these

involves the abstraction of a hydrogen atom from tributyltin hydride, with second order

rate constant kH1, irreversibly forming the unrearranged product ester, 2.64.  The second

path involves rearrangement to tertiary radical 2.61 with first order rate constant kr.

Radical 2.61 reacts irreversibly with tributyltin hydride with second order rate constant

kH2 to form the rearranged ester 2.65.

If the rearrangement step is irreversible, the size of kH2 is not important since

reduction of 2.61 occurs as a matter of course.  However, the rearrangement is

reversible, with the radical 2.61 re-forming radical 2.60 with rate constant k–r.  If K =

53 at 80˚C in benzene, then k–r is only about 2% the magnitude of kr under these

conditions.  Owing to the relative slowness of the reverse reaction, the rearrangement was

treated as being irreversible for the purposes of the analytic method.  Noticeable

deviations in the observed results for those expected from an irreversible rearrangement

should only be encountered at very low concentrations of Bu3SnH and at the highest

temperatures.
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Bu3Sn•

Scheme 2.3. Generation and reactions of β-trifluoroacetoxyalkyl radical 2.60

An analytic method for this type of reaction scheme has been developed by

Beckwith and Moad.20  The essence of the analysis lies in the competition between the

rearrangement of radical 2.60 measured (clocked) against its direct reduction by

Bu3SnH.  It can be shown (see appendix A) that:

[2.65]f  =  
k

k
r

H1
 {ln([Bu3SnH]i + 

k

k
r

H1
) – ln([Bu3SnH]f + 

k

k
r

H1
)}           (2.6)

where [2.65]f  is the final concentration of the rearranged product ester, kr/kH1 is the ratio

of rate constants for the competing processes and [Bu3SnH]i  and [Bu3SnH]f  are the

initial and final concentrations of tributyltin hydride respectively.

A computer program is used to iteratively solve for values of kr/kH1, given values

for [2.65]f , [Bu3SnH]i  and [Bu3SnH]f.  Matters were simplified somewhat by ensuring

[Bu3SnH]f  = 0, achieved by making Bu3SnH the limiting reagent.  Ratios for kr/kH1

were determined in this way at four different concentrations, as a test for reversibility and

precision, and at four different temperatures: 40, 60, 80 and 100°C.  Plots of ln(kr/kH1)
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versus reciprocal absolute temperature would be expected to show a linear relationship if

the rearrangement step is truly first-order.

A value for kr  is obtained by multiplication of the corresponding kr/kH1 value by

kH1, determined for that reaction temperature from literature data.  Laser flash photolysis

has been used to determine Arrhenius kinetic parameters for the second order reaction of

simple alkyl, vinyl and aryl radicals with tributyltin hydride.21  Of the radicals for which

rate data are available, the radical judged to have greatest structural similarity to the 2-

methyl-2-trifluoroacetoxyheptan-1-yl radical (2.60) is the 2,2-dimethyl-propyl

(neopentyl) radical.  Arrhenius parameters for the reaction of this radical with tributyltin

hydride appear in table 2.2.

CH2O

CF3

O

CH3O

CF3

O

Bu3SnBu3SnH
kH1

CH2 CH3
Bu3SnH

kH1

Bu3Sn

•

•
•

•

2.60 2.64

Table 2.2. Arrhenius parameters for the reaction of 2,2-dimethylpropan-1-yl radical

with tributyltin hydride in isooctane solvent, as determined by laser flash photolysis21

log10 (A/M-1s-1) Ea (kJmol-1)

8.5±0.2 11.3±0.8

                                   Uncertainties are at 2σ limit (95% confidence)

The rate constant kH1 is not totally solvent-independent.  Beckwith and Duggan

have shown that kH1 for the reaction of 2-butanoyloxy-2-phenyl-1-propyl radical (2.12)

with tributyltin hydride at 75˚C exhibits only a weak solvent dependence, of the form

log[kH1/M-1s-1] = 0.004ET + 6.667.6  The size of the likely solvent effect upon kH1 was
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therefore judged to be too weak to be significant in this current work.

Values of kH1 at each reaction temperature were calculated by substitution of the

log10 A and Ea values into the Arrhenius expression:

kH1 = A e
E

RT
−





 a

                                                       (2.7)

Multiplication of these kH1 values by the corresponding, experimentally-

determined values for kr/kH1 yielded the desired kr values.  Normal Arrhenius plots were

constructed to obtain log10 A and Ea values for the rearrangement step.

2.5.2 Conducting the kinetic experiments and product analysis

A detailed account of the procedure can be found in the experimental section (2.8)

at the end of this chapter.  Stirred, deoxygenated solutions containing a known

concentration of β-bromoester 2.59 and the internal standard biphenyl (n-pentyl acetate

for reactions in benzene solvent) in the desired solvent were heated at the nominated

temperatures (±0.3˚C) of 40, 60, 80 and 100°C in Reactivials.  The vials were equipped

with Mininert valves which permitted addition to and removal of liquid from the hot

solutions, even at temperatures exceeding the boiling point of the solvent.  After 15

minutes, Bu3SnH (0.9 molar equivalents with respect to 2.59) and 1 mol% of radical

initiator were injected.  Reactions were monitored periodically by withdrawing small

aliquots for GC analysis.  Once the peak corresponding to Bu3SnH had disappeared from

the chromatogram a reaction was judged to be complete.

Molar yields were determined by GC for each of the pertinent reaction products

and the sums were all found to be in excess of 95% that of the limiting reagent, Bu3SnH.

Values for [2.65]f (corrected), [Bu3SnH]i and [Bu3SnH]f (= 0) were used to determine a

kr/kH1value for each reaction, with the iterative computer program which calculates

solutions to equation 2.6.  Plots of ln(kr/kH1) vs. 1/T were constructed, all of which

indicated a linear relationship.  Uncertainties in the kinetic parameters obtained from these

plots represent one standard deviation from the average of the parameters obtained from
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plots of each concentration set.  A list of the compounds quantified and their respective

GC retention times appears in table 2.3.

Table 2.3. Gas chromatographic retention timesa, on the stationary phase

dimethylpolysiloxane (BP1), for relevant compoundsb detected in the kinetic analysis.

Compound

Typical
retention time

(min) Comments

2.56
3.07

formed by thermal elimination
from unrearranged product

trifluoroacetate 2.64

2.56a
3.20

formed by thermal elimination
from unrearranged product

trifluoroacetate 2.64

OCOCH3 4.62
GC detector analytical standard

used for reactions in the solvent
benzene

OCOCF3

2.64 5.40 unrearranged product ester

OCOCF3 2.65 6.31 rearranged product ester

OH 2.63 6.67 formed from (hydrolysis of?)
rearranged product ester 2.65

OCOCF3

Br
2.59

9.65 β-bromoester, the radical
precursor

12.52
GC detector internal analytical

standard for reactions in the
solvents hexane and propionitrile

Bu3SnH 13.06 limiting reagent;  concentration
not quantitatively determined

Bu3SnBr 16.96 concentration not quantitatively
determined

a: Column temperature program: 100˚C (0 min); ramp at 10˚C/min; final temp 250˚C (5

min); b: The compounds isobutyronitrile and tert-butanol, products formed from the

initiators AIBN and di-tert-butyl hyponitrite (40°C reactions) respectively, do not appear in

the table, but were detected by GC.
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Values of  kH1 at each temperature were determined from the literature data, then

kr values were calculated.  Uncertainties in both the kH1 and kr values represent two

standard deviations (95% confidence) and are derived entirely from the uncertainties in

the kH1 Arrhenius parameters.

Plots of lnkr vs. 1/T were constructed and show a linear relationship, as expected.

Arrhenius parameters for the radical rearrangement step were obtained.  Uncertainties in

these values are a sum of those inherent in the calculation of kr values, and from the

average of the Arrhenius parameters from plots of each concentration set.  These

uncertainties are at one standard deviation limits.

Both experimental and recommended values of the kinetic parameters are given.

Experimental values are averages of the values obtained from the series of reactions at

each concentration, using all the experimental data.  Recommended values are those

obtained by omitting lower quality data, usually from reactions for which the molar yields

were lowest and/or where there was a large proportion of alkenes formed by elimination

of trifluoroacetic acid from the product trifluoroacetate esters.  This increased the

uncertainty in the yield of the product ester.

2.5.3 Management of analytical complexities

Owing to the relative lability of the trifluoroacetate products 2.64 and 2.65, the

analysis of the product concentrations was more complex than initially envisaged.  As

table 2.3 illustrates, there are three by-products formed, namely 2-methyl-1-heptene

(2.56), 2-methyl-2-heptene (2.56a), and 2-methylheptan-1-ol (2.63).  Some

adjustments were therefore made to the procedure used to determine the final

concentration of ester 2.65.

Injection of a benzene solution of 2-methyl-2-trifluoroacetoxyheptane (2.64) into

the GC (injector temperature of 250°C) caused the formation of a small amount of the two

alkenes, 2.56 and 2.56a.  They were produced in approximately equal proportions as

the only detectable products in a combined yield of about 5%, presumably by thermal

elimination of trifluoroacetic acid from 2.64.  The identity and relative retention times of
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the isomeric alkenes were established by GCMS.

2.56 2.56a2.64
OCOCF3

+
∆

– CF3COOH

The primary alcohol 2-methylheptan-1-ol (2.63) is presumably formed from the

rearranged ester 2.65  (≤ 5% the concentration of 2.65 in dilute propionitrile solution) in

the reaction solution.  However, the exact manner of its formation is unknown.  Although

dry solvents, reagents and apparatus were used, hydrolysis of the parent ester with

adventitious water does still seem the most likely cause of the formation of 2.63.

2.65 2.63

OCOCF3 OH
H2O

Injection of a benzene solution of 2-methyl-1-trifluoroacetoxyheptane (2.65) into

the GC did not result in the formation of either of the alkenes, nor the alcohol 2.63.

Therefore, both alkenes are formed solely from the unrearranged ester 2.64.  Primary

alcohol 2.63 is presumed to arise solely from the rearranged ester 2.65.  Consequently,

the value of the final concentration of the rearranged ester, [2.65]f, was taken to be the

sum of the concentrations of the ester itself and the alcohol subsequently formed from it

(equation 2.8).

[2.65]f  =  [2.65]  +  [2.63]                                                                   (2.8)

Likewise, the value of the final concentration of the unrearranged ester, [2.64]f,

was taken to be the sum of the concentrations of 2.64 and the isomeric alkenes formed

by thermal elimination of CF3COOH from it (equation 2.9).

[2.64]f  =  [2.64]  +  [2.56]  +  [2.56a]                                                    (2.9)
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The computer program which calculated the kr/kH1 values employed a ratio of the

rearranged and unrearranged products to iteratively solve equation 2.6, with the

assumption that these were the only two products.  To avoid calculational errors, the

values of [2.65]f were corrected to equal the fraction of the total concentrations of

product esters, multiplied by the initial concentration of the limiting reagent, Bu3SnH

(equation 2.10).

[2.65]f corr.  =  
[ ]

[ ]  +  [ ]

2.65

2.65 2.64
f

f f

  ×  [Bu3SnH]i                             (2.10)

The value of [Bu3SnH]i for each reaction was calculated, in turn, by measuring

the number of moles of unreacted β-bromoester 2.59 remaining at the end of the reaction

by GC, subtracting this value from the number of moles present initially, then dividing by

the reaction solution volume (equation 2.11).

[Bu3SnH]i  =  
n ni f( )  –  ( )

reaction solution volume (L)

2.65 2.65
                                (2.11)

This final correction was employed because trifluoroacetic acid—formed during

the reaction by elimination from the unrearranged product ester 2.64—reacts with

Bu3SnH, to form hydrogen and tributyltin trifluoroacetate.  Tributyltin trifluoroacetate,

Bu3SnOCOCF3, can be detected in small proportions in the reaction mixtures by GC,

having a retention time approximately midway between that for Bu3SnH and Bu3SnBr.

The iterative computer program does not account for this manner of consumption of

Bu3SnH, hence necessitating a corrective response.  Tables 2.4 to 2.6 reveal slight

variations in the [Bu3SnH]i values between reactions in each concentration set.  The

lowest [Bu3SnH]i values are usually found in the highest temperature (373 K/100°C)

reactions, where the largest amount of trifluoroacetic acid is produced by elimination from

the product ester 2.64.
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2.5.4 Kinetics results

Table 2.4. Kinetic data for reactions with hexane as the solvent

Nominal
[Bu3SnH]i T (K)

[2.65]f

corr. (M)
[Bu3SnH]i

(M)
[Bu3SnH]f

(M)
k

k

r

H1

 (M)

10-6 × kH1
calc.

(M-1s-1)

10-3 × kr

(s-1)

0.015 M 313.9 0.00287 0.0144 0 0.00107 4.17±1.7 4.48±1.8

332.5 0.00479 0.0149 0 0.00244 5.31±2.1 13.0±3.4

353.6 0.00704 0.0149 0 0.00524 6.78±2.7 35.5±15

373.2 0.00911 0.0146 0 0.0103 8.29±3.2 85.4±35

0.050 M 313.9 0.00500 0.0503 0 0.00138 4.17±1.7 5.75±2.4

332.5 0.00845 0.0499 0 0.00292 5.31±2.1 15.5±6.4

353.6 0.00140 0.0497 0 0.00651 6.78±2.7 44.1±18

373.2 0.0211 0.0491 0 0.0140 8.30±3.2 116±48

0.10 M 313.9 0.00682 0.0996 0 0.00166 4.17±1.7 6.91±2.8

332.5 0.0112 0.0990 0 0.00326 5.31±2.1 17.3±7.1

353.6 0.0190 0.0975 0 0.00705 6.78±2.7 47.8±20

373.2 0.0318 0.0977 0 0.0164 8.30±3.2 136±56

0.15 M 313.9 0.00837 0.147 0 0.00193 4.17±1.7 8.03±3.3

332.5 0.0136 0.146 0 0.00367 5.31±2.1 19.5±8.0

353.6 0.0239 0.145 0 0.00813 6.78±2.7 55.1±23

373.2 0.0414 0.144 0 0.0194 8.30±3.2 161±66
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Table 2.5. Kinetic data for reactions with benzene as the solvent

Nominal
[Bu3SnH]i T (K)

[2.65]f

corr. (M)
[Bu3SnH]i

(M)
[Bu3SnH]f

(M)
k

k

r

H1

 (M)

10-6 × kH1
calc.

(M-1s-1)

10-4 × kr

(s-1)

0.010 M 313.6 0.00613 0.00904 0 0.00838 4.15±1.7 3.48±1.4

331.0 0.00717 0.00906 0 0.0159 5.21±2.1 8.27±3.4

353.3 0.00806 0.00922 0 0.0307 6.75±2.7 20.7±8.5

372.5 0.00823 0.00908 0 0.0426 8.24±3.2 35.1±14

0.070 M 313.6 0.0210 0.0661 0 0.0106 4.15±1.7 4.39±1.8

331.0 0.0299 0.0664 0 0.0209 5.21±2.1 10.9±4.5

353.3 0.0395 0.0641 0 0.0437 6.75±2.7 29.5±12

372.5 0.0458 0.0626 0 0.0766 8.24±3.2 63.1±26

0.130 M 313.6 0.0300 0.133 0 0.0121 4.15±1.7 5.01±2.1

331.0 0.0434 0.132 0 0.0226 5.21±2.1 11.8±4.8

353.3 0.0635 0.132 0 0.0481 6.75±2.7 32.5±13

372.5 0.0794 0.130 0 0.0874 8.24±3.2 72.0±30

0.175 M 313.6 0.0320 0.174 0 0.0115 4.15±1.7 4.78±2.0

331.0 0.0479 0.173 0 0.0219 5.21±2.1 11.4±4.7

353.3 0.0733 0.168 0 0.0496 6.75±2.7 33.5±14

372.5 0.0804 0.140 0 0.0783 8.24±3.2 64.5±26
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Table 2.6. Kinetic data for reactions with propionitrile as the solvent

Nominal
[Bu3SnH]i T (K)

[2.65]f

corr. (M)
[Bu3SnH]i

(M)
[Bu3SnH]f

(M)
k

k

r

H1

 (M)

10-6 × kH1
calc.

(M-1s-1)

10-4 × kr

(s-1)

0.036 M 314.4 0.0186 0.0360 0 0.0156 4.20±1.7 6.54±2.7

332.4 0.0244 0.0366 0 0.0319 5.30±2.1 16.9±6.9

352.2 0.0285 0.0361 0 0.0623 6.67±2.7 41.6±17

373.2 0.0304 0.0352 0 0.115 8.29±3.2 95.0±39

0.075 M 314.4 0.0308 0.0742 0 0.0198 4.20±1.7 8.30±3.4

332.4 0.0402 0.0727 0 0.0370 5.30±2.1 19.6±8

352.2 0.0496 0.0722 0 0.0700 6.67±2.7 46.7±19

373.2 0.0567 0.0706 0 0.134 8.29±3.2 111±46

0.15 M 314.4 0.0384 0.128 0 0.0186 4.20±1.7 7.80±3.2

332.4 0.0575 0.136 0 0.0374 5.30±2.1 19.8±8

352.2 0.0699 0.124 0 0.0661 6.67±2.7 44.1±18

373.2 0.0828 0.117 0 0.126 8.29±3.2 105±43

0.30 M 314.4 0.0605 0.284 0 0.0235 4.20±1.7 9.87±4.0

332.4 0.0874 0.280 0 0.0436 5.30±2.1 23.1±9.5

352.2 0.122 0.280 0 0.0826 6.67±2.7 55.1±23

373.2 0.143 0.278 0 0.118 8.29±3.2 97.9±40

The Arrhenius equation for the first order rearrangement of radical 2.60 can be

written:

lnkr  =  lnAr  –  
E

RT

ar             (2.12)

Likewise, the Arrhenius equation for the second order reaction of radical 2.60

with tributytin hydride can be written:
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lnkH1  =  lnAH1  –  
E

RT

aH1        (2.13)

Subtraction of equation 2.13 from equation 2.12 gives:

ln
k

k
r

H1









  =  ln

A

A

E E

RT
r

H1

r H1a a







 −

−( )
             (2.14)

or, alternatively:

ln
k

k
r

H1









  =  2.3026log10

A

A

E E

RT
r

H1

r H1a a







 −

−( )
          (2.15)

As expected, plots of ln (kr/kH1) against 1/T (figures 2.1-2.3), displayed a linear

relationship.  The gradient was –(E ar – E aH 1)/R  and the vertical intercept

2.3026log10(Ar/AH1).  Kinetic parameters extracted from each of the graphs appear in

table 2.7.
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Figure 2.1. Plot of ln(kr/kH1) against reciprocal temperature for the reactions of radical

2.60 in the solvent hexane
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Figure 2.2. Plot of ln(kr/kH1) against 1/T for the reactions of radical 2.60 in benzene
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Figure 2.3. Plot of ln(k r/kH 1) against 1/T  for the reactions of radical 2.60  in

propionitrile
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Both experimental and recommended values of the kinetic parameters are

supplied in tables 2.7 and 2.8.  Experimental values are averages of the values obtained

from the series of reactions at each concentration, using all the experimental data.

Recommended values are those obtained by omitting lower quality data.  Since the

rearrangement reaction was reversible, data obtained at the lowest initial concentrations of

tributyltin hydride was considered to have the larger possible error.  Reactions with lower

mole balances (ca. 95%) were also considered to provide less reliable data.

Table 2.7. Kinetic parameters extracted from the data plots of ln(kr/kH1) vs. 1/T

Solvent Entry type
log10

A

A
r

H1

M( )










Ear – EaH1

(kJmol-1)

hexane experimental values 3.38±0.14 37.4±0.4

recommended values 3.45±0.06 37.6±0.3

benzene experimental values 3.21±0.50 31.1±1.8

recommended values 3.46±0.04 32.4±0.3

propionitrile experimental values 3.55±0.11 31.7±1.1

recommended values 3.42±0.03 30.7±0.1

Uncertainties represent one standard deviation from the mean (68% confidence)

Figure 2.4 shows a plot of lnkr versus 1/T.  Arrhenius parameters have been

extracted and appear in table 2.8.  To allow the kinetic parameters to be expressed in

familiar units, the Arrhenius equation can be written in the form:

ln kr  =  2.3026log10 Ar  –  
E

RT

ar                                         (2.16)
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Figure 2.4. Comparative Arrhenius plots of lnkr against reciprocal absolute temperature

for the rearrangement of radical 2.60 in the solvents hexane, benzene and propionitrile.

Data points represent kr mean values from each of the four concentrations and error bars

represent the spread of kr values.

Table 2.8. Arrhenius parameters for the rearrangement of 2-methyl-2-trifluoroacetoxy-

1-heptanyl radical (2.60) in the solvents hexane, benzene and propionitrile

Solvent Entry type log10[A (s-1)] Ear (kJmol-1)

hexane experimental values 11.9±0.3 48.7±0.9

recommended values 11.8±0.3 48.9±0.7

benzene experimental values 11.7±0.6 42.4±3.2

recommended values 12.0±0.2 43.7±0.8

propionitrile experimental values 11.9±0.5 42.2±2.9

recommended values 11.9±0.2 42.0±0.3

Uncertainties represent one standard deviation from the mean (68% confidence limit).
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2.6 Discussion of results

It was found that the rearrangement of radical 2.60 to 2.61 was reversible,

having an equilibrium constant, K, of between 15 and 53, depending upon the method of

determination.  This reversibility was reflected in the plots of ln(kr/kH1) against reciprocal

temperature (figures 2.1-2.3), where it was observed that the lowest data points at each

temperature were those belonging to the reactions performed at the lowest concentrations

of tributyltin hydride.

The accuracy of the kr values are dependent on the respective kH1 values and

therefore on how well the model system mirrored the actual hydrogen atom transfer

reaction between 2.60 and Bu3SnH.  It is believed that the model system selected to

mimic actual kH1 values was a good choice.  If anything, kH1 for the reaction of 2-methyl-

2-trifluoroacetoxyheptan-1-yl radical (2.60) with Bu3SnH would be a little smaller than

for its model, neopentyl radical, owing to the increased steric bulk of a trifluoroacetate

group over a methyl substituent.  Therefore, the true corresponding kr values are

probably slightly smaller than indicated, although certainly not as much as an order of

magnitude, since kH1 for the reaction of methyl radical with Bu3SnH at 75°C is only 7.5

times that for the reaction with the much more highly hindered tert-butyl radical.21  It has

been established previously that kH1 does show a solvent dependence, but the effect is

very weak.6

Table 2.9 contains rate constants, kr, for the radical rearrangement of radical 2.60

at 75°C, calculated using the recommended Arrhenius parameters.  Also included are the

values of the empirical solvent polarity parameter ET (30).22  It is clear that kr  increases

as the solvent changes from hexane to benzene to propionitrile, supporting others'

findings that polar solvents accelerate the β-acyloxyalkyl radical rearrangement.3,6,10

The A frequency factors are identical within experimental uncertainty, therefore the rate

constant differences lie with the activation energy term, Ear.  The decrease observed in

Ear is consistent with a weakening of the C2–O alkoxy ester bond with increasing solvent

polarity.
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Table 2.9. Arrhenius parameters and rate constants for the rearrangement of radical

2.60 in various solvents

Solvent

ET(30)

(kcalmol-1) log10[A (s-1)] Ear (kJmol-1) kr  at 75°C (s-1)

hexane 31.0 11.8±0.3 48.9±0.7 2.91 × 104

benzene 34.3 12.0±0.2 43.7±0.8 2.78 × 105

propionitrile 43.6 11.9±0.2 42.0±0.3 3.97 × 105

The current kinetics results are comparable with those obtained for other β-

trifluoroacetoxyalkyl radical shifts,3,6,10 particularly those for the rearrangement of the 2-

methyl-2-trifluoroacetoxypropyl radical (2.5) in CF2ClCFCl2.3  The rearrangement of

radical 2.5 possesses Arrhenius parameters of log10[A (s-1)] = 11.0±1.0 and Ear =

41.0±5.0 kJmol-1, with kr (75˚C) = 7.0 × 104 s-1.3  Therefore, results from this current

study agree reasonably well with those obtained from a similarly-structured radical by the

independent method of kinetic esr spectroscopy.3  Rate constants at 75˚C for the β-

acyloxyalkyl radical rearrangement (table 2.1) vary from >1.2 × 102 to 3.1 × 107 s-1.  On

this scale the isomerization of radical 2.60 can be described as moderately fast.

Beckwith and Duggan observed a linear relationship between the log10(kr/s
-1) and

the solvent polarity parameter ET(30) for the rearrangement at 75˚C of the 2-butanoyloxy-

2-phenyl-1-propyl radical (2.12).6  When data for the rearrangement of radical 2.60

was plotted in this way (figure 2.5), no linear relationship was observed.  The rate

constant for the rearrangement in hexane is significantly smaller than kr in benzene

solution.  This result is not yet well understood, but it would appear to indicate a change

in mechanism as the solvent is changed from benzene to hexane.

One explanation for this unusual behaviour arises from an examination of the

properties of the two hydrocarbon solvents.  The dielectric constant for benzene (2.3) is

only slightly larger than for hexane (1.9).  Both solvents have permanent dipole moments

of zero and similar polarisabilities (ease of inducing a temporary dipole).23  However, the

quadrupole moment for benzene of –29.7 × 10-40 Cm2 is much greater than for simple

alkanes such as ethane (–3.34 × 10-40 Cm2), meaning that the change of charge density is
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much greater across the benzene molecule than for aliphatic, straight chain alkanes.24

The π electrons in the benzene aromatic ring are responsible for this effect, and might be

cause of an increase in kr through a stabilising interaction with the electrophilic carbon of

the ester carbonyl group.  It has been suggested that this type of interaction is responsible

for the large difference in the rate of solvolysis of 1-acetoxy-2-bromopropane in octane

and in benzene.25  Since the compound used in the determination of the ET(30) values22

has no carbonyl group, this parameter does not allow for such an electronic interaction.

Alternatively, there might be an interaction between the benzene ring and the radical centre

at C1, promoting trifluoroacetate scission by an SRN2c reaction.26  Another possible

cause for the apparent size of kr in benzene is that kH1 is decreased through an interaction

between the solvent and Bu3SnH, or because of an interaction between incipient radical

2.60 and benzene which hinders reaction with Bu3SnH.  However, no precedent could

be found for a significant decrease in kH1 upon a change in solvent from n-alkane to

benzene.
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Figure 2.5. Plot of log10(kr/s
-1) vs. ET(30) for rearrangement of radical 2.60 at 75˚C.

The equation of the line of best fit is log10[kr/s
-1] = 0.0741ET + 2.479 (r = 0.787).
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The solvent effects observed in the rearrangement of β-trifluoroacetoxyalkyl

radical 2.60 are significant for a radical reaction but are very small in comparison to

those observed in ionic chemistry.  Rate constants for the first order elimination of HCl

from tert-butyl chloride at 120°C in various solvents27 are displayed in table 2.10.  A

huge relative rate acceleration is observed as the solvent polarity is increased.  However,

for the rearrangement of 2.60, the acceleration effect is at best only a few percent as large

as that for the elimination reaction.

Cl + HCl
k

Table 2.10. Absolute and relative rate constants for the decomposition of t-butyl
chloride

Solvent Rate constant, k  (s-1) Relative rate constant

heptane 1.0 × 10-9 1

benzene 2.45 × 10-7 245

acetonitrile 6.92 × 10-5 69200

The kinetic data obtained in the present study are consistent with a rearrangement

mechanism for radical 2.60 which involves the coincidence of polarized 1,2 (i) and 3,2

(ii) concerted shifts, although it is not possible (at this stage) to exclude the possibility

that the rearrangement mechanism involves the intermediacy of an ion pair (iii).

However, the insensitivity of kr to solvent polarity relative to ionic processes initially

suggests that there is not complete scission of the trifluoroacetoxy group from the carbon

framework prior to the formation of the new bond.
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2.7 Conclusions

The rearrangement of 2-methyl-2-trifluoroacetoxy-1-heptyl (2.60) to the 2-

methyl-1-trifluoroacetoxy-2-heptyl radical (2.61) is a reversible process.  At 80˚C in

benzene, an equilibrium mixture consists of between 93.8% and 98.1% of 2.61.

The kinetics of the rearrangement of 2.60→2.61 have been determined by a

product-studies/competition-clock method in three different solvents.  There was good

agreement with results obtained by kinetic esr spectroscopy for the rearrangement of the

structurally-similar 2-methyl-2-trifluoroacetoxy-1-propyl radical (2.5) in CF2ClCFCl2.

Arrhenius equations for the rearrangement of 2.60 in each solvent were: hexane, log10[kr

(s-1)] = 11.8±0.3 – (48.9±0.7)/θ; benzene, log10[kr (s
-1)] = 12.0±0.2 – (43.7±0.8)/θ;

and propionitrile, log10[kr (s
-1)] = 11.9±0.2 – (42.0±0.3)/θ.  Rate constants at 75˚C in

each solvent were: hexane, kr = 2.9 × 104; benzene, kr = 2.8 × 105; and propionitrile, kr

= 4.0 × 105 s-1.  It is the activation energy term which is primarily responsible for the

dependence of the rate constant upon solvent polarity, indicating that the C–O ether bond

of 2.60 is weakened by polar solvent.  It was unusual that kr in benzene was 9.5 times

as large as that in hexane, yet kr in propionitrile was only 13.6 times as large as that in

hexane.  This effect is not well understood.

These solvent effects, although large for a radical reaction, were only a few

percent as large as those observed for a comparable solvolysis reaction.  Overall, the

results most closely fit a mechanism which involves a combination of concerted and

polarized 1,2 and 3,2 pericyclic shifts, although the intermediacy of an alkene-radical-

cation/trifluoroacetate-anion pair cannot yet be excluded.
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2.8 Experimental

E -Di-tert-butyl Hyponitrite [82554-97-0]

N
NO

O

The preparation of this low-temperature, free-radical initiator was based on the

method of Mendenhall.28  Anhydrous FeCl3 (4.67 g, 28.8 mmol) was stirred with 35 mL

of diethyl ether and cooled to 0˚C before adding tert-butyl chloride (30 mL, 276 mmol),

followed by sodium hyponitrite, Na2N2O2  (3.33 g of 88±5% purity, 27.6 mmol).  The

mixture was allowed to warm to room temperature and stirring was continued for a

further 30 min.  The suspension was filtered through a small column of celite, eluting

with diethyl ether until no further orange/yellow colour was present in the filtrate.  The

filtrate was washed with 5 × 50 mL of water, by which time the washings were

colourless.  After drying (MgSO4), the solvent was evaporated to yield a yellow solid of

mass 4.06 g (23.3 mmol, 84% crude, lit.28 82%).

The crude product was purified by flash chromatography on silica, eluting with

1.5% diethyl ether in 40/60 pet. spirit.  A total mass of 3.31 g (19.0 mmol, 69%) was

retrieved from the column, 2.32 g of which was present as white crystals and the

remainder as an off-white solid.  The off-white product was purified further by

recrystallisation from MeOH/H2O (10:1, v/v) at –50˚C, yielding material which gave one

spot by TLC.  The purified compound was stored in an airtight, dark glass bottle at

–18˚C.

(±) 1-Bromohexan-2-ol [26818-04-2] and (±) 2-Bromohexan-1-ol

[112586-72-8]

OH

Br

Br

OH

2.48 2.49
1

6

A mixture of the isomeric bromohydrins 2.48 and 2.49 was prepared by the

method of Langman and Dalton.19 These compounds have been prepared and partially

characterised previously, but without separation.29

A stirred solution of 1-hexene (5.00 g, 59.4 mmol) and water (3.0 mL, 167

mmol) in 180 mL of DMSO was treated with portions of N-bromosuccinimide (NBS)

(21.15 g, 119 mmol) over 10 minutes.  The solution warmed and became yellow,
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gradually darkening to an orange colour.  After the final addition of NBS, the mixture

was stirred for a further 15 minutes then poured into 500 mL of ice-water and extracted

four times with 100 mL portions of diethyl ether.  The combined extracts were washed

consecutively with 125 mL of water, 125 mL of saturated aqueous NaCl, then dried.

Evaporation of solvent yielded an orange oil of mass 10.37 g which was dissolved in 200

mL of hexane and washed with 50 mL of 5% aqueous sodium metabisulfite then 50 mL

of water and redried.  Removal of solvent afforded a pale yellow oil (9.19 g).  A portion

of this oil (1.00 g) was purified by flash chromatography using 5% ethyl acetate in

hexane as the eluent.  Three compounds were isolated and identified.  In order of elution

they were:

i) 1,2-dibromohexane (0.02 g, 1%), Rf = 0.46

ii) 1-bromohexan-2-ol (2.48, 0.62 g, 53%), Rf = 0.19
1H nmr: 0.92 (t, 3H, CH3), 1.25-1.45 (m, 4H, CH3-CH2CH2), 1.55 (m, 2H, 3-CH2),

2.20 (s, 1H, OH), 3.39 (dd, 1H, 2J = 10 Hz, 3J = 7 Hz, BrCH), 3.56 (dd, 1H, 2J = 10

Hz, 3J = 3 Hz, BrCH), 3.78 (m, 1H, CHO).
13C nmr: 13.9 (6), 22.5 (5), 27.7 (4), 34.8 (3), 40.6 (1), 71.0 (2).

EIMS: 181 (0.04) & 179 (0.03) M+•, 165 (0.5), 163 (0.7), 87 (56), 83 (21), 69 (100),

57 (24), 55 (27);

iii) 2-bromohexan-1-ol (2.49, 0.17 g, 15%), Rf = 0.13
1H nmr: 0.95 (t, 3H, CH3), 1.25-1.60 (m, 4H, CH3-C H 2C H 2), 1.85 (m, 2H,

CH3(CH2)2CH2), 2.20 (s, 1H, OH), 3.78 (m, 2H, CH2-O), 4.14 (m, 1H, BrCH).
13C nmr: 13.8 (6), 22.1 (5), 29.5 (4), 34.6 (3), 60.0 (2), 67.2 (1).

The nmr spectra of 2.4830 and 2.4929 have been published previously and

conform with the current spectra.

(±) 1-Bromomethylpentyl Trifluoroacetate

O

Br

2.50

CF3

O

1

6

A stirred mixture of 1-bromohexan-2-ol (2.48, 0.3087 g, 1.71 mmol) and dry

sodium trifluoroacetate (0.1118 g, 0.822 mmol) was treated with trifluoroacetic

anhydride (1.17 mL, 8.28 mmol).  After 20 min the resulting suspension was treated

with 20 mL of pentane and filtered, washing the precipitate with 13 mL more pentane.

After washing with water (33 mL) and back-extracting the aqueous washings with 2 × 10

mL of pentane, the combined organic phase was were dried.  Careful removal of solvent

under vacuum left a colourless oil which was distilled by kugelrohr (90˚C/10 mmHg), to
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give the desired β-bromoester (2.50, 0.3106 g, 1.12 mmol, 66%) which was 99.7%

pure by GC.
1 H nmr: 0.92 (t, 3H, CH3 ), 1.35 (m, 4H, CH3 (C H 2 )2 ), 1.80 (m, 2H,

CH3(CH2)2CH2), 3.46-3.59 (m, 2H, BrCH2), 5.21 (m, 1H, CH-O).
13C nmr: 13.7 (6), 22.2 (5), 26.8 (4), 32.0 (1*), 32.1 (3*), 77.5 (2), 114.5 (q, 1J19F-
13C = 286 Hz, CF3), 156.9 (q, 2J19F-13C = 43 Hz, C=O).

ir (neat): 2963 s, 2937 s, 2869 s, 1786 vs, 1224 vs, 1160 vs, br, asym, 667 m, asym.

EIMS: 183 (3), 164 (6), 162 (6), 83 (82), 69 (100), 55 (71).

CIMS: 296 (9) & 294 (11) MNH4
+, 201 (49), 184 (39), 165 (98), 163 (100).

Found: C, 34.62; H, 4.63; N, 0.00%. C8H12BrF3O2 requires: C, 34.68; H, 4.37; N,

0.00%.

1-Hexyl Trifluoroacetate [400-61-3]

O CF3

O2.54
1

6

A stirred mixture of 1-hexanol (1.00 g, 9.78 mmol) and dry sodium

trifluoroacetate (0.922 g, 4.97 mmol) was treated with  trifluoroacetic anhydride (6.9 mL,

49 mmol).  The exothermic reaction caused the mixture to boil, then form a thick, white

suspension.  Stirring was continued for another 20 minutes before the mixture was

filtered under vacuum, washing the precipitate several times with a total of 50 mL of

pentane.  The filtrate was washed with 200 mL of water and the aqueous phase was back-

extracted twice with 50 mL portions of pentane.  The combined organic phase was dried

and evaporated carefully (volatile product) under reduced pressure to give a yellow oil

which was distilled by kugelrohr (70˚C/49 mmHg, lit.31 68.9˚C/49 mmHg) to yield

2.54 as a colourless oil (1.91 g, 9.64 mmol, 99%).
1H nmr: 0.90 (t, 3H, CH3), 1.25-1.45 (m, 6H, CH3(CH2)3), 1.75 (m, 2H, 2-CH2),

4.35 (t, 2H, 1-CH2).
13C nmr: 13.9 (6), 22.4 (5), 25.2 (3*), 28.1 (2*), 31.2 (4), 68.3 (1), 114.6 (q, 1J19F-
13C = 286 Hz, CF3), ca.157.6 (q, C=O).

ir (neat): 2962 s, 2937 s, 2877 m, 2867 m, 1787 vs, 1470 m, asym, 1406 m, 1350 s,

1225 vs, 1162 vs, 779 m, 733 m.

EIMS: 99 (12), 97 (14), 85 (40), 84 (16), 83 (29), 71 (53), 69 (91), 57 (100), 56 (69),

55 (80).
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(±) 1-Methylpentyl Trifluoroacetate [763-50-8]

O CF3

O

2.53 1

6

A stirred mixture of 2-hexanol (1.00 g, 9.78 mmol) and dry sodium

trifluoroacetate (0.928 g, 6.78 mmol) was treated with 6.9 mL (49 mmol) of

trifluoroacetic anhydride.  A vigorous reaction resulted, which caused much of the

anhydride to boil off.  The reaction mixture was cooled to 0˚C and more trifluoroacetic

anhydride (4.0 mL, 28 mmol) was added and stirring continued for 20 minutes at room

temperature to complete the reaction.  The mixture was filtered under vacuum, washing

the precipitate with 50 mL of pentane.  The filtrate was washed with 200 mL of water and

the aqueous washings were back-extracted with 50 mL more pentane, then dried.  The

solvent was evaporated carefully (volatile product) and the residue was distilled by

kugelrohr (80˚C/67 mmHg) to yield 2.53 as a colourless oil (1.11 g, 5.61 mmol, 57%),

99.5% pure by GC.
1H nmr: 0.91 (t, 3H, CH2CH3), 1.25-1.40 (m, 4H, CH3(CH2)2), 1.35 (d, 3H, 3J = 6.2

Hz, 1-CH3), 1.55-1.80 (m, 2H, CH3(CH2)CH2), 5.10 (m, 1H, 3J = 6.2 Hz, 2-CH).
13C nmr: 13.8 (6), 19.5 (1), 22.3 (5), 27.2 (4*), 35.1 (3*), 76.6 (2), 114.6 (q, 1J19F-
13C = 286 Hz, CF3), 157.2 (q,2J19F-13C = 42 Hz, C=O).

ir (neat): 2962 s, 2939 s, 2879 s, 2870 s, 1783 vs, 1471 m, asym, 1385 m, 1340 m,

1222 vs, 1116 s, 866 m, 779 m, 732 m.

EIMS: 141 (8), 122 (19), 91 (19), 85 (30), 83 (37), 81 (48), 71 (55), 69 (47), 59 (45),

57 (100), 56 (46), 55 (87).

CIMS: 213 (30), 199 (5) MH+, 196 (28), 189 (22), 149 (48), 141 (51), 135 (85), 122

(83), 109 (100).

Found: C, 48.65; H, 6.60; N, 0.00; F, 28.88%. C8H13F3O2 requires: C, 48.48; H,

6.61; N, 0.00; F, 28.76%.

2-Methyl-1-heptene [15870-10-7]

2.56
17

8

Methyltriphenylphosphonium bromide was purified by recrystallisation from

EtOH/Et2O (mp 233.5-234˚C).  A mixture of methyltriphenylphosphonium bromide



 Chapter 2: Kinetics     62

(35.72 g, 100 mmol) and a 60% suspension of NaH in mineral oil (4.15 g, 104 mmol) in

150 mL of dry diglyme was magnetically-stirred slowly at 65˚C, venting the hydrogen

evolved.  Formation of the phosphorane was deemed complete when the mixture was an

egg-yolk colour and no dense, white solid could be seen on the bottom of the flask (ca.

10 hr).

The mixture was cooled with an ice-water bath while 2-heptanone (2.55, 14.00

mL, 98.3 mmol, dried by passage through a column of anhydrous CaSO4) was added

dropwise, which caused the solution colour to fade from yellow to cream.  A distillation

head was fitted to the flask and the product alkene was distilled from the mixture, under

reduced pressure (96 mmHg) until a constant boiling point (~90˚C) was reached.  The

distillate was washed first with saturated aqueous NaCl (four times), then with water,

until the volume of the organic phase seemed to no longer decrease, then dried over

MgSO4.

The crude alkene was redistilled, collecting the fraction boiling in the range 120-

124˚C (lit.32 119˚C).  This colourless oil (8.26 g) was analysed by 1H nmr and consisted

of 95% the desired alkene (2.56), 4% 2-heptanone (2.55) and a trace of benzene,

making the reaction yield 7.85 g (70 mmol 71%).
1H nmr: 0.90 (t, 3H, 7-CH3), 1.22-1.38 (m, 4H, 6+5-CH2), 1.43 (m, 2H, 4-CH2),

1.71 (s, 3H, 8-CH3), 2.00 (t, 2H, 3-CH2), 4.68 (d, 2H, =CH2).

The 1H nmr resonances matched those of an authentic sample.33

(±) 1-Bromo-2-methylheptan-2-ol

Br

OH

2.57
17

8

The method of Langman and Dalton19 was adapted to prepare this compound.  2-

Methyl-1-heptene (2.56, 5.35 g, 47.8 mmol) and water (2.5 mL, 140 mmol) were added

to 150 mL of DMSO.  The stirred solution was cooled with an ice bath so that the

temperature of the solution remained below 20˚C, while N-bromosuccinimide (10.2 g,

57.3 mmol) was added in portions until the solution remained permanently yellow.  After

pouring the mixture into 500 g of ice-water, the product was extracted with 4 × 100 mL

of diethyl ether (100 mL), and with ethyl acetate (50 mL).  The combined extracts were

washed consecutively with 125 mL portions of water and saturated aqueous NaCl, then

dried and evaporated to yield an orange oil (10.58 g).  Initial purification was achieved by

flash chromatography over 100 g of silica, eluting first with 7% ethyl acetate in hexane,

then 15% ethyl acetate once the sweet odour of the bromohydrin was detected.

Evaporation of the solvents afforded 2.57 (8.79 g, 42.0 mmol, 88%) as a colourless oil
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which was distilled by kugelrohr (85˚C/0.8 mmHg) to give analytically pure material.
1H nmr: 0.90 (t, 3H, 7-CH3), 1.20-1.40 (m, 6H, CH3(CH2)3), 1.31 (s, 3H, 8-CH3),

1.55-1.65 (m, 2H, 3-CH2), 1.91 (s, 1H, OH), 3.45 (d, 1H, 2J = 10.2 Hz, CHBr), 3.49

(d, 1H, 2J = 10.2 Hz, CHBr).
13C nmr: 13.9 (7), 22.5 (6), 23.6 (4), 24.9 (8), 32.1 (5), 39.9 (3), 45.3 (1), 71.3 (2).

ir (neat): 3425 s, br, asym, 2959 s, 2935 s, 2873 m, 2862 m, 1462 m, 1378 m, 1232 m,

asym, 1042 s, 773 m, 670 s.

EIMS: 195 (8), 193 (12), 139 (15), 137 (16), 115 (14), 95 (32), 93 (32), 71 (97), 69

(96), 58 (89), 57 (100), 55 (68).

Found: C, 45.72; H, 8.53; N, 0.00; Br, 38.56%. C8H17BrO requires: C, 45.94; H,

8.19; N, 0.00; Br, 38.21%.

(±) 1-Bromomethyl-1-methylhexyl Trifluoroacetate

Br

O

2.59
CF3

O
17

8

A stirred solution of 1-bromo-2-methylheptan-2-ol (2.57, 8.79 g, 42.0 mmol) in

dry CH2Cl2 (150 mL) was cooled to 0˚C.  Dry pyridine (3.40 mL, 42.0 mmol) was

added, followed by the dropwise addition of trifluoroacetic anhydride (5.95 mL, 42.1

mmol) over 2 minutes. The mixture was allowed to warm to room temperature then

stirred for 20 minutes more.  Pentane (100 mL) was added and the mixture was washed

with 100 mL of water. The aqueous phase was back-extracted with 20 mL of pentane, the

combined organic phases were dried, and the solvents were evaporated under reduced

pressure.  TLC (7% ethyl acetate in 40-60˚C pet. spirit) revealed that some hydrolysis of

the ester had occurred during work-up.  The product was purified by flash

chromatography (eluent: pentane), giving a colourless oil (12.15 g).  Distillation by

kugelrohr (86˚C/2 mmHg) afforded analytically pure 2.59 (11.80 g, 38.7 mmol, 92%).

Analysis by GC (BP1) revealed that the product contained 98.78% of the desired isomer

2.59 and 0.79%  2-bromo-1-methylhexyl trifluoroacetate (2.66).
1H nmr: 0.90 (t, 3H, 7-CH3), 1.25-1.40 (m, 6H, CH3(CH2)3), 1.64 (s, 3H, CH3-CO),

1.87 (m, 1H, 3-CH), 2.07 (m, 1H, 3-CH), 3.75 (d, 1H, 2J = 11.2 Hz, CHBr), 3.82 (d,

1H, 2J = 11.2 Hz, CHBr).
13C nmr: 13.9 (7), 22.3 (8), 22.4 (4*), 22.9 (6*), 31.6 (5), 36.63 (1†), 36.69 (3†), 87.9

(2), 114.2 (q, 1J19F-13C = 287 Hz, CF3), 155.9 (q, 2J19F-13C = 42 Hz, C=O).

ir (neat): 2960 s, 2935 s, 2870 m, 1780 vs, 1464 m, 1370 s, asym, 1221 vs, 1160 s, br,

asym, 1040 m, 852 m, 777 s, 729 m, asym, 677 m, asym.
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GCMS: 263 (0.2), 261 (0.2), 235 (5), 233 (5), 211 (16), 192 (6), 190 (6), 111 (32), 97

(70), 69 (73), 55 (100).

Found: C, 39.19; H, 5.43; N, 0.00%. C10H16BrF3O2 requires: C, 39.36; H, 5.29; N,

0.00%.

(±) 2-Methylheptan-2-ol [625-25-2]

OH

2.62

17

A stirred solution of methylmagnesium bromide in diethyl ether (29.0 mL of

Aldrich 3.0 M solution, 87 mmol) was cooled in an ice-salt bath, while a solution of 2-

heptanone (2.55, 8.59 g, 75.2 mmol) in 20 mL of dry diethyl ether was added

dropwise, over 20 min.  The mixture was heated at reflux for 30 min.  The cooled

mixture was poured onto 100 g of cracked ice, followed by 50 mL of 1.5 M aqueous

sulfuric acid, with stirring.  The aqueous phase was extracted twice with 50 mL portions

of diethyl ether and the combined extracts were washed consecutively with 50 mL each of

sat. aqueous NaHCO3, NaCl and then dried.  Removal of solvent under vacuum yielded a

slightly yellow oil which was distilled by kugelrohr (78˚C/15 mmHg, lit.34 66-68˚C/15

mmHg), providing 2.62  (8.07 g, 62.0 mmol, 82%) as a colourless oil with a pleasant

smell.
1H nmr: 0.90 (t, 3H, 7-CH3), 1.21 (s, 6H, 2 ×  1-CH3), 1.25-1.40 (m, 6H,

CH3(CH2)3), 1.41-1.57 (m, 3H, 3-CH2 and OH).
13C nmr: 14.0 (7), 22.6 (6*), 24.0 (4*), 29.1 (C1 x 2), 32.3 (5), 43.9 (3), 71.0 (2).

GCMS: 115 (13), 112 (2), 97 (3), 69 (8), 59 (100).

(±) 2-Methylheptan-1-ol [60435-70-3]

OH

2.63
17

8

A procedure to prepare 1-hexanol by the hydroboration of 1-hexene35 was

adapted to prepare 2.63.  Dry conditions were used throughout the hydroboration step.

A stirred solution of 2-methyl-1-heptene (2.56, 1.0816 g, 9.64 mmol) in dry THF (4.5

mL) was cooled to 0˚C before a solution of BH3:THF complex in THF (3.21 mL of a

1.01 M solution, standardised by hydrogen evolution from its reaction with water, 3.25

mmol) was added by syringe pump over 20 minutes.  After stirring for an hour at room

temperature 3.00 M aqueous NaOH solution (1.07 mL, 3.21 mmol) was added, followed



 Chapter 2: Kinetics     65

by the dropwise addition of a 29% solution of aqueous hydrogen peroxide (1.37 mL,

11.7 mmol) over 5 minutes, while cooling the reaction vessel sufficiently to keep the

temperature below 35˚C.  Stirring at room temperature was continued for an additional

100 minutes, by which time a thick, white precipitate was present.

Water (10 mL) and diethyl ether (15 mL) were added, the mixture was filtered to

remove the precipitate and the layers were separated.  The aqueous layer was extracted

twice more with 10 mL portions of diethyl ether and the combined organic extracts were

washed thrice with 5 mL portions of saturated aqueous NaCl, then dried (MgSO4).

Removal of solvents under reduced pressure yielded a colourless oil (1.28 g).  This was

distilled by kugelrohr (105-115˚C/28 mmHg, lit.36 R enantiomer 94-96˚C/30 mmHg) to

give 2.63 as a sweet smelling, colourless oil (1.16 g, 8.91 mmol, 92%) which was

98.7% pure by GC (BP1).
1H nmr: 0.89 (t, 3H, 7-CH3), 0.91 (d, 3H, 8-CH3), 1.10 (m, 1H, 3-CH), 1.20-1.45

(m, 7H, CH3(CH2)3 & 3-CH), 1.60 (m, 1H, 2-CH), 1.71 (s, 1H, OH), 3.41 (dd, 1H,
2J = 10.5 Hz, 3J = 6.5 Hz, HOCH), 3.51 (dd, 1H, 2J = 10.5 Hz, 3J = 5.8 Hz, HOCH).
13C nmr: 14.1 (7), 16.5 (8), 22.6 (6), 26.6 (4), 32.1 (5*), 33.1 (3*), 35.7 (2), 68.4 (1).

GCMS: 112 (3), 98 (4), 97 (4), 84 (11), 83 (17), 70 (31), 69 (21), 57 (100), 43 (40), 41

(53).

(±) 2-Methyl-1-heptyl Trifluoroacetate [53800-03-6]

O CF3

O
2.65

17

8

A stirred mixture of 2-methylheptan-1-ol (2.63, 0.5058 g, 3.88 mmol) and dry

sodium trifluoroacetate (0.2574 g, 1.89 mmol) was cooled to 0˚C with an ice bath.

Trifluoroacetic anhydride (2.71 mL, 19.2 mmol) was added dropwise over 2 min.

Stirring was continued at room temperature for a further 20 minutes to complete the

reaction.  Pentane (25 mL) was added and the mixture was washed with 5 mL of water,

then dried and evaporated carefully (volatile product) under reduced pressure.  The crude

product (0.83 g) was distilled by kugelrohr (85˚C/60 mmHg) to give 2.65 as a

colourless oil (0.81 g, 3.6 mmol, 92%) which was 98.9% pure by GC.
1H nmr: 0.89 (t, 3H, 7-CH3), 0.97 (d, 3H, 8-CH3), 1.15-1.43 (m, 8H, CH3(CH2)4),

1.90 (m, 1H, 2-CH), 4.14 (dd, 1H, 2J = 10.6 Hz, 3J = 6.9 Hz, 1-CH), 4.24 (dd, 1H,
2J = 10.6 Hz, 3J = 5.8 Hz, 1-CH).
13C nmr: 14.0 (7), 16.4 (8), 22.5 (6), 26.3 (4), 31.9 (5*), 32.3 (2) 32.9 (3), 72.8 (1),

114.6 (q, 1J19F-13C = 286 Hz, CF3), 157.6 (q, 2J19F-13C = 42 Hz, C=O).
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ir (neat): 2965 s, 2939 s, 2882 m, 2868 m, 1790 vs, 1474 m, asym, 1408 m, 1386 m,

1350 m, asym, 1227 vs, 1168 vs, br, 953 w, 782 m, 737 m.

EIMS: 226 (2) M+•, 155 (8), 127 (2), 126 (2), 113 (3), 112 (2), 99 (9), 98 (13), 85 (17),

71 (30), 57 (100).

Found: C, 52.83; H, 7.78; N, 0.00; F, 24.39%. C10H17F3O2 requires: C, 53.09; H,

7.57; N, 0.00; F, 25.19%.

(±) 1,1-Dimethylhexyl Trifluoroacetate [77949-48-5]

O

CF3

O

2.64

17

A stirred solution of 2-methylheptan-2-ol (2.62, 1.50 g, 11.5 mmol) in distilled

hexane (40 mL)was treated with pyridine (0.935 mL, 11.6 mmol) .  Trifluoroacetic

anhydride (1.65 mL, 11.7 mmol) was added slowly, while cooling the reaction flask with

a water bath.  A thick, white precipitate was formed which stopped the mixture from

being stirred.  The addition of more hexane (10 mL) overcame this problem.  Stirring was

continued until the solid mass was broken up, then the mixture was filtered and washed

with hexane (20 mL).  The filtrate was washed with 20 mL of water, dried (MgSO4),

then the solvent was carefully evaporated (volatile product) under reduced pressure and

the residue was distilled by kugelrohr (100˚C at 50 mmHg), to give 2.64 (2.10 g, 9.28

mmol, 81%) as a colourless oil, having a GC purity (BP1) of 99.8%.
1H nmr: 0.89 (t, 3H, 7-CH3), 1.25-1.40 (m, 6H, CH3(CH2)3), 1.54 (s, 6H, 2 × 1-

CH3), 1.80-1.85 (m, 2H, 3-CH2).
13C nmr: 13.9 (7), 22.4 (6), 23.3 (4), 25.5 (C1 × 2), 31.8 (5), 40.3 (3), 89.3 (2), 114.5

(q, 1J19F-13C = 287 Hz, CF3), 156.2 (q, 2J19F-13C = 41 Hz, C=O).

ir (neat): 2964 s, 2940 s, 2880 m, 2870 m, 1782 vs, 1474 m, asym, 1397 m, 1375 s,

1222 vs, 1160 vs, br, 876 m, 783 m, 767 m.

GCMS: 155 (100), 113 (12), 112 (12), 97 (13), 71 (12), 69 (64).

Found: C, 52.81; H, 7.79; N, 0.00%. C10H17F3O2 requires: C, 53.09; H, 7.57; N,

0.00%.



 Chapter 2: Kinetics     67

(±) 2-Methyl-2-pentyloxirane [53907-75-8]

2.67
O 17

8

The sample of 2-methyl-1-heptene used in this preparation was 80% pure by GC,

the remainder being benzene.  A solution of 2-methyl-1-heptene (2.56, 1.20 g = 0.96 g

alkene, 8.6 mmol) in 15 mL of CH2Cl2 was stirred and cooled to 0˚C.  To this was

added a solution of m-CPBA (2.4 g of stated purity 85%, 12 mmol) in 30 mL of

CH2Cl2.  The solution of the oxidant was dried with MgSO4 before addition to remove

droplets of water evident upon dissolution of the m-CPBA.  After 30 minutes, the

mixture was filtered and the solvent evaporated to yield a white, crystalline solid

suspended in a colourless oil.  Pentane was added and the resulting suspension was

filtered to remove solid, acidic components.  Evaporation of the filtrate yielded an oil

which was purified by flash chromatography using 5% diethyl ether in hexane as the

eluent.  The  epoxide 2.67 (0.62 g, 4.8 mmol, 56%) was obtained as a colourless oil.
1H nmr: 0.90 (t, 3H, 7-CH3), 1.25-1.35 (m, 6H, CH3(CH2)3), 1.32 (s, 3H, CH3CO),

1.35-1.70 (m, 2H, 3-CH2), 2.65-2.72 (2 × d, 2H, CH2O).
13C nmr: 14.0 (7), 20.8 (8), 22.6 (6), 24.9 (4), 31.8 (5), 36.7 (3), 53.9 (1), 57.0 (2).

The partial 1H nmr spectrum of 2.22 has been published37 and conforms with that

recorded here.

(±) 2-Bromo-2-methylheptan-1-ol

OH

Br

2.58
17

8

A method based on that of Thayer, Marvel and Hiers38 was used to prepare 2.58.

Hydrobromic acid (0.8501 g of a 48% aqueous solution, 5.1 mmol), was cooled to 0˚C

and stirred while 2-methyl-1,2-epoxyheptane (2.67, 500 µL, 3.01 mmol) was added by

syringe over 1 min.  The mixture was allowed to warm to room temperature over 90 min,

then diluted with water (15 mL) and extracted twice with 10 mL portions of CH2Cl2.

The combined organic phase was washed with 5 mL of water, then dried (MgSO4) and

evaporated to yield a colourless oil (0.51 g).

Analysis of the oil by TLC (15% diethyl ether in hexane) showed two main

components of Rf 0.23 and 0.25, the latter being the most abundant.  By repeated flash
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chromatography (eluent: ethyl acetate/hexane mixtures) of this mixture, 21.1 mg (0.101

mmol, 3.4%) of an oil  was isolated, significantly enriched in the later eluting compound.

The major component was identified as 2.58 since it had an identical 1H nmr spectrum to

that of an isomeric by-product identified in the preparation of 1-bromo-2-methylheptan-2-

ol (2.57).  By nmr, the ratio of 2.58:2.57 was 4.7:1.  Analysis by GC revealed that

2.58 largely decomposes to the epoxide 2.67 in the injector port.
1H nmr: 0.91 (t, 3H, 7-CH3), 1.25-1.40 (m, 4H, CH3(CH2)2), 1.42-1.53 (m, 2H, 4-

CH2), 1.71 (s, 3H, CH3-CBr), 1.76 (m, 1H, 3-CH), 1.89 (m, 1H, 3-CH), 1.95 (s, br,

1H, OH), 3.60 (d, 1H, 2J = 12.2 Hz, CH-O), 3.66 (d, 1H, 2J = 12.2 Hz, CH-O).
13C nmr: 14.0 (7), 22.5 (6), 25.1 (4), 27.5 (8), 31.8 (5), 41.7 (3), 72.0 (1), 75.7 (2).

(±) 2-Bromo-2-methylheptyl Trifluoroacetate

O

Br

2.66

CF3

O
17

8

Compound 2.66  was prepared from a mixture of the regioisomeric

bromohydrins, 2.58 and 2.57, using the principle that esterification of a primary

hydroxy group would be faster than for a tertiary hydroxyl.  A stirred solution of a 4.7:1

mixture of 2.58:2.57 (9.5 mg, 0.026 mmol of 2-bromo-2-methylheptan-1-ol and

0.0055 mmol of 1-bromo-2-methylheptan-2-ol) in CH2Cl2 (300 µL) was cooled to

–78˚C with a dry ice/acetone bath.  Pyridine (2.0 µL, 0.025 mmol) was added, followed

by trifluoroacetic anhydride (3.4 µL, 0.024 mmol).  The mixture was stirred overnight,

the bath temperature being 10˚C the following morning.

The mixture was treated with 1 mL of pentane, washed with 1 mL of water, dried

over MgSO4 and concentrated.  The residue was purified by flash chromatography

(hexane as eluent) to give a colourless oil of mass (3.3 mg, 0.011 mmol, 45% w.r.t.

TFAA).  It was composed of 99.01% 2-bromo-2-methylheptyl trifluoroacetate (2.66),

0.23% 1-bromomethyl-1-methylhexyl trifluoroacetate (2.59) and 0.76% of the epoxide

(2.67) by gas chromatography (BP1).
1H nmr: 0.90 (t, 3H, 7-CH3), 1.25-1.40 (m, 4H, CH3(CH2)2), 1.45-1.55 (m, 2H, 4-

CH2), 1.76 (s, 3H, 8-CH3), 1.80-1.90 (m, 2H, 3-CH2), 4.44-4.53 (2 × d, 2H, CH2O).
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The general procedure for radical-mediated reactions of β -

bromoesters with tributyltin hydride (non-kinetic experiments)
Reactions of this type had the following elements in common.  The β-bromoester

was weighed accurately into a round-bottomed flask, fitted with a stirrer bar.  The flask

was fitted with a reflux condenser and placed under a nitrogen atmosphere.  The desired

volume of the dry and pure solvent (see Chapter 7, General Experimental), usually

benzene, was added by syringe and the resulting solution was freed of oxygen by passing

a gentle stream of dry nitrogen through a long needle, into the stirred solution for

approximately five min.

The apparatus was lowered into a thermostatted oil bath at the desired temperature

and the solution was stirred for several minutes to permit equilibration.  Tributyltin

hydride (or tris(trimethylsilyl)silane) was then injected.  A solution of the initiator AIBN

(T ≥ 60˚C39) or di-tert-butyl hyponitrite (20˚C < T < 60˚C) in the reaction solvent was

then introduced in one portion (normally 1-5 mol% relative to Bu3SnH).  If a slow

addition was required, a solution of the reducing agent in the reaction solvent, together

with half of the total amount of initiator, was deoxygenated and added at the desired rate

by syringe pump, by routing a long needle down the reflux condenser.  The other half of

the initiator was placed in the reaction solution with the β-bromoester, prior to

deoxygenation.

The progress of a reaction was monitored by GC, withdrawing samples directly

from solution.  To confirm that the reaction was complete, an aliquot of ca. 100 µL was

withdrawn, dissolved in 500 µL of CCl4, then injected into the gas chromatograph.

Tetrachloromethane quickly consumes any remaining Bu3SnH, so if the limiting reagent

is the β-bromoester, the GC-detection of the β-bromoester indicates that the reaction was

incomplete.  In the case where tributyltin hydride (or tris(trimethylsilyl)silane) is the

limiting reagent, there will be no change in the ratio of rearranged and non-rearranged

products and no tributyltin chloride detected when the reaction is complete.

Determination of the equilibrium constant, K,  for the reversible
reaction 2.60→2.61, at 80˚C in benzene

The sample of 2-bromo-2-methylheptyl trifluoroacetate (2.66, 99.01% by GC)

contained 0.23% of the regioisomer 1-bromomethyl-1-methylhexyl trifluoroacetate

(2.59) and 0.76% of the epoxide 2-methyl-2-pentyloxirane (2.67).

The β-bromoester (2.66, 3.3 mg, 1.1 × 10-5 mol) was placed into a 5 mL

Reactivial with a stirrer vane and purified benzene (4 mL) was added.  A Mininert valve

was screwed on the top of the vial and the solution was deoxygenated with a gentle

stream of dry nitrogen.  The vial was placed in an 80±1˚C bath and the solution was

stirred for 5 min before tributyltin hydride (3.1 µL, 1.1 × 10-5 mol) and a 0.11 M
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solution of AIBN in benzene (1.0 µL, 1.1 × 10-7 mol) were quickly injected.  After a

total time of 2 hours the solution was cooled, concentrated by rotary evaporation and

analysed by GC using a dimethylpolysiloxane (BP1) capillary.

A GC temperature program, beginning at 100˚C and ramping immediately at

10˚C/min to 250˚C, was used.  The injector temperature was 250˚C.  In addition to tin-

containing compounds, the chromatogram displayed peaks at 5.16 (0.59%), 5.87

(35.61%) and 6.24 min (2.16%), corresponding to the compounds 1,1-dimethylhexyl

trifluoroacetate (2.64), 2-methyl-1-heptyl trifluoroacetate (2.65) and 2-methylheptan-1-

ol (2.63), respectively.  However, 2-methyl-2-pentyloxirane (2.67) had an identical

retention time with 1,1-dimethylhexyl trifluoroacetate (2.64) on the dimethylpolysiloxane

stationary phase.  In addition, there were peaks at 3.06 (0.96%) and 3.31 min (1.06%),

corresponding to 2-methyl-1-heptene (2.56) and 2-methyl-2-heptene (2.56a)

respectively.  It is known that the tertiary ester, 1,1-dimethylhexyl trifluoroacetate

(2.64), undergoes thermal elimination of trifluoroacetic acid in the injector port of the

chromatograph, forming these alkenes and presumably does so to some extent in hot

solutions as well.  The corrected ratio of 2.65:2.64, calculated with the aid of detector

response factors, is ≥ 15.1 assuming that both the alkenes were formed from 2.64.

Table 2.11.  GC yields of various products on the stationary phase

dimethylpolysiloxane

Compound GC retention time (min) Peak area (counts)

2 . 5 6 3.06 15248

2.56a 3.11 16806

2.64 and/or 2.67 5.16 9342

2 . 6 5 5.87 563670

2 . 6 3 6.24 34195

Separation of 2.64, 2.65 and 2.67 was achieved using a polyethylene glycol

(BP20) capillary.  With a column temperature program of 50˚C (5 min), 10˚C/min ramp,

240˚C (5 min), the respective retention times and peak integrals were 2.64 (2.81 min,

0.4652%), 2.65 (4.60 min, 24.5992%) and 2.67 (5.78 min, 0.0781%).  According to

these data, the ratio of 2.65:2.64 is 52.9:1.  Unfortunately, it was not possible to

determine the yields of the alkenes 2.56 and 2.56a using this system.

It is concluded that the equilibrium constant, K, is greater than 15.1, but less than

52.9.
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The procedure used to conduct the kinetics experiments

Approximately 20 mL of the selected, purified solvent (hexane, benzene or

propionitrile) was placed in a 50 mL pear-shaped flask sealed with a septum, then

degassed by three freeze/pump/thaw cycles and stored under a dry nitrogen atmosphere.

In a 10 mL SVF was weighed the desired quantity of 1-bromomethyl-1-methylhexyl

trifluoroacetate (2.59) and biphenyl (internal standard).  The exception to this is where

benzene was used as the solvent pentyl acetate was the analytical standard, a known

quantity of which was added to each reaction mixture immediately prior to analysis.

Approximately 3 mL of the chosen reaction solvent was added to the SVF  and the

resulting solution was degassed in the same manner as the solvent in the pear-shaped

flask.  When equilibrated to 20˚C, the flask was filled to the line with the pure, degassed

solvent.  This solution will be referred to as the stock solution.

Four Reactivials, each fitted with a stirrer vane and capped with a Mininert valve,

were flushed for 5 min with dry nitrogen, then sealed to exclude oxygen.  Into each vial

was placed (nominally) 2.00 mL of the stock solution via a calibrated gastight syringe.

Each Mininert valve was sealed and the septa—removed previously to allow larger bore

needles to pass through the valves—were refitted.  One vial was placed to heat and stir in

each of four thermostatted (±0.3˚C) oil baths, set nominally to 40, 60, 80 and 100˚C.

After 15 min—a time at which a test experiment revealed temperature equilibration to be

complete—an identical quantity of tributyltin hydride (0.9 molar eq. w.r.t. 2.59) was

injected quickly into each vial, through the Mininert valve.  An injection of a solution

supplying approximately 1.0 mol% (w.r.t. Bu3SnH) of a free-radical initiator—di-tert-

butyl hyponitrite for the 40˚C reaction and AIBN for the remainder—followed as soon as

the solution was visibly homogeneous.  The Mininert valve was closed and the reactions

were monitored for completeness by GC, using a dimethylpolysiloxane capillary.  The

GC temperature program began at 100˚C and ramped immediately at 10˚C/min to 250˚C.

The injector temperature was 250˚C.

It became evident that reactions may appear to be complete by GC, but some

reaction was taking place in the injector port of the gas chromatograph.  Therefore, in

several instances, small volumes of reaction solution were "quenched" with CCl4, which

reacted with any remaining Bu3SnH.  The resulting solutions were analysed by GC and

the ratios of the peaks corresponding to relevant compounds were compared to those of

the non-quenched reactions (which appeared to be complete).  If the ratios were identical,

it was concluded that unreacted Bu3SnH was not present in the reaction solution and

hence the reaction was complete.

The quantities of the products of interest were determined by GC (at least three

analyses for each solution), using calibrated detector response factors for each

compound.  Molar balances were found always to be ≥ 95% that of the limiting reagent,

Bu3SnH.
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3.1 Introduction

This chapter is concerned with a study of the regiochemistry of the β-

trifluoroacetoxyalkyl radical rearrangement.  Such a study employs heavy isotopes of

oxygen in order to specifically label one of the two oxygen atoms of the ester group.  To

place the current work in context, the chapter begins with a review of the regiochemistry

of β-acyloxyalkyl radical rearrangements in general.  The preparation of 18O-labelled

compounds from which β-trifluoroacetoxyalkyl radicals may be generated, the

determination of their label enrichment and the design of a mass-spectrometric method for

determining the regiochemical outcome of 1,2 trifluoroacetoxy group shifts are then

described.  Regiochemical results are obtained for rearrangement reactions conducted in

solvents of differing polarity, at different temperatures and with different concentrations

of the radical-reducing agent.  To verify the results from the 18O-labelling studies and

obtain further data under different conditions, the rearrangements of 17O-labelled β-

trifluoroacetoxyalkyl radicals are studied by a 17O nmr technique.  A crossover

experiment is performed to determine whether ester groups are transferred

intermolecularly.  An attempt is made to trap an alkene radical cation intermediate.  The

results and their implications for the rearrangement mechanism are discussed.

3.2 Literature review

Previous experiments with oxygen-labelled radicals of varying structure have

provided valuable information on the regiochemistry of the β-acyloxyalkyl radical

rearrangement.  A comprehensive literature review1 covers all but the most recent of the

work.  Data from the review have been reproduced here and updated with results

published to present (table 3.1).  Calculational errors in the original papers have been

corrected when discovered.  The regiochemical results are expressed in terms of the

fraction of formal 1,2 shift (i) observed in the rearranged product.  The 1,2 shift quotient

is numerically equal to the proportion of label retained by the oxygen atom of the same

hybridisation in the product.  A rate constant is also provided, where possible, for a

temperature at or close to that under which the rearrangement reaction was conducted.
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At a glance, the degree of 1,2 shift covers the complete spectrum from 0-100%.

Generally, the faster the rearrangement proceeds, the higher the proportion of 1,2 shift.

Polar solvents also increase the proportion of 1,2 shift, as indicated by a comparison of

entries 6 and 8.

The mass-spectrometric data for the rearrangements of entries 3 and 4 indicated

that the isomerizations proceeded with a high, but not total, degree of label transposition.4

The authors reported complete transposition owing to the size of the uncertainties

associated with the mass spectrometric enrichment results.4  Results calculated using the

original mass spectrometric data are displayed in table 3.1.  The rearrangement of
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3.2→3.4 (entry 2) was studied by a 13C nmr technique,3 as a check on the result of

entry 3, further substantiating the trend that these types of simple β-acyloxyalkyl radical

rearrangements proceed with essentially complete transposition of ester oxygens.

Table 3.1. A summary of the published results for oxygen-labelling experiments with

various β-acyloxyalkyl radical rearrangements.

Entry Rearrangement Solvent
Temp.
(˚C) % 1,2 shift

 Rate constant
 kr (s-1) at reaction (or other

specified) temperature Ref.

1 3.15→ 3 .16 benzene 80 ~ 0 5.2 × 102 (for acetoxy shift) 2

2 3.2→ 3 . 4 methylcyclohexane 101 ~ 0 3.6 × 103 at 75˚C (R = hex) 3, 4

3 3.1→ 3 . 3 benzene 70 ≤ 4 3.9 × 103 4

4 3.5→ 3 . 6 benzene 70 ≤ 6 4.1 × 104 4

5 3.9→ 3 .12 benzene 80 ~ 0 1.6 × 104 at 75˚C 5

6 3.7→ 3 .10 benzene 80 ~ 0 6.4 × 104 at 75˚C 5

7 3.13→ 3 .14 benzene 80 19 not measured (105?) 6

8 3.7→ 3 .10 methanol 65 25 1.6 × 105 at 75˚C 5

9 3.8→ 3 .11 benzene 80 39 1.7 × 105 at 75˚C 5

10 3.17→ 3 .18 benzene 80 67-75 1.2 × 104 7

11 3.20→ 3 .22 benzene 80 76 2.5 × 106 3

12 3.19→ 3 .21 benzene 80 77 not measured 8

13 3.23→ 3 .26 benzene 80 ~ 100 9.9 × 105 9

14 3.24→ 3 .27 benzene 80 ~ 100 1.7 × 106 9

15 3.25→ 3 .28 benzene 80 ~ 100 1.1 × 106 9

It is clear that an increase in the amount of 1,2 shift is generally accompanied by

an increase in the rearrangement rate constant, kr.  There is no direct correlation between

these quantities however, since the situation is complicated by such factors as differences

in the electronic properties of migrating groups, alkoxy framework structure,

stereoelectronic requirements and solvent properties.  But generally the fastest

rearrangements favour a 1,2 shift.  For example, 3.15 rearranges comparatively slowly
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to radical 3.16 (entry 1) with essentially complete transposition of the ester oxygens.2  In

contrast, the rearrangement 3.20→3.22 (entry 11) proceeds 4800 times as fast and with

76% 1,2 shift.3

The lactone radicals 3.23-3.25 each undergo a 1-carbon ring contraction

rearrangement with a rate constant of approximately 106 s-1 and with 100% 1,2 shift.9

Radicals 3.23 and 3.24 are obviously constrained to the E conformation, but the

authors point out that the eight-membered ring of 3.25 should permit a significant

proportion of the lower energy Z conformation to be present.9  Computer calculations

suggest, however, that for 3.25 the 2,3 shift has a significantly higher barrier than the

1,2 shift, making the Z conformer relatively unreactive towards rearrangement.9

Although obtained at different temperatures, data for the rearrangement of the 2-

butanoyloxy-2-phenyl-1-propyl radical (3.7) in benzene (0% 1,2) and methanol (25%

1,2) indicate that a more polar solvent simultaneously increases the rearrangement rate

and the proportion of 1,2 shift.  A study of solvent polarity upon the rearrangement rate

of 3.7 obtained a correlation with the parameter ET, of the form log10kr (s
-1) = 0.024 ET

+ 3.882.5  This indicates a weak, yet significant, dependence of kr upon solvent polarity.

A Hammett plot for the rearrangement of radicals 3.7-3.9 resulted in a linear relationship

of the form log10(krX/krH) = –0.71σp
+, indicating that stabilisation of positive charge at

the benzylic carbon has a small but significant effect upon the rate constant.5

Unfortunately, an extensive study of the effect of solvent upon the rearrangement

regiochemistry has not been reported for this or any other system.

Unrearranged ester products, resulting from the direct reduction of radicals 3.2,3

3.7,5 3.203 and 3.23-3.259 are reported to have experienced no scrambling of the

oxygen label.  However, 17O-carbonyl-3-(butanoyloxy)tetrahydropyran, the

unrearranged product resulting from the reaction of 3.17 with Bu3SnH, bore 6% of the

label in the ether oxygen.  Such scrambling of the label has important mechanistic

consequences.  Since the label distribution in the unrearranged product is often not

reported, other systems might also experience this type of label scrambling.

A migration of the trifluoroacetoxy group in 3.13→3.14 resulted in 19% 1,2
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shift, whereas a ~0% 1,2 shift result might be expected for the migration of an acetoxy

group in an analogous situation, if entries 2-6 are any guide.  This increase in 1,2 shift

suggests that there is a cooperation of 1,2 (i) and 3,2 (ii) shifts for electron-attracting

migrating groups, or an involvement of an alkene radical cation/carboxylate ion

intermediate (iii).  This situation prompted an investigation into the factors affecting the

regiochemistry of the β-trifluoroacetoxyalkyl rearrangement.

O O

R

•O

R O

•
O O

R

+
_

iiiiii

•

δ+

δ-

δ+

δ-

‡ ‡

The purpose of this current work was to investigate the effect of solvent,

temperature and radical-reducing agent concentration upon the regiochemistry of the

rearrangement of a β-trifluoroacetoxyalkyl radical of invariant structure.  A radical with a

simple, aliphatic alkoxy framework was studied, to avoid the complications associated

with the propensity for 2-aryl substituents to migrate via the neophyl rearrangement.5  To

allow for the possibility of establishing a correlation with the rearrangement rate constant,

a radical identical in structure to that used for the kinetic study was used.  The distribution

of the oxygen label in the unrearranged product ester was also studied.

3.3 Choice of a suitable system for study

In chapter 2, the 2-methyl-2-trifluoroacetoxy-1-heptyl radical (3.32) was utilised

for the kinetics study owing to the ease with which its precursors could be prepared, the

rate of its rearrangement and because the products from its reactions could be manipulated

easily in the laboratory.  The same radical was deemed highly suitable for labelling

studies, making the regiospecific oxygen-labelling of the β-bromoester 1-bromo-2-

methyl-2-trifluoroacetoxyheptane (3.31) the paramount synthetic task.
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3.4 An attempt to observe the 1,2 shift of a hydroxy group
in a β-hydroxyalkyl radical

According to the data in table 3.1, rearrangements of β-acyloxyalkyl radicals

proceed with a proportion of 1,2 shift somewhere between 0 and 100%.  The question

arose as to whether it was possible to observe the analogous 1,2 shift of an OH group

experimentally.  To answer this question, 1-bromo-2-methylheptan-2-ol (3.30) was

treated with Bu3SnH/AIBN in benzene at 80˚C.  At an average tin hydride concentration

of 0.013 M—a concentration at which a significant proportion (≥80%) of the β-

trifluoracetoxyalkyl rearrangement product (3.35) should form—the only alcohol

detected by GC was that resulting from direct reduction, 2-methylheptan-2-ol (3.36).

The detection limit of 3.37 was estimated at 0.15% that of the major product (3.36).

Therefore, the rate constant for the rearrangement of 2-hydroxy-2-methyl-1-heptyl radical

is less than 0.2% that of 2-methyl-2-trifluoroacetoxy-1-heptyl radical (3.32), i.e. ≤ 5 ×

102 s-1.

Br

OH OH

OH

3.30 3.36 3.37

sole alcoholic
product

none detected

a: Bu3SnH/AIBN, benzene, 80˚C

a
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After accidentally discovering a 1,2 acetoxy group shift in a steroidal β-

acetoxyalkyl radical, Kocovsky and coworkers went in search of the analogous 1,2 OH

shift.8  They were also unsuccessful in observing such a rearrangement.  However, other

workers at first appeared to have met with more success.  Gilbert and coworkers

observed the rearrangement of •CH2CMe2OH to •CMe2CH2OH by esr spectroscopy,

under acidic aqueous conditions, although they doubted that this was a true, concerted

1,2 OH shift.10  Further experiments using pulsed radiolysis and esr have established that

protonation of the hydroxyl group of •CMe2CMe2OH results in C–O bond scission,

forming the tetramethylethylene radical cation by the elimination of water.1 1

Consequently, there is good evidence that the apparent 1,2 OH shift in question occurs

via the eliminative formation and subsequent hydration of the 2-methylpropene radical

cation.

3.5 A study of the regiochemistry of the rearrangement
3.32→3.33 using 18O-labelling techniques

3.5.1 Preparation of an 18O-labelled radical precursor

We preferred to oxygen-label the β-bromoester 3.31 at the ether position since

this site is considerably less prone to exchange processes than the carbonyl oxygen.  The

logical precursor to the labelled β-bromoester 3.31a was the bromohydrin 3.30a.

However, the standard synthetic method12 of hypobromous acid addition to an alkene is

uneconomical with respect to water, the intended source of labelled oxygen.  Langman

and Dalton13 have prepared bromohydrins by the treatment of an alkene in DMSO with

N-bromosuccinimide (NBS) and a comparatively small amount of water.  Unfortunately,

labelling experiments reveal that the bromohydrin oxygen comes not from water, but

from dimethylsulfoxide.14  Dalton and coworkers proposed that DMSO reacts with the

initial bromonium ion to form a sulfoxonium intermediate which is later hydrolysed

(scheme 3.1).14
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Scheme 3.1: Proposed mechanism14 for bromohydrin formation in 18O-DMSO

A new method of bromohydrin formation was therefore sought, one economical

with water and avoiding solvent exchange processes which decrease the level of label

enrichment. Such a procedure was developed, providing the bromohydrin in reasonable

yield, with an oxygen label enrichment essentially the same as that for the labelled water.

1-Bromo-2-methyl-2-trifluoro-oxy-18O-acetoxyheptane (20 atom%)

A solution of 2-methyl-1-heptene (3.29) in dry THF was treated with five molar

equivalents of H2
18O (20.1 atom% 18O, 19.9% enriched) and two equivalents of N-

bromoacetamide (NBA) and catalytic trifluoromethanesulfonic (triflic) acid to give the

labelled bromohydrin 3.30a in 42% yield.  Esterification  of 3.30a with trifluoroacetic

anhydride and sodium trifluoroacetate gave the desired β-bromoester 3.31a in reasonable

yield.

Br Br
18OH

a b

60%42%

      20.0 ± 0.3%    20.0 ± 1.0%Isotopic enrichment in  18O:

a: 5 eq. H2
18O (20.1 atom%), 2 eq. NBA, cat. CF3SO3H, THF;  b: (CF3CO)2O, NaOCOCF3

18O
O

CF3

3.29 3.30a 3.31a

The mechanism of the labelling reaction is thought to be straightforward, the first

step being electrophilic attack of positive bromine upon the double bond.  Subsequent

nucleophilic attack of the resulting bromonium ion with labelled water forms the

protonated alcohol, which deprotonates readily.  It was later discovered that triflic acid is

not required to catalyse the formation of positive bromine from the N-bromoacetamide

and so may be omitted.
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3.5.2 Determination of 18O enrichment in bromohydrin 3.30a

The presence of the 18O label in 3.30a was verified by a 13C nmr spectrum,

which contained peaks at δ 71.29 (18O–C, 20.1%) and δ 71.32 (16O–C, 79.9%),

corresponding to the quaternary carbon resonances of the isotopomers.  Percentages

represent relative heights of peaks which were resolved using the Varian RESOLV nmr

resolution enhancement program.

The H2
18O used to label 3.30a was hydrogen-normalised, i.e. the hydrogen

isotopes were in naturally abundant proportions.  Furthermore, a D2O exchange

experiment resulted in an immediate and complete disappearance of the hydroxyl

resonance in the 1H nmr spectrum of 3.30a, indicating that rapid hydroxyl proton

exchange had taken place during the aqueous work-up of the bromohydrin-forming

reaction. Hence, there cannot be inaccuracy in the mass spectroscopic determination of

the 18O enrichment determination owing to an enrichment of heavy hydrogen isotopes at

the hydroxyl proton.

The isotopic composition of 3.30a was determined accurately using gas

chromatography/mass spectrometry (GCMS).  A molecular ion (MW 209) was not

detected.  The base peak at m/z 115 was ascribed to C7H15O+, formed by loss of BrCH2•

from the molecular ion as illustrated in figure 3.1.  The peak group corresponding to this

oxygen-containing ion was used for the isotopic analysis.

C CH2

CH3

OH

BrCH3CH2CH2CH2CH2

137/139

129

193/195

115

3.30

+ •

Figure 3.1.  Some plausible fragmentation pathways for the molecular ion of unlabelled

1-bromo-2-methylheptan-2-ol (MW 209), yielding ions containing oxygen
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An averaged mass spectrum (5 trials) of the peak group at m/z 115-119 was

obtained for the unlabelled bromohydrin 3.30.  Natural abundance levels of other stable

oxygen isotopes are 0.200% for 18O and 0.038% for 17O.  Using the respective natural

abundances, predicted mass spectra were calculated for isotopomers of 3.30 having the

oxygen composed entirely of 18O and entirely 17O.  The averaged mass spectrum for the

labelled bromohydrin 3.30a was treated as being a linear combination of the mass

spectra of the natural abundance (3.30), 17O and 18O isotopomers (equation 3.1), where

A, B and C represent the respective proportions.  This type of procedure was used for all

analyses of oxygen isotope enrichments.  Using this method, the bromohydrin 3.30a

was determined to have an 18O enrichment of 20.0±0.3% (20.2±0.3 atom% 18O) and a

17O enrichment of 0.66±0.08%, where uncertainties represent one standard deviation.  It

is clear that the label introduction method does not significantly decrease the 18O

enrichment in 3.30a relative to that of the H2
18O (20.1 atom%).

Mass spectrum (3.30a)   =  A (3.30) + B (3.30 17O) + C (3.30 18O)       (3.1)

Concentrations of 18O label are expressed in terms of enrichment rather than

content.  This convention requires no further compensation for natural abundance 18O

and thus simplifies later calculations of label distribution in the esters 3.34 and 3.35,

resulting from the radical-mediated reduction of β-bromoester 3.31a.  The simple

relationship between 18O content and enrichment is given by equation 3.2.

  atom% 18O  =  %18O enrichment  + 0.200%(100% – %18O enrichment)

        =   99.796(%18O enrichment)  + 0.200%                           (3.2)

3.5.3 Determination of 18O enrichment of labelled β -bromoester

3 .31a

A 13C nmr spectrum of 3.31a contained resonances at δ 87.834 (18O–C, 19.6%)

and δ 87.883 (16O–C, 80.4%), corresponding to the quaternary carbons at the 2-heptyl
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position of the isotopomers.  Isotopic enrichment was again determined by GCMS.

Figure 3.2 illustrates some plausible fragmentation paths for the unlabelled bromoester.

No molecular ion (MW 305) was detected and neither was a peak corresponding to M+•–

Br• (m/z 225).  The group used for the analysis was one with the lowest peak at m/z 211

(16%), ascribed to C9H14F3O2
+, formed by the loss of •CH2Br from the molecular ion.

An 18O enrichment of 20.0±1.0 % was determined (0.90±0.66% 17O), identical in

magnitude to that for the labelled bromohydrin 3.30a.

CH3CH2CH2CH2CH2 C

CH3

O

CH2 Br

C O

CF3

225

211

233/235

97235/237

289/291

3.31

+ •

Figure 3.2.  Some plausible fragmentation pathways for the molecular ion of natural

abundance 1-bromo-2-methyl-2-trifluoroacetoxyheptane 3.31 (MW 305), yielding ions

containing oxygen

As a check of the integrity of the label, bromoester 3.31a was hydrolysed back to

bromohydrin 3.30a with dilute K2CO3 in aqueous THF at room temperature.  GCMS

analysis of the 3.30a  so formed indicated an 18O enrichment of 20.0±0.6%,

demonstrating that none of the label had been displaced by base-catalysed hydrolysis.

Unhydrolysed bromoester 3.31a recovered from the reaction had a 20.4±2.1% 18O

enrichment.

3.5.4 Determination of the distribution of 18O label in the ether

and carbonyl oxygens of the product esters 3.34 and 3.35

Unfortunately, it was not possible to establish the distribution of the 18O label in

the product esters 3.34 and 3.35 directly by mass spectrometry alone.  The GCMS

spectral data (m/z (%)) for each of the unlabelled esters is provided below and relevant

fragmentation pathways are illustrated in figure 3.3.
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3.35: 169 (0.2), 157 (3), 155 (0.3), 112 (4), 99 (5), 97 (7), 83 (19), 69 (62), 57 (100).

3.34: 157 (0.5), 155 (100), 113 (12), 112 (12), 97 (13), 71 (12), 69 (64), 57 (27), 56

(41), 55 (40).

For an accurate determination of the enrichment of 18O in the entire ester group,

an ion of relatively high abundance containing both oxygens is required.  From figure

3.3, suitable ions have m/z of 211, 157 or 155.  Unfortunately the relative abundance of

each of these peaks was relatively low or zero in the GCMS of 3.35.  Such a situation

makes 18O enrichment level determinations unreliable or impossible.  The GCMS of ester

3.34 lacks a peak at m/z 211, but the base peak at m/z 155 provides scope for an

enrichment determination.  However, the peak at m/z 157 corresponds not only to the

18O isotopomer of the m/z 155 ion, but also to a structurally different ion.  Such a

situation is unsuitable for an accurate 18O enrichment determination in either 3.34 or

3.35 .

CH3CH2CH2CH2CH2 C

CH3

CH3

O

CF3

O

211

157
97

155

3.34

CH3CH2CH2CH2CH2 C

CH3

O

H
3.35

CF3

O

97

157155

211

CH2

+ • + •

Figure 3.3.  Some plausible fragmentation pathways for the molecular ions of

unlabelled 2-methyl-1-trifluoroacetoxyheptane 3.35 and 2-methyl-2-trifluoroacetoxyheptane

3.34, yielding ions containing one or both oxygen atoms

The ions corresponding to the peaks at m/z 97 contained only the carbonyl oxygen

of each ester group.  Unfortunately, not only are such peaks low in relative abundance in

the GCMS of both 3.34 and 3.35, but in the case of 3.35 the peak at m/z 99—which

corresponds to a fragment ion of different structure—prohibits an accurate 18O

determination.  An indirect method of analysing the proportions of 18O in the ester and

carbonyl oxygens of each ester was therefore developed.

With a view to determining the 18O enrichment of the ether oxygen alone, each
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ester was hydrolysed with ethanolic hydroxide to its corresponding alcohol, as indicated

below.  The GCMS of 2-methylheptan-2-ol (3.36, MW 130) had a base peak at m/z  59,

assigned to C3H7O+ which was formed by loss of •C5H11 from the molecular ion.  This

oxygen-containing fragment could be used to determine the 18O enrichment of alcohol

3.36.  Unfortunately, the GCMS of the alcohol of greatest interest, 2-methylheptan-1-ol

(3.37), contained no relatively intense peaks corresponding to oxygen-containing ions.

O

CF3

O
OH

a

a

3.35

3.34 3.36

3.37

a: KOH in 95% EtOH/5% H2O

OHO CF3

O
quant.

quant.

The analytical problem was finally solved by the conversion of each alcohol to its

corresponding trimethylsilyl ether.  To effect the derivatisation, each alcohol was treated

with a large excess of both pyridine and 10% Me3 SiCl in

bis(trimethylsilyl)trifluoroacetamide (BSTFA) and heated at 80˚C for 20 minutes.

OH
3.36

3.37

O
3.38

3.39

SiMe3

a

a

a: 10% Me3SiCl in BSTFA, pyridine, 80˚C

OH OSiMe3

quant.

quant.

GCMS data for each TMS ether (MW 202) are provided below and fragmentation

paths for each of the compounds 3.39 and 3.38 are displayed in figure 3.4.

3.39: 187 (100), 129 (5), 103 (67), 75 (96), 73 (63), 69 (13).

3.38: 187 (19), 131 (100), 115 (4), 75 (40), 73 (45), 61 (4).



 Chapter 3: Regiochemistry     88

Neither mass spectrum contained a molecular ion.  However, the GCMS of the

primary TMS ether 3.39 had the base peak at m/z  187.  This was ascribed to

C10H23OSi+, formed by the loss of methyl radical from M+•.  The base peak for the

tertiary TMS ether 3.38 appeared at m/z 131.  This was ascribed to C6H15OSi+, formed

from M+• – •C5H11.

CH3CH2CH2CH2CH2 C
H

CH3

CH2 OSiMe2

131

187

CH3

187
CH3CH2CH2CH2CH2 C

CH3

CH3

O

Me2Si CH3

187

131

187

3.383.39

+ • + •

Figure 3.4.  Some of the plausible fragmentation paths for the molecular ions of the

trimethylsilyl ethers 3.39 and 3.38, yielding ions containing oxygen

Thus, the enrichment of 18O in the ether oxygen of trifluoroacetate esters 3.35

and 3.34 was determined by a GCMS analysis of the respective trimethylsilyl ether

derivatives 3.39 and 3.38.  Scheme 3.2 illustrates a flow diagram from the reaction of

3.31a, through product isolation, to the derivatisation process.

Removal of the bromine atom by M• (either Bu3Sn• or (Me3Si)3Si•) from the

labelled β-bromoester 3.31a produces the incipient radical 3.32a. This primary radical

can rearrange with rate constant kr to form the tertiary product radical 3.33a.

Alternatively, it may react with the hydrogen atom source, MH, to form the non-

rearranged tertiary trifluoroacetate ester 3.34a.  The rearrangement step is slightly

reversible, having a reverse step rate constant of  k–r.

The proportion of label retained in the ether position of either ester (RE) is simply

the 18O enrichment of the trimethylsilyl ether divided by the 18O enrichment of the

labelled β-bromoester 3.31a (equations 3.3, 3.4).

RE (3.35a)   =   
18

18
O enrichment 

O enrichment 

3.39a
3.31a

                                       (3.3)

RE (3.34a)   =   
18

18
O enrichment 

O enrichment 

3.38a
3.31a

                                      (3.4)
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Br

*O

CF3

O

CH2*O

CF3

O

*O CF3

*O

MH

3.31a

3.32a 3.33a

kr

k-r

*O

O*

CF3

O*

OH

OH

OSiMe3

*O

+

+

+

CF3

*O

SiMe3

3.35a3.34a

3.37a3.36a

3.39a3.38a

remove by-products by column chromatography

dilute with CH2Cl2 in preparation for GCMS analysis

KOH in EtOH/H2O

Me3SiCl, BSTFA,
pyridine, 75 - 80˚C

* denotes the position of 18O label

*

*

*

– M• MH – M•

M• – MBr

(?)

Scheme 3.2. Generation and subsequent reactions of β-trifluoroacetoxyalkyl radical

3.32a, as well as the procedure for preparing product esters 3.34a and 3.35a for a

determination of the 18O enrichment in the ether oxygen
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3.5.5 Results

In these experiments, tris(trimethylsilyl)silane (TTMSS, (Me3Si)3SiH) was used

instead of tributyltin hydride (TBTH, Bu3SnH) as the hydrogen atom source, MH.

Traces of organotin compounds remaining on the GCMS injector port septum and

capillary column have reportedly contaminated very dilute samples of natural products,

injected frequently by other users of the same instrument.  Neither TTMSS nor the

products from its reaction with alkyl bromides cause this type of contamination.

TTMSS is an efficient chain transfer agent and silicon-centred radicals readily

abstract bromine atoms from alkyl bromides.15  It has advantages over tributyltin hydride

in other regards.15-18  The Si–H bond strength (330 kJmol-1) is greater than that for Sn–

H (309 kJmol-1),16 making TTMSS a less reactive H atom donor.  Since (Me3Si)3SiH

reacts more slowly than Bu3SnH with incipient radical 3.32a, this direct reduction step

competes less strongly with the rearrangement step, leading to a higher proportion of the

rearranged product 3.35a for identical initial MH concentrations.

All labelling experiments were performed in the absence of air in Reactivials fitted

with Mininert19 syringe valve caps  (see experimental section 3.11).  This apparatus

permitted addition or removal of fluids during the reaction at temperatures greater than the

boiling point of the solvent.  A deoxygenated solution of the labelled β-bromoester

3.31a in the desired solvent was heated at 80±1˚C (or another nominated temperature)

for at least two minutes, then injected with an excess of TTMSS and catalytic AIBN.

When the reaction was complete by GC, the reaction was cooled and the solvent was

evaporated.  In the case of the water-miscible solvents acetonitrile and N -

methylacetamide, the reaction mixture was taken up in diethyl ether, washed with water,

dried and evaporated.  The trifluoroacetate ester products 3.34a and 3.35a were

separated from other components by flash chromatography, hydrolysed by aqueous base

to the corresponding alcohols 3.36a  and 3.37a , converted to the respective

trimethylsilyl ethers 3.38a and 3.39a, then analysed by GCMS.  Equations 3.3 and 3.4

were used to calculate the proportion of 18O label residing in the ether position of esters

3.35a and 3.34a respectively.  The 18O enrichment of 3.31a was taken to be identical



 Chapter 3: Regiochemistry     91

to that for the bromohydrin 3.30a, namely 20.0±0.3%.  Results are displayed in table

3.2.

Table 3.2.  Results from the AIBN-initiated reaction of (Me3Si)3SiH with the 18O-

labelled β-bromoester 3.31a at 80±1˚C, in four different solvents.  RE represents the

proportion of 18O label residing in the ether oxygen of the product esters 3.35a and

3.34a .

Entry Solvent

Solvent
dielectric
constant

ε, at 25˚C

Average
[TTMSS]

(M)

Mole
ratio

3.35a :
3.34a

18O
enrichment
in silylether
3.39a (%)

18O
enrichment
in silylether
3.38a (%)

RE for
3.35a

(%)

RE for
3.34a

(%)

1 hexane 1.88 0.029 2.00 3.7±0.4 20.2±0.5 1 8 . 5 ± 2 1 0 1 ± 4

2 benzene 2.27 0.029 10.1 6.4±0.4 19.1±0.6 3 2 . 0 ± 2 9 5 . 3 ± 4

3 benzene 2.27 0.0083 11.8 6.7±0.6 a 3 3 . 5 ± 4 a

4 CH3CN 35.94 0.029 70.3 7.8±0.4 a 3 8 . 8 ± 2 a

5 CH3CN 35.94 0.158 9.00 6.7±0.4 19.4±1.0 3 3 . 7 ± 2 9 7 . 1 ± 6

6 NMAb 191.3c 0.083 57.2 7.8±0.4 a 3 9 . 2 ± 3 a

a: not measured owing to insufficient amount of compound;  b:  N-methylacetamide;  c: at

32˚C.  Uncertainties represent one standard deviation from the mean (68% confidence).

3.5.6 Validation of the analytical method

The values of RE  will suffer inaccuracy if there exist processes which scramble or

exchange the oxygen label before the reaction of β-bromoester 3.31a with (Me3Si)3Si•,

or in solution after the formation of the product esters 3.34a and 3.35a, or during the

isolation/derivatisation process to TMS ethers 3.39a and 3.38a.  Experiments were

designed to test for scrambling of the oxygen label in β-bromoester 3.31a prior to

rearrangement and the displacement of labelled trifluoroacetate by unlabelled hydroxide

during the basic hydrolysis of esters 3.34a and 3.35a.

A reaction between TTMSS and 3.31a was stopped at half-completion to

establish whether scrambling of the label—by SN1 heterolysis then (internal) ion-pair

return—had taken place.  A 0.032 M solution of 3.31a in benzene solution at 80˚C, was

treated with 0.5 equivalents of (Me3Si)3SiH and catalytic AIBN.  When the reaction was
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complete, the remaining bromoester 3.31a was separated from silicon-containing by-

products by flash chromatography, then hydrolysed with aqueous 1M K2CO3 in THF at

room temperature.  The resulting, purified bromohydrin had a 20.4±1.1% 18O

enrichment.  At the limits of uncertainty, the oxygen label in 3.31a is scrambled ≤ 1.8%

(9 relative%), but probably not at all.  When the experiment was repeated in CH3CN

solution, the resulting bromohydrin had a 20.1±0.9% 18O enrichment, also indicating

negligible oxygen scrambling.

To assess whether the basic hydrolysis of esters 3.34a and 3.35a decreases the

18O enrichment by exchange with unlabelled hydroxide/water, the unlabelled esters 3.34

and 3.35 were hydrolysed in the presence of 18O-labelled water.

O

CF3

O
OH

a

a

3.35

3.34 3.36

3.37

a: 1.5 eq. KOH.1/2 H2O, 3.8 eq. H2
18O (20.1 atom%) in dry EtOH

OHO CF3

O

no 18O incorporation

no 18O incorporation

Esters 3.34 and 3.35 were hydrolysed separately with KOH. 1
2 H2O and H2

18O

(20.1 atom%) in dry ethanol.  Proportions were such that the isotopic composition of

exchangeable "–OH equivalent" was calculated to be 12.5 atom% 18O.  The alcohols

3.36 and 3.37 were isolated, converted to the corresponding TMS ethers 3.38 and

3.39 and analysed isotopically by GCMS.  Compound 3.39 had an 18O enrichment of

0.00±0.28% and 3.38 had –0.03±0.27%, indicating an incorporation of oxygen from

the hydrolysis reagents in each case to be ≤ 2.2 relative%.

In summary, the values of RE  in table 3.2 cannot be much in error owing to label

exchange or scrambling processes external to the rearrangement step.  The values of RE

for 3.34a indicate that a small amount of scrambling of the oxygen label is observed in
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the non-rearranged product ester.  Unfortunately, the relatively large uncertainties in RE

(3.34a) undermine the reliability of these results.  Since a genuine scrambling of the

label in 3.34a has important mechanistic implications, it was necessary to obtain more

accurate values for RE.  In an effort to achieve this, the β-bromoester 3.31 was prepared,

possessing a much higher level of label enrichment.

3.5.7 Experiments with a 92 % 18O-enriched β-bromoester

1-Bromo-2-methyl-2-trifluoro-oxy-18O-acetoxyheptane (92 atom%)

The 18O-labelled bromohydrin 3.30b was prepared in reasonable yield by the

treatment of 2-methyl-1-heptene (3.29) in dry diethyl ether with H2
18O (reported 97-98

atom%) and N-bromoacetamide.  GCMS analysis gave a 91.9±0.7% 18O enrichment for

3.30b.  Since a high integrity in the introduction of the label into bromohydrin 3.30a

(20 atom%) was realised, it is assumed that the small decrease in the 18O enrichment of

the bromohydrin 3.30b relative to that of the H2
18O was caused by a decrease in

enrichment of the labelled water by exposure (upon storage) to atmospheric moisture, or

by the 2-methyl-1-heptene (3.29) or solvent being slightly wet.

Br Br
18OH 18O

CF3

O

a b

65% 78%
3.29 3.30b 3.31b

a: 1.5 eq. NBA, 2.5 eq. H2
18O (97-98% 18O), Et2O, -7˚C → RT;  b: (CF3CO)2O, pyridine, CH2Cl2

91.9±0.7% enriched 92.1±3% enriched

Esterification of 3.30b  with trifluoroacetic anhydride and pyridine in

dichloromethane afforded the labelled ester 3.31b in good yield.  GCMS analysis gave

an 18O enrichment of 92.1±3%, but for a more accurate calculation of RE values the

enrichment is taken as being identical to that for the bromohydrin, 3.30b.  Reactions of

3.31b with TTMSS and the isotopic analyses were conducted in a manner identical with

that for 3.31a.  The suffix b denotes compounds derived from 91.9% 18O enriched
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bromoester 3.31b.  Results appear in table 3.3.

The relatively small uncertainties confirm that RE (3.34b) values are truly less

than 100%.  Thus, scrambling of the oxygen label in the non-rearranged product ester

3.34b is real and significant.  It is clear from the results in tables 3.2 and 3.3 that there is

a substantial amount of scrambling of the 18O label upon migration of the ester group in

β-trifluoroacetoxyalkyl radicals 3.32a and 3.32b, as indicated by RE for the compounds

3.35a and 3.35b.  A convincing amount of label scrambling is also evident in the

unrearranged esters 3.34a and 3.34b.  The latter results are important since they

indicate that the rearrangement, or alternatively the ion-pair-forming, process is

reversible.

Table 3.3.  Results from the AIBN-initiated reaction of (Me3Si)3SiH with the labelled

β-bromoester 3.31b (91.9±0.7% 18O enriched) in benzene at different temperatures and

various concentrations of (Me3Si)3SiH.

Entry
Temperature

(±1˚C)
Average

[TTMSS]  (M)

Mole ratio
3.35b :
3 .34b

18O
enrichment
in silylether
3.39b (%)

18O
enrichment
in silylether
3.38b (%)

RE for
3 .35b

(%)

RE for
3 .34b

(%)

1 40 0.028 4.00 19.75±0.81 90.53±0.58 2 1 . 5 ± 1 9 8 . 5 ± 1

2a 80 0.029 10.1 3 2 . 0 ± 2 9 5 . 3 ± 4

3 100 0.028 12.6 29.96±1.0 82.11±0.91 3 2 . 6 ± 1 8 9 . 4 ± 2

4 80 0.0029 7.70 38.06±0.92 59.03±0.60 4 1 . 4 ± 1 6 4 . 2 ± 1

Uncertainties represent one standard deviation (68% confidence).  a: From data in table 3.2

Experiments using the 18O-labelling GCMS technique have yielded very

informative results, but suffer from several deficiencies.  Despite the investigation into

possible sources of error, the extent to which product esters 3.34a/b and 3.35a/b must

be manipulated in preparation for GCMS analysis allows for the possibility of systematic

errors in the results.  In addition, the exclusion of Bu3SnH as the hydrogen atom

source/chain transfer agent places limitations upon the validity of comparisons between

labelling and kinetic (chapter 2) experiments.  Finally, the RE values determined by the
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18O-GCMS method bear unacceptably high random uncertainties in certain instances.  An

analytical technique was desired which was direct, more accurate and which permitted the

use of Bu3SnH.

3.6 Study of the regiochemistry of the rearrangement
3.32→3.33 using 17O nmr

The technique of 17O nmr spectroscopy has been used previously to successfully

determine the proportions of 17O label in different oxygen atoms of esters.5,20-23  The

technique requires only the measurement of the ratio of peak integrals for ether and

carbonyl 17O resonances.

3.6.1 Preparation and characterisation of 1 7 O - l a b e l l e d
bromohydrin 3.30c and β-bromoester 3.31c

The treatment of 2-methyl-1-heptene (3.29) in dry diethyl ether with 1.5

equivalents of N-bromoacetamide and 2.5 equivalents of H2
17O (48.6 atom% 17O) gave

the labelled bromohydrin 3.30c in reasonable yield.  Compound 3.30c was then

trifluoroacetylated successfully to yield the desired β-bromoester 3.31c.  The suffix c

denotes the presence of a 17O label.

Br Br

17OH 17O

CF3

O

a b

65% 84%
3.29 3.30c 3.31c

46.5 ± 0.2% 17O enriched
31.2 ± 0.3% 18O enriched

a: 1.5 eq. NBA, 2.5 eq. H2
17O (48.6 atom% 17O), Et2O, -7˚C → RT;  b: (CF3CO)2O, pyridine, CH2Cl2

Prior to isotopic analysis by GCMS, a CDCl3 solution of the bromohydrin 3.30c

was subject to D2O exchange nmr experiment. The hydroxyl resonance at 1.71 ppm

disappeared immediately and completely.  Hence, the aqueous work-up of the reaction

which formed 3.30c ensures that the hydroxyl hydrogen is normalised (at natural-
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abundance isotopic composition).  Using GCMS, in conjunction with an adapted version

of equation 3.1, the bromohydrin 3.30c analysed for 46.5±0.2% 17O enrichment and

31.2±0.3% 18O enrichment.

The presence of an 18O label in 3.30c was corroborated by a 13C nmr spectrum

containing quaternary resonances at 71.279 (58%) and 71.309 (42%) ppm, assigned to

the tertiary carbons of the 18O and 16O isotopomers respectively.  No resonance was

detected for the 17O isotopomer, owing presumably to the combination of the effects of

the signal multiplicity resulting from 13C –17O coupling (sextet) and the broadening of the

13C signal owing to rapid relaxation brought about by the quadrupole moment (I = 5
2 ) of

the 17O nucleus.24

An 17O nmr spectrum of a pentane solution of labelled bromohydrin 3.30c

contained a single resonance, 50.6 ppm downfield of external H2
17O (0 ppm), within the

expected shift range of –40 to +70 ppm for aliphatic alcohols.25  A pentane solution of

the labelled β-bromoester 3.31c gave a spectrum with a single peak at 176.7 ppm,

assigned to the alkoxy oxygen.  A normal range for alkoxy resonances is 125-210 ppm,

whereas carbonyl oxygens resonate in the range 352-392 ppm.26  For instance, methyl

trifluoroacetate in acetonitrile at 75°C gives a carbonyl peak at 352.8 and an alkoxy peak

at 133.0 ppm.26  The chemical shifts of the various 17O-labelled compounds isolated

during this work are displayed in table 3.4.  To view some of the 17O nmr spectra, see

appendix B.
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Table 3.4. 17O nmr chemical shifts of selected compounds in pentane solution, relative

to H2
17O = 0 ppm.

Compound

17O chemical shift of ether
or hydroxyl oxygen (ppm)

17O chemical shift of
carbonyl oxygen (ppm)

Br

17OH

3.30c

50.6 -

17OH

3.37c

–6.3 -

Br

17O

CF3

O
3.31c

176.7 not measured—carbonyl
position unlabelled

17O CF3

17O3.35c
148.5 356.7

17O

CF3

17O
3.34c

186.0 363.3

3.6.2 Results

Reactions were performed using 50 mg (170 µmol) of the labelled β-bromoester

3.31c.  A deoxygenated solution of 3.31c in the solvent of choice was stirred in a

Reactivial or pressure bottle, fitted with a Mininert valve, at 80±1°C for 15 min before

adding 1.35 eq of (Me3Si)3SiH (or 1.20 eq of Bu3SnH), followed by a solution of AIBN

(5-6 mol%).  The progress of the reaction was monitored by GC.  When complete, a

reaction involving (Me3Si)3SiH was analysed by GCMS to determine the approximate

isotopic compositions of the ester products 3.34c and 3.35c.  With this hydrogen atom

source, no ester was ever found to have a measurably lower label enrichment than the

parent bromoester, hence ruling out the possibility of unlabelled oxygen exchange
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processes occurring during the reaction.

The reaction mixture was carefully concentrated under reduced pressure to ≤ 10%

of its initial volume and the residue (where miscible) was dissolved in pentane.  An 17O

nmr spectrum was then obtained.  Where a residue was not miscible with pentane, a

spectrum was run after diluting with the reaction solvent.  The product trifluoroacetates

3.34c and 3.35c were isolated by preparative GC, using a column oven temperature of

60°C.  A separation by flash chromatography on silica gel was attempted, but 22%

(relative) of the 17O label was lost from the carbonyl group of rearranged ester 3.35c,

making this method of purification inappropriate.  Once purified, the esters 3.34c and

3.35c were dissolved separately in pentane, checked for purity by GC, then analysed by

17O nmr.  The acquisition parameters for the nmr spectrometer were optimised to ensure

accurate quantification (see appendix B) and the results are displayed in table 3.5.

Table 3.5.  Results from the AIBN-initiated reaction of the 17O-labelled β-bromoester

3.31c with (Me3Si)3SiH or Bu3SnH at 80±1˚C in various solvents.  Uncertainties in RE

are estimated at ±0.2-0.3 abs.%.

Solvent

Solvent
dielectric
constant

ε,  at 25˚C

Reducing agent
type and average

concentration
(mM)

Molar product
ratio 3.35c:

3 . 3 4 c
RE for 3.35c

(%)
RE for 3.34c

(%)

hexane 1.88 TTMSS,a 28.9 1.98 1 7 . 7 9 8 . 8

benzene 2.27 TTMSS, 30.2 9.15 3 0 . 6 9 1 . 2

CH3CN 35.94 TTMSS, 28.9 27.0 3 9 . 1 not measurede

CH3CN 35.94 TTMSS, 150 6.78 3 3 . 3 9 5 . 4

hexane 1.88 TBTH,b 5.95 0.752 1 8 . 5 9 9 . 3

benzene 2.27 TBTH, 6.40 4.66 2 6 . 4 9 7 . 9

CH3CH2CNc 28.86f TBTH, 5.93 8.46 3 6 . 0 9 6 . 7

PFMCd 1.85f TBTH, 8.75 0.127 4 4 . 8 > 99.6

a: Tris(trimethylsilyl)silane, (Me3Si)3SiH;  b: Tributyltin hydride, Bu3SnH;  c: Bu3SnH soluble in

EtCN but not CH3CN;  d: Perfluoromethylcyclohexane, C6F11CF3;  e: insufficient quantity;  f: at 20˚C
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3.6.3 Validation of the results

As for the 18O labelling work, it was necessary to establish that unanticipated

label-scrambling or exchange processes which may perturb the value of RE were not

operative during reactions of 3.31c with the reducing agent Bu3SnH or (Me3Si)3SiH.

A deoxygenated 0.029 M solution of the β-bromoester 3.31c in dry CH3CN was

heated at 80˚C for three hours in the presence of 5.6 mol% AIBN.  A 17O nmr spectrum

of the concentrated solution displayed a single peak at 181 ppm, with no trace of a

resonance in the range 350-360 ppm (where carbonyl oxygens of these types of esters

resonate26).  The detection limit for the carbonyl resonance is estimated at ≤ 0.5% that of

the alkoxy peak.  It can be concluded that no detectable scrambling of the 17O label in

3.31c takes place, even in the most polar solvent, CH3CN.

To determine whether any scrambling of the 17O label in the product

trifluoroacetate esters takes place after the rearrangement, solutions of 3.34c and 3.35c

were heated under reaction conditions then analysed by 17O nmr.  To mimic more closely

actual conditions, 1-bromopentane was reduced to pentane with (Me3Si)3SiH/AIBN in

the presence of each ester.  A deoxygenated benzene solution, 5.7 mM in 3.34c and 8.9

mM in bromopentane was heated to 80°C and treated with (Me3Si)3SiH (1.45 eq) and

AIBN (0.043 eq).  A deoxygenated benzene solution, 44.2 mM in 3.35c and 35.4 mM

in bromopentane was subject to identical temperature, and reagent proportions.  Both

reactions were stopped after 4.0 hours, concentrated under reduced pressure and analysed

by 17O nmr.  The results (table 3.6) indicate that no scrambling of label took place in

either 3.34c or 3.35c, within the experimental uncertainty of ±0.2-0.3%.

Table 3.6.  RE, as determined by 17O nmr, for product esters 3.34c and 3.35c before

and after being subject to radical rearrangement conditions.

Compound RE before experiment
(%)

 RE after experiment (%) Change in RE (relative%)

Rearranged 3.35c 26.5 26.7 +0.8

Unrearranged 3.34c 97.3 97.0 –0.3
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There existed the possibility that some of the 17O label, in the carbonyl oxygen in

particular, of 3.34c or 3.35c may be lost by exchange on the preparative GC packed

column during purification.  The benzene solution resulting from a reaction between the

labelled β-bromoester 3.31c and TTMSS at 80°C was analysed by GCMS to determine

the level of 17O enrichment in the product trifluoroacetate esters 3.34c and 3.35c.  Each

ester was then isolated by preparative GC and the 17O enrichments were redetermined.  It

was clear from the results (table 3.7) that within experimental uncertainty there is no loss

of the label during preparative GC.  In summary, it may be concluded that the values of

RE in table 3.5 are free from the effects of label scrambling and/or exchange processes.

Table 3.7.  Results of experiments designed to test for loss of 17O label from

trifluoroacetate esters 3.35c and 3.34c, during separation by preparative GC.

Compound

17O enrichment before
preparative GC (%)

17O enrichment after
preparative GC (%)

Rearranged product 3.35c 48.1±0.7 48.9±0.2

Unrearranged product  3.34c 47.8±0.2 47.9±0.3

Uncertainties represent one standard deviation (68% confidence)

3.7 A crossover experiment

If the rearrangement of radical 3.32 to 3.33 proceeds in part by intermolecular

processes, the RE values for 3.35 and particularly 3.34, cannot accurately represent the

intramolecular regiochemistry.  A crossover experiment was therefore performed to

measure the limits of intermolecularity in the rearrangement step.  The experiment

consisted of the reaction of (Me3Si)3SiH with an equimolar mixture of two β-

bromoesters, one of which (3.31b) bears an 18O label in the trifluoroacetoxy group and

the other (3.31d) possesses a CD2 label in the 2-methylheptanyl moiety.  Mass

spectrometry was used to determine the extent of crossover.

The dideuterated bromoester 3.31d was prepared in three steps from 2-heptanone

(3.40).  A Lombardo olefination27 of 3.40—using a procedure adapted for

dideuteration by Mander28—gave the deuterium-labelled alkene 3.29d, which was not
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isolated owing to its volatility.  A diethyl ether solution of 3.29d was treated with NBS

in moist DMSO to form the dideuterated bromohydrin 3.30d in reasonable yield.  By

GCMS it was determined that 99.2±0.5% of the 1-methylene group of 3.30d existed as

CD2.  The trifluoroacetylation of 3.30d in the usual manner afforded the labelled β-

bromoester 3.31d.

O CD2 CD2Br
OH

3.30d3.40 3.29d

CD2Br
O

O

CF3

3.31d

a b

c

a:  CD2Br2, Zn powder, TiCl4, THF;

b:  NBS, H2O, DMSO;

c:  (CF3CO)2O, pyridine, CH2Cl2

55% for
two steps

64%

In an effort to locate suitable fragment ions for isotopic analysis, unlabelled

product esters 3.35 and 3.34 were subject to GCMS.  For the tertiary ester 3.34, the

fragment ion C5H6F3O2
+ (m/z 155), which was formed by loss of •C5H11 from M+•,

was chosen for the analysis.  For the primary ester 3.35, the loss of  •C5H11 from the

molecular ion theoretically gives a fragment ion with m/z 155, but in practice this is a

disfavoured pathway.  The major fragmentation route was by the loss of •CF3 from the

molecular ion, giving C9H17O2
+ of m/z 157.  This latter pathway predominated over the

former by a factor of approximately 9:1 (scheme 3.3).

A benzene solution, 0.0192 M in the 91.9±0.7% 18O enriched bromoester 3.31b

and 0.0193 M in the 99.2±0.5 atom% d2 bromoester 3.31d was deoxygenated with a

stream of dry nitrogen and heated to 80°C.  Statistically, 95.6±0.6% of the β-bromoester

molecules bore either a CD2 or an 18O label.  The solution was treated with 1.35

equivalents of TTMSS and catalytic AIBN and heated until GC indicated the absence of

the β-bromoester peak.  The molar ratio of 3.35:3.34 was 9.47:1.
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Scheme 3.3.  Competing fragmentation paths for the molecular ions of each of the

product esters 3.34 and 3.35

Three partial mass spectra (figure 3.5) are shown for each ester.  The uppermost

charts are calculated spectra for the completely dideuterated esters, obtained simply by

adding two m/z units to the natural abundance spectrum.  These spectra are expected to

differ negligibly from the authentic spectra of the 99.2% d2 esters, for which

experimental mass spectra were not available.  The spectra in the middle are of the 91.9%

18O enriched esters.  At the bottom a comparison is made between the product ester

spectra from the crossover experiment and those calculated for zero crossover (a linear

combination of the spectra of the CD2- and 18O-labelled ions).

It can be seen that the calculated and the experimental crossover spectra for a

particular ester are very similar, particularly at the higher m/z values.  This similarity

indicates that there is an insignificant amount of crossover in each case.  To calculate the

maximum amount of crossover it was necessary to measure the relative abundance of the

peak at m/z 161 in the case of 3.35 and m/z 159 for 3.34.  Ions which bear both a d2

and an 18O label have these respective m/z values.
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Figure 3.5.  Partial mass spectra of the rearranged (3.35) and unrearranged (3.34)

product esters which are d2 labelled (top), 18O-labelled (middle) and the result of the

crossover experiment (bottom)
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Table 3.8.  Relative abundance data from partial mass spectra, for quantification of the

extent of crossover.  Uncertainties are at 1σ limits (68% confidence).

m/z

3.35 Crossover

experimental (%)

3.35 Crossover

calculated (%)

3.34 Crossover

experimental (%)

3.34 Crossover

calculated (%)

157 100 100

159 100 100 0.21±0.09 0.25±0.09

161 0.45±0.31 0.33±0.08

The experimental mass spectrum for 3.35 is very similar to the calculated mass

spectrum.  This indicates that the rearrangement of the deuterated radical 3.32d proceeds

at approximately the same rate as the 18O-labelled radical 3.32b.  This result is in

contrast to the significant inverse kinetic isotope effects predicted by ab initio

calculations for the 1,2 and 3,2 concerted rearrangements of 2-acyloxy-2-methyl-1-propyl

radicals which are dideuterated at the radical centre.32  According to these predictions,

radical 3.32d should rearrange noticeably faster than 3.32b.

Statistically, in the absence of isotope effects, complete randomisation of all labels

by crossover reactions will result in 27.2% of the molecules of a particular product ester

having no label, 50.0% bearing either a CD2 or 18O label and 22.8% possessing both a

CD2 and a 18O label.  Theoretical partial mass spectra can now be calculated simply for

the completely label-randomised products, since the relative abundances will be directly

proportional to the prevalence of the corresponding isotopomers.  For 3.35, the

spectrum will be m/z 159 (100%) and 161 (45.6%) and for 3.34, m/z 157 (100) and

159 (45.6%).  For each ester, the experimental crossover spectrum was treated as a linear

combination of the randomised spectrum and the calculated spectrum for zero crossover.

The maximum amount of label randomisation was calculated according to the limits of

uncertainty (1σ).

For the rearranged ester 3.35, the extent of label randomisation is ≤ 1.14% and

for the unrearranged ester 3.34 the amount is ≤ 0.31%.  It is clear from table 3.8 that the

experimental and calculated partial mass spectra are the same for a particular ester, within

experimental uncertainty.  It is therefore likely that there is no crossover whatsoever.  It is
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concluded that crossover reactions do not contribute to any significant extent towards the

labelling results in tables 3.2, 3.3 and 3.5.

3.8 An attempt to trap an ion pair intermediate

One possible mechanism for the β-acyloxyalkyl radical rearrangement involves the

formation and subsequent collapse of a carboxylate-anion/alkene-radical-cation pair.  In

the rearrangement of the 18O-labelled radical 3.32b, an attempt was made to trap the 2-

methyl-1-heptene radical cation with a nucleophile, unlabelled trifluoroacetate anion.  A

successful trapping encounter would produce the rearranged radical 3.33 by the

substitution of unlabelled for labelled trifluoroacetate (scheme 3.4).  It may also produce

some of the unlabelled incipient radical 3.32.  Unlabelled tetraethylammonium

trifluoroacetate was prepared from the reaction of aqueous tetraethylammonium hydroxide

and trifluoroacetic acid and the product was dried carefully.  The salt Et4NOCOCF3 is

soluble in CH3CN, providing a convenient source of unlabelled trifluoroacetate ion.  The

ion pair dissociation constant, K, for Et4NOCOCF3 is 7 × 10-3 M in acetonitrile at

electrolyte concentrations up to 3 × 10-4 M.29  Above this concentration, conductivity

data indicates that triple ion formation occurs.29

CH2
18O

CF3

O

O CF3

O
3.32b 3.33

•
•

CF3

18O O-

CF3

OO -

CF3

OO -

•+

CF3

18O O-

Scheme 3.4. An envisaged mechanism by which the 2-methyl-1-heptene radical cation

fragment would be trapped by unlabelled trifluoroacetate ion
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The degree of ionisation, α, of a weak electrolyte is given by equation 3.5, where

c represents the concentration.30  At a typical tetraethylammonium trifluoroacetate

concentration of 0.78 M, the electrolyte is calculated to be ≤ 9.0% dissociated.

α  =  
K

c2
1 14    + −





c

K
                                            (3.5)

An initial experiment was performed to ensure that trifluoroacetate exchange does

not occur by nucleophilic substitution in the β-bromoester 3.31b, the (91.9±0.7%) 18O-

enriched  radical precursor.  A solution of 3.31b (0.032 M) and tetraethylammonium

trifluoroacetate (0.78 M) in dry acetonitrile was heated at 80°C for 90 min.  GCMS

analysis yielded an 18O enrichment of 91.7±0.2% in the recovered 3.31b, establishing

that trifluoroacetate exchange does not occur in the radical precursor.

A 0.037 M solution of 3.31b in dry acetonitrile containing tetraethylammonium

trifluoroacetate (0.78 M) was deoxygenated, heated to 80°C and treated with 2.6

equivalents of (Me3Si)3SiH and catalytic AIBN.  When the GC peak corresponding to the

β-bromoester 3.31b could no longer be detected, heating was ceased and the reaction

mixture was analysed by GCMS.  The 18O enrichment in the unrearranged product ester

3.34b was 72.7±0.4%.  For comparison, the same product from a control reaction

(without Et4NOCOCF3) yielded an 18O enrichment of 92.1±0.3%.  This indicates that

about one fifth of the label is lost due to substitution reactions involving the unlabelled

trifluoroacetate ion.

A test was devised to check whether the loss of label might have occurred simply

by reaction of 3.34b with the trifluoroacetate ion.  The reaction solution from the

previous control experiment (in which Et4NOCOCF3 was omitted) was treated with an

equal volume of a 0.78 M solution of tetraethylammonium trifluoroacetate in acetonitrile

and heated at 80°C for 90 min.  The ester now displayed an 18O  enrichment of

79.4±0.8%, indicating that the loss of label in 3.34b may well occur entirely after its

formation and not from a reaction between radical 3.32b and unlabelled trifluoroacetate.
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Difficulty was encountered in measuring the 18O enrichment in the rearranged

ester 3.35b since two fragment ions contribute (in varying amounts) to the ester-

containing peak group in the m/z 155-161 range.  Although reliable label enrichments

could not be determined, a semi-quantitative analysis was performed by a comparison of

the partial mass spectrum for 3.35b with that for the control reaction (lacking

Et4NOCOCF3) and for the control reaction which was subsequently heated with

Et4NOCOCF3 (figure 3.6).  It is obvious that the spectra are quite similar, so the amount

of substitution of unlabelled for labelled trifluoroacetate can only be of the order of a few

percent, if such a process occurs at all.  As indicated by the error bars, treatment of

3.35b with trifluoroacetate ion causes negligible incorporation of unlabelled

trifluoroacetate.
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Figure 3.6.  Partial mass spectra of the rearranged ester 3.35b, subjected to various

conditions.  Uncertainty bars represent one standard deviation (68% confidence).

Minimum possible 18O enrichments of 3.35b were calculated from the ratio of

the relative abundances at m/z 157 and 159.  These were 80.2% for the control reaction,
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80.5% for the control reaction subsequently heated with Et4NOCOCF3 and 78.1% for the

rearrangement reaction performed in the presence of Et4NOCOCF3.  According to this

data, 97.4% of the amount of label present in 3.35b from the control experiment

remained in 3.35b when it was formed in the presence of unlabelled trifluoroacetate ion.

Thus, there appeared to be very little exchange of trifluoroacetate, if any at all, during the

rearrangement step.  It can be concluded that if a radical ion pair is an actual intermediate

it must exist as a contact ion pair (CIP) and not as a solvent-separated (SSIP), a solvent-

shared ion pair, or a dissociated ion pair.

It is envisaged that more accurate results might be obtained if the experiment was

repeated by conducting the TTMSS/AIBN reduction of the unlabelled β-bromoester 3.31

in the presence of Et4NOCO14CF3.  The product esters could be separated by preparative

GC, then analysed for radioactivity by beta particle detection.  Radioactivity in the

product esters would indicate exchange.

3.9 Discussion of results with regard to mechanism

It is clear that the rearrangement of the 2-methyl-2-trifluoroacetoxy-1-heptyl

radical (3.32) to the 2-methyl-1-trifluoroacetoxy-2-heptyl radical (3.33) proceeds with

neither complete positional retention nor complete transposition of the ester oxygens, but

rather with considerable scrambling of the oxygen label.  A formal 3,2 shift predominated

over a formal 1,2 shift under all the experimental conditions of this study.  An increase in

the proportion of 1,2 shift in polar solvents is in agreement with theoretical predictions

for a mechanism consisting of concerted 3- and 5-membered transition structures32 and

with labelling results from the rearrangement of the 2-butanoyloxy-2-phenyl-1-propyl

radical.5  In addition, the unrearranged product ester (3.34) displays a usually small but

significant amount of scrambling of the label.  Therefore, the rearrangement of 3.32

cannot occur by a single, concerted mechanism.  The results dictate that the mechanism

consists of the cooperation of reversible, polarized 1,2 (i) and 2,3 (ii) shifts; or involves

the intermediacy of an alkene radical cation/trifluoroacetate anion pair (iii); or is a

combination of these options.
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According to the various verification experiments, the results in tables 3.2, 3.3

and 3.5 are an accurate representation of the regiochemistry of the rearrangement

reactions.  There is good agreement between comparable 17O and 18O experiments.  The

crossover experiment established that there is a negligible transfer of trifluoroacetoxy

groups intermolecularly.  The attempt to trap the alkene radical cation of the postulated

intermediate (iii) resulted in product esters which essentially retained their initial 18O

enrichment levels.  This last result indicates that if the intermediate iii is indeed operative,

it cannot exist predominantly as a dissociated or solvent-separated ion pair (SSIP), but

must exist as a contact ion pair (CIP), dwelling within the solvent cage.

Several trends are conspicuous from the results of the labelling experiments.  For

reactions performed in the same solvent, the RE values depend little on whether the

reducing/chain-transfer agent is Bu3SnH or (Me3Si)3SiH, indicating that the reducing

agent is not implicitly involved in the actual trifluoroacetoxy group migration step.  For

the rearranged product ester 3.35, the factors which result in an increase in RE (more 1,2

shift) are increased solvent polarity, higher temperature and low reducing agent

concentration.  The latter variable is particularly significant, as exemplified by comparing

entries 2 and 4 in table 3.3.  At 80˚C, for an average TTMSS concentration of 0.029 M,

RE = 32.0%.  However, RE  rises significantly to 41.4% at the lower average [TTMSS]

of 0.0029 M.

Values of RE for 3.35 vary from 17.7–41.4% in non-fluorinated solvents.  In

perfluoromethylcyclohexane (PFMC) with TBTH as the reducing agent, RE reaches its

maximum value of 44.8%.  This anomalous behaviour is possibly caused by an attractive

interaction between the CF3 of the trifluoroacetoxy group and the solvent, which affects

the conformation of the migrating substituent.
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Figure 3.7 contains plots of RE for the rearrangement 3.32→3.33 against the

solvent polarity parameters of dielectric constant ε and ET(30).33  The line of fit in each

graph illustrates the trend that RE decreases sharply in non-polar solvents.  It is clear from

both plots that the behaviour in the perfluorinated solvent PFMC is anomalous.  The

value of ET(30) for PFMC has been estimated to be about the same as hexane, since the

experimental value could not be found.  It is clear that the solvent has a large effect on the

regiochemistry of the rearrangement.  It is therefore important that theoretical MO

calculations take solvent effects into account.

0

1 0

2 0

3 0

4 0

5 0

0 5 0 100 150 200

R
E
 (

%
)

Dielectric constantε

PFMC

NMA

hexane

benzene

EtCN
MeCN

0

1 0

2 0

3 0

4 0

5 0

2 5 3 0 3 5 4 0 4 5 5 0 5 5

R
E
 (

%
)

T
(30)  (kcal/mol)E

PFMC

hexane

benzene

NMA

EtCN
MeCN

Figure 3.7.  Plots of R E  against dielectric constant and against E T(30) for the

rearrangement of radical 3.32 at 80˚C in various solvents

It was surprising to observe the sharp decrease in RE as the solvent changes from

benzene (ε  = 2.27, RE = 26-34%) to hexane (ε  = 1.88, RE = 18-19%), whereas the vast

increase in dielectric constant of acetonitrile (ε  = 35.9, RE = 33-39%) might be expected

to produce a larger increase in RE.  According to Coulomb's equation (eq. 3.6), the

dielectric constant, ε , is a measure of the capacity of a medium to reduce the force, F,

between two charges, q1 and q2, separated by distance r.  If the mechanism involves ion

F  = 
1
ε

q q1 2

0
24 rπε

                                                  (3.6)
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pairs, benzene probably promotes an increase in distance r between the oppositely-

charged fragments relative to hexane since the difference in dielectric constants is

considered too small by itself to cause such a large change in RE.  Alternatively, the π

-electron cloud of the benzene ring may have enough nucleophilic character to interact

with the electron-deficient carbonyl carbon of the trifluoroacetoxy group, affecting not

only the regiochemistry but the rate constant of the rearrangement.  Such interactions have

been used previously to explain the large difference in the rate of solvolysis of 1-acetoxy-

2-bromopropane in octane and in benzene.31

If the mechanism for the rearrangement of radical 3.32 involves the cooperation

of concerted 1,2 (i) and 3,2 (ii) shifts, then the increase in RE in polar solvent implies

that the 3-membered transition structure i is more polarized than the 5-membered structure

ii.  Theoretical calculations of carboxylate group charge for the ground state (3.32-like)

and for structures i and ii (R = CF3) indicate that the charge separation in structures i and

ii is essentially the same,32 conflicting with the mechanistic hypotheses of some

experimental chemists.1,5

The regiochemistry of the rearrangement of the 2-methyl-2-trifluoroacetoxy-1-

heptyl radical (3.32) resembles that of the 2-phenyl-2-trifluoroacetoxyethyl radical

(3.13, RE = 19%), and also that of the 2-aryl-2-butanoyloxypropyl radicals 3.7 (25% in

methanol) and 3.8 (39%).  Like 3.7, radical 3.32 experiences greater label scrambling

as solvent polarity increases.

From the data in table 3.3 it can be seen that RE increases at higher temperatures.

This indicates that a greater randomisation of the label is taking place in the radical

cation/carboxylate anion pair intermediate (iii) at higher temperatures, or alternatively that

the activation energy for a concerted 1,2 shift (i) is greater than that for a 3,2 shift (ii).  In

latter alternative, it is possible to estimate the difference in activation energy, ∆Ea, and

Arrhenius frequency factor, A, between the two transition states.  The ratio of rate

constants from the 3,2 and 1,2 rearrangements can be calculated simply from the

regiochemical results (table 3.9).  The Arrhenuis expressions (equations 3.7 and 3.8) for

the two competing rate constants, k3,2 and k1,2 are:
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Division of equation 3.7 by 3.8 gives:
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Table 3.9. RE  dataa at several temperatures,b from which the difference in Arrhenius

parameters between hypothetical 3,2 and 1,2 mechanisms may be approximated

Temperature (˚C) RE   (%)

100   %−( )









R

R
E

E%
ln

100   %−( )









R

R
E

E%

40 21.5 3.65 1.30

80 30.6c 2.27 0.819

100 32.6 2.07 0.726

a: From table 3.3; b: benzene solution; b: From table 3.5

Figure 3.8 is a plot of ln(k3,2/k1,2) against 1/T.  A good data fit was achieved with

a line of equation ln(k3,2/k1,2) = –2.377 + 1145/T  (R2 = 0.9807).  The gradient of 1145

K corresponds to (Ea1,2 – Ea3,2) = 9.5 kJmol-1 and the intercept of –2.38 corresponds to

log10(A3,2/A1,2) = –1.03.  By this analysis, the 3-centred pericylic process has a higher

activation energy and a larger A factor than that for the 5-centred process, consistent with

a transition structure requiring the constraint of one less degree of rotational freedom, but

possessing more ring strain.
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Figure 3.8. Plot of ln(k3,2/k1,2) against 1/T for the rearrangement of radical 3.32b.

A theoretical value for (Ea1,2 – Ea3,2) of 4±1 kJmol-1 for the rearrangement of the

2-methyl-2-trifluoroacetoxypropyl radical has been obtained by ab initio calculations.32

Energies were calculated at the B3LYP level with several basis sets, although at the

G3(MP2) level (composite, high degree of theory) ∆Ea for the B3LYP-optimised

geometry rose steeply to 12 kJmol-1,32 comparing favourably with the current

experimental value.

An interesting result was obtained at a very low reducing agent concentration.  For

[TTMSS] = 2.9 mM (entry 4, table 3.3) the RE  values are 41.4% for the rearranged

product 3.35b and 64.2% for 3.34b.  Such a large degree of label scrambling in both

products indicates the involvement of one or more dynamic, reversible processes which

result in considerable label randomisation in each direction.  Interestingly, the ratio

3.35b:3.34b is only 7.70 at this concentration, yet when [TTMSS] = 29 mM (entry 2,

table 3.2) the ratio increases to 12.6.  This depletion in 3.35b at low reducing agent

concentration may be caused by the elimination of trifluoroacetate ion from the incipient
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radical 3.32b during rearrangement.  Unfortunately, it was not possible to establish the

yield of an expected elimination product, 2-methyl-1-heptene (3.29), since the low

concentration of the reaction mixture caused the benzene solvent GC peak tail to largely

obscure the peak expected for 3.29.  It may be profitable to further explore this area.

It was possible to obtain approximate rate constants and Arrhenius parameters for

the process which results in scrambling of the label in the unrearranged product ester

3.34.  The scrambling process which converts radical 3.32 to label-randomised radical

3.32scr was treated as having first order kinetics, with rate constant kscr.  In direct

competition with this was the first order rearrangement of 3.32 to 3.33, with rate

constant kr.  Thus, the situation was treated as a simple competition between two first-

order processes.

C5H11

O*O

CF3

•
C5H11

O**O

CF3

•C5H11

OO

CF3

•

kscrkr

3.33 3.32 3.32scr

MH MH MH

3.35 3.34 3.34scr

C5H11

O*O

CF3

C5H11

O**O

CF3

C5H11

OO

CF3

Owing to the irreversibility of the reaction of each radical with the reducing agent

MH, the ratio of two first order rate constants is equal to the ratio of the concentrations of

the products formed by each respective process (equation 3.11).  Since the rate constants

for the rearrangement step, kr, have been determined in chapter 2, kscr can be obtained for

each temperature (equation 3.12).  The quantity [3.34scr] refers to the concentration of a

form of 3.34 in which the label has been completely randomised (RE = 50%).  For
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example, an RE value for 3.34 of 95.4% means that [3.34scr] = (100–95.4) × 2 = 9.2%

the concentration of 3.34.

 

k

k
scr

r
   =   

[ ]
[ ]
3.34

3.35
scr                                                       (3.11)

kscr     =   
kr  [ ]

[ ]
3.34
3.35

scr                                                  (3.12)

It is interesting to note (table 3.10) that at normal temperatures, kscr is only 1-2%

as large as kr, demonstrating that the process that scrambles the label in 3.34 is much

slower than the migration of the ester group.  From an Arrhenius plot of this data (figure

3.9), the kinetic parameters extracted were log10A = 11.8 s-1 and Ea = 55.3 kJmol-1,

although the uncertainties in these values are large.  In benzene, the Arrhenius parameters

for trifluoroacetoxy migration are log10A = 12.0±0.2 s-1 and Ea = 43.7±0.8 kJmol-1.

Initial results therefore indicate that it is the activation energy term which is primarily

responsible for the difference in rate between the two processes.  At this time it is not

clear what mechanistic conclusion to draw from these parameters.

Table 3.10.  Concentration ratio and rate data required for the calculation of

kscr at three temperatures

T (˚C) [3.34scr] ÷  [3.35] kr  (s
-1) kscr  (s

-1)

40 0.0075±0.0070 5.14 × 104 3.9±3.6 × 102

80 0.0093±0.0079 3.44 × 105 3.2±2.7 × 103

100 0.0168±0.0029 7.64 × 105 1.28±0.22 × 104
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Figure 3.9.  Plot of ln kscr against reciprocal temperature.  The error bars represent the

uncertainty in RE for 3.34b, from table 3.3.  The line of best fit is described by the

equation 27.13 – 6652/T.

3.10 Conclusions

In summary, the rearrangement of the 2-trifluoroacetoxy-2-methyl-1-heptyl radical

(3.32) proceeds with between 17-44% formal 1,2 shift, demonstrating that the

translocation of ester oxygens is favoured under the conditions of this study.  The

proportion of 1,2 shift in the rearrangement 3.32→3.33 is increased by polar solvents,

high temperatures and low concentrations of the hydrogen atom source.  These same

factors also increase the degree of label scrambling in the unrearranged product 3.34.

The rearrangement is truly intramolecular and reversible.  One mechanism consistent with

these facts involves the cooperation of reversible 1,2 and 3,2 shifts possessing polarized

transition structures.  The labelling results agree qualitatively, but not quantitatively, with

theoretical calculations which predict that the 3,2 shift becomes less favoured in polar

solvents.  The 1,2 shift was estimated to have an Ea 9.5 kJmol-1 higher and log10(A/s-1)
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1.01 units larger for the 3,2 shift.  This is consistent with the 3-membered TS possessing

greater ring strain but more degrees of freedom than its 5-membered counterpart.  The

difference in energy between the two transition structures is consonant with one high-

level theoretical calculation.

A second mechanism which is compatible with the results is a reversible process

involving an alkene-radical-cation/trifluoroacetate-anion contact pair. This ion pair

collapses to form either the rearranged radical 3.33—in which the label is preferentially

distributed into the carbonyl oxygen—or radical 3.32, in which the label has been partly

scrambled.  Such an ion pair must exist primarily inside the solvent cage and not as a

solvent-separated, solvent-shared or dissociated pair.  At this stage it is not possible to

confidently exclude either of these possible mechanisms using the available evidence.
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3.11 Experimental

Tetraethylammonium Trifluoroacetate Et4NOCOCF3 [30093-29-9]

A 20% aqueous solution of tetraethylammonium hydroxide (50.0 g, 67.9 mmol)

was cooled to 0˚C and stirred while 5.5 mL (71.4 mmol) of trifluoroacetic acid was

added over 30 seconds.  Rotary evaporation was used to concentrate the mixture.  The

resulting colourless liquid was transferred to a Quickfit test tube and dried on the

kugelrohr at 110˚C/0.1 mmHg for several hours.  A bulb containing P2O5 was positioned

in the vapour path to absorb moisture.  The product was obtained as a very hygroscopic

white solid upon cooling and was stored under dry nitrogen.
1H nmr: 1.32 (t, 3H, 4 × CH3), 3.36 (q, 2H, 4 × CH2).

Attempt to observe a 1,2 OH shift in the 2-hydroxy-2-methyl-1-

heptyl radical

The preparations of the compounds 1-bromo-2-methylheptan-2-ol (3.30), 2-

methylheptan-2-ol (3.36) and 2-methylheptan-1-ol (3.37) are described in the

experimental section of chapter 2.  The compounds are there numbered 2.57, 2.62 and

2.63 respectively.

In a sturdy, brown reagent bottle (10 mL) was placed 10.7 mg (0.0512 mmol) of

1-bromo-2-methylheptan-2-ol (3.30) and 5.0 mL of pure, dry benzene.  The bottle was

capped with a Mininert valve and the solution was purged of oxygen with a gentle

nitrogen bubble stream.  After heating the stirred solution at 80˚C for 15 minutes,

Bu3SnH (25 µL, 0.093 mmol, 1.8 eq.) and AIBN (0.0036 mmol, 0.071 eq.) were

added, each by one quick injection.  After 2 hours, analysis of the reaction solution by

GC revealed that all of 3.30 had been consumed.  Among the compounds present were

2-methylheptan-2-ol (3.36, 43.8%), Bu3SnH (14.3%) and Bu3SnBr (39.9%) with the

relative peak integrals indicated.  A peak corresponding to the product expected from a

1,2 OH shift—2-methylheptan-1-ol (3.37)—could not be detected.  The estimated limit

of detection of the 3.37 peak was 0.15% the area of the 3.36 peak.

(±)-1-Bromo-2-methylheptan-2-ol-18O   (20 atom%).

Br

18OH

3.30a

17

8

All glassware involved in this reaction was dried in a 120˚C oven before use and a

dry nitrogen atmosphere was used.  Dry triflic acid (1 drop) was added to a stirred
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solution of 2-methyl-1-heptene (3.29, 158 µL, 1.00 mmol) and 90 µL of 20.1 atom%

H2
18O in H2

16O (ρ = 1.029 gmL-1, 5.15 mmol) in 5.0 mL of dry THF under nitrogen.

N-bromoacetamide (0.2757 g, 1.998 mmol) was added in one portion, under a blanket of

dry nitrogen.  The mixture was stirred for a further 20 min, diluted with 10 mL of diethyl

ether and washed with 30 mL of water.  The aqueous phase was extracted twice with 10

mL portions of ether and the combined organic extract was washed consecutively with 5

mL of 0.5 M aqueous NaHCO3, 10 mL of 0.3 M aqueous Na2S2O3, then 5 mL of water.

Pentane was added until the solution became cloudy, to aid drying (MgSO4).

Concentration yielded an orange oil (272.3 mg).

Purification was achieved by flash chromatography on 37 mL of silica, eluting

with 3% ethyl acetate in hexane (8 mL fractions) until the sweet smell of the bromohydrin

was detected, then 6% ethyl acetate in hexane was used as eluent.  Fractions that also

contained a second spot of slightly higher Rf were not discarded since this impurity could

be removed after the next (esterification) step.  Compound 3.30a was obtained as a

colourless oil (88.1 mg, 0.418 mmol, 42%).
1H nmr: 0.90 (t, 3H, 7-CH3), 1.20-1.40 (m, 6H, CH3(CH2)3-), 1.31 (s, 3H, CH3C-

OH), 1.55-1.65 (m, 2H, 3-CH2), 1.91 (s, 1H, OH), 3.45 (d, 1H, 2J = 10.2 Hz,

CHBr), 3.49 (d, 1H, 2J = 10.2 Hz, CHBr).
13C nmr: 14.0 (7), 22.5 (6), 23.7 (4), 24.9 (8), 32.1 (5), 39.9 (3), 45.5 (1), 71.292 (2-
18O, 20.1%), 71.324 (2-16O, 79.9%).

The percentages refer to the relative peak heights for the quaternary carbon resonances.

GCMS: 20.0±0.3% 18O enriched.

(±)-1-Bromomethyl-1-methylhexyl Trifluoro-oxy-18O-acetate (20 atom%)

Br
18O

CF3

O

3.31a

1
7

8

A stirred mixture of sodium trifluoroacetate (34.7 mg, 0.255 mmol) and labelled

bromohydrin 3.30a (88.1 mg, 0.422 mmol) was cooled to 0˚C and trifluoroacetic

anhydride (300 µL, 2.12 mmol) was added.  After 20 min, TLC (6% ethyl acetate in

hexane) indicated the reaction was incomplete.  A further 33.5 mg (0.246 mmol) of

sodium trifluoroacetate was added, followed by portionwise additions of trifluoroacetic

anhydride (ca. 400 µL), continued until the reaction appeared complete by TLC.  Pentane

(10mL) was added and the mixture was washed with 10 mL of water.  The aqueous

phase was extracted with 10 mL of pentane and the combined organic phase was dried

and evaporated to yield an oil (102.4 mg).  Flash chromatography on silica (4.0 g), using

hexane as the eluent, afforded pure 3.31a as an oil (77.5 mg, 0.254 mmol, 60%).
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1H nmr: 0.90 (t, 3H, 7-CH3), 1.25-1.40 (m, 6H, CH3(CH2)3-), 1.64 (s, 3H, CH3CO),

1.87 (m, 1H, 3-CH), 2.07 (m, 1H, 3-CH), 3.75 (d, 1H, 2J = 11.2 Hz, CHBr), 3.82 (d,

1H, 2J = 11.2 Hz, CHBr).
13C nmr: 13.9 (7), 22.3 (8), 22.4 (4*), 22.9 (6*), 31.6 (5), 36.63 (1†), 36.69 (3†),

87.837 (2- 18O, 19.6%), 87.882 (2- 16O, 80.4%), 114.2 (q, 1J19F-13C = 287 Hz, CF3),

156.0 (q, 2J19F-13C = 42 Hz, C=O).

GCMS: 20.0±1.0% 18O enrichment.

(±)-1-Bromo-2-methylheptan-2-ol-18O   (92 atom%).

Br
18OH

3.30b
17

8

This compound was prepared using the same method as that for the synthesis of

1-bromo-2-methylheptan-2-ol-17O (48 atom%, 3.30c).  The reaction of 2-methyl-1-

heptene (325 µL, 2.06 mmol), H2
18O (reported 97-98 atom%, Cambridge Isotopes, 90

µL, 5.00 mmol) and N-bromoacetamide (0.4147 g, 3.01 mmol) in 10 mL of dry diethyl

ether at an initial temperature of –7˚C gave an orange oil (0.5463 g) upon work-up.

Flash chromatography using 30 g of silica yielded 3.30b as a pale orange oil (0.2811 g,

64.6%).
1H nmr: 0.90 (t, 3H, 7-CH3), 1.25-1.42 (m, 6H, CH3(CH 2)3-), 1.30 (s, 3H,

CH3COH), 1.55-1.65 (m, 2H, 3-CH2), 2.16 (s, 1H, OH), 3.44 (d, 1H, 2J = 10.2 Hz,

CHBr), 3.48 (d, 1H, 2J = 10.2 Hz, CHBr).
13C nmr: 13.9 (7), 22.5 (6), 23.6 (4), 24.9 (8), 32.1 (5), 39.8 (3), 45.3 (1), 71.248 (2-
18O, 91.8%), 71.278 (2-16O, 8.2%).  The percentages refer to relative peak heights for

the resolved quaternary (2) carbons.

GCMS: 91.9±0.7% 18O enrichment.

(±)-1-Bromomethyl-1-methylhexyl Trifluoro-oxy-18O -acetate (92 atom%
18O )

Br

18O

CF3

O

3.31b

1

7

8

Trifluoroacetic anhydride (146 µL, 1.03 mmol) was added to a stirred solution of

202.8 mg (0.961 mmol) of the labelled bromohydrin 3.30b (92 atom% 18O), and
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pyridine (84 µL, 1.04 mmol) in 5.0 mL of CH2Cl2 at 0˚C.  TLC revealed that the

reaction was complete within 20 min.  Pentane (5 mL) was added and the mixture was

washed with 5 mL of water.  The aqueous phase was extracted with 2 × 10 mL of

pentane and the combined organic phase was dried and evaporated to give an orange oil

(0.23 g).  Purification was achieved by flash chromatography on 3 g of silica, eluting

with pentane.  The labelled β-bromoester 3.31b was obtained as a colourless oil (0.2294

g, 77.7%).
1H nmr: 0.90 (t, 3H, 7-CH3), 1.25-1.40 (m, 6H, CH3(CH2)3-), 1.64 (s, 3H, CH3CO),

1.87 (m, 1H, 3-CH), 2.07 (m, 1H, 3-CH), 3.75 (d, 1H, 2J = 11.1 Hz, CHBr), 3.82 (d,

1H, 2J = 11.1 Hz, CHBr).
13C nmr: 13.8 (7), 22.2 (CH3CO or 8), 22.3 (4*), 22.9 (6*), 31.6 (5), 36.63 (1†),

36.66 (3†), 87.830 (2-18O, 92.5%), 87.884 (2-16O, 7.5%), 114.3 (q, 1J19F-13C = 287

Hz, CF3), 155.9 (q, 2J19F-13C = 42 Hz, C=O). The percentages refer to relative

resolved peak heights.

GCMS: 92.1±3% 18O enrichment.

Procedure for regiochemical studies with 1 8 O-labelled β -

bromoesters 3.31a and 3.31b

In a dried 1 mL Reactivial, fitted with a stirrer vane and capped with a Mininert

valve,19 was placed the labelled β-bromoester (5-6 mg, 0.015-0.020 mmol).  The

appropriate type and quantity of dry solvent (usually 250-1000 µL, depending upon

concentration required) was added by syringe and the resulting solution was freed of

oxygen by bubbling a slow stream of dry nitrogen through it for approximately 1 min.

The Mininert valve was closed, sealing the vessel and the flask was lowered into an

80±1˚C (or other nominated temperature) thermostatted oil bath and stirred for at least 2

minutes to allow temperature equilibration.

The desired quantity of tris(trimethylsilyl)silane was injected (nominally 1.35

eq.), in one shot, followed by a volume of AIBN solution (usually 5-10 µL, about 5

mol% relative to the silane) in the reaction solvent.  For reactions performed in hexane

solution, benzene was the solvent for the initiator solution owing to the very low

solubility of AIBN in hexane.  The progress of the reaction was monitored by GC

(dimethylpolysiloxane capillary) and more initiator was injected if the reaction appeared to

have stalled.  When the reaction was judged to be complete, the reaction vessel was

cooled to room temperature and the bulk of the solvent was removed carefully on the

rotary evaporator, under reduced pressure.  The water-miscible solvents acetonitrile and

N-methylacetamide were not removed in this way.  Acetonitrile and NMA solutions were

taken up in 5 mL of diethyl ether, washed with 1 mL of water, treated with 5 mL of

pentane, dried over MgSO4 and concentrated under reduced pressure.
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Flash chromatography over silica, with hexane or pentane eluent, was used to

isolate the desired esters 3.34a/b and 3.35a/b (Rf ≈ 0.3) from silicon-containing

reactants and by-products (Rf ≈ 0.9).  Solvents were removed carefully under vacuum

and the esters were hydrolysed to their respective alcohols by treatment with 20 µL of a

solution of 1.5 M KOH in 95% aqueous ethanol (95% ethanol, 5% H2O v/v), and

heating in a capped vial for 20 min at 75˚C.  After cooling, 5 mL of diethyl ether was

added and the resulting solution was washed with 1 mL of water and treated with 5 mL of

pentane to aid drying (MgSO4).  Removal of the solvents under vacuum yielded a mixture

of the desired alcohols, 3.36a/b and 3.37a/b.

Quantitative conversion of the alcohols to the corresponding trimethylsilyl ethers

3.38a/b and 3.39a/b was effected by treatment with 5 µL (0.062 mmol) of pyridine

and 15 µL of Regisil (10% Me3SiCl in BSTFA, capable of silylating 0.06 mmol of

hydroxyl groups) and heating in a capped vial for 20 min at 75˚C.  After cooling, the

mixture was diluted with CH2Cl2 to a concentration (usually 0.1 mg/mL for the most

abundant TMS ether) appropriate for GCMS analysis.  Results appear in tables 3.2 and

3.3 in the text.

(±)-1-Bromo-2-methylheptan-2-ol-17O  (48 atom%)

Br

17OH

3.30c

17

8

In preparation for this experiment, all syringes, spatulas and solids transfer

containers were dried under vacuum overnight in a desiccator, over silica gel.  Glassware

was dried at 130˚C overnight.  Diethyl ether was distilled from sodium, in the presence of

benzophenone (15 mgL-1), once the blue ketyl was persistent.  N-Bromoacetamide was

recrystallized (mp 106.5-107.5˚C) from 1,2-dichloroethane/hexane and dried over P2O5,

under high vacuum for three days.  Exposure to light was minimised after addition of the

NBA until the completion of the reaction.

A solution composed of 800 µL (0.5697 g, 5.08 mmol) of 2-methyl-1-heptene

(3.29), 225 µL of  H2
17O (48.6 atom% 17O, Cambridge Isotopes, 12.5 mmol) and 25

mL of dry diethyl ether was stirred whilst cooling to –7˚C in an ice/salt/acetone bath.   N-

Bromoacetamide (1.0299 g, 7.465 mmol) was added in one portion, under a blanket of

dry nitrogen and the temperature of the cooling bath was allowed to rise slowly.  After

195 min, the bath temperature was 3˚C and the solution was pale yellow/orange

(bromine), indicating consumption of the alkene.  Diethyl ether (30 mL) was added and

the mixture was washed with 150 mL of water.  The aqueous washing was back-
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extracted with 2 × 50 mL of ether and the combined organic phases were dried (MgSO4)

and evaporated to yield an orange oil.  Purification was achieved by flash

chromatography (53 g of silica), eluting with 5% ethyl acetate in 40-60˚C pet. spirit (10

mL fractions) until the sweet smell of the bromohydrin was detected, then elution

continued using 15% ethyl acetate.  Any mixed fractions containing a contaminant of

immediately higher Rf were not discarded since the contaminant was unreactive in the

next (esterification) step and was removed at that stage.  The bromohydrin 3.30c was

obtained as a pale orange oil (0.6864 g, 3.27 mmol, 64.5%).

It was not known whether the labelled water was normalised with respect to

hydrogen.  A D2O exchange experiment caused the hydroxyl signal in the 1H nmr

spectrum of 3.30c to disappear immediately.
1H nmr: 0.90 (t, 3H, 7-CH3), 1.25-1.40 (m, 6H, CH3(CH 2)3-), 1.30 (s, 3H,

CH3COH), 1.55-1.65 (m, 2H, 3-CH2), 2.02 (s, br, 1H, D2O exch., OH), 3.44 (d, 1H,
2J = 10.2 Hz, CHBr), 3.48 (d, 1H, 2J = 10.2 Hz, CHBr).
13C nmr: 14.0 (7), 22.5 (6), 23.6 (4), 24.9 (8 ), 32.1 (5), 39.9 (3), 45.4 (1), 71.279 (2-
18O, 58.1%), 71.309 (2-16O, 41.9%).  The percentages refer to the relative peak heights

of the quaternary carbon 2.
17O nmr (40.7 MHz, pentane):   50.6 (s, OH).

GCMS: 46.5±0.2% 17O enriched, 31.2±0.3% 18O enriched.

(±)-1-Bromomethyl-1-methylhexyl Trifluoro-oxy-17O-acetate

Br

17O

CF3

O

3.31c

7

1

8

Dry pyridine (0.213 mL, 2.63 mmol) was added to 3.30c (0.5120 g, 2.44

mmol) in 10 mL of dry CH2Cl2.  After cooling to 0˚C, the stirred solution was treated

dropwise with trifluoroacetic anhydride (0.371 mL, 2.63 mmol) over 1 min, then allowed

to warm to room temperature.  TLC (7% ethyl acetate in 40-60˚C pet. spirit) showed a

faint spot remaining with the same Rf (0.20) as 3.30c.  Another 20 µL (total of 2.77

mmol) of trifluoroacetic anhydride did not result in the disappearance of this spot.  The

spot in question displayed fluorescence under UV light but the bromohydrin did not.

Thus, it was concluded that all of 3.30c had been converted to 3.31c and the spot was

an impurity.  After dilution with 10 mL of pentane, the solution was washed with 10 mL

of water.  The aqueous phase was back-extracted with 2 × 10 mL portions of pentane and

the combined organic phases were dried (MgSO4) and concentrated to yield an oil (0.77

g).  Flash chromatography (pentane) over 10 g of silica afforded 3.31c as a colourless
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oil (0.6289 g, 2.06 mmol, 84%) which was 99.0% pure by GC (BP1).
17O nmr (40.7 MHz, pentane):  176.7 (s, alkoxy oxygen).

Procedure for regiochemical studies with 1 7 O-labelled β -

bromoester 3.31c

Two separate series of experiments were conducted: the first using

tris(trimethylsilyl)silane as the hydrogen atom source; and the second using tributyltin

hydride.  For each series of reactions, approximately 52 mg (0.17 mmol) of β-

bromoester 3.31c was used, to provide sufficient quantities of products for nmr

analysis.  For the tris(trimethylsilyl)silane reactions the quantity of the reducing agent was

usually about 71 µL (0.23 mmol), corresponding to an intended 1.35 molar equivalents

and the amount of AIBN was approximately 3.5 mol% relative to the silane.  The volume

of each solvent (hexane, benzene, acetonitrile) was 5.0 mL.  For reactions performed

with tributyltin hydride the quantity of reducing agent used was approximately 55 µL

(0.20 mmol), corresponding to an intended 1.2 molar equivalents and approximately 4.5

mol% AIBN relative to the hydride.  The volume of each solvent (hexane, benzene,

propionitrile, perfluoromethylcyclohexane) was 20 mL (16 mL for PFMC).

An appropriately-sized (10  or 50 mL), sturdy, brown glass bottle was equipped

with a stirrer bar and charged with the labelled β-bromoester 3.31c.  The vessel was

capped with a Mininert valve19 and the dry, purified solvent of choice was introduced by

syringe.  A slow stream of dry nitrogen bubbles was passed through the stirred

solution—via a needle inserted through the Mininert valve—for three minutes, to remove

oxygen.  The valve was then closed and the bottle was placed in an 80±1˚C thermostatted

oil bath, and surrounded with a metal gauze protective shield.  The solution was stirred at

this temperature for 15 min prior to a rapid injection of the reducing agent, followed by a

solution of the initiator.  The progress of reactions was monitored by GC

(polydimethylsiloxane stationary phase) and the reaction vessel was withdrawn from the

bath and cooled after consumption of β-bromoester 3.31c.  Reactions involving

tris(trimethylsilyl)silane were analysed by GCMS to determine the isotopic composition

of each of the ester products (table 3.11).  Reactions involving tributyltin hydride were

not analysed directly because of GCMS contamination issues and were only analysed

after tin-containing residues had been removed by preparative GC.

Solvents were removed by distillation under reduced-pressure through a column

comprising a B10 still head packed with glass rings.  The heating bath temperature was

kept below 55˚C.  The residue was transferred to an nmr tube, sometimes with the aid of

a little pentane to lower the solution viscosity, and a 17O nmr spectrum of the mixture was

obtained (see 17O nmr appendix).

Preparative GC (see general experimental section, column temperature 60˚C) was

then used to separate the non-rearranged (3.34c) and rearranged (3.35c) esters from
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one another and from other by-products.  For each ester, 17O nmr spectra were obtained

in pentane solution.  These spectra were all consistent with the spectra of the reaction

mixtures obtained previously.

Isotopic compositions of each ester were again determined after nmr to check

whether any of the label had been lost from the molecule during preparative GC or nmr

(tables 3.11 and 3.12).

Table 3.11.  17O enrichments of esters 3.34c and 3.35c—obtained from the reaction

of 46.5±0.2% 17O-enriched β-bromoester 3.31c with tris(trimethylsilyl)silane—before

and after preparative GC.

Solvent

Average
[TTMSS]

(M)

17O enrichment
in non-rearranged

ester 3.34c
before prep.

GC (%)

17O enrichment
in rearranged
ester 3.35c

before prep.
GC(%)

17O enrichment
in non-rearranged

ester 3.34c
after prep. GC

(%)

17O enrichment
in rearranged
ester 3.35c

after prep. GC
(%)

hexane 0.0302 47.8 47.4 47.8 48.7

benzene 0.0289 47.8 48.1 47.9 47.9

acetonitrile 0.0289 44.3* 48.3 --- ---

acetonitrile 0.150 47.3 48.6 47.6 47.9

* High uncertainty due to a low concentration of 3.34c

Table 3.12. 17O enrichments, after preparative GC, for reactions involving tributyltin

hydride.

Solvent
Average [TBTH]

(M)

17O enrichment in
non-rearranged

ester 3.34c (%)

17O enrichment in
rearranged ester

3.35c (%)

hexane 0.00595 47.6 38.0*

benzene 0.00640 47.6 44.7*

propionitrile 0.00593 47.4 35.3*

PFMC 0.00875 --- ---

*  These values are considered to be highly uncertain for several reasons.  The first is that the isotope

ratio analysis for the rearranged isomer is complicated because two fragment ions contribute to the peak

group in the mass spectrum.  The second is that a relatively high proportion of 2-methylheptan-1-ol

(3.37), which has a GC retention time only slightly larger than its trifluoroacetate, was present and may

interfere with the GCMS analysis.  Finally, the ratio between 17O and 18O varies for these analyses,

which would not be so if the label was merely undergoing dilution by exchange.  Since there is negligible

exchange for the non-rearranged isomer in all cases, it is assumed that negligible exchange occurs in the

rearranged ester 3.35c.
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(±)-1-Bromo-2-methylheptan-2-ol-1,1-d2 (99 atom% D)

O CD2 CD2Br
OH

3.30d

1
8

7

3.29d3.40

This labelled bromohydrin was prepared from 2-methyl-1-heptene-1,1-d2

(3.29d), in turn synthesised by the Lombardo olefination27 of 2-heptanone (3.40),

utilising CD2Br2 as the source of the label.  Unfortunately, the expected yield of alkene

was low owing to an error in stoichiometry initiated by a typographical error in the

reference.  In the synthesis of compound 25 (p. 4868), 0.230 g of compound 24

represents 0.593 mmol, not 5.93 mmol, as reported.28  The alkene was then converted,

without isolation, to the bromohydrin 3.30d.

2-Methyl-1-heptene-1,1-d2 (3.29d)

A vigorously stirred suspension of zinc powder (0.415 g, 6.35 mmol) in 3.5 mL

of dry THF, under an atmosphere of dry nitrogen, was treated with 140 µL (2.00 mmol)

of CD2Br2 (99 atom% D, Icon Chemicals).  The mixture was cooled to –55˚C before 165

µL (1.50 mmol) of freshly distilled TiCl4 was added dropwise.  A thick, grey suspension

resulted, which was stirred at 4˚C for 17 hr.  After warming the solution to room

temperature 840 µL (6.00 mmol) of 2-heptanone (3.40, dried by passage through

powdered CaSO4) was added and stirring was continued for one hr, resulting in a dark

brown/grey suspension.  Saturated aqueous NaHCO3 solution (15 mL) was added

cautiously, causing a vigorous effervescence.  A further 1.0 g of solid NaHCO3 was then

added and the product was extracted with 4 × 10 mL of diethyl ether, decanting the

organic phase each time.  The combined extracts were dried and the solvent was reduced

to a volume of approximately 3 mL by careful distillation through a short column packed

with glass rings, down to a volume of approximately 3 mL.

(±)-1-Bromo-2-methylheptan-2-ol-1,1-d2 (3.30d)

The residue from the preceding experiment was treated with 15 mL of DMSO and

500 µL (27.8 mmol) of water, then cooled to 0˚C with stirring.  N-Bromosuccimimide

(2.05 g, 11.5 mmol) was added in portions, resulting in an orange solution.  This was

poured into 70 mL of ice/water and then extracted with 4 × 15 mL of diethyl ether.  The

combined organic layer was washed with 15 mL of saturated aqueous NaCl, then dried

(MgSO4) and evaporated, yielding an orange oil (0.64 g).  Purification of the crude

product was achieved by flash chromatograpy over 25 g of silica, eluting with 6% ethyl

acetate in 40-60˚C pet. spirit until the sweet odour of the product was detected, then

elution continued with 10% ethyl acetate.  The labelled bromohydrin 3.30d was obtained
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as a colourless oil (69.4 mg, 0.329 mmol, 55%).
1H nmr:  0.90 (t, 3H, 7-CH3), 1.20-1.40 (m, 6H, CH3(C H 2)3), 1.30 (s, 3H,

CH3COH), 1.55-1.64 (m, 2H, 3-CH2), 2.33 (s, br, OH).  Small multiplets were

present, centred at 3.45 and 3.49 ppm, corresponding to non- or partially-deuterated

isotopomers.  From the relative integrals of these, 3.30d was ≥ 98.5 atom% D.
13C nmr: 13.9 (7), 22.5 (6), 23.6 (4), 24.8 (8), 32.1 (5), 39.8.  The expected quintet

(ca. 45 ppm), corresponding to carbon-1 was too weak in intensity to be observed.

GCMS:  99.2±0.5 atom% D (as CD2), using the peak group at m/z 135-143 (C3H6BrO+

in unlabelled bromohydrin 3.30).

(±)-1-Bromomethyl-1-methylhexyl Trifluoroacetate-1,1-d2 (99 atom% D)

CD2Br
O

CF3

O

3.31d

1

7

8

A stirred solution of the labelled bromohydrin 3.30d (66.9 mg, 0.317 mmol) in

2.0 mL of dry CH2Cl2 was cooled to 0˚C.  Pyridine (27.7 µL, 0.342 mmol) was added,

followed by trifluoroacetic anhydride (48.2 µL, 0.341 mmol) and the solution was

allowed to warm to room temperature.  After 10 min,  5 mL of pentane was added and the

mixture was washed with 10 mL of water.  The aqueous phase was extracted with 2 × 10

mL of pentane, and the combined organic phase was dried (MgSO4) and evaporated, to

yield an oil (0.10 g).  Flash chromatography (pentane) over 3 g of silica provided pure

3.31d as a colourless oil (61.8 mg, 0.201 mmol, 64%).

Crossover experiment
A mixture of 5.88 mg (1.91 × 10-5 mol) of 18O-labelled (91.9% enriched) β-

bromoester 3.31b and 5.93 mg (1.93 × 10-5 mol) of d2-labelled (99.2 atom% D) β-

bromoester 3.31d was placed in a 3 mL Reactivial, fitted with a stirrer vane and capped

with a Mininert valve.  To this mixture was added 1.00 mL of dry, purified benzene and

the resulting solution was stirred while a stream of dry nitrogen was bubbled through for

3 min to remove oxygen.  The Mininert valve was closed and the vial was placed in an

80±1˚C bath for 15 min before tris(trimethylsilyl)silane (16.0 µL, 5.19 × 10-5 mol) was

rapidly injected, followed by 10.0 µL of an 0.118 M AIBN solution in benzene (1.18 ×

10-6 mol, 3.1 mol% relative to silane).  The progress of the reaction was monitored by

GC, the reaction requiring two more 10.0 µL injections of the initiator solution to ensure

that it went to completion.  The molar ratio of the rearranged to non-rearranged ester was
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determined from the GC peak integration to be 9.47:1.

After cooling to room temperature, 50 µL of the solution was dissolved in 2 mL

of pentane, to provide a solution of appropriate concentration for GCMS analysis.

Relevant mass-spectral data for the rearranged (table 3.13) and unrearranged (table 3.14)

esters are provided.

Table 3.13.  Partial mass-spectral data for the rearranged product ester 3.35 from the

crossover experiment

m/z
3.35 (pure d2)

(%)
3.35b (18O)

(%)

3.35 From
crossover

experiment (%)

3 . 3 5
Calculated for
zero crossover

(%)

155 0 2.32±0.29 1.96±0.34 1.16±0.15

156 0 4.13±0.53 1.61±0.33 2.06±0.27

157 10.43±0.47 22.90±1.85 17.88±1.43 16.64±1.16

158 2.25±0.50 6.15±0.89 3.78±0.37 4.19±0.70

159 100 100 100 100

160 10.23±0.32 9.05±0.49 9.75±0.85 9.64±0.41

161 0.40±0.09 0.26±0.07 0.45±0.31 0.33±0.08

162 0.03±0.07

Table 3.14.  Partial mass-spectral data for the unrearranged product ester 3.34 from

the crossover experiment

m/z
3.34 (pure d2)

(%)
3.34b (18O)

(%)

3.34 From
crossover

experiment (%)

3 . 3 4
Calculated for
zero crossover

(%)

155 0 8.59±0.27 5.85±0.44 4.27±0.14

156 0 14.41±0.44 12.33±0.31 7.18±0.22

157 100 100 100 100

158 5.51±0.33 5.51±0.14 5.56±0.26 5.51±0.24

159 0.38±0.14 0.12±0.04 0.21±0.09 0.25±0.09
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Attempt to trap the 2-methyl-1-heptene radical cation
A reaction of the 18O-oxy-labelled β-bromoester 3.31b (91.9±0.7% enriched)

with tris(trimethylsilyl)silane in acetonitrile solution, in the presence of unlabelled

trifluoroacetate ion was conducted to test whether any exchange of unlabelled for labelled

trifluoroacetate occurs during the rearrangement of the incipient radical 3.32b.

Successful trapping of the radical-cation fragment of the postulated intermediate may be

detected by a decrease in the 18O enrichment of the ester products 3.34b and 3.35b

relative to the bromoester.  Difficulties encountered in the GCMS analysis necessitated a

control experiment as a basis for comparison.

1) Rearrangement of radical 3.32b in the presence of unlabelled trifluoroacetate ion.

The labelled bromoester 3.31b (5.71 mg, 1.86 × 10-5 mol) was dissolved in a

solution of anhydrous tetraethylammonium trifluoroacetate (500 µL of a 0.78 M solution,

3.9 × 10-4 mol, 21 eq.) in dry acetonitrile in a 1 mL Reactivial fitted with a Mininert

valve.  After deoxygenating with nitrogen, the solution was heated to 80±1˚C and stirred

at this temperature for 15 min before rapidly injecting 15.0 µL (4.86 × 10-5 mol) of

tris(trimethylsilyl)silane and 5 µL of an 0.24 M solution of AIBN (1.2 × 10-6 mol) in

acetonitrile.  The reaction was monitored by GC and stopped when no 3.31b remained

(several hours).  The GC integration ratio for 3.35b:3.34b was 8.5:1.  Unrearranged

ester 3.34b gave an 18O enrichment of 72.7±0.4% and rearranged ester 3.35b gave ≥

78.1%.  See table 3.15 for the relevant mass-spectral data for 3.35b.

2) Control experiment

This was performed in an identical manner to the prior experiment, with the

exception that the solvent contained no tetraethylammonium trifluoroacetate.  The

following quantities were used:  5.81 mg (1.89 × 10-5 mol) of bromoester 3.31b, 500

µL of dry acetonitrile, 15.0 µL (4.86 × 10-5 mol) of tris(trimethylsilyl)silane and 5 µL

(1.2 × 10-6 mol) of AIBN solution.  Two further 5 µL injections of AIBN were required

to ensure the reaction went to completion.  The GC integration ratio for 3.35b:3.34b

was 12.3:1.  Unrearranged ester 3.34b gave an 18O enrichment of 92.1±0.3% and

rearranged ester 3.35b gave ≥ 80.2%.  See table 3.15 for the relevant mass-spectral data

for 3.35b.

3) Test for exchange in 3.31b prior to rearrangement

To test for exchange prior to rearrangement, 5.0 mg (1.6 × 10-5 mol, 0.032 M) of

the labelled β-bromoester 3.31b in 500 µL of a 0.78 M solution of tetraethylammonium

trifluoroacetate in dry acetonitrile was heated at 80˚C for 1.5 hours. The 18O isotopic

enrichment of the recovered 3.31b was determined by GCMS to be 91.7±0.2%,

comparing favourably with the initial enrichment of 91.9±0.7%.
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4) Test for exchange in ester products 3.34b and 3.35b after rearrangement

To test for exchange after rearrangement, the reaction solution from the undoped

reaction was treated with 500 µ L of an 0.78 M solution of anhydrous

tetraethylammonium trifluoroacetate in dry acetonitrile, making the overall concentration

of the dissolved salt 0.39 M, and heated at 80˚C for a further 1.5 hours.  The 18O

enrichment of the non-rearranged isomer 3.34b was determined to be 79.4±0.8% and

that of the rearranged isomer 3.35b was ≥ 80.5%.  See table 3.15 for the relevant mass-

spectral data for 3.35b.

Table 3.15.  Partial mass spectral data for the rearranged ester 3.35b , from

experiments 1,2 and 4 (plotted in figure 3.6)

m/z
(1) Test for trapped
trifluoroacetate (%) (2) Control (%)

(4) Control then heated with
tetraethylammonium
trifluoroacetate (%)

155 1.55±0.07 2.32±0.29 2.51±1.17

156 3.20±0.050 4.13±0.53 3.98±0.84

157 26.61±1.36 22.90±1.85 23.96±0.32

158 7.72±0.66 6.15±0.89 6.67±0.66

159 100 100 100

160 8.95±1.39 9.05±0.49 9.88±0.24

161 0.57±0.41 0.26±0.07 0.54±0.20

Uncertainties are at one standard deviation.
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4.1 Introduction

This chapter describes an electron spin resonance study of alkyl radicals which

possess an oxygenated β-substituent.  Such work was undertaken for two main reasons.

Firstly, labelling experiments1-3 reveal that most simple, acyclic β-acetoxyalkyl radicals

undergo a net 1,2 acetoxy shift with almost complete transposition of ester oxygens.

However, the migration of the electronegative trifluoroacetoxy group proceeds more

quickly with approximately 65%4 to 81%5 oxygen label translocation.  In a recent ab

initio MO investigation into the β-acyloxyalkyl radical rearrangement, workers could not

locate a stationary point on the energy surface corresponding to a contact ion pair (iii) for

reactions involving the shift of either an acetoxy or trifluoroacetoxy group.6  Rather, the

results indicated that the mechanism involved a combination of primarily 5-membered (ii)

and to a lesser extent 3-membered (i) polarized transition structures, with i being higher

in energy by approximately 4.7 kJmol-1 for acetoxy and 4.3 kJmol-1 for trifluoroacetoxy

migration.  The question then arose as to whether there is a stereoelectronic interaction

between the ester carbonyl oxygen and the radical orbital which is detectable by esr and

might account for the preponderance of a 3,2 (5-membered TS ii) shift over a 1,2 (3-

membered TS i) shift.  Barriers to internal rotation about the Cα–Cβ bond were

determined for radicals 4.3a-c in order to estimate the magnitude of any stereoelectronic

interaction between the β-substituent and the radical orbital.

O O

R

•O

R O

•
O O

R

+
_

iiiiii

•

δ+

δ-

δ+

δ-

‡ ‡

Secondly, although vicinal shifts of β-acetoxy and β-trifluoroacetoxy groups in

alkyl radicals are well documented, attempts to observe a 1,2 hydroxy shift in β-

hydroxyalkyl radicals under similar conditions have failed.7,8  Although 1,2 hydroxy

rearrangements do occur in the presence of enzymes9 and protonated hydroxy groups are
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known to migrate,10 such shifts are considered special cases with significant differences

in chemistry.  In light of the difference in reactivity between β-hydroxy, acetoxy and

trifluoroacetoxy alkyl radicals, an obvious question which arises is whether the

propensity for migration of a β-substituent correlates with a particular radical

conformation.  In an attempt to answer this question, the stable conformation was

determined for each of three series of radicals (4.1-4.3) bearing β-substituents (a) OH,

(b) OCOCH3 and  (c) OCOCF3.

CH2 CH

R

Bu

CH CH

R

CH3

CH2 CH2

R

CH3

4.1 4.2 4.3

a: R = OH

b: R = OCOCH3

c: R = OCOCF3

••
•

4.2 Estimation of the time-averaged dihedral angles

The esr β-hydrogen hyperfine coupling constant is dependent upon the

configuration about the Cα–Cβ bond.  One such relationship11 is given by equation 4.1,

where αβ  is the β-coupling constant; Q CCH
H  is a proportionality constant, characteristic of

the •C–CH system representing the coupling constant at maximum spin density (≤ 58.6

G12); ρ C  is the spin density in the carbon 2pz orbital and θ is the dihedral angle between

the β- C-H bond and the axis of the singly occupied molecular orbital.

R4

R3 H

R2R1

θ

αβ  =  Q CCH
H ρ Ccos2θ (4.1)

For systems in which there can be complete rotation or other rapid conformational

interconversion about the Cα–Cβ bond, equation 4.1 still holds, but αβ and θ represent

time-averaged, or equilibrium, values.  A temperature dependence of the β-coupling
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constant can be observed in many systems.  A classical explanation of this phenomenon

states that with a decrease in temperature, the proportion of time spent by the radical in a

more stable conformations increases, as governed by the Boltzmann distribution.  A

change in the equilibrium conformation naturally results  in a corresponding change in the

time-averaged β-coupling constant.  At very low temperatures, conformational freezing

may occur if the radical does not have sufficient energy to surmount the potential well of

the most stable conformation(s).  A quantum mechanical treatment specifies that

depopulation of discrete, higher energy rotational states occurs with a decrease of

temperature.

For unrestricted rotation about the Cα–Cβ bond, the average value of θ  is

cos-1 0 5.  = 45˚, as derived from equation 4.2.  Consequently, values of θaverage

calculated from β-hydrogen coupling constants using equation 4.1 represent deviations

from the free-spin value of 45˚ because of the increasing contribution to the equilibrium

conformation by potential minima at lower temperature.

1
2π

π

∫0
2

 cos2θ   dθ    =  
1
2

                                             (4.2)

For primary radicals 4.1a-c and 4.3a-c, a value of Q CCH
H ρ C = 53.8 G was used

in equation 4.1 for the calculation of θ  values.  This value is derived from equation 4.1,

using the temperature-invariant β-coupling constant for ethyl radical (αβ -CH3 = 26.9

G),13 assuming free rotation (θaverage = 45˚). It is broadly accepted that the barrier for

rotation about the Cα–Cβ bond in the ethyl radical is very small since the methyl

hydrogens are still magnetically equivalent at 4K,14 although quantum mechanical

tunnelling through the barrier may well occur.  For the secondary radicals 4.2a-c, an

internally consistent value of Q CCH
H ρ C was calculated for each radical in the same way as

for the ethyl radical, using the respective, averaged β-CH3 coupling constants.  Values

appear in table 4.1.
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Table 4.1.  Internally consistent values of Q CCH
H ρ C, for radicals 4.2a-c

Radical species QCCH
H ρ C (G)

CH3 C
•

HCH(CH3)OH            4.2a 50.43

CH3 C
•

HCH(CH3)OCOCH3   4.2b 50.98

CH3 C
•

HCH(CH3)OCOCF3     4.2c 51.47

A modified version of equation 4.1 was required for conformational analysis of

radicals 4.3a-c since there are two β-hydrogens as opposed to the usual one.  Equation

4.3 is an expression for a hypothetical sum of β-coupling constants, where αβ1  and αβ2

represent the splittings from Η1 and H2 respectively and θ and φ are the respective

dihedral angles.12

H2

  R

H1

HH

θφ

ϕ
Σαβ   =  αβ1  + αβ2    =   Q CCH

H ρ C (cos2θ  + cos2φ)             (4.3)

In situations of high frequency (> 108 s-1) conformational interconversion, the β-

hydrogens become spectroscopically equivalent, so

 Σαβ   =  αβ1  + αβ2   =  2〈αβ 〉  =  Q CCH
H ρ C (cos2θ  + cos2φ)

and hence    〈αβ 〉  =  Q CCH
H ρ C 

cos    cos2 2

2
θ φ+









where 〈αβ  〉 is the time-averaged value of the coupling constant.  This is more

conveniently expressed by equation 4.4 in terms of ϕ, the dihedral angle to the

oxygenated β-substituent.
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〈αβ 〉  =  Q CCH
H ρ C (0.5 sin2ϕ  +  0.25)                                  (4.4)

There are four conformations commonly encountered at the potential minima of

simple alkyl radicals,13 as displayed in figure 4.1.  The Hβ–Cβ bond may adopt torsion

angles to the C2pz semi-occupied orbital axis of 0, 30, 60 and 90˚.  To aid

conformational analysis, θaverage values were calculated and plotted against absolute

temperature.  An estimation of the geometry of the most stable conformation of each

radical was made from αβH and its temperature dependence, by considering selective line

broadening phenomena in the esr spectra and evaluating relative steric effects.

H

H

H

C2pz C2pz

C2pzC2pz

θ  = 0˚ θ  = 30˚

θ  = 90˚θ  = 60˚

H

Figure 4.1.  The four basic geometries of alkyl radicals, which correspond to potential

minima upon rotation about the Cα–Cβ  bond

4.3 Recording of the esr spectra and extraction of g-values
and hyperfine splitting constants

The desired radicals were generated in the cavity of an esr spectrometer by high-

pressure Hg/Xe irradiation of a mixture of the appropriate β-bromoester or alcohol (1

volume), triethyl silane (2 volumes) and di-tert-butylperoxide (4 volumes) in

cyclopropane (mp 145 K) solution, according to an established procedure.15,16  The
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sequence of reactions responsible for generation of the carbon centred radicals is shown

below.

2 t-BuO•
hν

t-BuO•   +   Et3Si–H t-BuO–H   +   Et3Si•

Et3Si•   +   R–Br Et3Si–Br   +   R•

t-BuO–Ot-Bu

Occasionally, ethylene oxide (mp 162 K) was used instead of, or in conjunction

with, cyclopropane when the solubility of the components was poor at lower

temperatures.  The solutions were cooled to –78˚C and deoxygenated with dry nitrogen

for five minutes prior to their insertion into the spectrometer.  The temperature controlling

device was calibrated using a thermocouple and temperatures are estimated to be accurate

to better than ±5 K.

The spectra of the β-hydroxyalkyl radicals were the most difficult to obtain due to

the line broadening, presumably caused by hydrogen bonding.  The hydroxylated

precursors were less soluble and crystallized at higher temperatures than their ester

counterparts.  Well resolved spectra for the 2-hydroxy-1-hexyl radical (4.1a) were

particularly difficult to obtain at certain temperatures since the comparatively large size of

the alkyl chain reduces the frequency of molecular tumbling in solution, resulting in larger

linewidths.  Consequently, data for the 2-hydroxy-1-propyl radical were used in these

instances owing to the relative ease of recording this spectrum and the high degree of

similarity expected for the coupling constants.

Isotropic g factors were determined relative to a calibrated spectrometer field

marker at g = 2.00333 and are uncorrected with respect to second and higher order

effects.  The g values and coupling constants, together with the multiplicities (in brackets)

of the resonances are tabulated for each species over a typical temperature range of 150-

250 K.  If splittings were not resolved, this is indicated by the abbreviation n.r..
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4.4 Results

4.4.1 Spectra of 2-(oxysubstituted)-1-hexyl radicals 4.1a-c

10 G

OH g = 2.00333

•

Figure 4.2.  Esr spectrum of 2-hydroxy-1-propyl radical (in place of the very poorly

resolved 2-hydroxy-1-hexyl  species 4.1a), at 172 K, spectral width 80 G

Table 4.2.  Esr spectral data for the 2-hydroxy-1-hexyl radical (4.1a)

T (K) g αα (G) αβ  (G) αγ (G)

153* ~2.0024 ~21.9 (t) ~27.3 (d) n.r.

172* 2.00240 21.93 26.61 n.r.

190 2.00247 21.97 25.60 n.r.

211 2.00248 21.99 25.34 n.r.

* data for 2-hydroxy-1-propyl radical

10 G

OCOCH3

g = 2.00333

•

Figure 4.3.  Esr spectrum of 2-acetoxy-1-hexyl radical (4.1b) at 172 K, spectral width

80 G
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Table 4.3.  Esr spectral data for the 2-acetoxy-1-hexyl radical (4.1b)

T (K) g αα (G) αβ  (G) αγ (G)

135 ~2.0024 ~22.3(t) ~20.7 (d) n.r.

153 2.00245 22.37 20.62 n.r.

172 2.00241 22.30 20.53 n.r.

190 2.00244 22.31 20.97 n.r.

211 2.00246 22.28 21.56 n.r.

231 2.00247 22.28 21.78 n.r.

10 G

OCOCF3 g = 2.00333

•

Figure 4.4.  Esr spectrum of 2-trifluoroacetoxy-1-hexyl radical (4.1c) at 172 K, spectral

width 80 G

Table 4.4.  Esr spectral data for the 2-trifluoroacetoxy-1-hexyl radical (4.1c)

T (K) g αα (G) αβ  (G) αγ (G)

135 2.00241 22.54 (t) 14.69 (d) n.r.

153 2.00243 22.55 15.09 n.r.

172 2.00243 22.52 15.59 n.r.

191 2.00245 22.52 16.29 n.r.

211 2.00248 22.48 17.51 n.r.

231 2.00247 22.44 18.18 n.r.

251 2.00244 22.37 18.46 n.r.

271 2.00241 22.38 18.66 n.r.
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4.4.2 Spectra of 3-(oxysubstituted)-2-butyl radicals 4.2a-c

15 G

OH

g = 2.00333
•

Figure 4.5.  Esr spectrum of 3-hydroxy-2-butyl radical (4.2a) at 231 K, spectral width

150 G

Table 4.5.  Esr spectral data for the 3-hydroxy-2-butyl radical (4.2a)

T (K) g αα (G) αβ -CH (G) αβ -CH3 (G) αγ (G)

172 2.00251 21.95 (d) 19.82 (d) 25.21 (q) 0.5* (q)

190 2.00249 22.02 19.35 25.35 0.5*

211 2.00252 21.82 18.84 25.08 0.5*

* poorly resolved

15 G

OCOCH3

g = 2.00333
•

Figure 4.6.  Esr spectrum of 3-acetoxy-2-butyl radical (4.2b) at 172 K, spectral width

150 G
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Table 4.6.  Esr spectral data for the 3-acetoxy-2-butyl radical (4.2b)

T (K) g αα (G) αβ -CH (G) αβ -CH3 (G) αγ (G)

135 ~2.0025 ~21.8 (d) 15.85 (d) 25.6 (q) n.r. (q)

153 2.00252 22.21 15.82 25.58 0.72

172 2.00251 22.09 15.83 25.48 0.72

190 2.00249 22.09 15.91 25.44 0.73

211 2.00248 22.06 16.07 25.48 0.75

231 2.00248 22.01 16.16 25.46 0.76

15 G

g = 2.00333
OCOCF3

•

Figure 4.7.  Esr spectrum of 3-trifluoroacetoxy-2-butyl radical (4.2c) at 172 K, spectral

width 150 G

Table 4.7.  Esr spectral data for the 3-trifluoroacetoxy-2-butyl radical (4.2c)

T (K) g αα (G) αβ -CH (G) αβ -CH3 (G) αγ (G)

153 2.00248 22.19 (d) 11.18 (d) 25.88 (q) 1.00 (q)

172 2.00251 22.07 11.53 25.77 1.02

191 2.00248 22.03 12.02 25.77 0.97

211 2.00252 21.96 12.46 25.70 0.99

261 2.00245 21.89 13.24 25.56 0.99
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4.4.3 Spectra of 2-(oxysubstituted)ethyl radicals 4.3a-c

OH

20 G

g = 2.00333

•

Figure 4.8.  Esr spectrum of 2-hydroxyethyl radical (4.3a) at 153 K, spectral width 120

G.  Note the second spectrum also present, in which the M I = ±1 lines due to the β-

hydrogen splitting are greatly broadened.

Table 4.8.  Esr spectral data for the 2-hydroxyethyl radical (4.3a)

T (K) g αα (G) αβ  (G)

135 2.00273 22.16 (t), 22.19 (t) 35.94 (t), 33.99 (t)

153 2.00267 22.06, 22.10 35.31, 33.31

172 2.00268 22.09, 22.19 34.76, 33.16

191 2.00267 22.04, 22.19 34.18, 32.58

201 2.00263 22.09, 22.19 33.77, 32.45

231 2.00261 22.06, 22.17 32.66, 30.69

Numbers in italics represent splitting constants for a second species present, with great broadening of the

MI = ±1 lines of the β-hydrogen coupling.

OCOCH3

20 G

g = 2.00333

•

Figure 4.9.  Esr spectrum of 2-acetoxyethyl radical (4.3b) at 172 K, spectral width 120

G
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Table 4.9.  Esr spectral data for the 2-acetoxyethyl radical (4.3b)

T (K) g αα (G) αβ  (G)

135 ~2.0027 22.32 (t) 29.97 (t)

153 2.00259 22.29 29.27

172 2.00258 22.38 28.51

191 2.00259 22.33 27.82

211 2.00257 22.35 27.29

231* 2.00258 22.27 26.77

251* 2.00253 22.24 26.42

271* 2.00257 22.23 26.11

* Propane and ethylene oxide were omitted in the preparation of these sample solutions.

OCOCF3

20 G

g = 2.00333•

Figure 4.10.  Esr spectrum of 2-trifluoroacetoxyethyl radical (4.3c) at 172 K, spectral

width 120 G

Table 4.10.  Esr spectral data for the 2-trifluoroacetoxyethyl radical (4.3c)

T (K) g αα (G) αβ  (G)

135 2.00256 22.54 (t) 24.25 (t)

153 2.00258 22.54 23.91

171 2.00260 22.53 23.70

191 2.00258 22.51 23.49

211 2.00256 22.54 23.33

231 2.00256 22.48 23.22

251 2.00257 22.48 23.15
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4.5 Calculations, analysis and discussion

4.5.1 General

A compilation of the g values and pertinent hyperfine coupling constants for each

of the nine species studied is provided in table 4.11, along with those for comparable

hydrocarbon radicals.  The g values for most of the radicals are slightly lower than the

range 2.0026-2.0028 normally expected for alkyl radicals, although they are still greater

than that for a free spin (2.00232).  Such values are consistent with a π -type radical

which possesses an electronegative β-heteroatom substituent.  For example, 2-

trifluoromethoxyethyl radical, CF3OCH2 C
•

H2, has a g factor of 2.00257.17

Table 4.11. Summary of esr spectral parameters and comparison with those of

analogous hydrocarbon radicals.

Species g (average) ααΗ
(average, G)

αβΗ  at ca.
170 K (G)

C
•

H2CH(Bu)OH             4.1a 2.00245 21.96 26.7

C
•

H2CH(Bu)OCOCH3    4.1b 2.00245 22.31 20.6

C
•

H2CH(Bu)OCOCF3     4.1c 2.00244 22.48 15.5

C
•

H2CH(CH3)2 2.0026b 21.93a 32.3c

CH3 C
•

HCH(CH3)OH            4.2a 2.00251 21.93 19.9

CH3 C
•

HCH(CH3)OCOCH3    4.2b 2.00250 22.09 15.8

CH3 C
•

HCH(CH3)OCOCF3     4.2c 2.00249 22.03 11.5

  CH3 C
•

HCH(CH3)CH2CH3 unreported 22.0d 22.0 (at 77 K)d

         C
•

H(CH3)2 2.00268e 21.87e 24.7f

C
•

H2CH2OH                  4.3a 2.00267 22.08 34.8

C
•

H2CH2OCOCH3            4.3b 2.00257 22.30 28.6

C
•

H2CH2OCOCF3             4.3c 2.00257 22.52 23.7

C
•

H2CH2CH3
g 2.00265 22.10 30.2c

For convenience all coupling constants are represented as having positive sign.

a: Reference 24; b: g value for aqueous solution: reference 25;  c: Reference 45;  d: Reference 49;  e:

Reference 26;  f:  in diethyl ether solution:  reference 20;  g: Reference 18
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These lower g values are consistent with delocalisation of the odd electron on to

the β-substituent, as postulated for β-chloroethyl radicals,18-21 although this may not be

the case with β-oxyalkyl radicals.  The low g value of 2.00199 for β-chloroethyl radical

is attributed to a delocalisation of the odd electron into the p orbitals of the chlorine

atom.20  However, Kochi and coworkers doubt that such homoconjugation with β-

oxygen substituents is detectable in g since the spin orbit coupling constant of oxygen (ξp

= 151 cm-1) is only a fraction of that for Cl (ξp = 586 cm-1).17  More recent theoretical

calculations discount the significance of such homoconjugation altogether.22,23

Furthermore, since many workers do not indicate whether the g factors have been

corrected for second-order field effects, care should be taken before drawing conclusions

about radical structure from small deviations in this parameter.

Values for the α coupling constants are often slightly larger than, yet consonant

with, those of comparable alkyl radicals.  Values of ααΗ  are relatively invariant between

species, deviating not more than 1.5% from the mean.  This indicates that spin density at

Cα varies little with changes in radical structure according to equation 4.5,27 where Q CH
H

is a proportionality  constant estimated to be between –2228 and –28 gauss27 and ρ C is

the spin density at Cα.

αα  =  Q CH
H ρ C                                                                           (4.5)

However, in the series 4.1a-c and 4.3a-c, it is clear that ααH  increases steadily

in the order R = OH < OCOCH3 < OCOCF3.  It is to be expected that ααH  will increase

only slightly with a correspondingly large decrease in αβH  since the hyperfine splitting at

the β-hydrogens does not exceed 10% that of the 507 G splitting of an isolated hydrogen

atom.29

Also affecting ααH  is the degree of geometric distortion at the radical site.  It is

known that α-coupling constants are usually negative in sign and become more positive

with increasing pyramidalisation at the radical centre.28  The ethyl radical is known to be

slightly pyramidal at Cα due to its low resistance to pyramidalisation and for steric and

hyperconjugative reasons.30  So the correlation between the β-substituent R and ααH  is
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consistent with a flattening at Cα as R becomes more electronegative.

Accompanying the increase in ααH , in the series 4.1a-c and 4.3a-c, is a

corresponding and large decrease in αβH .  This phenomenon has been observed

previously with radicals possessing electronegative β-substituents, a good example being

a series of β-oxyethyl radicals,17 the esr parameters of which are displayed in table 4.12.

It can be seen that ααH increases with both the increasing electronegativity of the

substituent and increasing alkyl substitution at Cα.  This is consistent with the

participation of a β-oxyanion/alkene radical cation structure (see further on) in stabilising

the radical. Such radical cations are stabilised by increasing alkyl substitution, as

indicated by the corresponding oxidation potentials31 of the parent alkenes.

As mentioned previously, it is in the β-hfs that we observe the most obvious

differences between β-oxygenated and ordinary alkyl radicals.  Hyperfine splittings for

acyclic hydrocarbons radicals are normally in the range 23-35 G.32,33  Not only are the

β-couplings for β-oxygenated species often significantly smaller than this, but in all cases

Table 4.12. Spectral parameters for a series of β-oxyethyl radicals, from reference 17

Radical Temp.  K g αα (G) αβ  (G) αβ -CH3 (G)

           C
•

H2CH2OHa 135 2.00273b 22.16 35.94 -

           C
•

H2CH2OCH3 137 2.00257 22.17 34.61 -

           C
•

H2CH2OCF3 137 2.00257 22.59 31.21 -

      CH3 C
•

HCH2OCF3 173 2.00255 22.69 16.56 25.56

  (CH3)2 C
•

CH2OCF3 172 2.00256 - 10.02 23.45

a: this current work;  b: not corrected for second order effects

within a series of the same carbon framework, the splitting magnitude decreases as a

function of the substituent, in the order OH > OCOCH3 > OCOCF3 and as the degree of

alkyl substitution at Cα and Cβ increases.  Such trends are illustrated clearly by examining

the free-spin αβΗ  values in table 4.13 and their deviation from that for the benchmark
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ethyl radical.  It is clear that the nature of the β-substituent and radical alkyl structure

affect the β-coupling constant markedly.

Table 4.13.  Approximate extrapolated free-spin values for αβΗ  and the deviation from

that for ethyl radical (≈ 27 G)

Radical αβΗ  at free-spin (G)
27 – (αβΗ  at free-spin)

(G)

C
•

H2CH(Bu)OH             4.1a 24 3

C
•

H2CH(Bu)OCOCH3   4.1b 23 4

C
•

H2CH(Bu)OCOCF3    4.1c 20 7

CH3 C
•

HCH(CH3)OH      4.2a 17 10

CH3 C
•

HCH(CH3)OCOCH3    4.2b 16.5 10.5

CH3 C
•

HCH(CH3)OCOCF3     4.2c 14 13

C
•

H2CH2OH                  4.3a 27 0

C
•

H2CH2OCOCH3            4.3b 24 3

C
•

H2CH2OCOCF3             4.3c 22 5

Three main theories have been put forward to explain this phenomenon.  Kochi

and coworkers,20,34 building on an earlier idea,13 argued that the reduction in αβΗ  as a

function of the β-substituent was caused by a geometric distortion at Cβ which tilts the β-

hydrogen(s) towards the nodal plane, lessening interaction with the unpaired spin.  In β-

oxygenated alkyl radicals, such tilting is attributed17 to asymmetric oxygen bridging

caused by a homoconjugative interaction between the β-oxygenated substituent and the

radical centre.  Such a theory requires that the degree of distortion at Cβ is dependent

upon the R–Cβ–Cα–SOMO dihedral angle, being largest at 0 and 180˚.  The angle of tilt

affects the magnetic field experienced at the β-hydrogens such that an in-phase

modulation of αβΗ between two limiting values is expected, the width of a particular line

being proportional to (MH)2.16  This leads to selective broadening of only the outer pair

of lines of a triplet, with spin quantum number ±1.  Huge linewidths are not observed in

the Mβ = ±1 lines of the esr spectra.  So, for this theory to be correct a time-averaged tilt
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angle must exist, resulting from interconversion between rotational states at a rate

significantly exceeding the esr timescale (~108 s-1).

H
H

H

H

R

H
H

R H

H

Lloyd and Wood35 offered a second explanation, after an esr study of β-halo-tert-

butyl radicals.  The coupling constants indicated pyramidalisation of Cα which reduces

the interaction of the unpaired electron with the β-hydrogens since the SOMO is tilted

away from a position perpendicular to the Cα–Cβ bond.  The equilibrium conformation of

chloro-tert-butyl radical is shown from two different angles, illustrating the

pyramidalisation at Cα.  A good measure of the degree of pyramidalisation is the 13C

Cl

CH3CH3

HH

                             

Cβ

CH3

CH3
Cl

H H

coupling constant at Cα.36  Unfortunately this parameter was not measured in the present

study.  The lowering of both ααΗ  and αβΗ (CH3) by pyramidalisation at Cα is illustrated

by the difference between ethyl and 1-fluoroethyl radicals37 in table 4.14.

Table 4.14.  Esr parameters37 and values of P for ethyl and 1-fluoroethyl radical

Radical T  (K) g ααΗ  (G) αβΗ -CH3  (G) P

CH3 C
•

H2 160 2.00260 22.37 26.99 1.207

CH3 C
•

HF 167 2.00366 17.31 24.48 1.414
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Beckwith, Ruchardt and coworkers38 have developed an earlier idea39 to provide

a means for estimating of the degree of pyramidalisation at Cα in radicals of structure

C
•

HMeX.  The pyramidalisation quotient, P, is defined as the ratio of αβΗ (CH3) to

ααΗ, the former being less sensitive to a change in geometry.40  If P > 1.25, the radical

is considered to be significantly pyramidal at Cα.

P  =  
α

α
β

α

H

H

 - CH  

 
3

Table 4.15.  Esr parameters and values of P for 4.2a-c at 172 K

Radical ααΗ  (G) αβΗ -CH3 (G) P

CH3 C
•

HCH(CH3)OH      4.2a 21.95 25.21 1.149

CH3 C
•

HCH(CH3)OCOCH3    4.2b 22.09 25.48 1.153

CH3 C
•

HCH(CH3)OCOCF3     4.2c 22.07 25.77 1.168

According to the P index, radicals 4.2a-c are less pyramidal at Cα than the

propyl radical, but do become slightly more pyramidal with increasing β-substituent

electronegativity.  From the values of P in table 4.15 it is concluded that pyramidalisation

at Cα cannot be responsible for the large reduction in the αβΗ  free-spin values.

A third theory was formulated when ab initio calculations23,41 revealed no

significant geometric distortions in the optimised structures of β-substituted ethyl

radicals.  A correlation was however found between calculated spin densities at Hβ and

the electronegativity of the β-substituent.41,42  Guerra42 reports that an electronegative β-

substituent reduces the "electron releasing power" of the Cβ–Hβ bond towards the

unpaired spin and he has even formulated a modified Heller-McConnell43 expression for

αβΗ  in β-substituted ethyl radicals.  A and B are constants which are relatively invariant

for second-row substituents (CH3, NH2, OH, F).  The variable C  is related to

substituent electronegativity and is responsible for the majority of the difference in β-

coupling constant between species.  θ  and ϕ refer to the dihedral angles between the
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SOMO axis and Cβ–Hβ  and Cβ–R bonds respectively.  This equation accurately predicts

αβΗ  values obtained from ab initio calculations,42 yet shows significant deviations

when used to predict experimental free-spin values in the present work.

Cβ Cα
H
H

H

H

R

〈αβ,ϕ 〉  =  A + B cos2θ +  C cosθ cos ϕ

In summary, ααH  values for β-oxysubstituted alkyl radicals are slightly larger

than those for alkyl radicals owing to the combined effects of an increase in the spin

density at Cα —caused by a corresponding decrease at Hβ—and to increased planarity at

the radical centre.  Free-spin values for αβH  are considerably lower than those observed

in alkyl radicals owing to either a spectroscopically time-averaged tilt of the β-hydrogens

towards the nodal plane and/or a spin density decrease at Hβ  caused by the

electronegativity of the β-substituent, rather than pyramidalisation at Cα.

4.5.2  2-(Oxysubstituted)hexyl radicals 4.1a-c

As expected, the esr spectra for each of the species (4.1a-c) yielded six major

lines, consisting of a doublet of triplets.  Longer range γ coupling to the C3 methylene

group was not resolved.  The temperature dependences of αβH  for radicals 4.1a-c each

contain points of inflexion (figure 4.11).  This indicates that steric and electronic effects

are of similar strength, sometimes acting antagonistically upon the equilibrium

conformation of these species and that the degree of their participation changes with

temperature.

The isobutyl radical, the simplest hydrocarbon analogue of radicals 4.1a-c, is

widely believed to have a lowest energy conformation in which the β-hydrogen eclipses

the radical orbital,34 as shown by the negative temperature dependence (αβH magnitude

decreases with increasing temperature) of the β-hydrogen splitting (see figure 4.11).
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CH3

H

CH3

HH

The 2-hydroxyhexyl radical (4.1a) has the same sense of αβH temperature

dependence.  The maximum value of αγH in alkyl radicals is approximately 8 G, which is

achieved in a frozen W-plan conformation.44  The experimental hfs of trans γ-hydrogens

have been shown to fit a relationship of the form αγH  = 0.1 + 7.9 cos2Φ, where Φ is the

dihedral angle between the SOMO and the plane through Cα–Cβ–Cγ .
44  It follows that

the maximum αγH  value for a freely rotating γ−hydrogen is about 4 G and so a

relationship of the form αγH  = 4 cos2Φ has been used to approximate the position of

alkyl groups.  Long-range hfs are resolvable for the 2-methylpentyl radical for T >

140K.44  Therefore, it is reasonable to assume that the γ-hydrogens are time-averaged by

free Cβ–Cγ rotation in radicals 4.1a-c, for T > 140 K.

Since γ−coupling was not resolved in the spectra of 4.1a-c, it was not possible to

calculate the exact equilibrium position of the butyl (or methyl) group.  But base-to-base

esr linewidths for 4.1a are approximately 4 G, so αγH for the C3-methylene is < 2 G.

This places the alkyl substituent at > 45˚ away from the radical orbital axis.  Therefore,

the most likely low temperature conformation is closer to that depicted in 4.4, because

the αβH values are significantly lower than those for isobutyl radical and have a less

significant temperature dependence at low temperature. However, 4.5, a less probable

contender, cannot be excluded owing to the unavailability of hfs data at lower

temperatures.

H

HH

H

Bu

OH

HH
HO Bu

4.54.4
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Figure 4.11. Plot of the β  coupling constant versus temperature for 2-

(oxysubstituted)hexyl radicals (4.1a-c).  Data for the isobutyl radical in alkane solvent, is

included for comparison.45
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Figure 4.12.  Plot of the dependence of the time-averaged β-H–SOMO dihedral angle

upon temperature for 2-(oxysubstituted)hexyl radicals (4.1a-c).  Angles calculated for the

isobutyl radical45 are shown for comparison.
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Radical 4.1c  (and to some extent 4.1b) shows a positive temperature

dependence of the β-coupling constant, in contrast to the negative temperature

dependence of the isobutyl radical.  The 2-acetoxy-1-hexyl radical (4.1b) shows an

invariance in αβH at lower temperatures.  This radical is not conformationally frozen,

however, since the esr spectra indicate that the α-hydrogens are magnetically equivalent at

all temperatures.  Therefore exchange between magnetically equivalent conformations is

still occurring at rates significantly above the esr time scale of about 108 s-1.  Such a

temperature dependence for 4.1b has a gradient intermediate between those of 4.1a and

4.1c and is consistent with the lower temperature invariance being caused by a balance of

weak steric and electronic effects rather than by strong conformational locking due to a

stereoelectronic effect.  However, it should be noted that the linewidths are large in the

spectra of 4.1a-c.  Such broadening might be due in part to rate processes which

exchange conformations in which α-hydrogens are inequivalent.

At 231 K, the base-to-base width of each major line in the spectrum of 4.1b is

approximately 2.2 G and the line shape is consistent with a poorly resolved triplet.  In the

considerably more highly strained 2,2-di(trideuteromethyl)-1-butyl radical, the

spectroscopic coalescence temperature for rotation about the C2–C3 bond is 225K.44

Hence it may be confidently concluded that the γ-hydrogens in 4.1b are magnetically

equivalent by fast exchange at 231K.  If the γ-hydrogens resonate as a poorly resolved

triplet, the coupling constant cannot exceed 1.1 G.  Hence the butyl group can be

calculated to be twisted away from the axis of the radical orbital by ca. 58˚.  Therefore,

4.6 appears to be the more stable conformation, although the less probable conformation

4.7 cannot yet be excluded since hfs data below 135 K have not been obtained.

HBu

OCOCH3

HH

H

OCOCH3

HHBu

4.6 4.7
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The widths of the major lines in the spectrum of 4.1c are also ca. 2 G, so the

position of the butyl group must be at  > 45˚ to the SOMO.  This information, in

conjunction with the positive temperature dependence of the β-coupling constant, is

consistent with 4.10 being the most stable conformation.

HBu

OCOCF3

HH

4.10

A comparison of the low temperature conformations of 4.1a-c indicates that as

the electronegativity of the β-oxy substituent increases, the group is more prone to eclipse

the SOMO.  Consequently, the butyl group tends to lie closer to the nodal plane than to

the SOMO.  These geometries are consistent with a significant contribution from an

anion/radical cation hyperconjugative mechanism towards the equilibrium conformations.

R R
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4.5.3  3-(Oxysubstituted)-2-butyl radicals 4.2a-c

Radicals 4.2a-c each displayed an esr spectrum consisting of 16 major lines,

composed of a quartet of double doublets.  Within each major line, a quartet due to γ-

splitting (0.5-1 G) was evident, although the resolution was poor in the case of 4.2a.

The most stable conformation of the 3-methyl-2-butyl radical,

CH3 C
•

HCH(CH3)2, has not yet been reported.  At low temperature, the isobutyl radical

(4.13) adopts an equilibrium conformation with the β-hydrogen eclipsing the half filled

orbital,13,34,45 whereas in the 2,3-dimethyl-2-butyl radical (4.14) the β-H eclipses an α-

methyl group.34
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Figure 4.13.  Plot of the β-coupling constant versus temperature for 3-oxysubstituted-2-

butyl radicals (4.2a-c).  Data points are included for R = CH3,46 CH=CHOH,47 SiEt3
48

and SEt48.
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Figure 4.14.  Plot of the time-averaged β-H-SOMO dihedral angle versus temperature for

3-oxysubstituted-2-butyl radicals (4.2a-c).  Angles for additional radicals are included.  If

no αβH (CH3) coupling constants were available, that for isopropyl radical (24.7 G)26 was

used.

On steric grounds, one would expect the lowest energy conformation of the 3-

methyl-2-butyl radical, CH3 C
•

HCH(CH3)2, to lie somewhere between 4.13 and 4.14,

with θ0 = 30 or 60˚.  The options are therefore 4.15 and 4.16 and models suggest that

the β-methyl will lie in closer proximity to the α-hydrogen than the α-methyl for steric

reasons.  Since the β-splitting at 110 K (23.7 G46) is slightly less (θ0 > 45˚) than the

expected free spin value (αβ (CH3) = 24.68 G for isopropyl radical33), the favoured

conformation is most likely 4.16.  This conclusion is supported by the still smaller β-

splitting for 3-methyl-2-pentyl radical, CH3 C
•

HCH(CH3)CH2CH3 (22.0 G) at the lower

temperature of 77 K.49  This low temperature conformation will be used as a benchmark

for the β-oxygenated radicals 4.2a-c.
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Me

Me H
H

Me

MeH MeH
Me

4.15 4.16

The calculated angles for 4.2a-c (figure 4.14) must be erroneously large, due to

an overestimation of Q CCH
H ρ C values.  The temperature dependences of αβH for 4.2a-c

(figure 4.13) reveal that the extrapolated free-spin (high temperature) αβH values are

considerably less than those expected from  the αβH (CH3) values of 25.22, 25.49 and

25.74 G respectively (from table 4.1).  However, from the negative temperature

dependence for 4.2a, it can be concluded that 4.17a is the more stable conformation.

Likewise, the positive temperature dependence observed for 4.2c means that

conformation 4.18c is favoured.  Since low temperature data was not available for

4.2b, the low energy conformation cannot be determined with certainty, but must be

either 4.17b or 4.18b.  If the extrapolated free-spin value of αβH  for 4.2b is taken to

be 16.5 G, then αβH of 15.85 G at 153 K corresponds to θ = 46.1˚, slightly favouring

4.18b over 4.17b.  Since the relatively invariant temperature dependence of 4.2b is

intermediate in gradient between 4.2a and 4.2c, it can be concluded that a dynamic

balance of weak steric and electronic effects is responsible, rather than a strong

conformational locking.

From the γβH  values, the approximate (relative) position of the β-methyl group

may be established.  For 4.2a, the CH3–Cβ–Cβ–C2pz  equilibrium dihedral angle is ca.

70˚; for 4.2b, 65˚; and for 4.2c, 60˚.  Such values correspond reasonably well with the

dihedral angles for the β-hydrogens, in support of the conformational assignments.

R

H

Me H
Me

R

HMe

H Me

4.17 4.18

a: R = OH
b: R = OCOCH3
c: R = OCOCF3
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Such pronounced lowering of the αβH values is consistent with an increased

participation of heterolytic hyperconjugation, promoted by the increased alkene radical

cation stabilisation which accompanies greater methyl substitution.

4.5.4  2-(Oxysubstituted)ethyl radicals 4.3a-c

As expected, the esr spectra of the radicals 4.3a-c consisted of 9 lines (triplet of

triplets).  With the 2-hydroxyethyl radical (4.3a), a second species was observed (figure

4.8), in which the MI = ±1 lines of the β-splitting are considerably broadened and the β-

couplings are slightly smaller than for the species with sharper lines.  The esr spectra of

2-hydroxyethyl (e.g. reference 50) and 2-acetoxyethyl16, 51  radicals have been recorded

previously and are essentially identical with those recorded here.

A small splitting is observed in the Mβ = 0, Mα = ±1 lines (lines 3 and 7) in the

spectra of the 2-hydroxyethyl (0.4 G) and 2-acetoxyethyl (0.15 G) radicals.  This is due

to a second-order effect50 since the β-couplings are relatively large with respect to the

applied magnetic field (3360 G).  Such a splitting is too small to be resolved in the case of

4.3c .

Like  the propyl radical,34 the low temperature equilibrium conformation of both

4.3a32 and 4.3b16,51 has generally been accepted to be 4.19, in which the oxygenated

substituent R eclipses an α-hydrogen and ϕ = 90˚.  Arguments used to support this

conclusion include: these species all display a negative temperature dependence of αβH ;

the propyl13 and 2-hydroxyethyl32 radicals both exhibit broadening of Mα = 0 lines,

rationalised by an out-of-phase modulation of the α-hydrogens, which should be most

pronounced at ϕ = 90˚ (figure 4.17); and the 2-acetoxyethyl radical shows broadening of

the  Mβ = ±1 lines,16 rationalised by an in-phase modulation of the β-hydrogens caused
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Figure 4.15.  Plot of the β -coupling constant versus temperature for 2-

(oxysubstituted)ethyl radicals (4.3a-c).  Data for the propyl radical in hydrocarbon solvent

is included for comparison.45
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Figure 4.16.  Plot of the time-averaged dihedral angle between the R–O bond and the

SOMO axis versus temperature for 2-(oxysubstituted)ethyl radicals (4.3a-c).  Calculated

angles for the propyl radical45 are included for reference.
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Figure 4.17.  Medium-rate conformational exchange in a rotationally hindered radical can

account for time-inequivalence of the α-hydrogens, broadening the Mα = 0 spectral lines.

by oscillation of the acetoxy group about the hindered Cβ –O bond between two positions

in which the β-hydrogens are magnetically equivalent.  In figure 4.18 it is apparent that

the anti conformer has CS-like symmetry in which the β-hydrogens are equivalent, but

the gauche conformer has C1-like symmetry in which the β-hydrogens must be

inequivalent.  Hence this mechanism cannot result in in-phase modulation of solely the

Mβ = ±1 lines, but must cause some degree of broadening of the Mα = 0 lines owing to

the time-averaged inequivalence of the β-hydrogens.  It is highly likely, however, that

such phenomena would also be observed if the most stable conformation was not 4.19,

but 4.20, in which ϕ = 60˚.

H

H

HH
O

COCH3

H

H

HH
O COCH3

gauche anti

Figure 4.18.  An earlier rationalisation for the modulation of the Mβ = ±1 spectral lines

observed with 2-acetoxyethyl radical

Ab initio calculations predict that in the minimum energy conformation of the

propyl23 and 2-hydroxyethyl23,52,53 radicals, ϕ is approximately 60˚.  In addition, the

isotropic β-coupling of the propyl radical in an argon matrix at 4.2 K is 35.1 G.54  Such

a radical appears not to be conformationally frozen, but tunnels through the rotational

barrier with an estimated reorientation correlation time of 6 × 10-10 s.54  Using Q CCH
H ρ C =

53.8 G in equation 4.4, the methyl group is calculated to occupy an equilibrium position
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with ϕ = 63˚ away from the SOMO.  However, Brumby50 claims that a purely classical

analysis under these conditions may be in error.  It is therefore concluded that the propyl

radical has a low temperature conformation of either 4.19 or 4.20, the weight of

evidence indicating that the latter is the more probable.

H

H

HH
R

4.19

a: R = OH
b: R = OCOCH3
c: R = OCOCF3

H

H

HH

R

4.20

Using a value of Q CCH
H ρ C = 54 G for 4.3a, at 135 K, the OH substituent is

calculated to lie at ϕ = 66˚.  The slope of the temperature dependence suggests that αβH

will continue to increase somewhat at lower temperatures, so the esr evidence indicates

that 4.19 is the more stable conformation of the 2-hydroxyethyl radical.  This radical

shows no preference for stereoelectronic interaction with the half filled orbital.  In our

hands,  the broadening of Mα = 0 lines reported by Kochi and Krusic,32 was difficult to

detect until the solvent was changed from cyclopropane to ethylene oxide.  At

temperatures at or below 211 K obvious broadening of the lines with Mα = 0 did occur

and is consistent with out-of-phase modulation of time-inequivalent α-hydrogens.  Kochi

and Krusic32 generated the 2-hydroxyethyl radical by photolysis of a solution of

hydrogen peroxide in ethanol.  Initial indications are that an increased solvent polarity

may slow conformational interconversion, making the time-inequivalence of the α-

hydrogens more prominent.

As mentioned previously, a second species was observed in the spectrum of 4.3a

(figure 4.8) in which the MI = ±1 lines of the β-hydrogen splittings are greatly broadened

due partly to in-phase modulation, with the β coupling constants being slightly smaller

than for the species displaying sharper resonances.  This second spectrum becomes less

intense as the temperature is decreased, being almost undetectable at 135 K.  However, in

the more polar solvent ethylene oxide, the species having the smaller αβH values was

predominant.  In fact, another species was not observed until the temperature was
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reduced to 191 K.  In ethylene oxide, the major spectrum displayed an αγ  OH coupling

of about 0.35 G in all major lines.  It is believed that this coupling is present—but

unresolved, resulting in further line broadening—for the same species in cyclopropane

solvent.  It is proposed that the two species are the gauche and anti conformers, resolved

by restricted rotation about the C–O bond.  The anti conformer is the only one in which

the OH coupling is large enough to be resolved.  The OH coupling for the gauche

conformers is 0.35 G × cos2(60˚) = 0.088 G, which is too small to be resolved.

Presumably H-bonding between the OH and ethylene oxide stabilises the anti conformer.

Pople and coworkers52 report that gas phase ab initio calculations show that the gauche

conformer is more stable than the anti by up to 5.4 kJmol-1 at a potential minimum (ϕ ≈

60˚).  Earlier work supports this finding.41,53  However, when the OH is locked in the

anti conformation, calculations predict the most stable radical geometry to have ϕ =

80˚.41

Hγ CH2

Hβ

Hβ Hγ

CH2

Hβ

Hβ

Hγ

CH2

Hβ

Hβ

• • •

    anti, 180˚ gauche, –60˚ gauche, 60˚

Figure 4.19. Stable conformations about the Cβ–O bond in 2-hydroxyethyl radical 4.3a

Internal rotational barriers about the C–O bond have been determined for ethanol

from vibrational spectra.55  The anti/gauche  barrier is 4.82 kJmol-1 and the

gauche/gauche barrier 4.77 kJmol-1, with anti 0.50 kJmol-1 more stable than the gauche

conformer.  It is expected that the C–O barrier for 4.3a should be about this size, but

this barrier seems too small to spectroscopically resolve the anti and gauche conformers,

even at the low temperatures used.

Another possible explanation for the appearance of the two spectra is that the

species with the narrower lines in the esr spectrum of 4.3a is actually C
•

H2CH2OSiEt3,

formed by the following sequence of reactions.  The esr spectrum of C
•

H2CH2OSiMe3
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has been recorded,56 yielding g = 2.00259, ααH =  22.10 G and αβH = 34.36 G at 160

K.  Such parameters are very similar to those for 4.3a, but the authors report that the

spectrum undergoes no detectable linewidth alternation with changes in temperature,

contrary to the behaviour observed with 4.3a.  In addition, a preponderance of

C
•

H2CH2OSiEt3 in the spectrum would necessitate that the triethylsilyl radicals react

much faster with the tiny proportion of Et3SiOCH2CH2Br formed than with 2-

bromoethanol, a scenario which is highly unlikely.

t-BuO–OBut 2 t-BuO•
hν

t-BuO•   +   Et3Si–H t-BuO–H   +   Et3Si•

Et3Si•   +   Br–CH2CH2OH Et3Si–Br   +   • CH2CH2OH

Et3Si–Br   +   H–OCH2CH2Br Et3Si–OCH2CH2Br   +   H–Br

Et3Si•   +   Br–CH2CH2OSiEt3 Et3Si–Br   +   • CH2CH2OSiEt3

Smaller β-splittings were observed for 4.3a in the more polar solvent.  At 172 K,

the anti conformer gave αβH = 33.16 G in cyclopropane, and 32.60 G in ethylene oxide,

with values of 34.77 and 34.69 G respectively for the gauche conformers.  The dielectric

constant for liquid cyclopropane remains unreported, but the refractive index at 230.65 K

is know to be 1.3799.57  Since Maxwell's equation states that the refractive index is

equal to approximately the square root of the dielectric constant, ε  is approximately

equal to (1.3799)2 = 1.90.  Ethylene oxide, having ε = 12.42 at 293 K58 is significantly

more polar than cyclopropane.  Such a lowering in αβH  values is consistent with an

increasing contribution of the ϕ = 0˚ rotamer to the time-averaged conformation by

stabilisation of the charged, hyperconjugative canonical structure.  Thus, in ethylene

oxide the β-oxygen lone pairs appear to exhibit more steric repulsion from the α-H's or

alternatively, greater interaction with the SOMO, in support of some theoretical results.52

The most stable conformation of the 2-acetoxyethyl radical appears to be 4.19b

as judged from the slope of the temperature dependence, although steric and electronic



 Chapter 4: Esr Studies    166

effects would be expected to destabilise this conformation relative to 4.19a.  Since the

ester conformations of β-formyloxy radicals agree with those of the parent formates,59 it

is reasonable to assume that the Z conformation of β-acyloxyalkyl radicals is favoured, as

observed in the corresponding acetates and trifluoroacetates.60  In-phase modulation of

the M I = ±1 lines of the β-hydrogen splittings is also detected in spectra of 4.3b,

although it is less pronounced than for 4.3a.  Kochi16 points out that such in-phase

modulation occurs because the magnetic environment of the β-hydrogens fluctuates

periodically and in such a way that each hydrogen is spectroscopically equivalent at all

times, with field fluctuation driven by oscillations of the β-substituent.  Such processes

must occur at a rate not so slow that two discrete resonances are resolved (slow exchange

limit) and not so fast that a spectroscopically averaged field results (fast exchange limit).

However such an effect must also broaden the Mα = 0 spectral lines (2,5 and 8) of

radicals 4.3a-c, since rotamers about the Cβ–O can occupy one anti or two gauche

positions.  When in the gauche conformation, the β-hydrogens are inequivalent.  In

figures 4.8 and 4.9 it can be seen that line 2 is less than twice the height of line 1, an

outcome which supports the in-phase modulation explanation.

The selective broadening of the Mβ = ±1 lines can also be rationalised by the β-

CH2 group rocking in phase with Cα–Cβ bond rotation processes.  As the β-methylene

group plane tilts toward the nodal plane, the β-hyperfine splitting decreases in size.  It is

noteworthy that the in-phase modulation is most noticeable when the rotational barrier is

largest (see section 4.6); that is, the energy difference between the mutually perpendicular

conformations illustrated is large and conformational interconversion is slower. At high

interconversion rates, a time-averaged tilt angle results.  As the temperature is decreased

and lower interconversion frequencies result, the averaged β-hyperfine splitting moves

away from the fast exchange limit and a broader range of magnetic field strength is

detected at the β-hydrogens.  A time-averaged rock of amplitude 1˚ either side of an

equilibrium position may correspond to line broadening of up to 0.75 G, for a 30 G β-

coupling, assuming a cos2 relationship with the tilt angle.
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In-phase modulation of the β-hyperfine splittings is not observed in the esr

spectrum of 2-trifluoroacetoxy radical (4.3c) until the temperature is decreased to

approximately 135 K, when rotational state interconversion becomes slow enough for the

β-methylene group rocking to be detected.  Using a value of 44 G for Q CCH
H ρ C, at 135 K,

4.3c adopts an equilibrium conformation in which ϕ = 51˚.  This information, combined

with the slight temperature dependence of αβH, indicates that at low temperature the

favoured conformation is 4.20c, where ϕ = 60˚.  It is expected that the Z conformer of

the ester group is highly favoured, as observed for alkyl trifluoroacetates.60

Like radicals 4.1a-c and 4.2a-c, it is obvious that the αβH values for 4.3b and

4.3c, as well as the other β-acyloxyalkyl radicals studied, are often considerably less

than the ethyl radical free-spin (45˚) value of 26.87 G.33  This is because the values of

QCCH
H ρ C used to calculate the angle ϕ with equation 4.4 are too large.  Since the ααH

values indicate that ρ C (the spin density at Cα) is relatively invariant across radicals

4.3a-c, the problem must be that Q CCH
H  is smaller than for ordinary alkyl radicals.  The

changes in αβH between species cannot be accounted for by different equilibrium

conformations alone.  This problem prompted further investigation.

Figure 4.20 shows a plot of αβH  vs. T, gleaned from current research and

literature data for ethyl radicals with a variety of second row substituents.  Values of the

pKa of the parent acid RH are in brackets, adjacent to the temperature dependence curves.

Apart from propyl radical, there is a steady decrease in the size of β-coupling constant as

the substituent becomes a weaker conjugate base.
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Figure 4.20.  Comparative plot of β-coupling constant against temperature for ethyl

radicals with varying β-substituents having the joining atom from the first row of the

periodic table.  R = F data is from reference 19,  R = OCF3 and OCH3 from reference 17.

Numbers in brackets represent the pKa value for the acid RH.

         Table 4.16.  Values of pKa for several acids

Acid pKa

H–CH3 48

H–H 35

H–OH 15.74

H–OCH3 15.2

H–SCH3 10.7

H–OCF3 6.41a

H–OCOCH3 4.76

H–F 3.17

H–OCOCF3 0.52b

H–Cl –7

Values come mostly from reference 61. a: Unstable

above 0˚C—see reference 62; b: from reference 63
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Figure 4.21.  Plot of αβH for β-substituted ethyl radicals at 160 K, versus the pKa of the

parent acid R–H.  R = SCH3 data is from reference 32 and  R = Cl from reference 18.  The

β-coupling constant for R = +NH3 was calculated, assuming a linear αβH–temperature

dependence, from two known data points, at 300 K (26.6 G)64 and 77 K (37 G).65

Figure 4.21 is a plot of αβH   at 160K for ethyl radicals with β-substituent R

against the pKa of the acid R–H.  There is a reasonable correlation for the substituents

with a leading second-row atom, apart from the methyl substituent.  It is believed that the

propyl radical (R = CH3) is anomalous because steric factors are more influential than

electronic factors in determining the conformation.  Third-row substituents such as Cl and

S C H 3 are significantly different because of their greater size and probable

homoconjugation with the unpaired electron.18-21,32  The correlation observed in figure

4.21 indicates that the base strength of a second row β-substituent plays an important role

in determining the size of αβH .
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4.6 Estimation of the energy barrier to internal rotation
about the Cα–Cβ  bond in the β-oxygenated ethyl radicals
4.3a-c

The temperature dependence of αβH  results from hindered rotation about the Cα–

Cβ bond.  Recent 13C nmr studies66 indicate that internal rotational barriers in n-alkanes

vary from 14 to 20 kJmol-1.  The rotational barriers for alkyl radicals34, 67 (which usually

range between 1.25 and 4.9 kJmol-1) are considerably smaller, due largely to the decrease

in steric hindrance associated with the change in hybridisation at Cα from sp3 to sp2.

Internal rotational barriers have been determined for the series of β-substituted

ethyl radicals (4.3a-c) in an attempt to discover whether a significant stereoelectronic

interaction exists between the unpaired electron and the vicinal substituent.  The propyl

radical, which lacks any significant stereoelectronic effect, was used as a benchmark.  A

repulsive electrostatic interaction would be expected to result in an increased barrier due to

an increase in the energy of the least stable conformation (ϕ = 0, 180˚).  Similarly, a

weakly-attracting interaction should lower the barrier.  A significantly stabilising

interaction (> 15 kJmol-1) would be expected to lock a radical into a particular

conformation, creating a large rotational barrier, as in the β-haloethyl radicals.18-21

However, this latter effect was not observed.  Radicals 4.3a-c were chosen specifically

for reasons of structural simplicity and degree of symmetry, so enabling a greater

confidence in the suitability of the theoretical model and a simplification of the

calculations.

Rotational energy barriers have previously been determined experimentally from

temperature dependent esr β-coupling constants by quantum mechanical,32,45,68 classical

limit approximation32,67,68 and lineshape analysis13,37,44,69-71 methods.  Numerous

attempts have also been made to estimate rotational barriers by theoretical

methods.22,23,41,52,67,72-76  An adapted classical limit approximation method was chosen

in this study.

An expression for the averaged, temperature-dependent value of the β-coupling

constant at the classical limit of a quantum mechanical analysis is given by equation

4.6,13
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where V(ω)  represents the twofold sinusoidal potential for rotation about the Cα–Cβ

bond and αβ (ω) is the angular dependent β−coupling constant expression.  For cases of

one β-hydrogen, the angular dependence of αβ  is approximated by the Heller-

McConnell43 equation (eq. 4.7), where θ  is the usual Hβ dihedral angle and A (0-4 G)

and B (40-50 G) are constants.

αβ (θ)  =   A + B cos2θ                                                  (4.7)

In species with two β-hydrogens, the angular dependence is approximated by

equation 4.8, where ϕ is the dihedral angle between the Cβ –R bond and the axis of

αβ (ϕ)   =   A + 0.25 B + 0.5 B sin2ϕ                                        (4.8)

the Cα 2pz orbital.  The lowest energy conformation of radicals 4.3a-c is taken to be that

where R eclipses an α-hydrogen (ϕ = 90˚).  If ω is defined as the dihedral angle of

torsion away from the most stable conformation (ω0 = 0˚), then equation 4.8 can now be

expressed in terms of ω, by equation 4.9.

H

  R

H
HH

ω
ϕ

αβ (ω)   =   A + 0.25 B + 0.5 B sin2 (90 – ω)               (4.9)

In a system where internal rotation has C2 symmetry, the expression13 for V(ω)  is
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given by equation 4.10, where V0 is the barrier to internal rotation.

V(ω )  =  
V0

2
 (1 – cos 2ω )                                             (4.10)

Substitution of equations 4.9 and 4.10 into equation 4.6 results in the desired

expression, equation 4.11.
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With the aid of an established numerical integration method77 a simple computer

routine was written, in the C++ language, which outputed 〈αβ 〉 when given values for A,

B, T and V0.  Calculations were performed in 1 K increments and parameters A, B and V0

were varied manually until a fit with experimental data points was achieved, as shown in

figure 4.22.  Values for the optimised parameters are displayed in table 4.17.

   Table 4.17. Values of A, B and V0 giving the curves of best fit in figure 4.22

Radical A (G) B (G) V0  (kJmol-1)

 C
•

H2CH2CH3         propyl 0 51.4 2.20

C
•

H2CH2OH               4.3a 0.6 54.0 3.50

C
•

H2CH2OCOCH3       4.3b 0 47.9 2.60

C
•

H2CH2OCOCF3         4.3c 0 43.5 1.05
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Figure 4.22.  Plot of the fit of calculated coupling constant values from equation 4.11 to

temperature dependent values for species 4.3a-c, determined experimentally.  The dashed

curve represents the calculated fit to the experimental values for 4.3b, using A = –5.1 G, B

= 53.74 G (from ethyl radical free spin value)33 and V0 = 3.25 kJmol-1.

Although inaccuracy will be present in the value of V0 to the degree to which the

method fails to model actual behaviour, it is clear from the shape of the temperature

dependence curves that the barriers to Cα–Cβ rotation are small in all cases.  If ϕ = 90˚

and 270˚ are not the lowest energy conformations, then a twofold potential (eq. 4.10)

cannot accurately model real behaviour.  However, such a situation is unlikely to result in

huge inaccuracies in V0 since experimental αβH values are consistent with ϕ = 0˚ and 180˚

remaining the potential maxima.  Although the αβH values are markedly affected by

variation in spin density (or alternatively tilt angle at the β-hydrogens), such behaviour is

accounted for in the differing values of A and B between species.

Our value for V0 in the propyl radical is 2.20 kJmol-1.  Earliest values are 1.76

kJmol-1 by the classical limit method32 and between 1.72 and 2.26 kJmol-1 by quantum

mechanical means.45  Meakin and coworkers13 estimated a value of 13 kJmol-1 from esr
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linewidth analysis.  Despite admitting that assumptions involved in the technique might

lead to significant errors, they concluded that the presence of a linewidth effect demands

that the barrier must be considerably larger than 1.7 kJmol-1.  A likely source of overly

small rotational barriers in earlier studies is the omission of a modified expression of the

angular dependence of αβH (eq. 4.8) in situations where there are two β-hydrogens.

Such an omission has been the cause of a poor match between calculated curves and

experimental data.  Brumby,50 however, using an unmodified Heller-McConnell

expression in combination with a square wave potential, achieved a good match with

experimental data using an internal rotational barrier of 2.193 kJmol-1.  Remarkably, this

value agrees almost perfectly with that in the present work.  It is concluded that 2.20

kJmol-1 is a reasonable value of V0 for propyl radical.

Values for V0 in 4.3a have not been determined previously by experimental

means, but early INDO calculations gave large barriers of 17.374 and 11.875 kJmol-1,

while ab initio methods22,23,41,52,73,76 have yielded V0 values between 0.473 and 8.452

kJmol-1.  The classical limit approach value of 3.50 kJmol-1 is substantially smaller than

the INDO values, but moderate by ab initio standards.  Temperature dependence data

used in the calculations was taken from what was ascribed to the gauche isomer of 4.3a.

Increased steric hindrance resulting from this situation may be the reason for a larger

barrier than for propyl radical.  Microwave spectroscopy yields a C–C rotational barrier

of 14.2 kJmol-1 for the anti conformer of ethanol in the gas phase,80 so it is clear that β-

hydroxylated alkyl radicals have much lower internal rotational barriers than analogous

alcohols.

A value of V0 = 2.60 kJmol-1 was obtained for 2-acetoxy ethyl radical, 4.3b.  No

previous determination of this Cα–Cβ internal rotational barrier, either experimental or

theoretical, could be found.  The slightly larger barrier than that for propyl radical

indicates no significant repulsive or attractive interaction between the SOMO and the

acetoxy group.  The ester group conformation in 4.3b is not known, yet experimental

esr evidence59 for 2-formyloxyethyl radical, C
•

H2CH2OCHO, indicates the Z isomer is

more stable and in conformity with the favoured conformation of ethyl formate.60  It is
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therefore likely that the Z conformer of 4.3b is favoured.  The fact that the experimental

temperature dependence is steeper than the best calculated curve is perhaps indicative of a

higher rotational barrier than the one calculated.  A better fit was obtained with the values

A = –5.1 G, B = 53.74 G and V0 = 3.25 kJmol-1, so demonstrating the dependence of

the barrier upon the quality of the data fit.  The B value is derived from the free spin value

of αβH  for the ethyl radical.33  Other workers have used negative A values in the

conformational analysis of hydroxy hydrogens.40

A smaller rotational barrier of 1.05 kJmol-1 was determined for 2-

trifluoroacetoxyethyl radical, 4.3c.  A low temperature conformation of ϕ0 = 60˚ is

consistent with a smaller  V0.  As mentioned previously, since the expression for the

twofold potential will no longer be accurate, inaccuracy in V0 is expected.  Nevertheless,

the current value is considered to be a good approximation to the real one, since ab initio

calculations23 on the benchmark propyl radical predict the difference in energy between

ϕ0 = 60˚ and 90˚ conformations to be only 0.59 kJmol-1.  Acetoxy and trifluoroacetoxy

groups are of similar size, although 4.3c is expected to favour the Z ester conformation

more than 4.3b .  However, it is the increased contribution of heterolytic

hyperconjugation which is expected to be the major contributor to the change in stable

conformation between 4.3b and 4.3c.

Esr evidence78 indicates that the ethylene radical cation in solution is not planar,

but has an equilibrium twist angle of 45±5˚ between the methylene planes at 77 K.  In

contrast, the radical cation of propylene is planar.79  So are the cis and trans 2-butene

radical cations which give the same esr hyperfine splittings, indicating a small barrier for

conformational interconversion about the C2–C3 bond.79  However, stereoelectronic

requirements for this type of hyperconjugative interaction in β-oxygenated radicals

necessitate that the radical geometry must be conducive to the formation of an alkene

radical cation.

R R
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In summary, the Cα–Cβ rotational barriers in radicals 4.3a-c are all small and

within the range of those for acyclic alkyl radicals.  In particular, due to the small barrier

difference between propyl radical and 4.3b, any attractive stereoelectronic effect between

the acetoxy group and the singly occupied orbital must be very small, i.e. ≤ 1 kJmol-1.

Such an effect is negligible in comparison with the activation energy for 1,2- acetoxy (36-

70 kJmol-1)81 and even trifluoroacetoxy (2682-494 kJmol-1) group shifts.  In light of this

esr study, it is unlikely that a through-space stereoelectronic interaction is responsible for

the regioselectivity observed in oxygen labelling experiments with 1,2- acetoxy group

shift in alkyl radicals.  However, a 1,2 acetoxy shift is likely to be very slow in 4.3b and

differently structured β-acetoxy alkyl radicals may well have significantly stronger

SOMO-acetoxy interactions.  In addition, such interactions may not become significant

until Cβ–O bond fission begins, and this will not occur at low temperature.

4.7 Final Discussion

Variations in αβH  between β-substituted ethyl radicals arise from β-hydrogen

tilting and/or spin density reduction as well as from differences in the equilibrium

conformation (as illustrated by the data in table 4.18).  Except for propyl radical, as the

conjugate base strength of the anion of R decreases, so too does the angle ϕ.

Table 4.18.  Calculation of substituent equilibrium angle, ϕ (equation 4.4) for 2-

substituted ethyl radicals, using the values of B obtained from the calculation of the

internal rotational barriers (table 4.17)

Radical αβH at 135 K (G) B  (G) ϕ  (degrees)

C
•

H2CH2CH3         propyl 31.46 51.4 58.4

C
•

H2CH2OH              4.3a 35.94 54.0 65.7

C
•

H2CH2OCOCH3       4.3b 29.97 47.9 60.1

C
•

H2CH2OCOCF3        4.3c 24.25 43.5 51.7
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Roald Hoffmann and coworkers72 have rationalised conformational preference

differences in β-substituted ethyl cations and anions in terms of positive and negative

hyperconjugation (depicted in figure 4.23).  If R is more electronegative than H, the

cation prefers conformation B(+), while the anion favours A(–).  If R is less

electronegative than H, the cation favours A(+), the anion B(–).  More recent work76

showed that this explanation was somewhat simplistic since anions can undergo a direct

1,3 interaction between the anionic 2p orbital and the vacant 2p substituent orbital.

Similarly, 1,3 hypervalent interactions can dominate control over the conformation of

cations.  Yet, the theorem provides a basic understanding of the relationship between

conformation and electronic effects.

H

H

HH
R

H

R

H

HH

+ +

H

H

HH
R

H

R

H

HH

− −

δ +

δ −

δ +

δ −

A (+) B (+)

A (–) B (–)

Figure 4.23. Favoured conformations for cations and anions with electronegative and

electropositive substituent R

Radicals are expected intuitively to display conformational preferences between those

observed for cations and anions and to possess lower rotational barriers.  Ab initio

calculations76 support this prediction and indicate that in radicals such an effect arises

from participation of both positive and negative hyperconjugation—donation of charge

into (cation-like) and acceptance of charge from (anion-like) the SOMO, respectively.

Since such electronic effects in radicals largely cancel one another, steric factors are more

important than in ions.  Hyperconjugative stabilisation of a radical occurs by overlap of a
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β-CH bond with the half filled C2pz orbital.  This process may be viewed as a three

electron interaction, as illustrated with the ethyl radical.

Cβ Cα
H
H

H

H

H

Cβ Cα
H

H
H
H

H
3 electron

•

It is proposed that as a β-substituent becomes a weaker conjugate base, it

develops a greater tendency to involve an electron pair from the Cβ–R bond rather than a

single electron.  Such behaviour makes radicals of this type more anion-like, as illustrated

in figure 4.24.  The weaker the conjugate base, the stronger the hyperconjugative

stabilisation and hence the more the ϕ = 0˚  conformation is favoured.   Theoretical

work23 on β-substituted ethyl radicals indicates that the Cβ–R bond is longer in the

conformation where R eclipses the SOMO than when it eclipses an α-hydrogen,

consistent with such a hyperconjugative mechanism.
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Figure 4.24.  Hyperconjugative mechanisms for the stabilisation of the ϕ  = 0 ˚

conformation of cations, anions and of radicals with electronegative β-substituents
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As well as β-substituent base strength, the degree of alkyl substitution of the

carbon skeleton influences the radical conformation.  Alkyl substitution stabilises alkene

radical cations.  At 191 K, the esr spectrum of 2-methyl-2-trifluoroacetoxy-1-heptyl

radical, C5H11(CH3)C(OCOCF3) C
•

H2, has resolved γ splitting, where αγH  averages to

about 1.0 G83.  This is consistent with a conformation in which the trifluoroacetoxy

group eclipses the half-filled orbital.  This radical is known to rearrange in a facile

manner.4

Kochi argues that it is not necessary to have a direct correlation between a

radical's stable conformation and propensity for rearrangement,16 yet many radicals

known to rearrange possess a favourable stereoelectronic preorientation.  For instance, β-

chloroalkyl radicals, many of which are known to rearrange extremely rapidly, are known

to exist in an asymmetrically-bridged conformation in which the chlorine is eclipsed by

the SOMO.84  Similar conformational preferences are observed in carbohydrate radicals

with a β-C–O bond85 where such radicals undergo facile 1,2 acyloxy rearrangement.86

The neophyl radical, PhC(CH3)2 C
•

H2, which rearranges readily to (CH3)2 C
•

CH2Ph,

displays a γ splitting to the methyl groups of 1.05 G at 177 K.16  Such a splitting places

each methyl group at 60˚ to the SOMO so that the phenyl group eclipses the radical

orbital, the perfect preorientation for rearrangement.  However 2-phenylethyl radical,

PhCH2 C
•

H2, which does not rearrange readily, gives αβH  = 30.94 G at 173 K.16  This

result is consistent with the favoured conformation where the phenyl group lies instead in

the equatorial plane (ϕ = 90˚).

In summary, the equilibrium conformation of alkyl radicals bearing second row β-

substituents is controlled by a combination of steric and electronic effects.  The

conformation where the β-substituent eclipses the radical orbital becomes increasingly

favoured as the conjugate base strength of the β-substituent decreases and as the degree

of alkyl substitution at Cα and Cβ increases.  This effect is attributed to an increasing

contribution from three electron, heterolytic hyperconjugation.  In several cases a

correlation exists between this eclipsed conformation and the propensity for 1,2

rearrangement.
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4.8 Conclusions

The esr spectra of β-oxysubstituted alkyl radicals are similar to those of

unsubstituted hydrocarbon radicals.  There is no evidence for symmetric bridging or tight

conformational locking.  The g factors are slightly lower than for alkyl radicals. Values of

ααH   are slightly larger owing to an increase in spin density and decreased

pyramidalisation at Cα.  Most conspicuous, however, is the large decrease in αβH  for

radicals with β-substituents R in the order R = OH > OCOCH3 > OCOCF3.  This is

caused not by pyramidalisation at Cα, but by either geometric distortion at Cβ , or by spin

density decrease at Hβ due to the electronegativity of R, or both.

Low temperature studies indicate that the conformation where R eclipses the

SOMO is favoured in radicals where R ••  has low conjugate basicity and where there is

alkyl substitution at Cα and Cβ.  An eclipsed conformation is optimal for β-acyloxyalkyl

radical rearrangement and is also stereoelectronically favourable for the formation of a

radical cation by the elimination of R •• .  For β-substituents where the linking atom is

from the second row of the periodic table, there is a correlation between ααH  and pKa of

the acid RH at 160 K.

Barriers to internal rotation are very low, within the range of normal alkyl radicals

and decrease in the order R = OH > OCOCH3 > OCOCF3.  This situation is consistent

with increasing stabilisation by R of the conformation where the oxygenated substituent

and the half filled orbital are eclipsed.  Any stereoelectronic interaction between the

acetoxy group and the SOMO is negligible, estimated to be < 1 kJmol-1.

The conformation of the radicals is governed by a balance of steric and

stereoelectronic effects.  The principle stereoelectronic effect in this study was 3 electron

heterolytic hyperconjugation.
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4.9 Experimental

Esr spectroscopy

For a description of the equipment and method used to obtain the esr spectra see

section 7.10 of chapter 7 (General Experimental).

(±)-1-Bromopropan-2-ol [19686-73-8]

OH

Br

A sample of (Aldrich) 70% 1-bromo-2-propanol (the remainder 2-bromo-1-

propanol) was subject to TLC analysis in a view to separating the regioisomers by

chromatography.  Unfortunately, both compounds had the same Rf.  Therefore, the two

compounds were separated by their different reactivity.  A stirred 0.1 M solution of the

isomeric bromohydrins in CHCl3 was cooled to –10˚C and treated dropwise with 0.5

equivalents of acetic anhydride/pyridine, which resulted in preferential acetylation of 2-

bromo-1-propanol over the desired isomer.  When complete by TLC, the mixture was

washed with 0.1 M aqueous HCl, then water and dried over MgSO4.  Removal of

solvent yielded an oil which was purified by flash chromatography (eluent CH2Cl2).  The

desired bromohydrin was successfully separated from the β-bromoacetate isomers, which

had a much larger Rf.  By 1H nmr, the purified material was ≥ 96% 1-bromo-2-propanol

and was used without further purification.
1H nmr: 1.30 (d, 3H, CH3-CO), 2.16 (s, 1H, OH), 3.36 (dd, 1H, CHBr), 3.51 (dd,

1H, CHBr), 4.00 (m, 1H, CH-O).

(±)-1-Bromohexan-2-ol [26818-04-2]

OH

Br

 The preparation of this compound is described in chapter 2, compound 2.48.
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(±)-1-Bromomethylpentyl Acetate  [28078-71-9]

O

Br

CH3

O

1

6

This compound has been prepared previously87 but not fully characterised.  A

stirred solution of 1-bromo-2-hexanol (204.8 mg, 1.13 mmol), in 5 mL of dry CH2Cl2
was treated with pyridine (101 µL, 1.25 mmol) and acetic anhydride (118 µL, 1.25

mmol), then 4-dimethylaminopyridine (DMAP, 13 mg, 0.11 mmol) was added to

catalyse the reaction.  By TLC (30% ether in hexane) it was estimated that the reaction

was approximately 80% complete after 1 hour.  Further additions of acetic anhydride

(total of 100 µL more, 1.06 mmol) and of DMAP (total of 15 mg more, 0.12 mmol) did

not appear to effect complete conversion to the product.  Stirring was ceased and the

mixture was diluted with 5 mL of CH2Cl2 and washed consecutively with 3 mL each of

dilute aqueous HCl, dilute aqueous NaHCO3, water, then dried.  Evaporation of the

solvent yielded a yellow oil (210.4 mg) which was purified by flash chromatography,

using 4% ether in hexane as the eluent.  The purified product (207.9 mg, 0.932 mmol,

82%) was obtained as a colourless oil.  It was necessary to distil the sample (kugelrohr,

96˚C/19 mmHg) to obtain an analytically pure sample.
1H nmr: 0.91 (t, 3H, CH2-C H 3), 1.33 (m, 4H, CH3(C H 2)2), 1.68 (m, 2H,

CH3(CH2)2CH2), 2.10 (s, 3H, CH3-CO), 3.40-3.54 (2 × dd, 2H, BrCH2), 5.00 (m,

1H, O-CH).
13C nmr: 13.9 (6), 21.0 (COCH3), 22.4 (5), 27.2 (4), 32.2 (1*), 34.2 (3*), 72.4 (2),

170.5 (C=O).

ir (neat): 2959 s, 2935 s, 2873 s, 2864 s, 1740 vs, 1375 s, asym, 1235 vs, br, 1026 s,

asym, 669 m.

EIMS:  223 (0.05), 221(0.04), 167 (4), 165 (5), 164 (4), 162 (4), 129 (100), 101 (23),

83 (80), 69 (22), 61 (29).

Found: C, 43.03; H, 6.76; N, 0.00%. C8H15BrO2 requires: C, 43.07; H, 6.78; N,

0.00%.

(±)-1-Bromomethylpentyl Trifluoroacetate

O

Br

CF3

O

The preparation of this compound (numbered 2.50) is described in chapter 2.
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Threo-3-Bromobutan-2-ol [116051-24-2](R,R) and [19773-41-2](S,S)

HO

Br
(and 2S, 3S enantiomer)

The threo diastereomers have been prepared previously,88 according to the

method of Guss and Rosenthal.89  A mixture of N-bromosuccinimide (23.7 g of 98%

pure, 130 mmol) and water (50 mL, 2.78 mol) was stirred in a two-necked 100 mL RBF

fitted with a dry ice-ethanol condenser.  To this was added cis-2-butene (Fluka

Chemicals, bp 4˚C) by condensing the gas into a cooled, sealed measuring cylinder then

heating the cylinder to transfer the gas via cannula to the reaction solution.  Addition of

the alkene  (≈ 19 mL, 12 g, 0.22 mol) was continued until all of the solid NBS visibly

disappeared.  The reaction mixture was extracted thrice with 20 mL portions of diethyl

ether and the combined extract was washed with 20 mL of water and treated with 20 mL

of pentane to aid drying (MgSO4).  Evaporation of the solvents yielded an oil (19.89 g,

largest component = 95.3% by GC). The crude bromohydrin was distilled twice: 71-

77˚C/43 mmHg; and 72.5-74˚C/43 mmHg (lit.90 66-68˚C/30 mmHg), affording the

bromohydrin as a colourless oil (14.83 g, 96.9 mmol 75% w.r.t. NBS).  The NBS was

recovered in 56% yield by treatment of the aqueous solution of succinimide from the

separation of the bromohydrin with NaOH (5.00 g, 125 mmol), cooling to 0˚C then

adding  bromine (6.8 mL, 130 mmol) as described previously.89

1H nmr: 1.27 (d, 3H, CH3-CO), 1.73 (d, 3H, CH3-CBr), 2.21 (s, 1H, OH), 3.70 (dq,

1H, CHBr), 4.10 (dq, 1H, CH-O).
13C nmr: 20.5 (1*), 22.4 (4*), 59.3 (3), 71.7 (2).

The 1H nmr spectrum was almost identical with that reported in CCl4 solution.88

Threo-2-Bromo-1-methylpropyl Acetate [19773-39-8](R,R)

AcO

Br
(and 2S, 3S enantiomer)

Acetic anhydride (1.01 mL, 10.7 mmol) and pyridine (0.87 mL, 10.7 mmol) were

added to a stirred solution of threo-3-bromobutan-2-ol (1.50 g, 9.80 mmol) in 10 mL of

dry CH2Cl2.  The reaction was monitored by TLC (20% ether in hexane).  The reaction

was still incomplete after stirring overnight.  Treatment with 4-dimethylaminopyridine (5

mg, 0.04 mmol) and more acetic anhydride (500 µL, 5.30 mmol) and pyridine (430 µL,

5.32 mmol) forced the reaction to completion within a further 4 hours.  Pentane (30 mL)

was added and the mixture was washed consecutively with 20 mL portions of water, 0.1

M aqueous HCl, 0.5 M aqueous NaHCO3, water, and then dried.  Evaporation of the



 Chapter 4: Esr Studies    184

solvents yielded a pale yellow oil (1.9 g), which was distilled by kugelrohr (95˚C/30

mmHg, lit.90 64˚C/8 mmHg).  The desired product was obtained as a colourless oil (1.67

g, 8.56 mmol, 87%).
1H nmr: 1.32 (d, 3H, 3J = 6.5 Hz, CH3-CH-O), 1.67 (d, 3H, 3J = 7.0 Hz, CH3-CBr),

2.09 (s, 3H, CH3C=O), 4.14 (dq, 1H, 3J = 7.0, 4.6 Hz, CHBr), 5.01 (dq, 3J = 6.5,

4.6 Hz, 2-CH).  The 1H nmr spectrum in CDCl3 corresponded reasonably well with that

reported in CCl4 solution.91

13C nmr: 17.1 (1), 21.0 (CH3C=O*), 21.4 (4*), 50.8 (3), 72.8 (2), 170.1 (C=O).

ir (neat): 2985 s, 2936 s, 2875 m, 1742 vs, 1446 s, 1375 s, 1235 vs, br, 1199 s, 1072 s,

1025 s, 971 m, 952 m, 939 m, 605 s.

Threo-2-Bromo-1-methylpropyl Trifluoroacetate

CF3COO

Br
(and 2S, 3S enantiomer)

Pyridine (872 µL, 10.7 mmol) was added to a stirred solution of threo-3-

bromobutan-2-ol (1.50 g, 9.80 mmol) in 35 mL of dry CH2Cl2..  Trifluoroacetic

anhydride (1.52 mL, 10.7 mmol) was then added over 1 min by syringe.  After 5 min,

the solution was diluted with 35 mL of pentane then washed successively with 30 mL of

water then 20 mL portions of 0.1 M aqueous HCl, 0.5 M aqueous NaHCO3 and water.

The solution was dried and the solvent was evaporated carefully (volatile product) to yield

a colourless oil (2.45 g).  Distillation by kugelrohr (83˚C/40 mmHg) afforded the desired

product as a colourless oil (1.60 g, 6.43 mmol, 66%).
1H nmr: 1.46 (d, 3H, 3J = 6.5 Hz, 1-CH3), 1.71 (d, 3H, 3J = 7.0 Hz, 4-CH3), 4.16

(dq, 1H, 3J = 5.1, 7.0 Hz, CHBr), 5.19 (dq, 1H, 3J = 5.1, 6.5 Hz, CHCO).
13C nmr: 16.5 (1), 21.1 (4), 48.3 (3) 77.6 (2), 114.4 (q, 1J19F-13C = 286 Hz, CF3),

156.6 (q, 2J19F-13C = 43 Hz, C=O).

ir (neat): 2995 s, 2940 m, 2880 w, 1788 vs, 1448 s, asym, 1380 s, 1330 s, 1222 vs,

1162 vs, br, 1065 m, 1008 s, 962 m, 865 s, 775 s, 730 s, 642 m.

EIMS: 169 (7), 141 (22), 137 (6), 136 (12), 135 (6), 134 (12), 113 (9), 69 (100).

Found: C, 28.98; H, 3.35; N, 0.00%. C6H8BrF3O2 requires: C, 28.94; H, 3.24; N,

0.00%.
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 2-Bromoethyl Acetate [927-68-4]

Br OAc

A stirred solution of 2-bromoethanol (2.76 g, 22.1 mmol) in 15 mL of dry

CH2Cl2 was treated with acetic anhydride (3.45 mL, 36.6 mmol), pyridine (2.96 mL,

36.6 mmol) and 4-dimethylaminopyridine (10 mg, 0.08 mmol).  After 6 hours the

mixture was poured into 50 mL of water, shaken and the layers were separated.  The

aqueous phase was extracted twice with 10 mL portions of CH2Cl2, the organic phases

were combined and washed with 20 mL portions of 0.1 M aqueous HCl until the

washings were acidic.  The organic extract was then washed with 20 mL of 0.5 M

aqueous NaHCO3 and 20 mL of water then dried.  Careful removal of solvent under

reduced pressure (volatile product) and distillation by kugelrohr (96˚C/60 mmHg, lit.93

159˚C), afforded 2-bromoethyl acetate as a colourless oil (2.17 g, 13.0 mmol, 59%).

Accidental spillage was primarily responsible for the lowered yield.
1H nmr: 2.11 (s, 3H, CH3), 3.52 (t, 2H, CH2Br), 4.39 (t, 2H, CH2O).  The nmr

spectrum was identical with that of authentic material (Aldrich).

2-Bromoethyl Trifluoroacetate [76045-93-7]

Br OCOCF3

Pyridine (1.60 mL, 19.8 mmol) was added to a stirred solution of 2-bromoethanol

(2.24 g, 17.9 mmol) in 50 mL of CH2Cl2 at 0˚C.  Trifluoroacetic anhydride (2.79 mL,

19.8 mmol) was added slowly over 1 min.  The mixture was stirred at room temperature

overnight (10 min is enough) then washed with 100 mL of water and the aqueous

washings were back-extracted twice with 50 mL portions of pentane.  The organic

extracts were combined and washed successively with 30 mL each of 0.1 M aqueous

HCl, 0.5 M aqueous NaHCO3, water and then dried.  Careful evaporation (volatile

product) of the solvent yielded a mobile oil which was distilled by kegelrohr (80˚C/60

mmHg) to give 2-bromoethyl trifluoroacetate as a colourless oil (2.76 g, 12.5 mmol,

70%).  The 1H nmr spectrum was similar to that previously published in trifluoroacetic

acid solution.92

1H nmr: 3.59 (t, 2H, 3J = 6.2 Hz, CH2Br), 4.66 (t, 2H, 3J = 6.2 Hz, CH2O).
13C nmr: 26.5 (2), 66.7 (1), 114.4 (q, 1J19F-13C = 286 Hz, CF3), 157.0 (q, 2J19F-13C

= 43 Hz, C=O).
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ir (neat): 2975 w, asym, 1791 vs, 1398 m, 1350 s, 1283 m, asym, 1222 vs, 1160 vs, br,

989 w, 949 w, 775 m, sharp, 734 m, sharp, 672 w.

EIMS: 141 (13), 109 (18), 108 (8), 107 (18), 106 (8), 79 (92), 69 (53), 57 (29), 52

(100).

Found: C, 21.87; H, 2.02; N, 0.00%. C4H4BrF3O2 requires: C, 21.74; H, 1.82; N,

0.00%.
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5.1 Introduction

This chapter is concerned with the mechanism of the catalysed rearrangement of

N-alkoxy-2(1H)-pyridinethiones (5.1) to 2-(alkylsufanyl)pyridine N-oxides (5.2).  N-

alkoxy-2(1H)-pyridinethiones (5.1),1-19, 125-127 exist as yellow oils or crystalline solids

with low melting points, whereas 2-(alkylsufanyl)pyridine N-oxides (5.2) are

colourless, crystalline solids which are considerably more polar than 5.1.

N

S

O
R N

S

O

R

 5.1  5.2

The rearrangement was first reported by Hay and Beckwith7 in 1989, where the

apparent 1,4 migration of a benzyl group was unexpectedly observed upon heating a

solution of N-benzyloxy-2(1H)-pyridinethione.  It was assumed that the isomerization

was catalysed by molecular oxygen.  In 1996, Hartung and coworkers11,12 reported that

the 1,4 migration of various substituted benzyl groups was so facile that complete

rearrangement would occur in a matter of days upon storage in the dark of the neat

pyridinethiones, at 5˚C to 20˚C.  Although no formal study of the mechanism of this

isomerization was made, Hartung11 concluded that the reaction was exothermic and that

the increased product stability resulted from the formation of the heteroaromatic pyridine

N-oxide ring from a cross-conjugated cyclic olefin.

5.2 Review of the chemistry of N - a l k o x y - 2 ( 1 H ) -
pyridinethiones and related compounds

5.2.1 Prevalence of N -alkoxy-2(1H )-pyridinethione research

Although N-alkoxypyridine-2-thiones (5.1) first appeared in the literature in

1963,1 only about 20 research papers on their chemistry have been published to date,1-19,

125-127 almost one third of them in the past five years.  A recent microreview has been
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published on the use of N-alkoxypyridine-2-thiones in the synthesis of tetrahydrofurans

and tetrahydropyrans by alkoxy radical cyclization125 and a full review (2002) on the

formation of C–O bonds using alkoxy radical chemistry describes the utility of 5.1 in

such processes.129 The closely related N-acyloxy-2(1H)-pyridinethiones (5.4) —

colloquially named Barton esters (actually mixed anhydrides of thiohydroxamic and

carboxylic acids)—were first reported in 1957.20 Their chemistry is much better

documented, judging by the number of reviews21-23 published and the fact that more than

400 different Barton esters bear CAS registry numbers.  Since Barton esters provide a

convenient means for the decarboxylation of carboxylic acids via carbon-centred

radicals24, much has been published on their radical chemistry.

5.2.2 Barton esters and related classes of compounds

Barton esters (5.4) can be prepared in high yield by condensation of a carboxylic

acid (5.3) and N-hydroxypyridine-2-thione (5.1h).  A common method for generating

carbon-centred radicals consists of the treatment of 5.4 with Bu3SnH and a radical

initiator such as AIBN.  A tributyltin radical attacks the sulfur of the pyridinethione ring,

forming 2-(tributyltinsulfanyl)pyridine (5.5) and liberating an acyloxy radical.  Rapid

decarboxylation of this radical forms a carbon-centred radical (5.6), which in turn can

abstract a hydrogen atom from tributyltin hydride, producing an alkane (5.7)—see

scheme 5.1.  Of course, the carbon-centred radical may undergo further reactions—

intramolecular cyclization or intermolecular addition to multiple bonds for instance—prior

to reaction with tributyltin hydride,  making Barton esters valuable precursors in synthetic

radical chemistry.21

The utility of N-oxypyridine-2-thiones has been extended to the generation of

alkoxy,5-12,16,17,19 hydroxy,16,17,25-29 alkoxycarbonyloxy,30,31 alkylsilyloxy,2 5

alkylaminyl,32,33 alkylamidyl34,35 and carbon-centred radicals via  radical

dephosphorylation,36 usually by photolysis of pyridinethione solutions with visible light.
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Scheme 5.1.  Synthesis of Barton esters and mechanism of reaction with Bu3SnH

5.2.3 Radical chemistry of  N-alkoxy-2(1H)-pyridinethiones

The radical chemistry of N-alkoxypyridine-2-thiones (5.1) is comparable to that

of the Barton esters (5.4), although differs significantly in that an alkoxy radical is

incapable of decarboxylation.  Photolysis of N-hydroxypyridine-2-thione,16,17,25-29

generates hydroxy radicals but the photochemistry is more complex than a cursory glance

reveals.28  However, alkoxy radicals can be generated cleanly from N-alkoxypyridine-2-

thiones.5-12,16,17,19  Other methods of generating alkoxy radicals include the homolysis

of peroxides,37 alkyl hypohalites,38-40 and alkyl nitrites;41,42 the treatment of alcohols

with lead tetraacetate;43 and treatment O-alkyl benzenesulfenates with tributyltin

hydride.44,45

Scission of the N–O bond of 5.1 generates an alkoxy radical (5.9) and is

achieved by photolysis with visible light,9,11,12,16,17,19,125 thermolysis,7,125 reaction

with the tributylstannyl radical,5,6,8,9,12,125 and reaction with arylthiyl radicals,12

alkylthiyl radicals24 or carbon-centred radicals.24,46  A 2-substituted sulfanylpyridine

(5.10) is a by-product of these reactions (scheme 5.2).
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Scheme 5.2.  Methods of N–O bond scission in N-alkoxy-2(1H)-pyridinethiones

Such an alkoxy radical (5.9) may undergo a variety of further reactions125 (not

explicitly shown) including β-scission,5,6,8 intra-10 and intermolecular5-8 hydrogen

abstraction, and intra-6,9-12,19 and intermolecular16 addition to double bonds.  The

resulting carbon-centred radical (5.12) may then attack the sulfur atom of another

pyridinethione molecule, generating an alkoxy radical and 2-(alkylsulfanyl)pyridine

(5.10).  Radical 5.12 may also react with 2-pyridylthiyl radical (5.8) in a termination

step, forming the same product.  Other reactions, including radical-radical termination,

disproportionation and atom abstraction may also occur, to a lesser extent  (scheme 5.3).
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Scheme 5.3.  Overview of the radical chemistry of N-alkoxy-2(1H)-pyridinethiones

The 2-pyridylthiyl radical (5.8) is known to react with Barton esters (5.4) at an

almost diffusion controlled rate.46  Radical 5.8 is expected also to react rapidly with 5.1

to liberate another alkoxy radical (5.9) and 2,2'-dipyridyl disulfide (5.15).  The

disulfide 5.15 may also be formed by combination of two 2-pyridylthiyl radicals (5.8).

Photolysis of 5.15 at 350 nm results in homolysis of the disulfide bond and the

formation of two 2-pyridylthiyl radicals (5.8) which may then react further.17  The novel
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tricyclic betaine 5.16 is formed in aqueous solution and a mechanism17 suggested for its

formation is shown below (scheme 5.4).  It is more likely that the first addition product

results not from the reaction of two pyridine-2-thiyl (5.8) radicals, but by attack of 5.8

upon a molecule of 5.15, with displacement of another 5.8 radical.

N• SN S S N

hν N• S

N N

S

S

N N

S

S

H

H

H
N N

S

O3S

aromatisation
by oxidation

5.15

5.16

Scheme 5.4. The mechanism proposed17 for the fate of photolysed 2,2'-dipyridyl

disulphide

Hartung and coworkers11 report that photolysis of N-(1-phenyl-4-penten)oxy-

pyridine-2-thione (5.17) in benzene, in the presence of the radical trap BrCCl3, produces

2-(trichloromethylsulfanyl)pyridine (5.19) and 2-bromomethyl-5-phenyltetrahydrofuran

(5.18)—see scheme 5.5.  This procedure illustrates the synthetic usefulness of N-

alkoxypyridinethione radical chemistry.  Similar methodology has been used to

synthesize other substituted tetrahydrofurans9,11,12,19,125 as well as

tetrahydropyrans.9,11,12,125



 Chapter 5: Pyridinethione Rearrangement    199

N
O

S

Ph
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Ph
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N

SCCl3

+ O

Ph

Br

5.17 5.19 5.18

cis : trans  = 50 : 50

70% 67%

via

Scheme 5.5. Synthesis of substituted tetrahydrofurans using the radical chemistry of N-

alkoxy-2(1H)-pyridinethiones

Direct evidence for the intermediacy of alkoxy radicals was obtained when

solutions of N-alkoxypyridine-2-thiones were irradiated in the presence of the radical

trap, dimethylpyrroline N-oxide (DMPO), and esr signals corresponding to DMPO

adducts of alkoxy radicals were observed.16  In addition, the same workers16 found that

supercoiled DNA suffered strand breaks and base modifications—results characteristic of

the action of alkoxy and hydroxy radicals— when photolysed in the presence of N-

alkoxypyridine-2-thiones.

5.2.4 Related rearrangements

Although Barton esters (5.4) do not undergo a 1,4 alkyl group shift similar to that

observed with the N-alkoxypyridine-2-thiones, it has been postulated that a 3,3

sigmatropic rearrangement to a thioperoxide actually initiates the radical chain reaction.47

By contrast, it has been reported30,31 that the closely related substituted N -

al lyloxycarbonyloxypyridine-2-thiones (5 .20 ) slowly isomerize to 2-

allylsulfanylpyridine N-oxides (5.21) on storage.  This apparently decarboxylative

rearrangement was assumed to proceed "via a concerted or dissociative intramolecular

process",30 but nothing further has yet been published on the mechanism.

N

S

O O

O R1

R3

R2

N

S

O

R3

R2R1

5.20 5.21
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A reaction analogous to the rearrangement of N-alkoxypyridine-2-thiones, albeit

in the reverse direction, is the isomerization of a 2-alkoxypyridine N-oxide (5.22) to an

N-alkoxy-2(1H)-pyridone (5.23).48-57, 117-119

N

O
R

O
N

O

O∆

 5.22  5.23

R

First reported in 1962,48 this rearrangement has been subject to considerable

mechanistic scrutiny.  Due to the comparatively low temperatures required for

rearrangement and the fact that radical scavengers did not retard the reaction rate, early

researchers concluded that radicals were not intermediates but that the mechanism

involved either intermolecular nucleophilic substitution or ion pair intermediates.50  A

more comprehensive study found the rearrangement to exhibit first order kinetics, show a

small rate difference between migration of benzyl and alkyl groups, and have an

extremely negative ∆S‡ and unusually low ∆H‡ .52,53  Since the migration of benzhydryl

groups displayed vastly different kinetic parameters to other groups and CIDNP was

observed only in the products of benzhydryl migration, it was concluded that the

mechanism involved radical pairs for groups that form stable radicals, but proceeded

otherwise by a 1s,4s sigmatropic shift.53  This conclusion was supported by le Noble

and Daka, who determined a negative activation volume for benzyl migration (concerted)

but a positive value (dissociative) for benzhydryl groups.55  Ollis and coworkers

concluded that the general mechanism involves a concerted 1,4 sigmatropic shift and not

ion pairs.56

In very recent work, Wolfe and coworkers report that the rearrangement

mechanism cannot involve solely an intramolecular 1s,4s sigmatropic migration of the

alkyl group.118, 119  A variety of experiments including crossover studies, study of

solvent and secondary isotope effects and kinetic and stereochemical investigations have

demonstrated that the mechanism involves an initial intermolecular transfer of the alkyl



 Chapter 5: Pyridinethione Rearrangement    201

group, with inversion of configuration, to the N-oxide.  This is in accord with earlier

crossover experiments.117  It is proposed that inversion of configuration in the migrating

group upon rearrangement arises from a single crossover encounter, whereas retention of

configuration results from two crossover encounters, each with inversion of

configuration.119  This is illustrated in scheme 5.6.
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A: Reaction path which results in inversion of configuration

B: Reaction path which results in retention of configuration

5.22 5.22

5.23 5.23

5.23 5.22

Scheme 5.6.  A proposed intermolecular mechanism which accounts for the

stereochemical outcome of the rearrangement of 2-alkoxypyridine N-oxides (5.22)

Attempts were also made to isomerize 5.2 to 5.1, with58 and without7,59 Lewis

acid catalysis.  These attempts failed, demonstrating that the 2-alkylsulfanylpyridine N-

oxide is the more stable isomer, presumably because of its aromaticity.  Thermolysis of

2-alkylsulfanylpyridine N-oxides simply effected a reductive deoxygenation to 2-

alkylsulfanylpyridines (5.10).59
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5.2.5 Catalysed rearrangement of N-alkoxy-2(1H)-pyridinethiones

Hay and Beckwith7 found that when N-benzyloxy-2(1H)-pyridinethione (5.1a)

in C6D6 was heated in the dark at 100˚C under vacuum for 36 hours, the products

included benzaldehyde (5.27 , 40%), benzyl alcohol (5.26 , 40%) and 2-

benzylsulfanylpyridine N-oxide (5.2a, 8%).7 When the same experiment was conducted

under an atmosphere of air, the proportions changed to 5.27: 6%, 5.26: 9% and 5.2a:

71%.  Whilst under an atmosphere of pure oxygen, the yield of the N-oxide 5.2a

increased to 78%.7  The authors attributed these results to a dioxygen catalysed 1,4

benzyl migration competing with N–O bond homolysis.  When these experiments were

repeated in the course of this present study, it was found that 2,2'-dipyridyl disulfide

(5.15) and pyridine-2-thiol (5.28) were also produced, although yields of 5.28 were

low.  Scheme 5.7 illustrates mechanisms which account for the formation of the products

(in boxes) and are in conformity with what is already known about the chemistry of N-

alkoxy-2(1H)-pyridinethiones.

Dioxygen is a known one electron oxidant,60 so it is likely that the pyridinethione

molecule is oxidised to a radical cation (5.29).  5.29 may then undergo a novel, open-

shell, pericyclic reaction, forming the radical cation of the 2-alkylsulfanylpyridine N-

oxide (5.30).  Rearrangement of 5.29 to 5.30 involves the delocalisation of 5 electrons

over 5 atoms, the transition structure of which is represented by 5.31.  Such a structure

is isoelectronic with those postulated for reactions such as the isomerization of β-

acyloxyalkyl radicals.128  Such a transition structure would represent membership of a

recently-postulated class of open-shell reactions which might be expected to display

reactivity intermediate between that of 4 and 6 electron systems.  A comprehensive

mechanistic investigation was undertaken to determine whether such a transition structure

exists, and if not, what the mechanism may indeed be.
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Scheme 5.7.  A mechanistic scheme which accounts for the 5 identifiable products

formed when a benzene solution of N-benzyloxy-2(1H)-pyridinethione (5.1a) is heated

under an atmosphere of air
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5.2.6 The chemistry of 4 and 6 electron 1,4 sigmatropic shifts and

5-electron, 6-centre electrocyclic processes

There appears to be no literature precedent for a solution phase, thermal 1,4 alkyl

sigmatropic shift in radical cations.  Although solution phase 1,4 H shifts have been

reported,61,62 evidence is scarce for such shifts being truly intramolecular.  However,

isomerizations which may be relevant to the rearrangement of the proposed radical cation

intermediate (5.29) are:

a) closed-shell thermal 1,4 alkyl shifts in cations (4 electron processes);

b) closed-shell thermal 1,4 alkyl shifts in anions and dipolar ylides (6 electron); and

c) 6 centre, 5 electron radical cation mediated electrocyclic processes.

Cationic 1,4 sigmatropic rearrangements,63-69 as exemplified by the degenerate

migration of a cyclopropyl moiety in bicyclo [3.1.0] hexenyl cations,64 apparently

proceed in a 1a,4s mode, necessitating inversion of configuration at the terminus of the

migrating group.  Such a mode of migration dictates that  substituent R remains endo.

CH2D

HR

CH2D

RH

1,4

inversion

Anionic70-77 and dipolar78 1,4 alkyl shifts apparently proceed in a 1s,4s fashion,

the stereoconfiguration of the migrating group being predominantly retained in the

product.  There is evidence52-55,70,71,73,76,77 for the intermediacy of tight radical/radical

or radical/radical anion pairs.  These rearrangements may involve the formal

delocalisation of 6 electrons over 5 atoms.  The general form of these, typically base

catalysed shifts, are shown below.
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R

X X X X
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retention

X  =  O, S, NR1
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Y
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1,4

retention

R
R

Dipolar

a) X = N(R1)2 , Y = CR2R3

b)  X = N(R1)2 , Y = O

c)  X = SR1,  Y = CR2R3

Bauld and coworkers79-85 have reported that Diels-Alder cycloaddition is

effectively catalysed by the one electron oxidation of the dienophile to its radical cation.

This highly electron deficient species adds to many cisoid dienes in a facile manner,

retaining typical suprafacial stereospecificity and often improved stereoselectivity.

Although the dimerisation of 1,3-cyclohexadiene affords only poor yields under standard

reaction conditions,86  treatment of this diene with a catalytic quantity of the stable radical

salt tris(4-bromophenyl)aminium hexachloroantimonate (5.33) gives a good dimer yield

at 0˚C in minutes, with improved endo selectivity.82

H

H

5 mol% (p-Br-C6H4)3N SbCl6 (5.33)

0˚C, CH2Cl2, 5 min

70%

endo:exo = 5:1

30%

endo:exo = 4:1

200˚C, 20hr

 5.32

•

The mechanism may be regarded as a [4+1] cycloaddition, featuring an open shell

transition structure (5.32) with 5 electrons delocalised over 6 atoms.  Aminium salt 5.33

also effectively catalyses some other electrocyclic processes,82 so raising the possibility

that open shell processes may participate in the mechanism of other common electrocyclic

reactions.
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5.3 The mechanism of the rearrangement of N -alkoxy-
2(1H)-pyridinethiones

The investigation of this rearrangement consisted of exploring the following areas:

1. the mode of catalysis;

2. reaction kinetics;

3. rearrangement regiochemistry;

4. rearrangement stereochemistry;

5. the electronic structure at C1 of the migrating group during migration;

6. migrating group substituent effects; and

7. the attempted detection and isolation of intermediates.

5.3.1 The mode of catalysis

Molecular oxygen catalyses the rearrangement N-alkoxy-2(1H)-pyridinethiones7

which indicates that the reaction involves the formation of one or more reactive

intermediates, which subsequently rearrange.  An initial hypothesis of the mechanism

was made, consistent with the few facts known. A molecule of the pyridinethione (5.1)

may react with a molecule of dioxygen in a single electron redox reaction, forming a

radical cation (5.29) of the pyridinethione and presumably the dioxygen radical anion.

These oppositely charged species may or may not remain as a charge transfer complex.

Subsequent reduction of rearranged radical cation 5.30, to give N-oxide 5.2, can

presumably occur by the reduction of 5.30 with either the dioyxgen radical anion or a

molecule of the pyridinethione 5.1, in a chain process.  Since dioxygen is known to

behave as a single electron oxidant60 investigation of the mode of catalysis is likely to

reveal valuable information about reaction intermediates.

N
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O
R N
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O
R N
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A variety of reagents were tested for catalytic activity. These included one electron

oxidants, Lewis acids and Brönsted (protic) acids.  Unless a selected atmosphere was

used, a test reaction was conducted by heating a degassed 0.23 M solution of N-

benzyloxy-2(1H)-pyridinethione (5.1a) in sealed glass ampoule, in the absence of light.

The extent of reaction and yield of N-oxide 5.2a were determined from 1H nmr peak

integrals corresponding to 5.1a, 5.2a and the other identifiable products.  Results

appear in table 5.1.

N

S

O Ph
N

S

O

Ph

solvent, ∆

5.2a5.1a

catalyst

Each solvent was tested for catalytic activity by a control experiment, consisting

simply of an otherwise identical reaction procedure minus catalyst.   Negligible catalysis

was observed in each case.

A sample of yellow, crystalline N-benzyloxy-2(1H)-pyridinethione (5.1a) was

prepared in two steps from benzyl alcohol, by the method of Hay and Beckwith.7

Mesylation99 of the alcohol was facile and efficient, but the nucleophilic displacement

reaction between the mesylate and tetraethylammonium 2(1H)-pyridinethione N-oxide

(5.1i) gave consistently low yields of 5.1a.  This is due largely to the ambident

nucleophilicity of the pyridinethione N-oxide anion, which results in the formation of a

large proportion of the N-oxide 5.2a.  Hartung has recently reported a simpler and

higher yielding route to N-alkoxy-2(1H)-pyridinethiones, consisting of the reaction

between 2,2'-dithiopyridine-1,1'-dioxide and an alcohol, in the presence of a tertiary

phosphine.14
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N
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O Ph

5.1a

PhHO PhMsO
a

b

a: MeSO2Cl, Et3N in CH2Cl2, 0˚C;  b: DMF, 0˚C

99%

22%
PhMsON

S

O

5.1i

+
NEt4

Table 5.1.  Effect of different reagents upon the rearrangement of (0.23 M) N-

benzyloxy-2(1H)-pyridinethione (5.1a) under various conditions

Entry Reagent

Relative
conc.

(mole %) Solvent T (˚C) Time (hr)

Extent of
reaction of
5.1a (%)

Yield of
N-oxide

5.2a (%)

1 None (vacuum) 0 C6D6 100 30.00 100 <1

2 Air Uncert. C6D6 100 4.00 95 71

3 Oxygen Uncert. C6D6 100 4.00 95 78

4 m -CPBA 1.08 C6D6 100 4.00 80 71

5 Iodine 4.94 C6D6 100 4.00 100 100

6 Iodine 0.51 C6D6 100 4.00 100 94

7 Iodine 0.49 CD3CN 100 4.00 100 95

8 Iodine 0.45 CDCl3 80 4.00 97 91

9 Cu(II)ethylhexanoate 0.50 CDCl3 80 4.50 5 2

10 (p-BrC6H4)3N+•SbCl6
– 0.50 CD3CN 80 4.00 36 33

11 Fc+BF4
– ~ 0.5 CD3CN 80 4.50 97 91

12 Fc+PF6
– 0.50 CD3CN 80 4.00 97 96

13 Ni(III)SAR3+(ClO4
–)3 0.50 CD3CN 80 4.00 97 95

14 BF3.Et2O 0.50 CDCl3 80 4.00 ~90 ~90

15 CF3SO3H 0.42 CDCl3 80 3.67 99 98

16 D2O 250 CD3CN 80 4.00 3 3

17 DCl in D2O 0.50 CD3CN 80 4.00 22 19

18 Bu4N+BF4
– 5.0 CDCl3 80 4.00 3 3

19 p-Chloranil 0.49 CDCl3 80 4.00 2 1

20 Li+ClO4
– 0.50 CD3CN 80 4.00 15 12
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HN NHNH

NiIII

H

H

(ClO4
-)3

The structure of Ni (III) SAR perchlorate, the catalyst used in entry 13

The reagents AgBF4 and p-toluenesulfonic acid also displayed catalytic activity

but are not included in table 5.1 since solubility problems prevented the determination of

their concentration.  Small amounts of benzyl alcohol and benzaldehyde were present in

the reaction mixtures indicating that radical reactions resulting from thermal N–O bond

homolysis occur simultaneously with the rearrangement reaction.  Such radical processes

usually consume only a few percent of 5.1a, although homolytic reactions become

increasingly favoured at higher temperature.

Reagents which displayed excellent catalysis included the oxidants I2, O2, the

Ni(III) sarcophagine complex and the ferrocenium salts; the proton donor triflic acid; and

the Lewis acid BF3.Et2O.  Hence, catalysis is not effected solely by one class of reagent.

Reagents displaying weak or negligible activity included: aqueous DCl; the

oxidants  copper (II) ethylhexanoate and (p-BrC6H4)3N.SbCl6 (5.33); the CT complex

electron acceptor p-chloranil (2,3,5,6-tetrachlorobenzoquinone);88 the electrolytes

Bu4NBF4 and LiClO4; and water.  The concentration of DCl is expected to be much

lower than that stated owing to its removal by the freeze/vacuum/thaw degassing

procedure.  This acid may actually be an effective catalyst.

Mechanistic interpretation of these results is difficult since the chemical action of

reagents can be quite ambiguous.  Iodine acts as a one electron oxidant,89, 90 but also as a

Lewis acid when it forms the electron donor-acceptor complex I3
– with iodide ion.

Strong protic acids reportedly oxidise unsaturated hydrocarbons to radical cations,91 as



 Chapter 5: Pyridinethione Rearrangement    210

too can Lewis acids,92, 93 presumably by acting in tandem with atmospheric oxygen or

solvents which are easily reduced.   Lewis acids can produce strong protic acids by their

reaction with adventitious water.  Once formed, a radical cation (being acidic) can

eliminate a proton.

In some cases it was possible to distinguish between alternative modes of catalysis

with appropriately designed experiments.  Addition of the hindered base, 2,6-di-tert-

butyl-4-methylpyridine (0.5 eq)—used by Gassman to distinguish between oxidative and

acidic catalysis of Diels-Alder cycloadditions94—did not inhibit the efficiency of iodine

(1.0 mol%) catalysis of the rearrangement of 5.1a in deuterochloroform.  Hence, iodine

cannot be associated with protic acid catalysis.  Furthermore, the aminium salt 5.33 was

found to decompose at 80˚C in CD3CN over a matter of minutes, as indicated by the

irreversible loss of its deep blue colour.  As the addition of the hindered base or

pyridinethione 5.1a also caused immediate decolourisation of the deep blue solution of

5.33 at room temperature, it was concluded that decomposition of 5.33 was probably

the cause of its relatively poor catalytic activity.

It is possible that the rearrangement mechanism is different for oxidant and acid

catalysis.  A postulated chain mechanism for acid catalysis is provided below (scheme

5.8).  The alkyl group R migrates not in an intramolecular sense, but is transferred

intermolecularly.  N-hydroxy-2(1H)-pyridinethione is a by-product according to this

scheme and is essentially a weak acid resulting from a strong acid/weak base reaction.

Consequently, it should be present in quantities less than or equal to the amount of

catalyst and therefore hard to detect.  However, the pungent odour of N-hydroxy-2(1H)-

pyridinethione could sometimes be detected after evaporating to dryness reactions

performed in chloroform, a solvent which often contains small amounts of HCl.
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Scheme 5.8.  A possible intermolecular chain mechanism for the acid catalysed 1,4

rearrangement of N-alkoxy-2(1H)-pyridinethiones

The catalysis experiments cannot unambiguously confirm nor exclude the

formation of a radical cation intermediate by one electron oxidation of the pyridinethione.

Data most supportive of a radical cation mediated mechanism are those for the reagents

molecular oxygen (entry 3) and the Ni(III) SAR complex (entry 13), neither of which

could be envisaged acting as Lewis or protic acids.  In conclusion, catalysis by an

oxidant, Lewis acid or protic acid forms the same product N-oxide 5.2a from 5.1a.  It is

not yet known whether catalysis occurs by significantly different paths, or by routes in

which different intermediates undergo rearrangement in a similar way.

5.3.1.1 Can the rearrangement of 2-alkoxypyridine N -oxides be

catalysed in the same manner?

Because of the structural similarities, we were keen to discover whether the

known rearrangement48-57,117-119  of 2-alkoxypyridine N-oxides to the corresponding N-

alkoxy-2(1H)-pyridones was similarly catalysed.  A sample of 2-benzyloxypyridine N-
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oxide53,118 (5.22a) was prepared by the treatment of 2-chloropyridine N-oxide95 with

sodium benzyloxide in boiling THF.  The attempted rearrangement of 5.22a to N-

benzyloxy-2(1H)-pyridone (5.23a) was studied under various conditions.

N

O Ph

O
N

O

O Phcatalysis

80˚C, CDCl3

5.22a 5.23a

CDCl3 solutions of 5.22a (0.22 M) were heated at 80˚C for 4 hr.  All reactions

proceeded cleanly, the only compounds detected by 1H nmr were the N-oxide 5.22a and

pyridone 5.23a.  Under vacuum-degassed conditions, a 3.7% yield of 5.23a was

obtained, while in an atmosphere of air, the yield rose slightly to 4.5%.  With 1.1 mol%

iodine catalysis, a 65.7% conversion to 5.23a occurred.  This rearrangement is

obviously catalysed by iodine.  Air (oxygen) appears to display a negligible effect.

Iodine catalysis suggests a similar mechanism to that for the catalysed rearrangement of

N-alkoxy-2(1H)-pyridinethiones.

5.3.2 Kinetics

Absolute kinetic data have been obtained for the iodine catalysed rearrangement of

N-benzyloxy-2(1H)-pyridinethione (5.1a) to 2-benzylsulfanylpyridine N-oxide (5.2a)

in degassed chloroform, at 80˚C.  The concentration of the reactant 5.1a (initially

0.114M)  was monitored periodically by withdrawing small volumes from the reaction

solution by microsyringe.  After diluting an aliquot with ethanol, the absorbance at λmax

= 361 nm was measured by UV-visible spectrophotometry.

N

S

O Ph
N

S

O

Ph

 CHCl3, 80˚C

5.2a5.1a

I2
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It was not possible to measure the concentration of the product 5.2a directly by

this method since the λmax values of 244, 271 and 312 nm were all obscured to some

degree by the spectrum of 5.1a (λmax = 289, 361 nm).  However, since 1H nmr

spectroscopy has indicated that only a very small proportion of side reactions occur, it can

be assumed that:

                                                  
−   [ ]d

dt

5.1a
  =  

d

dt

 [ ]5.2a
                                           (5.1)

As observed in figure 5.1, plots of ln{[5.1a]0/[5.1a]t} versus time are linear,

indicating (pseudo) first order kinetics.  The rate constant, k', is linearly dependent upon

the relative concentration of iodine, with k' effectively zero in its absence (figure 5.2).

This behaviour indicates true catalysis.  Therefore, the overall rate law appears to be first

order in [5.1a] and catalytic in iodine.  Rate constant data is displayed in table 5.2.

Table 5.2.  Rate constants for iodine catalysed rearrangement of 5.1a in chloroform,

where [5.1a]0 = 0.114 M

Initial concentration
of iodine catalyst (M)

Proportion of iodine
catalyst (mole%) Pseudo first order rate constant, k'(s-1)

5.75 × 10-4 0.50 5.08 × 10-5

1.15 × 10-3 1.01 1.10 × 10-4

2.30 × 10-3 2.00 2.10 × 10-4
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Figure 5.1.  Plot of ln([5.1a ] t/[5.1a ]0) versus time for the iodine catalysed

rearrangement of 5.1a (0.114 M) in deoxygenated chloroform, at 80˚C
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Figure 5. 2.  Plot of the pseudo first order rate constant, k', versus the relative amount

of catalyst present in the iodine-catalysed rearrangement of 5.1a (0.114 M) in chloroform

at 80˚C.  The gradient of the line of best fit is 1.06 × 10-4 s-1 per mole% iodine.
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The same type of rearrangement experiments were repeated, this time keeping the

initial iodine concentration constant and varying the initial concentration of N-benzyloxy-

2(1H)-pyridinethione 5.1a.  Table 5.3 displays the results.  Doubling the initial

concentration of the pyridinethione increases the rate constant by a modest 23%,

demonstrating that a change in  [5.1a]0 has an effect of less than one quarter the

magnitude of a change in [I2]0 upon the rate constant.

Table 5.3.  Rate constants for iodine catalysed rearrangement of 5.1a in chloroform at

80˚C†, where [I2]0 is kept constant, but  [5.1a]0 is varied

[I2]0 (M) [5.1a]0 (M)
Proportion of iodine

catalyst (mole%)
Pseudo first order

rate constant, k'(s-1)

1.15 × 10-3 0.114 1.01 1.10 × 10-4

1.16 × 10-3 0.225 0.51 1.35 × 10-4

† Temperature of more concentrated reaction was 81.5±1˚C

To investigate whether different catalysts produce a common intermediate, a

kinetic comparison of four catalysts was performed in a solvent which would ensure

complete solubility of 5.1a, 5.2a and all catalysts.  Rate constant data is displayed in

table 5.4.

Table 5.4. Rate constants for the rearrangement of 5.1a (c = 0.115 M) in degassed

CHCl3/CH3CN (1:1 v/v) with 1.00mole% of each catalyst at 80±1˚C

Reagent E0 in CH3CN (V) k' (s-1)

I2 0.18, 0.66a 5.63 × 10-4

Fc+PF6
– 0.41b 5.59 × 10-4

Ni(III)SAR (ClO4)3 1.05c 4.57 × 10-4

(p–BrC6H4)3N+•SbCl6
– (5.33) 1.05d 1.97 × 10-5

a: Reference 114; b: Measured with ferrocene in acetonitrile/TBAF relative to Ag/AgCl;

c: Reference 115; d: Reference 116

Pseudo first order kinetics was obeyed in each case.  The iodine and ferrocenium

hexafluorophosphate catalysed reactions have approximately the same rate constant. That
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for Ni (III) SAR catalysis is about 81% of k' for iodine.  The rate constant for the

aminium salt (5.33) catalysed reaction is smaller by more than an order of magnitude,

presumably owing to thermal decomposition of the catalyst, as mentioned previously.

Differences may also be partially attributable due to differing solubilities of activated

intermediates.

The similarity of the first three rate constants is consistent with a common

intermediate, most probably a pyridinethione radical cation formed by a one electron

oxidation.  However, the reduction potentials for the catalysts are varied, some being

below 0.5 V.  Pyridinethione 5.1a has a one electron oxidation potential of 0.9 V

(section 5.3.7.3), which leaves a presently unanswered question of how it is that each

catalyst is capable of oxidising 5.1a.  Mehta and Pinto116 encountered the same question

when they observed one electron oxidation of phenyl selenoglycosides (oxidation

potential 1.35-1.50 V) by aminium salt 5.33 (reduction potential 1.05 V).  They suggest

that a prior complexation of the selenoglycoside and the aminium salt produces a complex

of lowered oxidation potential.116

A comparison of data in tables 5.2 and 5.4, reveals a 5.5 fold increase in rate

constant k' as the solvent is changed from chloroform to chloroform/acetonitrile.  Such a

rate acceleration with increased solvent polarity indicates a polarized rate limiting step.

The equilibrium constant for the reaction between iodine and 5.1a in chloroform

has been measured.  The initial reaction between one catalyst (5.33) and 5.1a is very

rapid, as indicated by the immediate and complete loss of blue colour observed upon

mixing a deep blue CH2Cl2 solution of the aminium salt 5.33 with the yellow

pyridinethione solution.  Owing to the colours of both iodine and the pyridinethione, it

was more difficult to observe such a decolourisation with this system.  However,

decolourisation does occur when a colourless solution of the product N-oxide (5.2a) is

mixed with a CH2Cl2 solution of either iodine, aminium salt 5.33 or ferrocenium

hexafluorophosphate.96 This behaviour indicates a ready oxidation of, or complexation

with, the product also by the catalyst.

If the equilibrium is treated as having the stoichiometry:
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PT  +  I2 PT+•I2
–•

k1

k-1         
    (5.2)

where PT stands for N-benzyloxy-2(1H)-pyridinethione 5.1a and PT+•I2
–• represents an

activated charge transfer intermediate or ion pair, then the equilibrium constant K is

expressed as:

K    =   
k

k
1

1−
   =   

PT I

PT I

+
2

–

2

• •[ ]
[ ] [ ] 

  (5.3)

A solution of iodine in chloroform of concentration 2.01 × 10-4 M was prepared at

room temperature and its UV-vis spectrum was measured, which displayed a broad

absorption peak at λmax = 508 nm.  A very small volume of a solution of 5.1a in

chloroform was added, so as to give an initial pyridinethione concentration of 2.00 × 10-4

M.  Immediately another UV-vis spectrum was obtained which indicated that the

absorbance at 508 nm had reduced to 79.0% of its original value.  From these values, K

was calculated to be 1680 M-1.  When the experiment was repeated at halved

concentrations, where [PT]0 = 9.99 × 10-5 and  [I2]0 = 9.90 × 10-5 M, the iodine

absorbance dropped to 87.5% its initial value, giving K  = 1650 M-1.  At room

temperature, such K values correspond to approximately 99.5% consumption of iodine

upon formation of the activated intermediate for typical rearrangement reaction

concentrations of [PT]0 = 0.10 M and [I2]0 = 0.0010 M.  This rapid and virtually

complete reaction of catalyst with pyridinethione therefore cannot be the rate limiting step.

The kinetic results are not consistent with a catalysed mechanism which involves

the concerted, intramolecular rearrangement of an activated intermediate depicted by

transition state 5.31.  A revised, hypothetical partial mechanism which accounts for the

observed kinetics and equilibrium constant is displayed in scheme 5.9.  Pseudo-first

order kinetics are expected for the rate limiting second step, having rate constant k2, since

[PT+•I2
–•] will remain approximately constant owing to the large equilibrium constant for

the first pre-equilibrium step.  This second bimolecular process is expected to have a

polarized transition structure since polar solvents increase the rate.
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PT  +  I2 PT+•I2
–•

k1

k-1

PT+•I2
–• PT+

k2 "dimeric" complex of 
uncertain structure

N-oxide product (5.2)

further steps

slow

Step 1:

Step 2: (PT)2
+•I2

–•

Scheme 5.9.  A proposed partial mechanism for the iodine catalysed rearrangement of

5.1a, which accounts for the kinetics being catalytic in iodine and first order in [5.1a]

For conditions under which most of the catalysed rearrangement reactions were

conducted, where [5.1a]0 >> [I2]0, the empirical rate law can be expressed by equation

5.4.

−   [ ]d

dt

5.1a
  =  

d

dt

 [ ]5.2a
  ≈  k2[I2]0[5.1a]           (5.4)

An estimation of k2, the true second order rate constant, at 80˚C can therefore be

made.  Table 5.2 lists the pseudo first order rate constant, k', for the 1.01 mole % iodine

catalysed rearrangement of 5.1a as 1.10 × 10-4 s-1.  The initial iodine concentration of

1.15 × 10-3 M will be the approximate concentration of PT+•I2
–•, assuming the

equilibrium constant K is the same at 80˚C as at 20˚C.  Division of k' by [I2]0 gives k2 =

9.57 × 10-2 M-1s-1.

Attempts were made to detect the product 5.2a by thin layer chromatography in

solutions resulting from the mixing of a relatively large proportion of a catalyst and 5.1a

at room temperature.  Such attempts all failed to detect the N-oxide.  A flocculent

precipitate was formed immediately when some catalysts were mixed with 5.1a,

indicating the rapid formation of an insoluble intermediate such as a charge transfer

complex.  These results support the proposal that step 1 (activation) is not rate limiting.

Since the kinetics are first order in the concentration of 5.1a, the rate limiting step
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must involve a reaction between 5.1a and some type of intermediate.  Consequently, the

possibility exists that step 2 is not rate limiting, but some later bimolecular step is.

Another mechanism accounting for the observed kinetics is one in which the rate limiting

step consists of the displacement by pyridinethione 5.1a of a molecule of the product N-

oxide 5.2a from a charge transfer complex intermediate in which the migrating group

shift had already taken place.  It is clear that much can be gained by elucidating the

structures of the intermediates involved.

In summary, the kinetics indicate that the rearrangement of 5.1a to 5.2a is a

more complex reaction than initially envisaged.  This process displays pseudo first order

kinetics.  The initial reaction between iodine and pyridinethione 5.1a is fast and has an

equilibrium constant of approximately 1650 M-1 in chloroform at room temperature.  The

rate limiting step appears to be bimolecular, involving the reaction between an

intermediate and the pyridinethione and has an estimated rate constant of k2 = 9.6 × 10-2

M-1s-1 in chloroform at 80˚C.  Polar solvents accelerate rearrangement, indicating a

polarized transition state for the rate limiting step.  Iodine exhibits true catalytic behaviour

and from the similarity of rate constants, at least two other catalysts tested appear to form

analogous intermediates to those formed using iodine.  Little is currently known about the

structure of intermediates.

5.3.3 A study of rearrangement regiochemistry

It was found that N-allyloxy-2(1H)-pyridinethione (5.1b) rearranges exclusively

to 2-allylsulfanylpyridine N-oxide (5.2b) upon catalysis with iodine.

N

S

O
N

S

O

80˚C

5.2b

I2, CHCl3

5.1b

Five plausible types of mechanism which could lead to the formation of the 5.2b

came initially to mind.  The first is a 1,4 sigmatropic shift involving an open or closed
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shell five membered transition structure (i). The second is a 3,4 sigmatropic shift which

proceeds via an open or closed shell seven membered transition structure (ii).  Structure

iii represents a intramolecular dissociation/recombination process which may be either

heterolytic or homolytic.  Mechanism iv exemplifies an intermolecular chain process,

which may involve either ionic or radical substitution, in which attack occurs at C1 of the

allyl group.  Path v is similar to iv, but involves attack at C3 of the allyl group.  Only

options i and iv would be expected to proceed with exclusive transfer of C1 of the allyl

group from oxygen to sulfur.  To discriminate between the possibilities, the catalysed

rearrangement of N-1,1-dideuteroallyloxy-2(1H)-pyridinethione (5.1c) was studied.

CH2
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S
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S
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N
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i ii
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N
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O
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Compound 5.1c was prepared in three steps.  Acryloyl chloride was reduced

with lithium aluminium deuteride in diethyl ether to 1,1-dideuteroallyl alcohol, according

to a literature procedure.113  Treatment of this alcohol with methanesulfonyl chloride in

dichloromethane under basic conditions yielded the desired mesylate.  The alkylating

agent reacted with tetraethylammonium 2(1H)-pyridinethione N-oxide in DMF to give the

desired pyridinethione 5.1c in low yield.  From the 1H nmr spectrum of 5.1c (figure

5.3) it can be concluded from the virtual absence of resonances at 5.0 ppm (O–CH2) that

nucleophilic attack upon the allyl mesylate took place almost entirely at C1.  A 2H nmr

spectrum at 30.7 MHz in CHCl3 revealed that the only peak belonging to pyridinethione
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5.1c was a broad singlet at 4.97 ppm, attributed to O–CD2.  There were no peaks

detected in the range 5.4-5.5 ppm, indicating no deuterium incorporation into the =CH2

position.  Hence, no appreciable SN2' substitution at the γ-carbon of the mesylate occurs

during the formation of 5.1c.

N

S

O

D D

5.1c

O OH

Cl D

D

48%

68%

OMs

D

D

18%

a: LiAlD4 in Et2O; b: MeSO2Cl, Et3N in CH2Cl2, 0˚C; c: tetraethylammonium

2(1H)-pyridinethione N-oxide (1i) in DMF, 0˚C

a

b

c

The isotopic composition of pyridinethione 5.1c could not be established

accurately by mass spectrometry, although a monodeuterated fragment ion corresponding

to a peak group at m/z = 111-114 analysed for 97.6-97.9 atom% d.  Unfortunately, this

result could not be corroborated for dideuterated fragments owing to either low relative

peak abundance or complications associated with peak groups which represent more than

one species.  However, from the intensity of the resonances at 5.0 ppm, 1H nmr was

used to establish that C1 of the allyl group was protiated to the extent of 1.2-2.4 atom%

(97.6-98.8 atom% d), agreeing well with the mass spectrometric result for the

monodeuterated fragment ion.  Consequently, the isotopic composition of 5.1c was

taken to be 98 atom% d, identical to that stated for the LiAlD4 used to incorporate the label

into C1 of the allyl group.  Relative yields for the isomeric rearrangement products 5.2c

and 5.2c' have been normalised accordingly.

A degassed CDCl3 solution of 5.1c was heated in the dark at 80˚C with 2.0

mol% iodine.  After 8.5 hr, 80% of the pyridinethione had reacted, forming the products

5.2c (96%) and 5.2c' (4%), as determined by 1H nmr.  Relevant nmr spectra are
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displayed in figure 5.3.
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The result for iodine catalysis was checked semi-quantitatively by 2H nmr.  At

30.7 MHz in CHCl3 solution the major product peak detected was a broad singlet at 3.62

ppm, corresponding to S–CD2.  Doublet resonances of very low intensity, centred at

5.27 and 5.41 ppm were detected, corresponding to the alkene deuterons at C3 of the N-

oxide 5.2c'.  Quantification was difficult due to the width of the lines and the low S/N

ratio, but each of the alkene peaks was ≤1.8% the height of the major singlet.  This

indicates that ≥ (100 – (4 × 1.8)) ≈ 93% of the d2 label is located at C1 of the allyl chain

in the product 5.2c'.  Since the uncertainty is estimated at 2-3%, the 2H nmr result upper

limit is therefore 95-96%, close to that determined by 1H nmr.  It is possible that

exchange of deuterons and protons (adventitious HCl in chloroform) in solution is

responsible for the small amount of label scrambling, although vacuum degassing should

have removed HCl.

We were eager to discover how another effective catalyst, expected to act

exclusively as a protic acid, would affect the regiochemistry.  The same experiment was

hence repeated, replacing iodine with CF3SO3H (3.4 mol%).  Relative product yields

changed only slightly to 5.2c: 98% and 5.2c': 2%, at  ca. 60% consumption of 5.1c.

Allyl migration from O to S therefore occurs predominantly, though not exclusively, via

C1 transfer for both iodine and acid catalysis.  The sameness of these outcomes indicates

a similar mechanism.  A preponderance of mechanism i or iv is consistent with the

results.  Mechanism iii may also account for the results, but the ion or radical pair must
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Figure 5.3.  Nmr spectra of species involved in the regiochemical study. a: N-allyloxy-

2(1H)-pyridinethione (5.1b); b: 2-allylsulfanylpyridine N-oxide (5.2b); c: N-(allyloxy-

1,1-d2)-2(1H )-pyridinethione (5.1c); d: reaction mixture from iodine catalysed

rearrangement of N-(allyloxy-1,1-d2)-2(1H)-pyridinethione (5.1c), consisting mostly of 2-

(allylsulfanyl-1,1-d2)pyridine N-oxide
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have a very short lifetime and be highly selective to produce the high level of

regioselectivity observed.

In conclusion, the migration of the allyl group from O to S in the 5.1c→5.2c

rearrangement proceeds with high regioselectivity for C1 over C3 for both iodine and

trifluoromethanesulfonic acid catalysis. The predominance of an intramolecular 1,4 shift

(i) or an intermolecular allyl C1 substitution reaction (iv) is consistent with the results.  A

tight, short lived and highly selective ion or radical pair (iii) is less likely, but possible.

The sameness of the results between catalysts suggests a similarity of mechanism.

5.3.4 A study of rearrangement stereochemistry

Results from the kinetic work of section 5.3.2 are consistent with an

intermolecular rate limiting step, yet do not yet exclude the possibility that the actual alkyl

group migration step is intramolecular.  Mechanistic work on the rearrangement of

analogous 2-alkoxypyridine N-oxides117-119 has shown that an intermolecular transfer of

the alkyl group occurs, but such a process has not yet been tested with N-alkoxy-2(1H)-

pyridinethione rearrangement.  For the purposes of this current stereochemical study the

initial hypothesis—that the isomerization proceeds by a catalysed 1,4 sigmatropic shift—

remains intact.

The stereochemical outcome of closed shell, thermal 1,4 sigmatropic

rearrangements should be unambiguous.  As discussed previously, those involving the

redistribution of four electrons proceed in the 1a,4s mode, bringing about inversion of

configuration at C1 of the migrating group, while those involving six electrons proceed

with retention of configuration, via a 1s,4s path.  Predicting the stereochemical outcome

of rearrangements within open shell systems—having one valence orbital singly

occupied—is less clear.  The stereochemistry of the migration of an enantiomerically

enriched 1-phenylethyl group was studied to reveal whether the rearrangement more

closely resembles the characteristics of four (inversion) or of six (retention) electron

systems.
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5.3.4.1 Preparation of optically active reactants and products

The stereochemistry of the catalysed rearrangement of both the R (+) and S (–)

enantiomers of N-(1-phenylethoxy)-2(1H)-pyridinethione (5.1d) was studied.  Both the

R and S enantiomers of the reactant pyridinethione (5.1d) and of the product N-oxide

(5.2d) were prepared to ensure a high degree of confidence in the rearrangement

stereochemistry results.  Each enantiomer of the product and of the reactant was prepared

by a different method to provide confidence in the correct assignment of absolute

stereochemical configurations.

(i) Synthesis of R  (+)-N -(1-phenylethoxy)-2(1H )-pyridinethione, 5.1d(+)

A sample of R (+)-N-(1-phenylethoxy)-2(1H)-pyridinethione, 5.1d(+), was

prepared in three steps from commercial, enantiomerically pure S (–) 1-phenethyl alcohol

(5.34).  The tosylate 5.35 was obtained indirectly97 due to its thermal lability, via the

more stable sulfinate.  Oxidation of S 1-phenethyl p-toluenesulfinate with m -

chloroperbenzoic acid was accomplished easily under cool conditions.  Conversion of the

optically active alkylating agent to the desired pyridinethione was achieved by treatment

with tetraethylammonium 2(1H)-pyridinethione N-oxide in DMF at 0˚C.  The isolated

pyridinethione 5.1d(+) had a specific optical rotation of +771±9˚, corresponding to

71.7±1.0% e.e. (see section ii).  This degree of optical purity indicates that although the

displacement mechanism was predominantly SN2, significant racemisation had occurred.

CH3

HO Ph

CH3

O Ph

CH3

TosO Ph
S

O

p-Tol

CH3

O Ph
N

S
a b c

56% 93% 28%

S (-) R (+)

a: p-TolSOCl, pyridine, Et2O, 0˚C; b: m-CPBA, CH2Cl2, 0˚C; 

c: tetraethylammonium 2(1H)-pyridinethione N-oxide (1i), DMF, 0°C

5.34 5.35 5.1d(+)

The enantiomeric composition of the pyridinethione was determined by capillary

GC,87 using the optically active stationary phase Chirasil-Val.  Unfortunately, the

mixture of pyridinethione enantiomers decomposed in the GC injector port, making a
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direct analysis impossible.  A method involving derivatisation of the pyridinethione was

therefore developed.  Photolysis of the pyridinethione in benzene yielded, among other

products, acetophenone and optically active 1-phenylethanol, products expected from the

intermediacy of the 1-phenylethoxy radical.  The enantiomeric excess of the 1-

phenylethanol is assumed to be identical to that of the pyridinethione since no plausible

mechanism can be envisaged for racemisation of the alcohol during its photolytic

formation.  It is possible that the 1-phenylethanol-1-yl radical may be formed by the

abstraction of the benzylic hydrogen atom of 1-phenylethanol by 1-phenylethoxy radical.

However, the large steric compression associated with the abstraction of a benzylic

hydrogen by a racemised 1-phenylethanol-1-yl radical makes this process unlikely to

occur to a significant extent.  Unfortunately, a good separation of the enantiomers of

racemic 1-phenylethanol could not be achieved on Chirasil-Val.  Success was finally

encountered by derivatisation of the mixture of alcohol enantiomers to the corresponding

isopropyl carbamates, achieved by adapting a literature procedure.98  Only a few mg of

pyridinethione were required for the entire analysis. Figure 5.4 shows the separation of

enantiomers achieved by GC.
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CH3

O Ph
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71.7% e.e. 71.7% e.e. 71.7% e.e.

a: hν, benzene;  b:  isopropyl isocyanate, CH2Cl2, 100˚C, 20 min
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Figure 5.4.  Determination of the enantiomeric composition of R (+) N-1-phenylethoxy-2(1H)-

pyridinethione (5.1d(+)) by GC, using a Chirasil-Val capillary column.  The upper chromatogram is of

the enantiomeric isopropyl urethane derivatives of the 1-phenylethanols obtained by photolytic

degradation of pyridinethione 5.1d(+) and the lower is of the same urethanes obtained from racemic (±)

1-phenylethanol.  The R enantiomer has the shorter retention time.  An enantiomeric composition of

85.8±0.5% R (71.7% e.e.) was determined for the pyridinethione.

(ii) Synthesis of S  (–)-N -(1-Phenylethoxy)-2(1H )-pyridinethione, 5.1d(–)

Preparation of S (–)-N-(1-phenylethoxy)-2(1H)-pyridinethione, 5.1d(-), was

achieved in two steps from R (+)-1-phenylethanol (5.36), via the mesylate99(5.37).

This alkylating agent was more stable than the tosylate used in the synthesis of 5.1d(+),

although the reason is not clear.  An optical rotation of –1047±13˚ was measured for

pyridinethione 5.1d(–) and chiral GC analysis yielded an e.e. of the S isomer of

95.3±0.3%.  The specific rotation for the pure S isomer is hence –1098±16˚.
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a: MeSO2Cl, Et3N, CH2Cl2, 0˚C; 

b: tetraethylammonium 2(1H)-pyridinethione N-oxide (1i), DMF, O°C

(iii) Synthesis of S  (–) 2(1-Phenethylsulfanyl)pyridine N -oxide, 5.2d(–)

A sample of predominantly S (–)-2(1-phenethylsulfanyl)pyridine N-oxide,

5.2d(–), was obtained in two steps from commercial S (–) 1-phenylethanol (5.34).

Unfortunately, the R 1-phenethyl bromide (5.38) obtained from 5.34 had an e.e. of

only 40.4%, but this bromide is known to be prone to racemisation.100  Fortunately, the

racemate of the product N-oxide crystallized from solution in preference to the S

enantiomer.  It was possible to obtain the desired enantioenriched product from the

mother liquors with an e.e. of 86.2% ([α]25
D

 = –112˚).

CH3

HO Ph

5.34

CH3

Br Ph

5.38

CH3

S Ph

5.2d(-)

N
O

a b

45% 52%

S (-) R (+) S (-)

a: PBr3, pyridine, Et2O; b: sodium 2(1H)-pyridinethione N-oxide, DMF, 80°C

(iv) Synthesis of R  (+) 2(1-Phenethylsulfanyl)pyridine N -oxide, 5.2d(+)

The R (+) isomer of 2(1-phenethylsulfanyl)pyridine N-oxide, 5.2d(+), was

prepared in five steps from (–) menthol (5.39) in very high enantiomeric excess.  This

synthesis utilises a diastereomeric resolution101 to provide the optically pure and intensely

malodorous thiol (5.40), after cleavage from the chiral auxiliary.  Subsequent conversion

to the N -oxide 5.2d(+) was achieved with chloride ion displacement from 2-

chloropyridine N-oxide95 by the thiolate anion of 5.40.  Recrystallisation of the product

5.2d(+) from benzene/hexane was repeated to constant mp (107.0-107.5˚C) and optical

rotation (+130±1˚).



 Chapter 5: Pyridinethione Rearrangement    229

OH

5.39

O S

S

Na O S

S Ph

CH3

O S

S Ph

CH3

Ph

HS CH3N

S Ph

CH3O

1R,2S,5R (-)

5.405.2d(+)
R (+)R (+)

a b

c

de

56% (for 3 steps)

86%67%

a: Na in toluene, then CS2; b: (±) 1-phenethyl bromide; c: diastereomeric resolution by selective 

crystallisation from EtOH; d: morpholine, benzene, ∆; e: NaH in THF, then 2-chloropyridine N-oxide

The enantiomer ratio of N-oxide 5.2d(+) was determined by nmr,102 using the

lanthanide chiral shift reagent (+) Eu(tfc)3.  An optimum balance between increasing

enantiomer shift difference and attendant line broadening was achieved at 10 mol% shift

reagent in CDCl3.  As figure 5.5 illustrates, none of the S isomer could be observed in the

product, the estimated limit of detection being 1%.  It was concluded that N-oxide

5.2d(+) has an e.e. ≥ 98% and is probably enantiomerically pure.

N
O

S

Ph

CH3

N
O

S

Ph

CH3

(±) R (+)

Figure 5.5.  Establishment of the enantiomeric purity of R (+) 2-(1-phenethylsulfanyl)pyridine N-oxide

5.2d(+).  The partial nmr spectra show the CH3 resonances for the racemic mixture (left) and R (+)

isomer (right) respectively.  Resolution enhancement of the peaks was achieved with the Varian "Resolv"

function.  The CH3 group of the R isomer—the only isomer detected in the enantioenriched sample—

resonates at higher field.
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5.3.4.2 Results

The stereochemistry of the rearrangement step of the pyridinethione is expressed

in terms of the degree of retention of configuration of the migrating group.  Since

retention of configuration demands that, for instance, the S enantiomer of the

pyridinethione rearranges to the S isomer of the product N-oxide, this relationship is:

Fr    =   
N  +  P  –  1

2P  –  1
s s

s
     (5.5)

where Fr  is the fraction of retention of configuration in the rearrangement; NS is the

fraction of S enantiomer in the product N-oxide; and PS is the fraction of S enantiomer in

the reactant pyridinethione.  In terms of enantiomeric excess, this equation becomes:

Fr    =   
e.e.(N ) +  e.e.(P

2e.e.(P
s s

s

)
)

(5.6)

where the enantiomer excesses of NS and PS are also expressed as fractions/percentages.

Rearrangement experiments were performed in the absence of light, under vacuum

at 80˚C in the chosen solvent, with a pyridinethione concentration of 0.22 M.  Reaction

progress was monitored by 1H nmr.  When complete, the optically active N-oxide

product was isolated by flash chromatography and purified further by sublimation at

100˚C/0.1 mmHg.  An optical rotation measurement was then obtained and the

enantiomeric composition calculated using the specific rotation for the purely S N-oxide

5.2d(–) of –130±1˚.  From this, the degree of retention of configuration (Fr) was

calculated using equation 5.5.  Results are displayed in table 5.5.

Since Jacques, Collet and Wilen have reported103 the occurrence of

enantioselective sublimation of optically active compounds, a strategy was devised to

avoid problems should such an effect exist in the present system.  A mixture of R (+) N-

oxide 5.2d(+) (20.820 mg) and racemic N-oxide 5.2d(±) (19.925 mg) was dissolved

in chloroform, yielding a specific rotation of +64.3±0.5˚.  After removal of solvent the
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residue was sublimed completely.  A homogenised sample of the sublimed N-oxide gave

a specific rotation of +64.1±0.5˚. Thus, results will not be skewed by enantioselective

sublimation provided the entire sample is sublimed and that the sublimate is homogenised

prior to optical rotation measurement.

Table 5.5. Stereochemical results from catalysed rearrangements of S (–) pyridinethione

5.1d(–) (97.65±0.16% S, 95.3±0.3% e.e.)

Catalyst

Catalyst
quantity
(mole%) Solvent

Reaction
time (hr)

Fraction of S
enantiomer in

product 5.2d (%)

Degree of
retention of

configuration, Fr

(%)

I2 5.0 CDCl3 4.0 75.1±0.5 76.3±0.7

I2 2.00 CDCl3 4.0 79.5±0.6 81.0±0.7

I2 1.92 CD3CN 4.0 47.9±0.1 47.8±0.1a

I2 2.03 CH3CN 4.0 48.1±0.1 48.0±0.1a

O2 145b CDCl3 24 55.3±0.1 55.6±0.1

O2 unknown CH3CN 24 31.4±0.4 30.5±0.5a

Fc+PF6
– 1.00 CH3CN 4.0 41.3±0.2 40.9±0.3a

Ni (III) SAR 1.00 CH3CN 4.0 37.4±0.2 36.8±0.3a

a: A predominant inversion of configuration; b: The proportion of oxygen gas initially

present above the degassed solution.  Uncertainties represent one standard deviation.

To confirm the result with iodine catalysis in chloroform solution, a rearrangement

of the R (+) isomer of the pyridinethione was performed.  The iodine (2.04 mol%)

catalysed  rearrangement of the R pyridinethione 5.1d(+) (71.7±1.0% e.e.), at 80˚C for

5 hr, produced predominantly R (+) 2-(1-phenethylsulfanyl)pyridine N-oxide 5.2d(+)

with an enantiomer excess of 44.8±1.5%.  Using equation 5.6, there has been

81.3±1.5% retention of configuration in the migrating group, in excellent agreement with

Fr = 81.0±0.7% from the comparable S (–) pyridinethione rearrangement.
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N

S

O

CH3
N

S

O

CH3

2% I2, CDCl3, 80˚C

81% retention

R - (+) 71.7% ee R - (+) 44.8% ee

5.2d(+)5.1d(+)

5.3.4.3 Determination of the extent of solution-phase racemisation

of the pyridinethione and the N-oxide

Experiments were undertaken to establish whether the results in table 5.5 were an

accurate representation of the actual stereochemistry of the rearrangement step, or whether

racemisation in the reactant and/or product had introduced distortions.

A sample of S (–)-pyridinethione 5.1d(–), of 95.3%±0.3% e.e., was heated at

80˚C with 5.0 mol% iodine in CHCl3 for 4.0 hr and the unreacted starting material was

isolated by flash chromatography. Its enantiomeric composition was established by the

GC method described previously, giving 96.7±0.6% e.e., indicating that no racemisation

had occurred.

A sample of N-oxide 5.2d(+) of specific rotation +128.7±2˚, in CHCl3 solution

(0.22 M) was degassed and heated at 80˚C with 2 mol% iodine for 4.0 hr.  The recovered

N-oxide was purified by flash chromatography then sublimed. A specific rotation of

+127.8±1˚ was obtained, again indicating negligible racemisation.  The same result was

obtained when a chloroform solution of the N-oxide, with or without iodine, was heated

for the longer time of 16.5 hr.  Furthermore, the same N-oxide 5.2d(+) was heated in

the more polar solvent acetonitrile for 4 hours at 80˚C.  A specific rotation of

+127.5±1.3˚ indicated negligible racemisation in this solvent as well.

Pyridinethione 5.1d(–), of specific rotation –904±9˚, was dissolved in CH3CN

and heated for 4 hours at 80˚C.  After purification by column chromatography, the

retrieved pyridinethione had a specific rotation of –787±8˚, an optical purity reduction of

12.9%.  Unfortunately, the e.e. could not be established accurately by chiral GC in this

instance and 1H nmr revealed that the pyridinethione was not chemically pure.
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Recrystallisation was avoided as a purification method because it was likely to change the

enantiomeric ratio.  However, unreacted pyridinethione 5.1d(–) which was retrieved

from an iodine catalysed reaction in deuterochloroform, showed a 6% reduction in optical

purity by optical rotation, but no decrease in e.e. by chiral GC analysis.  It is concluded

that if the apparent racemisation of 5.1d(–) in acetonitrile is real, it can only be of the

order of a few percent.

In summary, there is no racemisation of either the pyridinethione or the N-oxide in

chloroform solution.  In acetonitrile, there is no racemisation of the N-oxide.  It is

possible that there is a small amount (≤ 6%) of racemisation of the pyridinethione in

acetonitrile, but certainly not enough alone to account for the rearrangement

stereochemistry results.  Therefore, the results in table 5.5 are a reliable representation of

the stereochemistry of the rearrangement step.

5.3.4.4 Discussion of results

The most conspicuous result is that the rearrangement proceeds with predominant

retention (55-81%) of configuration (cf. 6 electron) in chloroform solution and inversion

(52-70%) in acetonitrile (cf. 4 electron).  The solvent appears to control the sense of the

stereochemical outcome of the rearrangement while the type and amount of catalyst

determines the degree of stereoselectivity.  Stereoselectivity is increased with smaller

proportions of catalyst and also by using catalysts which give rise to smaller

rearrangement rate constants.  Generally, stereoselectivity is greater in chloroform than in

acetonitrile solvent and there is no significant difference in results between reactions

performed in deuterated and non-deuterated solvents.  Data from the previous kinetic

analysis indicates that the rearrangement rate constant increases in polar solvents.  Initial

indications are that faster rearrangement equates with lower stereoselectivity.  Differences

in Fr between catalysts in the same solvent suggest that the catalyst and the substrate

remain associated in solution, so that the catalyst may be involved in the alkyl group

migration process.

Since the rearrangement in chloroform proceeds with predominant—but not
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total—retention of configuration, migration of the 1-phenethyl group in this solvent

cannot occur by a single, concerted step.  It is possible that, like certain 6 electron 1,4

shifts, a tight radical ion pair is involved.  Alternatively, an intermolecular mechanism is

possible and is consistent with kinetic results.

Schollkopf and Hoppe53 reported ≥ 80% retention of configuration in the

migrating group upon rearrangement of the optically active α -deutero-2-

benzyloxypyridine N-oxide in chloroform at 140˚C, although this result has been recently

disputed.119  In DMF solution, however, stereochemistry changes to 75% inversion118

and in the solid state the rearrangement proceeds with essentially complete inversion of

configuration.119  These interesting results have been rationalised by Wolfe and

coworkers,118,119 who claim that the mechanism consists of a sequence of intermolecular

nucleophilic displacement reactions, as evidenced by the positive results from crossover

experiments (scheme 5.6).  One such displacement will result in inversion of

configuration in the migrating group, but two will result in overall retention.  It would be

desirable to study the stereochemistry of the rearrangement of N-alkoxyoxy-2(1H)-

pyridinethiones in a variety of solvents and at different concentrations.

If an intermolecular mechanism is operating in the rearrangement of 5.1d(+) and

5.1d(–), then a predominance of two inversive displacements must take place in

chloroform solution and either one or another odd number of displacements in

acetonitrile, to account for the stereochemistry results.  Alternatively, an intramolecular

1s,4s sigmatropic migration is favoured in non-polar conditions, but a 1a,4s shift or

intermolecular displacement reaction is favoured under polar conditions.  Clearly, a

crossover experiment is required to establish the molecularity of the rearrangement step.

5.3.5 Electronic structure of the migrating group at C1 during

rearrangement

Results obtained from the stereochemical experiments indicate that the

rearrangement is unlikely to involve a single, concerted step.  An experiment was

therefore designed to explore the nature of possible intermediates by probing the

electronic configuration at C1 of the migrating group over the course of the
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rearrangement.  A cyclopropylmethyl group was the chosen mechanistic probe for the

study, which required the preparation of N-cyclopropylmethoxy-2(1H)-pyridinethione

(5.1e).  Synthesis of 5.1e was accomplished in two steps from cyclopropylmethanol.

N

S

O

5.1e

HO MsO

a b

90% 47%

a: MeSO2Cl, Et3N, CH2Cl2, 0˚C; 

b: tetraethylammonium 2(1H)-pyridinethione N-oxide (1i), DMF, 0°C

A rate constant for the iodine catalysed isomerization of N-benzyloxy-2(1H)

pyridinethione (5.1a) at 80˚C in chloroform of  k2 = 9.6 × 10-2 M-1s-1 was obtained

from the kinetic study.  A 1,4 shift of a cyclopropylmethyl group is known to be

considerably slower than that of a benzyl group (see section 5.3.6).  However,

intramolecular reactions of the cyclopropylmethyl radical and ions are orders of

magnitude faster than this.  Therefore, if such species occur as intermediates along the

reaction coordinate, their involvement should be reflected in the rearrangement products.

Cyclopropylmethyl radical opens to 3-buten-1-yl radical extremely rapidly, with a

rate constant of 5.2 × 108 s-1 at 80˚C in cyclohexane.105

CH2 CH2

It is well established that cyclopropylmethyl radical and cyclopropyl anion both

undergo ring opening to afford only the respective homoallylic radical or anion.104

However, the reaction of cyclopropylmethyl cation with nucleophiles yields not only the

expected cyclopropylmethyl compound, but a homoallylic product resulting from ring

opening and a cyclobutyl product resulting from ring expansion.104  Since oxidants and

protic acids catalyse the rearrangement, it is unlikely that cyclopropylmethyl anion would

be an intermediate.

Cyclopropylmethyl cation is in a very rapid dynamic equilibrium with

bicyclobutonium ion.  At  27˚C, in the gas phase, the rate constant is in excess of 1010
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s-1, the equilibrium ratio being close to unity.106

+
+ +

Therefore, if the mechanism for the 1,4 catalysed rearrangement of 5.1e involves

the intermediacy of a cyclopropylmethyl radical, the products expected would be 5.2e

and 5.42, but not 5.41.  If a cyclopropylmethyl cation is involved, all three N-oxides

should be expected as products.  If neither of these intermediates is involved, only

product 5.2e should result.

N

S

O
N

S

O
N

S

O
N

S

O
+

-
+

-
+

-

5.1e 5.2e 5.41 5.42

A 0.28 M solution of 5.1e with 5.9 mole% iodine in chloroform was degassed,

then heated in the dark at 80˚C under nitrogen for 5.5 hr.  The products detected by 1H

nmr were 2-(cyclopropylmethylsulfanyl)pyridine N-oxide 5.2e (100), unreacted N-

cyclopropylmethyl-2(1H)-pyridinethione 5.1e (20) and cyclopropylmethanol (2.7), in

the relative molar amounts shown.  Cyclopropylmethanol is one of the products expected

from radical reactions initiated by thermal homolysis of the N–O bond.  Published nmr

spectra of cyclobutylthiobenzene107 and 3-butenylthiobenzene108 were used to predict the

chemical shifts of the hydrogens of the cyclobutyl and 3-butenyl groups of 5.41 and

5.42 respectively.  No resonances similar to those from either of these compounds could

be detected, hence neither cyclopropyl radical nor cyclopropyl cation appear to be

intermediates.

If the detection limit for both 5.41 and 5.42 is taken to be 1% that of 5.2e,

upper limits for the lifetime of cyclopropylmethyl radical and cation intermediates can be
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estimated using equation 5.7:

t    =   
ln 100

99









k
    (5.7)

where t is the lifetime of the intermediate in seconds and k is the rate constant for ring

opening at 80˚C.  Accordingly, for cyclopropylmethyl radical t ≤  2 × 10-9 s and for

cyclopropylmethyl cation t  ≤  2 × 10-12 s, adjusted for the distribution of equally

abundant product isomers.

Thus, in chloroform solution, if the cyclopropylmethyl cation is an intermediate,

its lifetime is of the order of a molecular rotation.  If the migrating group supports a

radical centre at C1, the contact pair collapses at or near diffusion controlled rates.  It is

clear that if cyclopropylmethyl cations or radicals are indeed intermediates, they cannot be

diffusively free.

5.3.6 Substituent effects

A homologous series of N-alkoxy-2(1H)-pyridinethiones (5.1a-g) was prepared.

A semi-quantitative exploration of the relationship between migrating group structure and

isomerization rate was undertaken by estimating the proportion of product 5.2 present in

each reaction from 1H nmr peak integrals of identifiable compounds. The rate of

rearrangement depends, partly, on the purity of starting pyridinethiones, catalyst and

solvent.  Some of the pyridinethiones were difficult to purify and/or maintain in a high

state of purity.  Nevertheless, a reasonable pattern of reactivity could be obtained by these

experiments.  Initial pyridine thione concentrations were 0.23 M and the results appear in

table 5.6.

N

S

O
R N

S

O

R

5.1 5.2

I2, 80˚C

CDCl3
or CHCl3
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Benzylic and 1-phenylethyl substituents migrate most rapidly.  A reasonably rapid

reaction was observed in those compounds with a 2-alkenyl substituent (5.1b,c) or

those where significant conjugation of ring σ bonds with the p orbital of the terminal

carbon occurs, such as with the cyclopropylmethyl group.109  Such results suggest that

migration is facilitated by the capacity of the substituent to stabilise developing positive

charge, or a radical, at C1.  Aliphatic groups (5.1f,g), particularly bulky ones, migrate

most slowly.  Interestingly, a comparison of results of rearrangements of 5.1b and 5.1c

indicates a deuterium isotope effect at C1.

Table 5.6.  Reaction conditions and product yields for iodine catalysed rearrangement

of a series of N -a lkoxy-2(1H )-pyridinethiones 5.1a-g  in chloroform or

deuterochloroform solution at 80˚C

Pyridinethione

number Substituent R

Mole fraction I2

(%)

Reaction time

(hr)

Yield of N-oxide

5.2a-g (%)

5.1a  CH2Ph 0.5 4.0 91-95

5 .1d  CH(CH3)Ph 0.5 4.7 96

5 .1b  CH2CH=CH2 0.5 4.0 80

5 . 1 c  CD2CH=CH2 1.0 4.0 50

5 . 1 e  CH2 6.3 3.5 70

5 . 1 f  CH2CH2CH3 0.5 4.0 0.5

5 . 1 f  CH2CH2CH3 5.0 4.0 9

5 . 1 g  CH2 5.0 4.0 2

The general trend is comparable with that reported by Ollis78 (table 5.7) who

observed that the degree of unsaturation in the migrating group drastically increases ease

of migration in the isomerization of 2-alkoxypyridine N-oxides (5.22) to N-alkoxy-2-

pyridones (5.23).  A study53 of benzyl group migration in the 5.22→ 5 .23



 Chapter 5: Pyridinethione Rearrangement    239

rearrangement yielded a Hammett ρ value of –0.26, indicating that stabilisation of

positive charge at the migrating group terminus significantly accelerates migration.

 

N

O

O
N

O

O

R

R
140˚C

5.22 5.23

Table 5.7.  Relative rate constants for a series of migrating groups in the 2-

alkoxypyridine N-oxide rearrangement (5.22→5.23), from reference 78

Substituent R Relative rate constant

CH2CH3 1

CH2CH=CH2 23.5

CH2 2294

In summary, initial investigations suggest that substituents capable of delocalising

charge, or stabilising a radical centre, at C1 of the migrating group accelerate the catalysed

rearrangement of N-alkoxy-2(1H)-pyridinethiones.  It is not yet clear how charge, or

radical, stabilisation of the migrating group facilitates migration.

5.3.7 Attempted detection and isolation of intermediates

5.3.7.1 Addition of a radical scavenger

In an attempt to test for the presence of radical intermediates, 3 mol% of the

radical scavenger 1,4-benzoquinone was added to a solution of 0.23 M N-benzyloxy-

2(1H)-pyridinethione (5.1a) in CDCl3, containing 0.5 mol% iodine.  After heating in the

dark for 2 hours, the yield of the rearrangement product 5.2a was 72%, whereas in the

same reaction without 1,4-benzoquinone the yield was 75%.

O O2 R • + O O
R

R

Scavenging of radicals by 1,4-benzoquinone
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Since the radical scavenger caused no significant retardation of the rearrangement,

it can be concluded that carbon-centred free radicals either do not appear to be

intermediates in the rearrangement process or they escape detection owing to a short

lifetime.  It is possible that other types of radicals—thiyl radicals (RS•) for instance—may

be intermediates.  An S–O bond in the expected (RS)2–benzoquinone adduct is likely to

be very weak, so the trapping process would be expected to be reversible.  The negative

result from the scavenger addition is also consistent with a rearrangement mechanism

which involves the formation of a charge transfer complex in which the catalyst and

pyridinethione moieties remain in association.

5.3.7.2 Esr spectroscopy

Electron spin resonance spectroscopy was used in an attempt to directly observe

radical intermediates.  Signals due to radicals could not be detected when a

dichloromethane solution of N-benzyloxy-2(1H)-pyridinethione (5.1a) was treated with

any one of the reagents iodine, ferrocenium hexafluorophosphate, triflic acid or tris(4-

bromophenyl)aminium hexachloroantimonate (5.33), within a temperature range 77 to

298 K, across a spectral width of 100 gauss.

A blue dichloromethane solution of the stable free radical aminium salt 5.33 gave

a strong, broad signal of a poorly resolved triplet, as expected.  This signal was

immediately quenched upon addition of a dichloromethane solution of pyridinethione

5.1a, simultaneous with the loss of blue colour from the solution and formation of a

flocculent precipitate.  No other ESR signal could be detected.

N

S

O
N

S

O
(p-BrC6H4)3N SbCl6

–+ •
+

+ •

(p-BrC6H4)3N

SbCl6
–

+

Further reactions which form

diamagnetic products

Ph Ph

5.1a

Scheme 5.10. Proposed initial redox reaction between free radical aminium salt 5.33

and pyridinethione 5.1a
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It is concluded that the rapid initial reaction observed is most likely a redox

reaction between the aminium salt and the pyridinethione, as illustrated in scheme 5.10.

Further reactions form diamagnetic products, some of which are insoluble.  Diamagnetic

products may result from processes such as dimerisation of the incipient pyridinethione

radical cation or by its further oxidation.  Attempts have been made to identify the

products (see section 5.3.7.4).

5.3.7.3 Cyclic voltammetry

An exploration was undertaken into the electrochemistry of N-benzyloxy-2(1H)-

pyridinethione (5.1a, denoted as PT in figure 5.6) and its rearrangement product, 2-

benzylsulfanylpyridine N -oxide (5.2a), using cyclic voltammetry.  Analyte

concentrations of 5.5 mM in acetonitrile were used, employing 0.1M Bu4NBF4 as the

electrolyte.  Potentials were measured relative to the Ag/AgCl half cell.  The

electrochemistry of these two compounds, particularly of 5.1a, is not simple.

At a scanning rate of 100 mVs-1, a voltammagram of N-oxide 5.2a displayed a

single, chemically irreversible oxidation wave at +1.7 V at room temperature, with no

reduction process being detected.  However, at –30˚C the oxidation wave at +1.65 V

gave rise to a reduction wave at –0.3 V.  It is possible that the oxidation process at +1.65

V results in the formation of a new species, via homogeneous chemical reaction of the

oxidised compound, which can be reduced at –0.3 V.  Furthermore, the secondary

compound that forms as a result of the electrochemical oxidation is likely to be unstable,

and so can only be detected on the reverse scan at –0.3 V when the temperature is

lowered to –30˚C.

At room temperature, the pyridinethione 5.1a shows an irreversible (rate of

electron transfer is less than rate of diffusion away from the electrode) oxidation wave at

+0.9 V and a reduction wave at –0.15 V.  The reduction process at –0.15 V is only

evident when the scan is extended past 1.0 V in the positive direction, hence it is likely to

be associated with a product of the oxidation process.  At –31˚C, two oxidation waves

are detected, at +0.9 and +1.4 V, both appearing irreversible, and two reduction waves at
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–0.2 V and –0.45 V.  At lower temperatures the species present at +1.4 V is an unstable

product of the oxidation of the starting material.  At higher temperatures it is not as easily

detected, possibly because of its decomposition or high reactivity.  Tentative assignment

of the waves is given on the voltammagrams displayed in figure 5.6.

21°C - 31°C

PT - e- PT2
+• - e-

Reduction processes, which may 
include  PT2

+• + e-  and (PT2)2+ + e-

PT - e- PT2
+• - e-

Reduction processes, which may 
include PT2

+• + e-  and (PT2)2+ + e-

Figure 5.6.  Cyclic voltammagrams of N-benzyloxy-2(1H)-pyridinethione (PT) in

acetonitrile at room temperature (left) and at –31˚C (right), both recorded at a scan rate of

100 mVs-1

This type of irreversibility behaviour, in which oxidation and reduction waves are

several hundred millivolts apart, is similar to the reversible dimerisation of

diphenylpolyene radical cations.110  Phenylthiyl radical (PhS•) is known to add rapidly to

alkenes.111  For instance, the rate constant112 for the reaction of PhS• with butadiene at

room temperature is 3.5 × 107 M-1s-1.  More specifically, it is known that 2-pyridylthiyl

radical (5.8) adds to the S=C group of Barton esters (5.4) at an almost diffusion

controlled rate.46  Therefore, it is reasonable to assume that the addition of a

pyridinethione radical cation (PT+•) to a pyridinethione molecule (PT), forming a kind of

dimer (PT2
+•), is not only a favoured process, but would be moderately fast.  Scheme

5.11 illustrates some proposed chemical reactions which can account for the observed

electrochemistry.

An argument against attack of PT+• at the sulfur of another PT molecule is that this

process might be expected to generate benzyloxy radicals, in a manner similar to step 4 in

scheme 5.7.  Redmond and coworkers have shown that 2-pyridylthiyl radical (5.8) can



 Chapter 5: Pyridinethione Rearrangement    243

displace RCOO• radicals by its reaction with Barton esters,46 although the rate of N–O

bond homolysis in a structure like PT2
+• is difficult to estimate.

N
O Ph

S

N
O Ph

S

N
O Ph

S
+•

+

•

- e-

+ e-

PT+•

PT+•  +  PT

PT

fast

N

S
S

N

O Ph

OPh

+

•

PT2
+•

N

S
S

N

O Ph

OPh

+

(PT2)2+

- e-

+ e-
+

further
reactions?

further
reactions?

Scheme 5.11.  Possible reactions which account for the results from cyclic voltammetry

Cyclic voltammetric results for the pyridinethione are consistent with a fast

reaction that takes place between an incipient pyridinethione radical cation, PT+•, and

another molecule of the pyridinethione, PT.  The first oxidation wave corresponds to the

unstable species PT+•, which quickly reacts with a molecule of PT to form PT2
+•.  This

rationalises the low current on the return (reduction) wave.  Removal of a second electron

from PT2
+• results in a doubly aromatised dication, (PT2)2+, a process corresponding to

the second oxidation wave.  Voltammetric data indicate that (PT2)2+, if this is the true

structure, is unstable at room temperature and has a half life significantly less than 1

second.  It may be a species of this type in which benzyl group migration takes place.

There is support from mass spectrometry for dimerisation processes in solution (section

5.3.7.4).  Structures  PT2
+• and (PT2)2+ have one and two aromatised heterocyclic rings

respectively, in which the nitrogen atom bears a positive charge.  Such aromatisation

makes the 2-sulfanylpyridine N-oxide moiety a better leaving group.  Processes which
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cause N to become positively charged may be responsible for promoting NO–R bond

scission.

Cyclic voltammetry can achieve potentials exceeding those encountered in solution

phase chemical reactions.  Therefore, it is possible that some processes may be occur

during cyclic voltammetry which do not during the catalysed rearrangement of the

pyridinethione.

5.3.7.4 Isolation and attempted identification of intermediates

Addition of yellow N-benzyloxy-2(1H)-pyridinethione (5.1a) to a deep blue

CH2Cl2 solution of the aminium salt tris(4-bromophenyl)aminium hexachloroantimonate

(33) results in an instantaneous loss of the blue colour with a simultaneous formation of a

precipitate.  An attempt was made to isolate and identify the products of this reaction.

A stirred solution of aminium salt 5.33 in dichloromethane was treated with

portions of solid 5.1a until the blue colour had just disappeared and a yellow/brown

solution with a similarly coloured, flocculent precipitate resulted.  This required 1.29

molar equivalents of the pyridinethione.  TLC analysis at this point indicated that neither

pyridinethione 5.1a nor product N-oxide 5.2a was present in solution.  Centrifugation

was used to settle the solid.  The liquid phase was drawn off, evaporated and its

constituents separated by flash chromatography.  The major component from the solution

was tris(4-bromophenyl)amine, (p-BrC6H4)3N (87% yield), identified by comparison of

1H and 13C nmr spectra with that of the authentic compound.  The total mass recovery

from the reaction was 96%.

Elemental analysis of the precipitate gave the results listed in table 5.8.  At the

limits of a conservative tolerance of 0.3% for each element, these results are consistent

with the molecular formula C12H11NOSSbCl6.  Such a formula indicates a molar ratio of

(pyridinethione 5.1a)+• to SbCl6
– of 1:1.  Thus, this compound is tentatively identified

as the hexachloroantimonate salt of the radical cation of N-benzyloxy-2(1H )-

pyridinethione 5.1a.  Assuming that this molecular formula is correct, this compound

was isolated in 92% yield.
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Table 5.8.  Elemental analysis results for the crude precipitate obtained from

centrifugation of the reaction mixture

Element  Mass % calculated Mass % found

C 26.12 27.34

H 2.01 1.70

N 2.54 2.97

Sb 22.07 22.79

This microcrystalline precipitate is sparingly soluble in methanol and acetonitrile,

but insoluble in water, and most organic solvents.  A 1H nmr spectrum of the sparingly

soluble solid was obtained, in CD3CN solution.  The solute was very dilute, so the

spectrum may represent/include by-products or impurities from the reaction.  There were

singlets at 4.68 (1), 5.45 (0.72), 5.70 (2) and 5.74 (1) ppm, with integral ratios shown.

Multiplets ranging from 6.97 to 9.12 ppm constituted the rest of the spectrum, indicating

mainly aromatic hydrogens.  None of the resonances corresponded to either the

pyridinethione 5.1a or its N-oxide rearrangement product 5.2a but at least two

compounds appear to be present.  Spectral lines are relatively sharp indicating that the

material is diamagnetic in solution.  There are no other peaks within the spectral range of

–130 to +130 ppm.

In CD3OD solvent, a less complex nmr spectrum was obtained.  It consisted of

the following resonances: 4.63 (s, 2H), 5.82 (s, 2H), 7.30-7.45 (m, 4H), 7.50-7.60 (m,

7H), 7.66 (d, 2H), 8.02 (dt, 1H), 8.28 (d, 1H), 8.43 (t, 1H), 8.48 (d, 1H) and 9.49 (d,

1H).  The number of hydrogens totals 22—twice the number present in the parent

pyridinethione.  For this reason—and the fact that there are two methylene resonances

and several one hydrogen resonances—this compound cannot be a symmetric dimer.  The

chemical shift of the one hydrogen doublet at δ 9.49 is indicative of a proton adjacent to a

positively charged nitrogen of a pyridine ring.

EIMS did not yield a useful mass spectrum and +FAB (glycerol/thioglycerol

matrix) mass spectrometry exhibited a peak at m/z 217.9, corresponding to the protonated
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pyridinethione 5.1a, although little else was informative.  Electrospray mass

spectrometry, utilising a milder ionisation method, gave a more useful spectrum.  With

acetonitrile as solvent, the following mass spectrum was obtained: m/z (%):  343 (100),

308 (3), 253 (43), 233 (70), 218 (6), 186 (7), 142 (8), 132 (9).  None of the peaks

contains the SbCl6 group. The base peak at 343 has the same m/z value expected for a

pyridinethione dimer (434) minus a benzyl group (91).  The peak group at 308 has the

same m/z value expected for a pyridinethione (217) plus a benzyl cation (91).  A

protonated pyridinethione dimer minus two benzyl groups could account for the peak at

m/z 253.  An asymmetric dimerisation reaction is consistent with the diamagnetism of this

compound observed by nmr.

The solid isolated was tested for catalytic activity.  To each of 0.23 M solutions of

N-benzyloxy-2(1H)-pyridinethione (5.1a) in CDCl3 and in CD3CN, was added 2.5

mol% (assumed MW 1103.5 gmol-1) of the solid product of unknown structure.  These

mixtures were degassed, sealed and heated under minimal lighting at 80˚C for 5 hr.

Ratios of  N-oxide 5.2a to pyridinethione 5.1a were 0.67:1 in CDCl3 and 7.1:1 in

CD3CN, indicating that the isolated compound acts as a catalyst.

From the weight of the evidence, it is proposed that the formula of this solid is

C24H22Cl12N2O2S2Sb2, MW  1103.52 gmol-1.  Compounds 5.44 and 5.45 are put

forward as possible structures.  Compound 5.43, although expected to form easily,

cannot be correct since nmr spectra indicate that the compound isolated has lower

symmetry.  The solid product may also be a mixture of two or more compounds.  Further

structural elucidation work is required.
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5.4 Conclusions

The mechanism of the catalysed rearrangement of N -alkoxy-2(1H ) -

pyridinethiones (5.1) to corresponding 2-alkylsulfanylpyridine N-oxides (5.2) is more

complex than initially envisaged.  In particular, evidence for the participation of

intermolecular reactions lessens the probability that this migration may belong to a new

class of intramolecular rearrangement in which 5 electrons are delocalised over 5 atoms.

However, since a crossover experiment has not been undertaken to establish the

molecularity of the migration step, an intramolecular shift of the alkyl group cannot yet be

excluded.

Evidence from cyclic voltammetry and catalysis experiments is consistent with an

incipient pyridinethione radical cation being formed by the one electron oxidation of the

pyridinethione molecule.  Owing to a similarity in reactivity, the mechanisms of

rearrangement with protic acid and with oxidative catalysis appear to be closely related—

perhaps having several identical or analogous steps.  Results from studies of

stereochemistry, esr spectroscopy, radical scavenger addition and isolation of

intermediates suggest that if a one electron oxidation does occur, the oxidised

pyridinethione and the reduced catalyst remain associated in solution.

Kinetic studies show that the rearrangement is first order in the concentration of

pyridinethione and catalytic in iodine.  The similarity in rate constants between oxidant

catalysts is consistent with an identical catalysis mechanism.  Initial reaction between the

pyridinethione and catalyst is fast and for iodine has a large equilibrium constant.  Polar

solvents accelerate the reaction, indicating significant charge development in the rate

limiting step.  Kinetic results are consistent with an intermolecular rate limiting step.

High regioselectivity was observed in the apparent 1,4 migration of the allyl group

with both iodine and triflic acid catalysis, suggesting highly ordered mechanisms for the

transfer of the migrating group for both types of catalyst.

Results from the stereochemical study are difficult to interpret at this stage.  The

migration of an optically active 1-phenethyl group proceeds with about 80% retention of

configuration in chloroform and up to 70% inversion of configuration in acetonitrile.  A
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sequence of intermolecular displacement reactions could account for the observed results.

It is clear that the rearrangement mechanism does not involve one, concerted step.

From a study of the migration of a cyclopropylmethyl group, diffusively free

radical or cationic cyclopropyl intermediates are not involved.  Semi-quantitative rate data

for the migration of different alkyl groups indicates that groups which can stabilise a

positive charge through delocalisation migrate more quickly, consistent with a polarized

transition state for the rate limiting step.

Evidence from cyclic voltammetry and from analyses of isolated intermediates

indicates that the intermediate produced by reaction of the pyridinethione with the catalyst

may dimerise or react through other intermolecular paths with additional pyridinethione

molecules to form non-radical products.  Aromatisation of the 2-sulfanylpyridine ring—

which places a positive charge on the ring N atom—appears to activate the scission of the

NO–R bond.

The rearrangement of N-alkoxy-2(1H)-pyridinethiones (5.1) to corresponding 2-

alkylsulfanylpyridine N-oxides (5.2) is a process catalysed by oxidants, protic acids and

Lewis acids, which involves a fast activation step.  Initial activated intermediates probably

take the form of 5.46 for oxidant, 5.47 for protic acid and 5.48 for Lewis acid (LA)

catalysis.  Each of these structures is one in which aromaticity exists.  It is probably this

aromaticity which weakens the O–R bond.  A polarized rate limiting step exists, but it is

not yet known whether this step is intra- or intermolecular in nature.  A correlation

between the rearragement rate constant and the degree of retention of configuration upon

migration of the 1-phenylethyl group suggests that the migrating group shift step is rate

limiting.
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5.5 Future work

First and foremost, a crossover experiment must be designed and executed to

determine whether the net transfer of the migrating group takes place intramolecularly or

intermolecularly.  Crossover experiments should be performed with different catalysts to

establish whether the molecularity of the rearrangement step is dependent on the mode of

catalysis and also in solvents of different polarity to explore whether there is a correlation

with results from the stereochemistry study.  Secondly, more work should be put into the

elucidation of the structure of isolable intermediates.  Also of interest would be a

Hammett study of benzyl group migration to examine the importance of charge

development at C1 of the migrating group.  An identification of the products from a bulk

electrolysis (oxidation) of the pyridinethione would be illuminating since the results

would reveal not only whether the product N-oxide is actually produced by this process,

but how many moles of electrons must be removed per mole of pyridinethione in order

for reaction to occur.  A kinetic study of the triflic acid catalysis of the rearrangement of

5.1a would provide valuable information about the similarities between acid and

oxidative catalysis.  A more detailed study of the effect of both solvent, catalyst and

concentration upon rearrangement stereochemistry is also desirable.

In addition, testing the rearrangement of N-allyloxycarbonyloxypyridine-2-thiones

(5.20) to 2-allylsulfanylpyridine N-oxides (5.21) for crossover behaviour will establish

whether rearrangement in this system is intramolecular, as early researchers assumed it

was.
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5.6 Experimental

Ferrocenium hexafluorophosphate, FcPF6 [11077-24-0]

A sample of ferrocenium hexafluorophosphate was obtained by the method of Duggan

and Hendrickson.96  Ferrocence (1.00g, 5.38 mmol) was dissolved in 4 mL of conc.

H2SO4, then diluted to 50 mL with water.  After removing any undissolved particles by

filtration, the resulting blue solution was mixed with a solution of ammonium

hexafluorophosphate (0.8794 g, 5.40 mmol)  in 30 mL of water.  Immediately a

precipitate was formed which was filtered off, washed with water and dried under high

vacuum.  The blue microcrystalline product (1.12 g, 3.38 mmol, 63%) had a mp >

315˚C.

Found: C, 34.38; H, 2.73; N, 0.00%.  C10H10F6FeP requires: C, 36.29; H, 3.05; N,

0.00%.

EIMS: 186 (100) Fc+, 129 (12), 121 (58), 107 (54), 95 (8), 88 (9), 56 (42).

N -Hydroxy-2(1H )-pyridinethione [1121-30-8]

N

S

OH

5.1h

1
64

3

5

2

This compound was prepared on 0.5 mol scale, by a established method,120

consisting of the treatment of a cold 40% aqueous solution of sodium 2(1H ) -

pyridinethione N-oxide (Harcros Chemicals) with one equivalent of concentrated HCl,

then recrystallisation of the resulting precipitate from ethanol.  A yield of 80% (lit.120

95%) was obtained, mp in a vacuum-sealed capillary 76-79˚C (Aldrich, 69-72˚C).  A 1H

nmr spectrum matched the published one.  The product was stored at –18˚C in the

absence of light.

Tetraethylammonium 2(1H)-pyridinethione N-oxide [22574-14-7]

N

S

O

5.1i

1
64

3
2

5

NEt4

N-Hydroxy-2(1H)-pyridinethione (5.1h) was treated with one equivalent of 20%

aqueous tetraethylammonium hydroxide and the water was evaporated under reduced
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pressure as previously described.7  On a scale of 230 mmol, the yield was 100%, mp in a

vacuum-sealed capillary 158-163˚C (lit.7 94%, 161-163˚C).  The product was stored at

–18˚C in the absence of light.
1H nmr (200 MHz): 1.24 (t, 12H, CH3 × 4), 3.30 (q, 8H, CH2 × 4), 6.49 (ddd, 1H,

H5*), 6.70 (ddd, 1H, H4*) 7.53 (dd, 1H, H3), 7.99 (dd, 1H, H6).

Synthesis of alkyl mesylates

Alkyl mesylates were prepared according to the method of Crossland and Servis99

by cooling to 0˚C a CH2Cl2 solution of an alcohol (0.2 M) and treating with 1.5 molar

equivalents of triethylamine and 1.1 equivalents of methane sulfonyl chloride.  Yields of

mesylates of good purity were usually above 90%.  Due to their high reactivity, the

mesylates were stored at –18˚C and used within a short time of preparation.

General procedure for the preparation of N - A l k o x y - 2 ( 1 H ) -

pyridinethiones (5.1) and 2-(alkylsulfanyl)pyridine N-oxides (5.2)

N

S

O− +NEt4

RX
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0˚C
+
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+
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N-alkoxy-2(1H)-pyridinethiones (5.1) were prepared with minor alterations to an

established method.7  The following procedure was carried out under minimal lighting

due to photolability of the products.  A flame-dried, round-bottomed flask equipped with

a stirrer bar was charged with tetraethylammonium 2(1H)-pyridinethione N-oxide (5.1i)

and 25 mL of dry DMF per gram of 5.1i.  After placing the contents under a nitrogen

atmosphere, the solution was cooled to 0˚C and one molar equivalent of the alkylating

agent was added over 15 minutes, sometimes in DMF if the alkylating agent viscosity

was problematic.  Occasionally the temperature was raised to ca. 25˚C to drive the

reaction to completion in reasonable time.

After approximately 1 hour, the solvent was removed under reduced pressure

(0.001 mmHg, 40˚C) and the residue was treated with 10 mL of 0.1 M aqueous NaOH

and 15 mL of diethyl ether per gram of 5.1i used.  Any insoluble matter was removed by

filtration as the two-phase mixture was transferred to a separatory funnel.  The aqueous

phase was repeatedly extracted until no further yellow colour was observed in the ether

layer.  The combined extracts were washed successively with saturated aqueous solutions

of NaHCO3 and NaCl.  After drying (MgSO4), the ether was evaporated to give the crude

product, which was purified by flash chromatography, yielding the pure product upon
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drying (0.001 mmHg, 20˚C, 24 hr).

Due to the ambident nucleophilicity of the 2(1H)-pyridinethione N-oxide anion,7 a

considerable proportion of the corresponding 2-(alkylsulfanyl)pyridine N-oxide (5.2)

was formed as a by-product during the synthesis of 5.1.  The N-oxide was sometimes

isolated and characterised, making its independent synthesis unnecessary.  Following

extraction with diethyl ether, the alkaline aqueous phase was extracted further with 10 mL

of chloroform per gram of 5.1i.  After washing the organic phase with water and drying

over MgSO4, the solvent was evaporated to yield the crude N-oxide (2) which was

recrystallized from benzene/hexane.

N -Benzyloxy-2(1H )-pyridinethione [122333-43-1]

N

S

O

5.1a

1
64

3
2

5

The reaction of benzyl mesylate (8.58 g, 46.1 mmol), and tetraethylammonium

2(1H)-pyridinethione N-oxide 5.1i (11.81 g, 46.1 mmol), in 85 mL of DMF at 0˚C for

1 hr afforded 5.1a (2.20 g, 10.1 mmol, 22%), after flash chromatography (thrice) with

ether as the eluent.  The mp of the yellow needles, obtained by recrystallisation from

EtOH/water was 89-90˚C (lit.7 74-77˚C).
1H nmr: 5.50 (s, 2H, CH2), 6.43 (ddd, 1H, H5), 7.12 (ddd, 1H, H4), 7.39 (m, 4H, H6

& m+p-Ar), 7.48 (m, 2H, o-Ar), 7.68 (dd, 1H, H3).  Matched that reported.7

13C nmr: 77.1 (CH2), 112.5 (5), 128.6 (m-Ar × 2*), 129.4 (p-Ar), 130.0 (o-Ar × 2*),

132.8 (i-Ar), 132.9 (4), 137.6 (3†), 138.6 (6†), 175.3 (C=S).

ir (CCl4): 3070 w, 3037 w, 2938 w, 1610 m, 1528 s, 1447 s, 1409 s, 1278 m, 1175 m,

1130 s, 700 m.

2-(Benzylsulfanyl)pyridine N -oxide [3915-60-4]

N
S

O

5.2a

1

2

34
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Sodium hydride (0.185 g, 7.72 mmol) in 13 mL of dry THF under nitrogen was

treated with 906 µL of benzylthiol (7.72 mmol) dropwise over 15 min.  The resulting

suspension was treated with  2-chloropyridine N-oxide95 (1.00 g, 7.72 mmol) in 2.5 mL
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of dry THF.  After heating at reflux for 10 minutes, the brown suspension was cooled,

treated with 15 mL of 1M NaOH and extracted with 50 mL of chloroform.  The organic

phase was washed with 10 mL of water and dried over Na2SO4.  Removal of solvent

yielded the crude product (1.51 g, 90%).  Recrystallisation from benzene afforded pure

5.2a (0.90 g, 54%) as white needles.
1H nmr: 4.17 (s, 2H, CH2), 7.04 (ddd, 1H, H5), 7.16 (m, 2H, H3+H4), 7.35 (m, 3H,

m+p-Ar), 7.45 (dd, 2H, o-Ar), 8.26 (dd, 1H, H6).  Matched that reported.7

13C nmr: 35.0 (CH2), 120.7 (5), 122.0 (3), 125.9 (4), 127.9 (p-Ar), 128.87 (m-Ar*),

128.92 (o-Ar*), 134.9 (i-Ar), 138.8 (6), 152.2 (2).

ftir (KBr): 3066 m, 1645 w, 1590 w, 1473 s, 1455 m, 1443 m, 1426 s, 1278 m, 1249 s,

1221 s, 1152 s, 1090 s, 747 s, 716 s, 705 s, 691 s

(±)-N -(1-Phenylethoxy)-2(1H )-pyridinethione [182194-97-4]

N
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O

CH3
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5.1d

(±)-1-Phenylethyl mesylate was prepared from (±)-1-phenethyl alcohol and mesyl

chloride/Et3N in CH2Cl2, as previously reported,99 in a yield of 94%.  The mesylate has

been described as "a highly reactive liquid which decomposes violently at room

temperature".99  Violent decomposition was not encountered, although the oil was used

immediately due to its lability.

The reaction of 5.1i (1.00 g, 3.90 mmol) and (±)-1-phenethyl mesylate (0.78 g,

3.9 mmol) in 25 mL of DMF at –10˚C over 75 min gave 5.1d (0.61 g, 2.6 mmol, 68%)

as yellow crystals, mp 70-71.5˚C (lit.11 45˚C), after chromatography with 50% ether in

hexane as eluent.  Characterisation data is in general agreement with that published.11

1H nmr: 1.80 (d, 3H, J = 6.6 Hz, CH3), 6.03 (q, 1H, J = 6.6 Hz, CH), 6.22 (ddd, 1H,

H5), 7.04 (m, 2H, H6 and H4), 7.36 (s, 5H, Ar), 7.67 (dd, 1H, H3).
13C nmr: 18.9 (CH3), 82.7 (OCH), 112.0 (5), 128.3 (m-Ar × 2*), 129.0 (o-Ar × 2*),

129.6 (p-Ar), 133.1 (4), 137.8 (3), 138.2 (i-Ar), 139.6 (6), 175.9 (C=S).

ir (CCl4): 3068 w, 3036 w, 2985 w, 2938 w, 1610 m, 1524 s, 1471 w, 1449 s, 1410 s,

1276 m, 1177 m, 1132 s, 1090 m, 1054 m, 700 s.

EIMS: 231 (1) M+•, 220 (9), 214 (2), 182 (3), 156 (7), 127 (29), 111 (67), 105 (100),

79 (35), 78 (28), 77 (40), 67 (19), 51 (27).

HRMS: C13H13NOS requires 231.0718.  Found 231.0717

C13H12NS requires 214.0690. Found 214.0692
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C5H5NS requires 111.0143. Found 111.0144.

Found: C, 67.27; H, 5.89; N, 6.16%.  C13H13NOS requires: C, 67.50; H, 5.66; N,

6.06%.

(±)-2-(1-Phenylethylsufanyl)pyridine N -oxide [60263-93-6]

N

S

O CH3

1

2
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6

5

5.2d

An established method7 was adapted to prepare 5.2d.  The reaction of sodium

2(1H)-pyridinethione N-oxide (0.82 g, 5.5 mmol) and (±)-1-phenethyl bromide (0.75

mL, 1.02 g, 5.5 mmol) in 8 mL of DMF at 80˚C for 2 hr yielded a pale yellow solid

following removal of solvent.  Treatment with hexane promoted crystallisation.

Recrystallisation from benzene/hexane (including charcoal decolourisation) afforded a

crop of fine white needles, mp 113-114˚C, (0.52 g, 2.2 mmol, 41%, lit.11 118-119˚C).

The low yield is due partially to spillage during recrystallisation.  Characterisation data is

in agreement with that published.11

1H nmr (200 MHz): 1.73 (d, 3H, J = 7.1 Hz, CH3), 4.52 (q, 1H, J = 7.1 Hz, S-CH),

6.92-7.10 (m, 3H, H5, H4* & p-Ar*), 7.22-7.39 (m, 3H, m-Ar & H3*), 7.48 (dd, 2H,

o-Ar), 8.22 (dd, 1H, H6).
13C nmr: 23.1 (CH3), 43.8 (S-CH), 120.8 (5), 123.3 (3), 125.8 (4), 127.1 (o-Ar × 2),

127.8 (p-Ar), 129.0 (m-Ar × 2), 138.9 (6), 142.1 (i-Ar), 151.6 (2).

ir (mull): 1589 m, 1555 m, 1492 s, 1449 s, 1427 s, 1277 m, 1251 s, 1239 s, 1220 s,

1144 m, 838 s, 765 m, 741 s, 703 s.

EIMS: 231 (8) M+•, 216 (5), 215 (10), 214 (35), 127 (45), 112 (20), 111 (28), 105

(100), 79 (20), 78 (18), 77 (18).

Found: C, 67.60; H, 5.80; N, 6.10%. C13H13NOS requires: C, 67.50; H, 5.66; N,

6.06%.
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S  (-)-N-(1-Phenylethoxy)-2(1H )-pyridinethione

N

S

O

CH3

1

2
3

4 6

5
5.1d(–)

R (+)-1-Phenylethyl mesylate was prepared from (Alfa) R (+)-1-phenethyl alcohol

and mesyl chloride/Et3N in CH2Cl2 in 98% yield.  It was used immediately due to its

labile nature.

The reaction between 5.1i (1.03 g, 4.02 mmol) and R (+)-1-phenethyl mesylate

(0.80 g, 4.0 mmol) in 25 mL of DMF at –10˚C for 2 hours, afforded a viscous yellow oil

after solvent removal.  The residue was taken up in 25mL of CH2Cl2 and washed with 20

mL of water.  The solvent was evaporated and the residue was subject to flash

chromatography on silica using 50% ether in hexane as the eluent.  A yellow, crystalline

solid (0.6889 g, 2.98 mmol, 74%) was obtained, mp 61-66˚C.  A portion was

recrystallized from EtOH/water to give a yellow, microcrystalline mass, mp 58-64˚C,
[α]20.5

D
= –1047±13˚  (c = 0.005, CHCl3) which corresponds to 95.30±0.31% e.e.

1H nmr: 1.80 (d, 3H, J = 6.6 Hz, CH3), 6.03 (q, 1H, J = 6.6 Hz, CH), 6.22 (ddd, 1H,

H5), 7.04 (m, 2H, H6 and H4), 7.36 (s, 5H, Ar), 7.67 (dd, 1H, H3).  This was

identical to the spectrum for 5.1d(±).

EIMS: 231 (1) M+•, 220 (3), 215 (6), 214 (3), 182 (2), 156 (3), 127 (27), 111 (58), 105

(100), 79 (29), 78 (24), 77 (30), 67 (18), 51 (21).

Found: C, 66.89; H, 6.07; N, 5.90%. C13H13NOS requires: C, 67.50; H, 5.66; N,

6.06%.

Determination of the enantiomeric composition of S  (–)-N - (1 -

phenylethoxy)-2(1H )-pyridinethione, 5.1d(–)

The pyridinethione (14.80 mg, 0.064 mmol, specific rotation = –1047˚), was

dissolved in 500 µL of benzene in an ampoule.  The solution was degassed by three

freeze-pump-thaw cycles, flame sealed under vacuum and irradiated at 20˚C with a

tungsten lamp for 30 min so as to promote the formation of S (–)-1-phenylethanol.  The

solvent was removed and the residue was transferred to a 1 mL Reactivial (Pierce),

dissolved in 312 µL of CH2Cl2, and treated with isopropyl isocyanate (160 µL, 1.63

mmol) .  The vial was capped securely and heated at 100˚C for 20 min so that the

enantiomeric 1-phenylethanols (formed during the irradiation step) were converted to their

respective isopropyl urethanes.  All volatiles were removed under vacuum and the residue

was taken up in CH2Cl2 in readiness for GC analysis.  The enantiomeric composition of
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the mixture of urethanes was determined to be 97.7±0.16% S , equating to an

enantiomeric excess of 95.3±0.3%.  The specific rotation of a single enantiomer of the S-

pyridinethione is hence calculated to be –1098±16˚ at 21˚C in CHCl3.

Table 5.9. Proportions of R and S isopropyl urethanes derived from the sample of

predominantly S N-(1-phenylethoxy)-2(1H)-pyridinethione.  Ratios were determined by

GC using a capillary column with the stationary phase Chirasil-Val.

GC run number % S % R % e.e.

1 97.56 2.44 95.12

2 97.66 2.34 95.32

3 97.75 2.25 95.50

4 97.63 2.37 95.26

5 97.54 2.46 95.08

6 97.42 2.58 94.84

7 97.89 2.11 95.78

8 97.56 2.44 95.12

9 97.86 2.14 95.72

average 97.65±0.16% 2.35±0.16% 95.30±0.31%

2-Chloropyridine N -oxide [2402-95-1]

N

O

Cl

This compound was prepared on a 200 mmol scale by an established procedure.95

Oxidation of 2-chloropyridine was achieved with 2 equivalents of aqueous hydrogen

peroxide in acetic acid at 80˚C for 6 hours.  After removal of solvent under reduced

pressure and digestion with K2CO3 at 80˚C for 5 min, solids were filtered off and

washed with chloroform.  Removal of solvent from the filtrate gave the crude product

which was recrystallized from ethyl acetate/hexane to yield the pure product in 55% yield

(lit.95 77%).
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2-Benzyloxypyridine N -oxide [2683-67-6]

N

O

O
Ph1

2
34

6

5

5.22a

Sodium hydride (0.72 g, 30.0 mmol) in 44 mL of dry THF was treated with

benzyl alcohol (3.10 mL, 30.0 mmol) then heated at reflux for 1 hour after hydrogen

evolution has ceased.  After cooling, 2-chloropyridine N-oxide (3.89 g, 30.0 mmol) in

10 mL of dry THF was added and refluxing was recommenced for 20 min.  The now

white suspension (NaCl) was cooled in ice and treated with 10 mL of water (which

dissolved all of the white precipitate) and extracted with 100 mL of CHCl3.  This organic

extract was washed with 20 mL of water, 25 mL of saturated aqueous NaCl, dried over

Na2SO4, then evaporated to give the crude product as an off-white solid (5.80 g).

Recrystallisation of the crude product from ethyl acetate/hexane gave the pure product

(3.81 g, 18.9 mmol, 63%)  as a crop of white crystals, mp 106.5-107.5˚C (lit.53 107˚C).
1H nmr: 5.46 (s, 2H, O-CH2), 6.89-6.95 (m, 2H, H3+H5), 7.19 (ddd, 1H, H4), 7.34-

7.49 (m, 5H, Ar), 8.29 (dd, 1H, H6).  This spectrum was in accord with that

published.118

R  (+)-1-Phenylethanethiol [33877-16-6]

HS

CH3

5.40

This compound was prepared by a slightly modified method of Isola and

coworkers.101  Sodium (4.00 g, 0.175 mol) was added gradually to a solution of (–)-

menthol (25.00 g, 0.160 mol) in 25 mL of dry toluene to form the alkoxide.  After

heating at reflux overnight, the mixture was cooled and the remaining sodium was

removed with tweezers.  Dry diethyl ether (33 mL) was added, followed by the dropwise

addition of carbon disulphide (18.0 mL, 0.298 mol) to give a clear yellow solution of (–)-

sodium O-menthyl dithiocarbonate.  After stirring for 15 min, (±)-1-phenethyl bromide

(24.5 g, 0.132 mol) was added over 15 min to form the mixture of diastereomers of (–)-

O-menthyl RS-1-phenethyl dithiocarbonate.130  The mixture was stirred and heated

briefly at reflux which caused a thick precipitate to form.  After cooling, the mixture was

washed with 40 mL of water and the aqueous phase was back-extracted with 50 mL of
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toluene.  The combined organic extracts were dried over Na2SO4 and evaporated to give a

yellow/orange oil (45.02 g, 0.1338 mol, 84%).

A diastereomeric separation was effected by dissolving the oil in 100 mL of

ethanol, cooling to 0˚C, promoting crystallisation by scratching the wall of the vessel

with a glass rod, then leaving the mixture at room temperature for 45 min.  The white

crystals which formed were filtered off and washed with a small quantity of cold ethanol

and dried under vacuum to yield (–)-O-menthyl S-1-phenethyl dithiocarbonate (14.38 g,

42.7 mmol, 53%), mp 72-73˚C.  Recrystallisation was repeated from 83 mL of ethanol,

leaving the solution at room temperature overnight.  A yield of 12.33 g (46%) was
recovered, mp 74-75˚C (lit. 63%, mp 76-77˚C) [α]25

D
= +146.4±1.8˚ (c  = 0.05,

benzene, lit.101 +148.8˚, c = 2.40).

The treatment of (–)-O-menthyl S-1-phenethyl dithiocarbonate (4.00 g, 11.9

mmol) in 25 mL benzene at reflux with morpholine (7.90 g, 90.7 mmol), formed the

intensely malodorous R (+)-1-phenylethylthiol (5.40).  The reaction mixture was

washed with 2 × 15 mL water, dried over Na2SO4 and the solvent was removed on the

rotary evaporator (RT, 25 mmHg) to give a slightly yellow oil.  The thiol was purified by

flash chromatography (10% ether in hexane, Rf = 0.79) to give 5.40 as a colourless oil

(1.41 g, 10.2 mmol, 86%, lit.101 48%).  Further purification with distillation by
kugelrohr (95˚C, 21 mmHg) afforded the pure thiol,  [α]25

D
= +91.9±1.0˚ (c = 0.13, abs.

ethanol, lit.101 [α]25
D

= +91.7, c = 6.17).
1H nmr: 1.67 (d, 3H, J = 7.0 Hz, CH3), 1.99 (d, 1H, J = 5.2 Hz, SH), 4.23 (qd, 1H,

CH), 7.21-7.39 (m, 5H, Ar).  This was identical to a spectrum of authentic (Aldrich) (±)-

1-phenethylthiol.

R  (+)-2-(1-Phenylethylsulfanyl)pyridine N -oxide

N

S

O CH3

1

2
34

6

5

5.2d(+)

Sodium hydride, washed free of storage oil with pentane (89.6 mg, dry, 3.73

mmol), was added gradually to a stirred solution of R (+)-1-phenethyl thiol (0.504 mL,

0.516 g, 3.73 mmol) in 8 mL of dry THF under a nitrogen blanket.  A thick, white

precipitate was present once hydrogen evolution had ceased.  A solution of 2-

chloropyridine N-oxide (483.6 mg, 3.73 mmol) in 1.5 mL of dry THF was added over 1

min, which caused the precipitate to dissolve.  The mixture was stirred overnight then

treated cautiously with 10 mL of water and extracted with 50 mL of CHCl3.  The extract
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was dried and evaporated, yielding an oil (0.86 g, 3.7 mmol, 100%) which crystallized

on standing.  Recrystallisation from benzene/hexane yielded 5.2d(+) (0.58 g, 2.5
mmol, 67%) as colourless prisms, mp 107.0-107.5˚C, [α]22.4

D
= 130±1˚ (c = 0.005,

CHCl3).  An nmr experiment to estimate the enantiomeric composition of 5.2d(+) (24.2

mg, 0.105 mmol) using the lanthanide shift reagent europium (III) tris(3-

(trifluoromethylhydroxymethylene)camphorate (Eu(tfc)3, 9.66 mg, 10.8 µmol, 10.3

mol%) in  0.55 mL of CDCl3 could detect only one enantiomer, indicating an e.e. of ≥

98%.  Relevant characterisation data is in accord with that published for the racemate.11

1H nmr: 1.74 (d, 3H, J = 7.1 Hz, CH3), 4.52 (q, 1H, J = 7.1 Hz, S-CH), 6.98 (ddd,

1H, H5), 7.02-7.10 (m, 2H, H3 & H4*), 7.22-7.30 (m, 1H, p-Ar*), 7.34 (ddd, 2H, m-

Ar), 7.49 (dd, 2H, o-Ar), 8.22 (dd, 1H, H6).
13C nmr: 23.0 (CH3), 43.6 (S-CH), 120.6 (5), 123.1 (3), 125.6 (4), 127.0 (o-Ar × 2),

127.7 (p-Ar), 128.9 (m-Ar × 2), 138.7 (6), 142.0 (i-Ar), 151.3 (2).

EIMS: 231 (3) M+•, 214 (14), 127 (36), 112 (21), 111(25), 105 (100), 79 (30), 78 (22),

77 (25), 67 (7), 51 (15).

Found: C, 67.47; H, 5.70; N, 6.00%. C13H13NOS requires: C, 67.50; H, 5.66; N,

6.06%.

p-Toluenesulfinyl Chloride, p-Me(C6H 4)SOCl [10439-23-3]

The method of Kurzer121 was used to prepare p-toluenesulfinyl chloride on a 20

mmol scale in 78% yield (lit.121 86-92%) from the reaction between sodium p-

toluenesulfinate dihydrate and thionyl chloride (7.5 eq).  Excess SOCl2 was removed

under reduced pressure.  The gold-coloured oil was used without further purification.

S  (–)-1-Phenylethyl Toluene-4-sulfonate [188015-94-3]

TosO

CH3

5.35

The method of Wilt and coworkers,122 was used to prepare S (–)-1-phenylethyl

toluene-4-sulfinate by the reaction at 0˚C of (Alfa) S (–)-1-phenethyl alcohol (0.500 g,

4.09 mmol) with p-toluenesulfinyl chloride (0.72 g, 4.1 mmol) and pyridine (0.331 mL,

4.09 mmol) in 8.5 mL of dry diethyl ether.  After filtering off the pyridinium

hydrochloride, the filtrate was washed with 10 mL each of 2M HCl, water, 5%

NaHCO3, water and dried over MgSO4.  Removal of solvent yielded a colourless oil
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(0.60 g, 2.3 mmol, 56%, lit.122 73%) which 1H nmr showed to be a mixture of

diastereomers due to chirality at sulfur.

Oxidation to the tosylate was achieved by the treatment of S (–)-1-phenylethyl

toluene-4-sulfinate (0.60 g, 2.3 mmol) with m-CPBA (0.56 g, 3.2 mmol) in CH2Cl2 at

0˚C, using the procedure of Coates and Chen.97  After 6 hours the mixture was washed

with 10 mL each of 5% K2CO3 and water, dried over MgSO4, then evaporated to yield

35 (0.59 g, 2.1 mmol, 93%) as a white solid which began to darken in colour at room

temperature.  Storage in a –70˚C freezer halted further decomposition.

R  (+)-N -(1-Phenylethoxy)-2(1H )-pyridinethione

N

S

O

5.1d(+)

CH3

1

64

3
2

5

The reaction of S (–)-1-phenylethyl toluene-4-sulfonate (5.35, 0.59 g, 2.1 mmol)

and tetraethylammonium 2(1H)-pyridinethione N-oxide (5.1i, 0.54 g, 2.1 mmol) in 5

mL of DMF at 0˚C for 1 hr afforded a yellow oil (0.35 g) after workup.  Purification by

flash chromatography (50% ether in hexane) gave the desired product as a yellow oil,

which crystallized when treated with hexane.  The yellow crystals (140 mg, 0.605 mmol,
28%) had mp 66-68˚C and [α]21

D
= +771±9˚ (c = 0.010, CH2Cl2), which corresponds to

an e.e of 70.2±1.8%.

This compound had 1H and 13C nmr spectra identical with that of (±)-N -(1-

phenylethoxy)-2(1H)-pyridinethione (5.1d).

R  (+)-1-(Bromoethyl)benzene [1459-14-6]

Br

CH3

5.38

A modified literature procedure100 was used to prepare the desired bromide. The

reaction at –24 to +5˚C between (Alfa) S (–)-1-phenethyl alcohol (0.500 g, 4.09 mmol),

phosphorus tribromide (0.442 mL, 4.63 mmol) and pyridine (0.757 mL, 9.34 mmol) in

6.5 mL of diethyl ether was stirred for 2 days.  Excess PBr3 was destroyed with ice

water then the ether layer was separated and washed successively with 5 mL each of ice
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water, 85% orthophosphoric acid, saturated NaHCO3, 2 × ice water, then dried over

MgSO4.  Removal of solvent under reduced pressure yielded 5.38 as a colourless oil
(0.34 g, 45%, lit.100 73% distilled), [α]21

D
= +69.2±0.7˚  (c = 0.005, CHCl3, lit.100

+160.8˚ corresponds to 94% optical purity).  The material prepared hence has an

enantiomeric excess of 40.4±0.4%.  This compound is reported to racemise on standing,

with a half-life of 125 days at 27˚C, catalysed by impurities.123  It was stored at –18˚C

and used within a short time.

S (–)-2(1-Phenylethylsulfanyl)pyridine N-oxide

N
S

O

5.2d(–)

CH3

1

2

34

6

5

A mixture of sodium 2(1H)-pyridinethione N-oxide (0.28 g, 1.88 mmol) and R

(+)-1-phenethyl bromide (40.4±0.4% e.e., 0.34 g, 1.84 mmol) in 3 mL of dry DMF was

stirred under nitrogen at 80˚C for 2 hr.  The mixture was cooled and the solvent was

evaporated, yielding a cloudy oil which was treated twice with 7.5 mL portions of CHCl3
and filtered each time to remove NaBr.  A clear yellow oil remained upon removal of

solvent from the filtrate.  The yellow colour was removed by treating thrice with 7.5 mL

volumes of pentane, decanting the solvent each time.  The remaining solid was

crystallized from benzene/hexane to yield a crop of white crystals (0.22 g, 0.95 mmol,

52%), mp 113-114˚C (5.2d(±) mp 113-114˚C).
The product was recrystallized from benzene.  The precipitate had [α]25

D
= –22.0˚

(c = 0.006, CHCl3, 16.9% e.e.) and the evaporated filtrate [α]25
D

= –112˚ (c = 0.006,

CHCl3, 86.2% e.e.).  The optical purity of the precipitate was found to decrease on

repeated recrystallisation, indicating that precipitation of the racemate was favoured over

the optically pure enantiomer.  The optical purity of the N-oxide in the filtrate was

observed to correspondingly increase.  Spectroscopic characterisation data is in accord

with that published for the racemate.11

1H nmr: 1.74 (d, 3H, J = 7.1 Hz, CH3), 4.52 (q, 1H, J = 7.1 Hz, S-CH), 6.98 (ddd,

1H, H5), 7.02-7.10 (m, 2H, H3 & H4*), 7.22-7.30 (m, 1H, p-Ar*), 7.34 (ddd, 2H, m-

Ar), 7.49 (dd, 2H, o-Ar), 8.22 (dd, 1H, H6).  This spectrum matched those for both

5.2d and 5.2d(+).

EIMS: 231 (3) M+•, 214 (14), 127 (36), 112 (21), 111(25), 105 (100), 79 (30), 78 (22),

77 (25), 67 (7), 51 (15).
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N -Propoxy-2(1H )-pyridinethione [122333-41-9]

N

S

O

5.1f

1

64

3
2

5

Propyl mesylate (2.27 g, 16.4 mmol) was prepared in 99% yield from the reaction

at 0˚C between propanol (1.00 g, 16.6 mmol), methanesulfonyl chloride (2.10 g, 18.3

mmol) and Et3N (3.47 mL, 24.9 mmol) in 10 mL of CH2Cl2.

The reaction of propyl mesylate (2.27 g, 16.4 mmol) and tetraethylammonium

2(1H)-pyridinethione N-oxide (5.1i, 4.20 g, 16.4 mmol) in 20 mL of DMF at 0˚C for 1

hr afforded a yellow oil after workup.  Purification by repeated flash chromatography

(30% hexane in diethyl ether) gave 5.1f as a yellow oil (0.61 g, 3.6 mmol, 22%).  The
1H nmr spectrum is in agreement with that published.7

1H nmr: 1.08 (t, 3H, 3J = 7.5 Hz, CH3), 1.86 (m, 2H, CH3-CH2), 4.40 (t, 2H, 3J =

6.7 Hz, OCH2), 6.67 (ddd, 1H, H5), 7.19 (ddd, 1H, H4), 7.67 (dd, 1H, H3), 7.82

(dd, 1H, H6).
13C nmr: 9.8 (CH3), 20.6 (CH3-CH2), 77.9 (CH2O), 113.5 (5), 133.2 (4) 137.8 (3*),

138.2 (6*), 175.5 (2).

N-Cyclohexylmethoxy-2(1H)-pyridinethione

N

S

O

5.1g

1

64

3
2

5

1'

2'

4'

3'

Cyclohexylmethyl mesylate was prepared in 97% yield on a 26 mmol scale, from

the reaction of cyclohexylmethanol124 and mesyl chloride/Et3N in CH2Cl2 at 0˚C.

The reaction between 5.1i (6.52 g, 25.4 mmol) and cyclohexylmethyl mesylate

(4.89 g, 25.4 mmol) in 110 mL of dry DMF at 0˚C for 1 hr afforded a yellow, viscous

oil upon removal of solvent.  This residue was taken up in 65 mL of 0.1 M aqueous

NaOH and extracted with 2 × 20 mL of diethyl ether.  The ether extracts were combined

and washed successively with 20 mL portions of 5% aqueous NaHCO3 and saturated

NaCl, which caused the precipitation of a white, crystalline solid (N-oxide 5.2g) in the

organic phase.  After drying with MgSO4 the mixture was filtered.  The filter cake was

added to 50 mL of CHCl3 to redissolve the precipitated 5.2g, then refiltered and

evaporated to yield a white, crystalline solid which was recrystallized from

benzene/hexane to give 2-(cyclohexylmethylsulfanyl)pyridine N-oxide (5.2g, 0.63 g,
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2.8 mmol, 11%), mp 142-143˚C.  Characterisation data are provided below.

The ethereal filtrate from the first filtration was evaporated and the yellow residue

was purified by flash chromatography (Rf = 0.39) using 70% ether in hexane as the

eluent.  The desired product 5.1g was obtained as a crop of yellow crystals (1.24 g,

5.55 mmol, 22%), mp 63-66.5˚C.  A small amount was recrystallized from EtOH/water

to prepare an analytical sample.  These yellow needles had mp 70-71˚C.

Nmr resonances were assigned using homo- and heteronuclear 2D nmr experiments

(Appendix C).

Characterisation data for N-cyclohexylmethoxy-2(1H)-pyridinethione (5.1g).
1H nmr: 1.13 (m, 2H, H2'a × 2), 1.20-1.40 (m, 3H, H3'a × 2 & H4'a), 1.65-1.82 (m,

3H, H3'e × 2 & H4'e), 1.81-2.00 (m, 3H, H2'e × 2 & H1'a), 4.24 (d, 2H, J = 6.1 Hz,

OCH2), 6.66 (ddd, 1H, H5), 7.17 (ddd, 1H, H4), 7.68 (dd, 1H, H3), 7.77 (dd, 1H,

H6).
13C nmr: 25.2 (3' × 2), 25.9 (4'), 29.2 (2' × 2), 36.0 (1'), 81.6 (CH2-O), 113.6 (5),

133.1 (4), 137.8 (3*), 138.0 (6*), 175.6 (C=S).

ir (CCl4): 2932 s, asym, 2856 m, 1611 m, 1525 s, 1448 s, asym, 1412 m, 1280 m,

1134 s, 1017 w, 979 m, 715 w.

EIMS: 223 (3) M+•, 127 (29), 111 (24), 96 (19), 83 (34), 81 (26), 67 (49), 55 (100).

Found: C, 64.79; H, 7.82; N, 5.97%. C12H17NOS requires: C, 64.54; H, 7.67; N,

6.27%.

2-(Cyclohexylmethylsulfanyl)pyridine N-oxide

N
S

O

1

2

34

6

5
1'

2' 3'

4'

5.2g

This compound was a by-product from the preparation of 5.1g.  Nmr resonances are

assigned on the basis of 2D homo- and heteronuclear nmr experiments (Appendix C).
1H nmr: 1.10 (m, 2H, H2'a × 2), 1.18-1.35 (m, 3H, H3'a × 2 & H4'a), 1.60-1.82 (m,

4H, H1'a, H4'e & H3'e × 2), 1.97 (dm, 2H, H2'e × 2), 2.78 (d, 2H, J = 6.8 Hz, S-

CH2), 7.05 (ddd, 1H, H5), 7.13 (dd, 1H, H3), 7.27 (ddd, 1H, H4), 8.28 (dd, 1H,

H6).
13C nmr: 25.6 (3' × 2), 25.8 (4'), 32.8 (2' × 2), 36.5 (1'), 37.5 (S-CH2), 120.0 (5),

121.3 (3), 125.9 (4), 138.9 (6), 153.3 (2).

ir (mull): 3100 w, 3073 w, 3030 w, 1589 m, 1545 m, asym, 1284 m, 1263 m, 1252 s,

1221 m, 1147 s, 1094 m, 1049 m, 840 s, 745 s, 702 m.
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EIMS: 223 (2) M+•, 207 (8), 206 (6), 190 (6), 174 (10), 160 (9), 127 (87), 125 (47),

112 (83), 111 (81), 79 (50) 78 (80), 67 (78), 55 (94), 41 (100).

Found: C, 64.64; H, 7.86; N, 6.12%. C12H17NOS requires: C, 64.54; H, 7.67; N,

6.27%.

N-Allyloxy-2(1H )-pyridinethione

N

S

O

5.1b

1
64

3
2

5

Allyl mesylate was prepared on a 40 mmol scale in 98% yield by the reaction of

allyl alcohol with mesyl chloride/Et3N in CH2Cl2.  It was stored at –70˚C due to its

expected lability.
1H nmr: 3.03 (s, 3H, CH3), 4.72 (d, 2H, O-CH2), 5.40 (d, 1H, Htrans), 5.48 (d, 1H,

Hcis), 5.98 (m, 1H, Hgem).

The reaction between 5.1i (14.00 g, 54.6 mmol) and allyl mesylate (7.43 g, 54.6

mmol), in 175 mL of dry DMF at 0˚C for 1.5 hr afforded a viscous, yellow oil, upon

removal of solvent.  This residue was taken up in 140 mL of 0.1 M NaOH and 210 mL

of diethyl ether and the mixture was filtered to remove insoluble products.  Repeated

ethereal extraction of the aqueous phase was continued until no further yellow colour was

present in the organic phase.  Combined extracts were washed with 100 mL saturated

aqueous NaHCO3, 100 mL saturated NaCl, then dried over MgSO4.  The solvent was

removed under vacuum to give a yellow oil.  Purification was achieved by flash

chromatography (Rf = 0.64) using ether as the eluent.  Compound 5.1b was obtained as

a viscous, yellow oil (1.83 g, 10.9 mmol, 20%).
1H nmr: 4.97 (dd, 2H, 3J = 6.7 Hz, 4J not res., O-CH2), 5.42 (m, 1H, 2J = 1.3 Hz, 3J

= 10.2 Hz, Htrans), 5.45 (m, 1H, 2J not res., 3J = 17.2 Hz, 4J = 0.7 Hz, Hcis), 6.11

(m, 1H, 3J = 6.7, 10.2, 17.2 Hz, Hgem), 6.66 (ddd, 1H, H5), 7.21 (ddd, 1H, H4),

7.65 (dd, 1H, H3), 7.80 (dd, 1H, H6).
13C nmr: 76.2 (O-CH2), 112.9 (5), 123.4 (H2C=CH), 129.8 (CH=CH2), 133.2 (4),

137.5 (3*), 138.9 (6*), 175 3 (2).

EIMS: 167 (9) M+•, 150 (33), 136 (27), 127 (4), 120 (13), 111 (79), 110 (11), 109 (11),

83 (15), 79 (24), 78 (44), 67 (100), 58 (28), 56 (10), 51 (16), 44 (12), 42 (15), 41 (51).

Found: C, 57.22; H, 5.12; N, 8.38%. C8H9NOS requires: C, 57.46; H, 5.42; N,

8.38%.
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2-(Allylsulfanyl)pyridine N-oxide

N

S

O

5.2b

1

2
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The reaction of sodium 2(1H)-pyridinethione N-oxide (1.00 g, 6.71 mmol) and

allyl bromide (0.58 mL, 6.7 mmol) in 10 mL of dry DMF at 80˚C for 2 hr yielded a

yellow, viscous suspension upon removal of solvent.  This was treated twice with 25 mL

portions of CHCl3, filtering each time to remove NaBr.  After removal of solvent from

the filtrate, the resulting oil was treated twice with 30 mL portions of pentane and the

solvent decanted to remove the yellow, O-alkylated product 5.1b.  After decolourising

with charcoal in hot benzene, the crude product was recrystallized from benzene/hexane

to yield a crop of off-white plates (0.90 g, 80%), mp 69-70.5˚C, following drying under

high vacuum overnight.
1H nmr: 3.62 (dd, 2H 4J = 1.2 Hz, 3J = 6.3 Hz, S-CH2), 5.27 (m, 1H, 2J (4J) = 1.2

Hz, 3J = 10.0 Hz, Htrans), 5.41 (m, 1H, 2J = 1.2 Hz, 3J = 17.0 Hz, Hcis), 5.93 (m,

1H, 3J = 10.0, 17.0, 6.3 Hz, Hgem), 7.08 (ddd, 1H, H5), 7.18 (dd, 1H, H3), 7.27

(ddd, 1H, H4), 8.28 (dd, 1H, H6).
13C nmr: 32.9 (S-CH2), 119.3 (CH=CH2), 120.4 (5), 121.8 (3), 125.6 (4), 131.4

(CH2=CH), 139.6 (6) 151.7 (2).

ir (mull): 3105 w, 3065 m, 3057 m, 3035 m, 1640 s, 1583 w, 1549 m, 1414 s, 1402 s,

1270 s, 1252 s, 1239 s, 1225 s, 1205 m, 1145 s, asym, 1089 s, 990 s, 940 w, 923 s,

915 m, 838 s, 763 s, 757 s, 748 w.

EIMS: 167 (2) M+•, 150 (90), 136 (15), 120 (15), 117 (45), 111 (100), 78 (71), 67 (30),

51 (15), 41 (12), 39 (20).

Found: C, 57.33; H, 5.67; N, 8.30%. C8H9NOS requires: C, 57.46; H, 5.42; N,

8.38%.

N -(Allyloxy-1 ,1-d2)-2(1H )-pyridinethione

N

S

O

5.1c

D D
1

64
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Allyl alcohol-1,1-d2 was synthesized according to Faller et al.,113 by the

reduction at –10˚C of acryloyl chloride (1.80 mL, 22.1 mmol) with lithium aluminium

deuteride (1.00 g, 23.8 mmol, Aldrich, 98 atom% d), in diethyl ether (45 mL).  After 5
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hours, the mixture was quenched carefully with 5 mL of 3% NaOH and stirred overnight.

Extraction of the aqueous phase was achieved with 3 × 30 mL of diethyl ether and the

combined extracts were dried over Na2SO4 and evaporated under vacuum at 0˚C to yield

a colourless oil (1.27 g).  Nmr analysis showed the crude product to be impure.

Purification by kugelrohr distillation (50˚C/115 mmHg) gave the desired product (0.64 g,

10.6 mmol, 48%, lit.113 80% undistilled).  Isotopic composition determined from 1H

nmr peak integrals is 98 atom% d.
1H nmr: 1.67 (br, 1H, OH), 4.15 (m, ≈ 0.02 H residual O–CH2 and O–CDH), 5.17 (dd,

1H, Htrans), 5.30 (dd, 1H, Hcis), 5.97-6.17 (m, 1H, Hgem).

Allyl-1,1-d2 mesylate (0.67 g, 4.8 mmol, 68%) was then prepared by the reaction

at 0˚C of the labelled alcohol (0.43 g, 7.2 mmol), mesyl chloride (0.610 mL, 7.88 mmol)

and Et3N (1.50 mL, 10.7 mmol) in 35 mL of CH2Cl2.  An estimated isotopic

composition from 1H nmr peak integrals is 98 atom% d.
1H nmr: 3.03 (s, 3H, CH3), 4.71 (m, ≈ 0.02 H,  residual O–CH2 and O–CDH), 5.40

(d, 1H, 3J = 10.5 Hz, Htrans), 5.48 (d, 1H, 3J = 16.9 Hz, Hcis), 5.97 (dd, 1H, 3J =

10.5, 16.9 Hz, Hgem).

The reaction between 5.1i (2.86 g, 11.2 mmol), and the labelled allyl mesylate

(0.67 g, 4.85 mmol) in 17.5 mL of dry DMF at 0˚C for 2.5 hr afforded a yellow, cloudy

oil upon removal of the solvent.  The residue was treated with 12 mL of aqueous 0.1 M

NaOH and extracted with 5 × 10 mL of diethyl ether until the extracts were no longer

yellow in colour.  Combined extracts were washed with 10 mL of water, dried over

MgSO4 and evaporated to afford a yellow oil (0.21 g).  Purification of this crude product

by vacuum-liquid chromatography (VLC, hexane→ether) gave 5.1c (0.15 g, 0.89

mmol, 8%) as a viscous, yellow oil.
1H nmr: 4.97 (m, ≈0.017H, 3J = 6.7 Hz, 4J not res., O-CH2), 5.43 (dd, 1H, 3J = 10.2

Hz, 2J = 1.4 Hz, Htrans), 5.45 (dd, 1H, 3J = 17.2 Hz, 2J =1.4 Hz, Hcis), 6.10 (dd,

1H, 3J = 17.2, 10.2 Hz, Hgem), 6.62 (ddd, 1H, H5), 7.18 (ddd, 1H, H4), 7.66 (dd,

1H, H3), 7.75 (dd, 1H, H6).
13C nmr: 77.2 (O-CD2), 113.5 (5), 124.4 (CH2=CH), 130.5 (CH2=CH), 133.8 (4),

138.5 (3*), 139.6 (6*), 176.3 (C=S).

EIMS: 169 (4) M+•, 152 (8), 136 (6), 127 (4), 121 (17), 112 (48), 83 (15), 78 (45), 68

(100), 58 (13), 51 (22), 43 (23).
2H nmr (30.7 MHz, CHCl3): 4.97 (s, br, O-CD2).
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N-Cyclopropylmethoxy-2(1H)-pyridinethione

N

S

O
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Cyclopropylmethyl mesylate was prepared by the reaction at 0˚C between

cyclopropanemethanol (3.00 g, 41.6 mmol), methanesulfonyl chloride (3.6 mL, 47

mmol) and Et3N (8.7 mL, 62 mmol) in 200 mL of CH2Cl2.  After the usual work-up,99

the desired mesylate was obtained as a colourless oil (5.64 g, 90%).
1H nmr: 0.40 (m, 2H, Hcis × 2), 0.69 (m, 2H, Htrans × 2), 1.25 (m, 1H, S-CH2),

3.04 (s, 3H, CH3), 4.09 (d, 2H, 3J = 7.6 Hz, O-CH2).
13C nmr: 3.7 (cyclopropyl CH2 ×  2), 10.0 (cyclopropyl CH), 37.7 (CH3), 75.4

(CH2O).

The reaction between 5.1i (9.70 g, 37.8 mmol) and cyclopropylmethyl mesylate

(5.64 g, 37.6 mmol) in 100 mL of dry DMF at 0˚C for 3 hr afforded a cloudy yellow

residue upon removal of solvent.  This was treated with 0.1 M aqueous NaOH and

extracted thrice with 50 mL aliquots of CCl4 to remove 5.1e preferentially.  The same

aqueous solution was then extracted similarly with CHCl3 to obtain the isomeric N-oxide

5.2e .

Evaporation of the solvent from the CCl4 solution yielded crude 5.1e as yellow

oil (3.23 g, 17.8 mmol, 47%) which was purified by flash chromatography, using

diethyl ether as the eluent.  Pure 5.1e was obtained as a clear, yellow oil (1.91 g, 10.5

mmol, 28%).
1H nmr: 0.36 (m, 2H, Hcis × 2), 0.65 (m, 2H, Htrans × 2), 1.59 (m, 1H, OCH2-CH),

4.32 (d, 2H, 3J = 7.4 Hz, OCH2), 6.65 (ddd, 1H, H5), 7.18 (ddd, 1H, H4), 7.64 (dd,

1H, H3), 7.86 (dd, 1H, H6).
13C nmr: 3.3 (cyclopropyl CH2 × 2), 8.5 (cyclopropyl CH), 80.4 (CH2O), 112.8 (5),

132.9 (4) 137.5 (3*), 138.7 (6*), 175.4 (2).

ir (neat): 3085 w, 3010 w, asym, 1710 m, asym, 1608 s, 1527 s, 1448 s, 1418 s, 1277

m, 1227 m, 1176 m, 1132 s, 1089 m, 1026 m, 958 m, 757 m.

EIMS: 220 (6), 181 (17) M+•, 164 (21), 150 (5), 136 (32), 127 (55), 111 (65), 79 (45),

67 (35), 55 (100).

Found: C, 59.49; H, 6.39; N, 7.72; S, 17.67%. C9H11NOS requires: C, 59.64; H,

6.12; N, 7.73; S, 17.69%.
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2-(Cyclopropylmethylsulfanyl)pyridine N-oxide

N
S

O
1

2
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5.2e

Evaporation of solvent from the CHCl3 extract (from preparation of 5.1e) gave

crude 5.2e as a browny-white solid (3.33 g, 18.4 mmol, 49%).  This was purified by

flash chromatography (eluent 5% methanol in CH2Cl2), followed by recrystallisation

from ethyl acetate/hexane to yield 2-(cyclopropylmethylsulfanyl)pyridine N-oxide (5.2e,

1.68 g, 9.27 mmol, 25%) as white prisms, mp 57-58˚C.
1H nmr: 0.37 (m, 2H, Hcis × 2), 0.68 (m, 2H, Htrans × 2), 1.13 (m, 1H, SCH2-CH),

2.87 (d, 2H, 3J = 7.0 Hz, S-CH2), 7.06 (ddd, 1H, H5), 7.18 (dd, 1H, H3), 7.27 (ddd,

1H, H4), 8.25 (dd, 1H, H6).
13C nmr: 5.7 (cyclopropyl CH2 × 2), 8.8 (cyclopropyl CH), 36.0 (S-CH2), 120.0 (5),

121.3 (3), 125.4 (4), 138.4 (6), 152.3 (2).

ftir (KBr): 3084 w, 2994 w, 2922 w, 2851 w, 1466 s, 1443 m, 1405 s, 1268 m, 1249 s,

1216 s, 1196 s, 1132 s, 838 s, 754 s, 705 s, 531 s.

EIMS: 181 (2) M+•, 164 (100), 149 (6), 136 (10), 127 (28), 118 (6), 111 (15), 96 (7),

85 (7), 78 (48), 67 (20), 55 (33).

Found: C, 59.64; H, 6.01; N, 7.46; S, 17.72%. C9H11NOS requires: C, 59.64; H,

6.12; N, 7.73; S, 17.69%.

Procedure to test the catalytic activity of a reagent

Due to the photolability of N-alkoxy-2(1H)-pyridinethiones, the following

manipulations were carried out under minimal lighting.  In an ampoule of 2-3 mL capacity

was placed, nominally, 25 mg (0.115 mmol) of N-benzyloxy-2(1H)-pyridinethione

5.1a.  This was dissolved in 500 µL of the solvent of choice, usually CDCl3.  The

resulting solution was treated with the test reagent (commonly 0.50 mol%), added as a

measured volume of a solution of the reagent in the reaction solvent.

Solutions were degassed with two freeze/pump/thaw cycles, then frozen, pumped

and flame sealed under vacuum.  A deviation from this procedure was taken when air and

oxygen were used as reagents.  In these cases, the solution was either degassed and the

chosen atmosphere was admitted before freezing and flame sealing (air and oxygen), or

the degassing procedure was omitted (air).  Sealed ampoules were wrapped in aluminium

foil and placed into thermostatted oil baths at 80±1˚C  for a measured time, usually 4.00

hours.

When withdrawn from the baths, the ampoules were washed to remove the oil,
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opened and the contents were transferred to an nmr tube.  When the solvents C6D6 and

CD3CN were used, 500 µL of CDCl3 was added to ensure complete solubility of all

components.  Analysis was performed by 1H nmr.  The results are listed in table 5.1.

"Extent of reaction" was calculated by dividing the sum of the relative concentrations of

identifiable products by the total.  "Yield of N-oxide" represents the concentration of

5.2a divided by the sum of the concentrations of all identifiable compounds.

Procedure for conducting kinetics experiments

These experiments were performed in three different groups.  In the first, kinetic

data was measured as a function of the proportion of the catalyst iodine.  The second set

of experiments was concerned with obtaining kinetic data for four different types of

catalyst.  In the third, kinetic data was measured as a function of changing both

pyridinethione and iodine concentrations whilst keeping their ratio the same.

1. Kinetic data as a function of the proportion of iodine present

Into a 3 mL Reactivial, was placed of N-benzyloxy-2(1H)-pyridinethione (5.1a,

nominally 50.0 mg, 0.230 mmol), which was dissolved in 2.00 mL of purified, dry

CHCl3.  The vial was capped with a Mininert valve and the solution was degassed using

three freeze/pump/thaw cycles via a needle through the valve and placed under a dry

nitrogen atmosphere.  Iodine was then injected by microsyringe from a 5.755 × 10-4 M

solution of iodine in CHCl3.  Proportions of 0.500 (20.0 µL), 1.01 (40.0 µL) and 2.00

mol% (80.0 µL) were added, for the three reactions.

The vials were placed in an 80±1˚C thermostatted oil bath and aliquots of 25.0 mL

were withdrawn over time and diluted to 10.00 mL with spectroscopic grade ethanol.

Analysis was performed by UV-vis spectrophotometry, by monitoring with time the

absorbance of the absorption peak with λmax = 361 nm, belonging to the compound N-

benzyloxy-2(1H)-pyridinethione (5.1a).
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Table 5.10. Kinetic data for experiments involving different proportions of iodine:

[5.1a]0 = 0.114 M, [I2]0 = 0.575 mM, 1.15 mM, 2.30 mM

0.50 mol% iodine 1.01 mol% iodine 2.00 mol% iodine

time (s) absorbance time (s) absorbance time (s) absorbance

0 1.687 0 1.654 0 1.631

150 1.709 370 1.591 481 1.498

480 1.648 1745 1.378 1326 1.254

963 1.566 2387 1.273 2266 1.022

1490 1.547 3783 1.081 3136 0.8331

2368 1.479 5770 0.8584 4074 0.6840

3638 1.412 7280 0.7574 5279 0.5266

5290 1.257 10540 0.5653 6456 0.4080

7430 1.104 12752 0.4393 7739 0.3101

9421 1.023 16313 0.3196 9454 0.2167

11366 0.9424 21450 0.1822 10904 0.1649

13867 0.8445 27287 0.1005 13118 0.1102

16550 0.7255

19240 0.6217

2. Kinetic data as a function of the type of catalyst

The four catalysts iodine, ferrocenium hexafluorophosphate, tris(4-

bromophenyl)aminium hexachloroantimonate (5.33) and nickel (III) sarcophagine

perchlorate were used in this set of experiments.  Reactions were performed identically to

the previous set, with the following exceptions:  all catalysts were added in a proportion

of 1.00 mol% and reactions were performed in a 1:1 (v/v) mixture of CHCl3 and

CH3CN, to avoid catalyst solubility problems.

Table 5.11. UV-Vis spectrophotometric data from 4 rearrangement reactions, each with

a different catalyst, where [5.1a]0 = 0.115 M, [catalyst]0 = 1.15 mM

1.00 mol% iodine 1.00 mol% Fc+PF6
–

time (s) absorbance time (s) absorbance

0 1.80 0 1.808

835 1.180 1025 1.166

2108 0.5574 2291 0.5797

3654 0.2126 3852 0.2503

5801 0.0597 5396 0.0887

9196 0.0110 9392 0.0237

13697 0.0026 13772 0.0084
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1.00 mol% (BrC6H4)NSbCl6 (5.33) 1.00 mol% Ni (III) SAR (ClO4)3

time (s) absorbance time (s) absorbance

0 1.711 0 1.826

1235 1.610 1415 0.9902

2480 1.562 2809 0.5706

4081 1.504 4301 0.2820

6196 1.443 6398 0.0986

9607 1.348 9796 0.0216

13966 1.243 14172 0.0058

18846 1.135 19064 0.0042

3. Kinetic data as a function of changes in the concentrations of both iodine and the

pyridinethione, whilst keeping their ratio the same

These reactions were conducted similarly to the last two types, although the

solutions of 5.1a were heated at temperature for 15 minutes prior to introducing the

catalyst.  The chloroform was washed with water, dried over MgSO4 and distilled from

P2O5.

Table 5.12. Kinetic data for reactions in CHCl3 at 81.5±1˚C in which the ratio of

[5.1a]0 to [I2]0 remains the same, but absolute concentrations are varied

[5.1a]0 = 57.4 mM, [I2]0 = 0.294 mM [5.1a]0 = 225 mM, [I2]0 = 1.16 mM

time (s) absorbance time (s) absorbance

0 0.8936 0 1.780

200 0.8788 60 1.668

540 0.8709 365 1.603

1410 0.8472 775 1.506

3240 0.8044 1692 1.325

5520 0.7559 3000 1.115

7650 0.6952 4700 0.8830

10350 0.6500 6600 0.6671

14595 0.5799 12925 0.2865

22575 0.4603 19930 0.1148

70940 0.1326
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Iodine catalysed rearrangement of N - (al ly loxy-1 ,1 -d 2) -2(1H ) -

pyridinethione (5.1c)

Pyridinethione 5.1c (25.3 mg, 0.149 mmol) was placed in an ampoule.  To it

was added  500 µL of CDCl3 and 10.0 µL of a 0.149 M solution of iodine in CDCl3
(1.49 × 10-6 mol, 1.00 mol%).  The solution was degassed in the usual manner, then

flame-sealed under vacuum.  The solution was heated at 80˚C in the dark for 4 hr, then

cooled and examined by 1H nmr.  Approximately half of the original amount of 5.1c

remained.  The solution was then treated with another 1.00 mol% iodine and a little more

CDCl3, degassed and flame-sealed in an identical manner to the first time and heated

under identical conditions for another 4.5 hr, then cooled.  This time, 1H nmr indicated

that about 80% of 5.1c had been consumed.  From the 1H nmr spectrum, the ratio of

products indicated was 5.2c: 94% and 5.2c': 6%.  When normalised to compensate for

the isotopic composition of 5.1c, these values indicate that formally 96% of the

rearrangement occurs via 1,4 rearrangement and 4% in a 3,4 sense.
1H nmr: 3.62 (d, 0.065H S-CH2), 5.27 (dd, 1H, 2J = 1.1 Hz, 3J = 10.3 Hz, Htrans),

5.41 (dd, 1H, 2J = 1.1 Hz, 3J = 17.0 Hz, Hcis), 5.93 (dd, 1H, 3J = 10.3, 17.0 Hz,

Hgem), 7.08 (ddd, 1H, H5), 7.18 (dd, 1H, H3), 7.27 (ddd, 1H, H4), 8.26 (dd, 1H,

H6).
2H nmr (30.7 MHz, CHCl3): 3.62 (s, br, 2D, S-CD2), 5.27 (d, 0.07D, Dtrans), 5.41

(d, 0.07D, Dcis).

Triflic-acid-catalysed rearrangement of N -(allyloxy-1 ,1-d2)-2(1H ) -

pyridinethione (5.1c)
Pyridinethione 5.1c (6.70 mg, 4.01 × 10-5 mol) was dissolved in 500 µL of

CDCl3 in an ampuole and was treated with 5.0 µL of a 0.277 M solution of

trifluoromethanesulfonic acid in CDCl3 (1.39 × 10-6 mol, 3.46 mol%).  After degassing

and sealing in a manner identical to the previous reaction, the solution was heated at

80±1˚C for 19 hours and 42 minutes.  Analysis was performed by 1H nmr, which

revealed that about 60% of the starting material had been consumed.  The relative yield of

products was 5.2c: 96%, 5.2c': 4%.  After normalisation to compensate for the isotopic

composition of 5.1c, these values indicate that formally 98% of the rearrangement occurs

via 1,4 rearrangement and 2% in a 3,4 sense.
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Procedure used to investigate the stereochemistry of the

catalysed rearrangement of enantiomerically enriched N - (1 -

phenylethoxy)-2(1H )-pyridinethiones 5.1d(+) and 5.1d(–)

Reactions with 5.1d(–)

All the reactions, except those performed under an oxygen atmosphere, were

performed in the following manner.  In an ampoule of capacity 2-3 mL was prepared a

0.22 M solution of 5.1d(–) in the solvent of choice.  This was treated with a measured

volume of a solution of a catalyst.  After degassing by freeze/pump/thaw degassing in the

usual manner, the resulting mixture was flame-sealed under vacuum and placed into an

80±1˚C oil bath, in the absence of light for a measured time.

Reactions involving oxygen as a catalyst were done in two ways.  In acetonitrile,

the pyridinethione solution was contained in a Reactivial capped with a Mininert valve and

oxygen gas was bubbled through solution for five min, via a needle.  The valve was then

closed and the reaction heated in the usual manner.  In chloroform, the pyridinethione

solution was contained in an Ace reaction tube (9 mL capacity) which was degassed by

freeze/pump/thawing and sealed after admitting an oxygen atmosphere.

After reactions were complete, separation of the N-oxide product was performed

by flash chromatography over silica, eluting with 5% MeOH in CH2Cl2.  The N-oxide

was purified further by complete sublimation at 0.08 Torr and 100˚C to produce a crop of

white crystals.  The specific optical rotation was then determined at 589 nm in CDCl3
solution at a concentration of about 10 mg/mL and at approximately 21˚C.  Purity was

then checked by 1H nmr and all samples were pure.  Enantiomeric composition was

determined relative to R (+) -2-(1-phenylethylsulfanyl)pyridine N-oxide (5.2d(+)),

which has a specific optical rotation (at 589 nm) of + 130±1˚ in chloroform.

Table 5.13. Specific optical rotation data for the N-oxide product, isolated from the

catalysed rearrangement reactions of 5.1d(–)

Catalyst Quantity (mol%) Solvent Time (hr) Product specific
optical rotation

I2 5.0 CDCl3 4.0 – 65.2±0.9˚

I2 2.00 CDCl3 4.0 – 76.6±0.9˚

I2 1.92 CD3CN 4.0 + 5.4±0.2˚

I2 2.03 CH3CN 4.0 + 5.0±0.2˚

O2 145 CDCl3 24 – 13.8±0.2˚

O2 unknown CH3CN 24 + 48.4±0.7˚

Fc+PF6
– 1.00 CH3CN 4.0 + 22.6±0.4˚

Ni (III) SAR 1.00 CH3CN 4.0 + 32.8±0.4˚
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Rearrangement reactions of 5.1d(+)

1. Pyridinethione 5.1d(+) (48.33 mg, 0.2090 mmol) was dissolved in 1.00 mL

of CDCl3 and treated with 9.30 µL of a 0.116 M solution of iodine in CDCl3  (1.08 × 10-

6 mol, 0.518 mol%).  This solution was degassed and flame sealed under vacuum in the

usual manner, then heated in the dark at 80±1˚ for 4.00 hours.  Analysis by 1H nmr

revealed that only 30% of the starting material had been consumed.  After treatment with a

further 20.0 µL of the iodine solution (total moles = 3.40 × 10-6 mol, 1.63 mol%) and

degassing and resealing, the mixture was heated for a further 11 hours.  Treatment with a

little hexane produced a yellow precipitate to form, then the solvents were removed under

vacuum.  The resulting solid was washed three times with hexane to remove iodine and

any remaining pyridinethione.  Reprecipitation from benzene/hexane gave a white solid of

specific optical rotation (589 nm) of + 53.1±0.8˚.

2. A reaction was performed in the same way as for 5.1d(–), using 2.04 mol%

iodine, and heating at 80˚C for 5.0 hours.  The N-oxide product was isolated by flash

chromatography, followed by sublimation, to give a white solid of specific optical

rotation of + 58.2±0.8˚.

The iodine catalysed rearrangement of N -cyclopropylmethoxy-

2(1H )-pyridinethione (5.1e)

In an Ace brand pressure reaction tube (9 mL capacity) was placed pyridinethione

5.1e (0.40 g, 2.2 mmol) and 8.0 mL of purified CHCl3.  To the resulting solution was

added iodine (33.0 mg, 0.130 mmol, 5.9 mol%) and the mixture was swirled until the

iodine dissolved.  Deoxygenation was accomplished by three freeze/pump/thaw cycles,

then the solution was placed under a dry nitrogen atmosphere.  The vessel was heated at

80±1˚C in a thermostatted oil bath for 5.5 hours under minimal light.  After cooling, the

solvent was removed by rotary evaporation then high vacuum to yield a yellow, viscous

oil  (0.44 g).  Analysis by 1H nmr indicated the following compounds were present in the

molar ratios shown: 2-(cyclopropylmethylsulfanyl)pyridine N-oxide (5.2e, 100); N-

cyclopropylmethoxy-2(1H)-pyridinethione (5.1e, 20); and cyclopropylmethanol (2.7).

There was no detectable resonance in the range 5.0-6.5 ppm, indicating an absence of

alkene functionality.  In addition, no peak was detected in the ranges 1.5-2.5 ppm and

3.5-4.1 ppm, which is where hydrogens of sulfur-substituted cyclobutyl rings normally

resonate.  It can be concluded that the cyclopropylmethyl group does not undergo ring

opening to an alkene to any measurable extent, nor ring expansion to a cyclobutane

compound.
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Investigation of the effect of alkoxy substituent structure upon

migration rate (product yield)

The following procedure was used for each pyridinethione undergoing testing.  A

CDCl3 solution of the pyridinethione was prepared in an ampoule, such that the

concentration of the solute was approximately 50 mg/mL.  This corresponded with

molarities in the range 0.2-0.3 M.  After treating the solution with a measured amount of

a solution of iodine in CDCl3 (usually 0.50 mol%), the mixture was degassed with two

freeze/pump/thaw cycles, then frozen, pumped and flame-sealed under vacuum.  The

ampoule was placed in an 80±1˚C thermostatted oil bath for a measured period

(commonly 4.0 hours) under minimal light.  After cooling, the yield of the N-oxide

product was determined by 1H nmr spectroscopy.  Results of these experiments are listed

in table 5.6.

Attempted detection/interception of intermediates in the

rearrangement of N-benzyloxy-2(1H)-pyridinethione (5.1a)

Effect of a radical scavenger

A 0.230 M solution of N-benzyloxy-2(1H)-pyridinethione in CDCl3, a 0.342 M

solution of the radical scavenger 1,4-benzoquinone in CDCl3 and a 0.140 M solution of

iodine in CDCl3 were prepared.  Three different reactions were conducted, in ampoules,

to determine the effect the scavenger had upon the rate of the iodine-catalysed

rearrangement of the pyridinethione.  The contents of each ampoule were:

a)  500 µL (0.115 mmol) of the pyridinethione solution, 10.0 µL (3.42 × 10-6 mol, 2.97

mol%) of the benzoquinone solution and 4.10 µL (5.74 × 10-7 mol, 0.50 mol%) of the

iodine solution;

b)  500 µL (0.115 mmol) of the pyridinethione solution and 4.10 µL (5.74 × 10-7 mol,

0.50 mol%) of the iodine solution; and

c)  500 µL (0.115 mmol) of the pyridinethione solution and 10.0 µL (3.42 × 10-6 mol,

2.97 mol%) of the benzoquinone solution.

Each solution was degassed and flame-sealed under vacuum in the usual manner,

then heated under minimal light in an 80±1˚C thermostatted oil bath for a total of 2.00

hours.  Yields of the product 2-(benzylsulfanyl)pyridine N-oxide (5.2a) were established

using 1H nmr spectroscopy.  The yields were: a)  72.2%; b)  74.7%; and c) 3.2%.
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Isolation and attempted identification of products resulting from the reaction of N-

benzyloxy-2(1H )-pyridinethione (5.1a) and tris(p -bromophenyl )aminium

hexachloroantimonate (5.33)

The aminium salt 5.33 (0.2991 g, 0.3663 mmol) was added under a nitrogen

blanket to 25 mL of dichloromethane, forming a deep blue solution.  To this was added,

in small portions, N-benzyloxy-2(1H)-pyridinethione 5.1a, which caused a gradual

colour change.  Additions were continued until there was a permanent loss of the blue

colour and a yellow/brown precipitate in a brown solution resulted.  At this stage 0.1025

g (0.4717 mmol, 1.29 eq.) of 5.1a had been added.  Centrifugation settled the solids and

the liquid phase was drawn off.  The remaining precipitate (0.1864 g) was dried under

high vacuum.  If the molecular formula of C12H11NOSSbCl6 is correct, 0.3378 mmol

(92%) was obtained.
1H nmr (CD3OD): 4.63 (s, 2H), 5.82 (s, 2H), 7.30-7.45 (m, 4H), 7.50-7.60 (m, 7H),

7.66 (d, 2H), 8.02 (dt, 1H), 8.28 (d, 1H), 8.43 (t, 1H), 8.48 (d, 1H), 9.49 (d, 1H).

MS (+FAB, 1:1 glycerol:thioglycerol matrix 160-730 amu): 497 (80), 429 (7), 391 (19),

308 (33), 280 (54), 218 (100).

MS (+Electrospray, CH3CN): 343 (100), 308 (3), 253 (43), 233 (70), 218 (6), 186 (7),

142 (8), 132 (9).

Found: C, 27.34; H, 1.70; N, 2.97; Sb, 22.79%. C12H11NOSSbCl6 requires: C, 26.12;

H, 2.01; N, 2.54; Sb, 22.07%.

The liquid phase from centrifugation was evaporated and the components were

separated by flash chromatography.  Eluent polarity was gradually increased in the order

light alkanes, diethyl ether, 50/50 methanol/dichloromethane, then methanol.  By far the

largest component was tris(p-bromophenyl) amine (0.1528 g, 0.3170 mmol, 87%),

identified by comparison of nmr spectra with  those of an authentic sample.  A second

fraction (14.9 mg) was a yellow/brown solid which had a 1H nmr spectrum consisting of

aromatic resonances ranging from 6.6 to 7.9 ppm, but its structure remains unknown.  A

third fraction (32.0 mg) was a yellow solid but no reasonable 1H nmr spectrum could be

obtained in CDCl3 solution.  The mass recovery for the reaction was 0.3861 g (96%).
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6.1 Introduction

This chapter begins with a summary of what the current research has revealed

about the mechanism of the rearrangement of the 2-methyl-2-trifluoroacetoxy-1-heptyl

radical.  The relative magnitude of migrating group effects of the β-trifluoroacetoxyalkyl

radical rearrangement and an analogous ionic process are then discussed.  The

relationship between rearrangement regiochemistry and kinetics is then examined.  Low-

level theoretical calculations are performed in order to discover whether the E/Z

conformational distribution in the ester group is controlled by solvent polarity and can

therefore account for the observed rearrangement regiochemistry.  The dynamics for a

radical ion pair are investigated to determine whether such an intermediate is plausible and

conclusions about the mechanism of the β-trifluoroacetoxyalkyl radical rearrangement are

provided.  Conclusions are drawn about the mechanism of the β-trifluoroacetoxyalkyl

radical rearrangement.

Rearrangements and β-elimination reactions related to the β-acyloxyalkyl radical

rearrangement are briefly discussed.  The mechanism of the rearrangement of N-alkoxy-

2(1H)-pyridinethiones and its relationship to that of the β-acyloxyalkyl radical

rearrangement are discussed.  The chapter concludes with a summary of the mechanism

of the β-trifluoroacetoxyalkyl radical rearrangement and the differences between

pericyclic processes and radical ion pairs.  The chapter concludes with reflections on the

differences between polarized pericyclic processes and radical ion pairs and with

hypotheses as to the chemical physics of reactions which occur over an extremely short

time period.

6.2 The β-trifluoroacetoxyalkyl radical rearrangement

6.2.1 What is known about the rearrangement of the 2-methyl-2-

trifluoroacetoxy-1-heptyl radical?

The rearrangement is definitely radical in nature.  Trifluoroacetoxy group

migration occurs under conditions known to produce carbon-centred radicals and stalled

reactions are restarted by the addition of the radical initiators AIBN or di-tert-butyl
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hyponitrite.  The esr spectra of several β-trifluoroacetoxyalkyl radicals have been

recorded during this research and by other groups.

There is no rearrangement observed until the β-trifluoroacetoxyalkyl radical is

generated.  Experiments in which an oxygen-labelled β-bromotrifluoroacetate is heated in

the presence of a radical initiator but in the absence of the hydrogen atom source

demonstrate that there is no fission of the alkoxy C–O bond until after the bromine atom

is removed.

The rearrangement is intramolecular.  A crossover experiment has demonstrated

that there is no significant amount of exchange of trifluoroacetoxy groups between

radicals or molecules.

Furthermore, free trifluoroacetate ions are not significantly involved in the

rearrangement step.  An experiment designed to trap a possible intermediate—the radical

cation of 2-methyl-1-heptene—with unlabelled trifluoroacetate ion yielded results which

indicated that the extent of trapping does not exceed 3% in the rearranged product.

There is no strong electronic effect which acts to lock the radical into a

conformation favourable for rearrangement.  Esr spectroscopy has established that the

barrier to rotation about the Cα–Cβ bond in β-acyloxyethyl radicals is approximately the

same of that for the propyl radical.

The β-trifluoroacetoxyalkyl radical rearrangement has polar character.  The

rearrangement is promoted by polar solvents, although the solvent effects are only a

fraction of that of comparable ionic reactions.  Trifluoroacetoxy groups have been shown

to migrate more rapidly than acetoxy groups in otherwise identically-structured radicals.

A trifluoroacetoxy group does not appear to migrate cleanly by either 1,2 or 3,2

rearrangement.  Studies with radicals bearing an 17O- and 18O-labelled trifluoroacetoxy

group reveal that the rearrangement proceeds predominantly  with label transposition (3,2

shift), but the degree of 1,2 shift increases with increasing solvent polarity, increasing

temperature and decreasing reducing agent concentration.  The rearrangement has also

been shown to be reversible.
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6.2.2 Migrating group electronic effects

In chapter 2, it was established that the solvent effects upon the rate of the

rearrangement of the 2-methyl-2-trifluoroacetoxy-1-heptyl radical were only a fraction as

large as those observed in the solvolysis of tert-butyl chloride.  A comparison will now

be made between the difference in reactivity of acetoxy and trifluoroacetoxy groups in the

β-acyloxyalkyl radical rearrangement and in solvolysis reactions.

Arrhenius parameters and rate constants at 75˚C for the migration of acetoxy and

trifluoroacetoxy groups in similarly-constituted β-acyloxyalkyl radicals are displayed in

table 6.1.  A trifluoroacetoxy group migrates with a rate constant approximately 560 times

as great as that for an acetoxy group.

CH2

OO

CH3

C

OO

CH3

6.1 6.2

••
CH2

OO

H11C5

CF3

C

OO

CF3

C5H11

6.3 6.4

••

Table 6.1.  Rearrangement of β-acetoxyalkyl and β-trifluoroacetoxyalkyl radicals

Rearrangement Solvent log10(A/s-1) Ea (kJmol-1) kr (s
-1) at 75˚C

6.1→ 6.2a t-butyl benzene 13.9±1.1 75±8 4.5 × 102

6.3→ 6.4b benzene 12.0±0.2 43.7±0.8 2.5 × 105

a: From table 2.1, chapter 2; b: Current research

Table 6.2 contains Arrhenius parameters and calculated rate constants at 75˚C for

the first order hydrolysis of t-butyl acetate1 and t-butyl trifluoroacetate2 in water.

Unfortunately, solvolysis rate data in aromatic hydrocarbon solution could not be found.

By comparison, the ratio of rate constants at 75˚C is about 24000, approximately 44

times that for the radical rearrangements.



 Chapter 6: General Discussion & Conclusions    288

Table 6.2.  Hydrolysis of tertiary esters in water

Ester log10(A/s-1) Ea (kJmol-1) kSN1 (s
-1) at 75˚C

t-butyl acetate 12.3 112.1 3.00 × 10-5

t-butyl trifluoroacetate 16.2 109.0 7.35 × 10-1

The magnitude of the electron-withdrawing effect of the ester group upon the rate

constant is much smaller in the case of the radical rearrangement.  This is consistent with

the absence of free carboxylate ions during the rearrangement.  The source of the rate

effect is reflected primarily in the Ea (enthalpic) term for the radical rearrangements, but

in the log10A (entropic) term for the hydrolysis reactions.  The relative closeness of the

log10A values for the radical rearrangements indicates a similar entropy in the respective

transition states to the rate-limiting step.

6.2.3 Relationship between rearrangement regiochemistry and

kinetics

Table 6.3 illustrates the relationship between the kinetics and regiochemistry for

the rearrangement of the 2-methyl-2-trifluoroacetoxy-1-heptyl radical (6.3) as a function

of solvent polarity.  It is clear that an increase in solvent polarity is accompanied by an

increase in the rearrangement rate constant (kr), and in the degree of 1,2 shift (RE).  The

differences observed in both kr and RE between the reactions in hexane and benzene are

remarkable considering the relatively small increase in solvent polarity.  A sizeable

reduction in the activation energy term (Ea) accompanies the increase in solvent polarity.

In chapter 3 an estimate of the difference in Arrhenius parameters between the

hypothetical concerted, polarized 1,2 (i) and 3,2 (ii) shifts was made from experimental

data.  The 1,2 shift had ∆Ea = +9.5 kJmol-1 and ∆log10(A /s-1)= +1.01 compared with

the respective parameters for the 3,2 shift in benzene solution.  If RE increases, the

proportion of 1,2 shift must increase relative to that for the 3,2 shift.  But no significant

increase in either log10A or Ea accompanies the increase in RE  in polar solvents.

However, recent MO calculations do predict that ∆∆G between the 5-membered transition
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structure ii and the 3-membered structure i decreases in polar solvents.15
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Table 6.3. Solvent effects upon the rearrangement 6.3→6.4.

Solvent ε  at 25˚C

ET(30)

(kcalmol-1)

log10A

(s-1)

Ea

(kJmol-1)

kr  at 75˚C

(s-1)

RE

(%)a

hexane 1.88 31.0 11.8 48.9 2.91 × 104 18.5

benzene 2.27 34.3 12.0 43.7 2.78 × 105 26.4

EtCN 28.86b 43.6 11.9 42.0 3.97 × 105 36.0

a: From table 3.5, Chapter 3.  Average [Bu3SnH] = 6 mM; b: at 20˚C

6.2.4 Is the regiochemistry controlled by the conformation of the

ester group?

From table 3.1 of chapter 3 it can be seen that the migration of acetoxy (entry 4),

benzoyloxy (entries 3 and 6) and butanoyloxy (entry 3) substituents in the rearrangement

of simply-constituted β-acyloxyalkyl radicals proceeds with essentially complete

transposition of ester oxygens (RE = 0%).  However, the present results and other work3

have demonstrated that the rearrangement of β-trifluoroacetoxyalkyl radicals proceeds

with predominant ester oxygen transposition together with a significant proportion of a

formal 1,2 shift.  The question then arose as to whether the increase in RE observed with

the migration of the electronegative trifluoroacetoxy group was caused by the presence of

a significant amount of the E ester conformation and whether the proportion of this

conformation is increased by polar solvents.

It is well accepted that the lowest energy conformation of esters is the Z form,

being lower in energy than the E form by approximately 12 kJmol-1.4
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The most favourable conformation of t-butyl trifluoroacetate in the gas phase was

determined to be Z by low resolution microwave spectroscopy.5  No signals attributable

to the E form were detected and ab initio calculations (STO-3G basis set) revealed that

the E form was 24 kJmol-1 higher in energy.5

The dipole moment of the E conformation of an ester (~3.4 D) is generally

significantly greater than that for the Z conformer (~1.5 D).6  Oki and Nakanishi have

reported that the proportion of the E conformer increases with increasing solvent

polarity.6  This solvent effect is particularly pronounced with t-butyl alkoxy substituents,

where steric compression of the bulky alkyl group against the carbonyl oxygen becomes

more significant.  Even so, the effect is not large.  At 30˚C in DMF/DME (95/5 v/v)

solution, the E isomer of t-butyl formate constitutes only 36% of the mixture of the two

conformers.7

In an effort to determine whether β-trifluoroacetoxyalkyl radicals might favour the

E ester group conformation in polar solution, theoretical dipole moments were calculated

for the E and Z forms of both t-butyl acetate and t-butyl trifluoroacetate.  Low-level semi-

empirical calculations were performed with the AM1, PM3 and AM1-SM2 basis sets,

using the program MacSpartan.  Results are provided in table 6.4.

Table 6.4. Results of molecular orbital calculations

Compound Conformer µ (D) AM1 µ (D) PM3 µ (D) AM1-SM2 µ (D)

(average)

t-butyl acetate E 4.63 4.40 5.95 4.99±0.84

t-butyl acetate Z 1.73 1.79 2.37 1.96±0.35
t-butyl

trifluoroacetate E 4.22 3.68 5.41 4.44±0.89
t-butyl

trifluoroacetate Z 3.35 3.19 4.20 3.58±0.54
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These simple calculations reveal that although the Z conformer of the ester always

has a smaller predicted dipole moment than its E counterpart, the difference in magnitude

of the dipole moment is much greater between the E and Z conformers of t-butyl acetate

than for the corresponding trifluoroacetate.  The effect of solvent stabilisation of the E

trifluoroacetate should therefore be significantly smaller than for the acetate.  There does

not appear to be a large enough proportion of the E conformer in the incipient β-

trifluoroacetoxyalkyl radical to rationalise the increasing proportion of 1,2 shift observed

with increasing solvent polarity.  Therefore, the stabilisation of the E conformation of the

trifluoroacetoxy group does not appear to be the cause of the observed regiochemistry.

This conclusion was also supported by the difference in the calculated heats of formation

for the E and Z conformations of each of the esters.

6.2.5 The predicted dynamics for a radical ion pair intermediate

A preference for the E ester conformation has now been excluded as the cause of

the observed rearrangement regiochemistry for the rearrangement of β -

trifluoroacetoxyalkyl radicals.  Although experimental kinetics and labelling results are

consistent with a rearrangement mechanism which involves the cooperation of concerted

1,2 (i) and 3,2 (ii) shifts, the possibility of the intermediacy of an alkene-radical-

cation/trifluoroacetate-anion pair (iii, R = CF3) cannot be excluded.  The predicted

dynamics of such an ion pair have been investigated in an effort to decide whether such

an intermediate is feasible.

It is envisaged that a radical ion pair, formed by heterolysis of the alkoxy ester C–

O bond, could experience relative rotation between the oppositely-charged fragments

before collapsing to form the rearranged product radical, or to regenerate the initial radical

in which the oxygen label has been scrambled.  The collapse of this pair cannot be rate-

limiting because the rearrangement rate constant increases with increasing solvent polarity

and polar solvents would be expected to stabilise this complex.  This process is depicted

in scheme 6.1, the asterisk representing an oxygen label.  For this process to be feasible,

the half-life for the collapse of the ion pair and the period for a half-rotation of the
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trifluoroacetate ion need to be approximately the same.
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Scheme 6.1

No kinetic data could be found for the collapse of ion pair radicals in solution.

Neither could data be found for the frequency of rotation of carboxylate ions in aprotic

solvents.  However, reasonable approximations could be made using literature data for

model systems.

Laser flash photolysis has been used to determine the second order rate constants

(at room temperature) for the reactions of a series of substituted styrene radical cations

with nucleophiles in trifluoroethanol (ε = 27.68 at 20˚C) and acetonitrile/water mixtures8

and for the reaction of 1,3 diene radical cations with nucleophiles in acetonitrile solution.9

Both of these reactions are very fast, occurring at almost diffusion-controlled rates.

Some model systems are illustrated below with accompanying rate constants at room

temperature.
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To approximate the first order rate constant for the collapse of an intimate radical

ion pair, an effective concentration of trifluoroacetate ion is taken to be the concentration

of neat trifluoroacetic acid (approximately 13 M at room temperature).  So the first order

rate constant for collapse of the radical ion pair is estimated to be in the range 5 × 1010 to

5 × 1011 s-1 at room temperature, corresponding to a radical-ion pair half-life of about 1.4

ps to 14 ps.  It is likely that 2-methyl-1-heptene radical cation is more reactive than the

model systems due to decreased spin and charge delocalisation, yet trifluoroacetate is a

weaker nucleophile than chloride or acetate.  The rate constants will increase at elevated

temperatures, but not by much because such reactions must have a low activation energy

and hence a low temperature dependence.

Rate constants for the conversion of a contact ion pair (CIP) to a solvent-separated

ion pair (SSIP) are of the order of 108–109 s-1 for the 1,2,4,5-tetracyanobenzene (e-

acceptor)/p-xylene (e- donor) system.10  These results are expected to be typical for a

larger range of ion pairs.  The rate constant for the collapse of the radical ion pair in

question is much larger than 109 s-1, so there is little probability that a CIP has time to

form a SSIP during the β-trifluoroacetoxyalkyl radical rearrangement.

The rotational constants have been determined for trifluoroacetic acid (an

asymmetric top) in the gas phase by microwave spectroscopy.11  From these were

calculated the moments of inertia, Ia, Ib, Ic, about the mutually perpendicular axes A, B

an C, using equation 6.1,12a.  B is the rotational constant (in Hz) for a particular axis and

h is the Planck constant.

I  =  
h

B8π 2                                                          (6.1)

The most populated rotational quantum state, J, may be calculated at any

temperature, T, using equation 6.2:12b

Maximum population:  J  =  kT
hB2

  – 1
2

                                  (6.2)
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and the angular velocity ω, in rad s-1, is given by:12c

ω  =  
h J J

I

( )+ 1
2π  

                                                  (6.3)

Hence, the frequency,  υ , in rotations per second is obtained by division by 2π:

υ  =  
h J J

I

( )+ 1
4 2π

                                                 (6.4)

Rotational frequencies were calculated for trifluoroacetic acid in the gas phase, for

the three mutually perpendicular axes, A, B and C and appear in table 6.5.

Table 6.5. Frequencies of rotation of trifluoroacetic acid about its rotational axes

B (MHz) about

rotational axes

A, B and C I  (kgm2)

Most

populous J

at 20˚C

Most

populous J

at 75˚C

υ  at 20˚C

(GHz)

υ  at 75˚C

(GHz)

A = 3865.098 2.171 × 10-45 28 30 220 236

B = 2498.738 3.359 × 10-45 34 38 172 192

C = 2075.188 4.044 × 10-45 39 41 164 172

Due to solvent friction, molecular rotation frequencies are lower in solution than in

the gas phase.  It is possible to approximate the magnitude of this effect from work done

using other, similar-sized molecules, such as aniline.  Effective orientational relaxation

times for aniline in solution have been derived from ultraviolet fluorescence upconversion

measurements.13  By comparison with gas phase data, aniline rotates about 65% as fast

in isopentane and about 15% as fast in acetonitrile, as in the gas phase.

For the current analysis, the solvent effect is assumed to be the same for

trifluoroacetic acid and aniline.  Therefore, the frequency of rotation of trifluoroacetic

acid—and presumably the trifluoroacetate anion—is of the order of 1 × 1011 s-1 in

aliphatic hydrocarbon solvent at rearrangement temperatures.  The corresponding period
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of rotation is about 10 ps, or 5 ps per half rotation.

From these approximations, the rotation period of the trifluoroacetate ion and the

half-life for the collapse of the radical ion pair are predicted to be of approximately the

same duration.  Therefore, it is possible that these processes may effectively compete

with each other, enabling the rearrangement regiochemistry to be affected by subtle

changes in the dynamics of the tight ion pair, in turn governed by temperature and solvent

polarity.  Furthermore, low concentrations of the reducing agent allow radicals more time

on average for intramolecular reactions and therefore a greater proportion of

rearrangement reversibility.  From the similarity of the rotational frequencies about the A,

B and C axes of trifluoroacetic acid, it is assumed that the trifluoroacetate group can also

rotate about these three axes with approximately equal ease in solution in the absence of

directional electrodynamic influences.  Some modes of rotation may favour a 1,2 shift of

oxygen by positioning the initial ether oxygen of the trifluoroacetate group closest to C1

of the alkene radical cation when the radical ion pair collapses.

6.2.6 The mechanism of the rearrangement of  β -

trifluoroacetoxyalkyl radicals

The bulk of the evidence tends to support the theory that the mechanism of the β-

trifluoroacetoxyalkyl radical rearrangement involves a cooperation of reversible, polarized

and concerted 1,2 (i) and 3,2 (ii) shifts (R = CF3).  Experiments with radicals bearing an

oxygen-labelled trifluoroacetoxy group have shown that the migration occurs with 55.5-

82.3% transposition of label, demonstrating that a formal 3,2 shift predominates under all

the conditions investigated in this study.  These labelling experiments also revealed some

scrambling of the oxygen label in the unrearranged product, necessitating that any

concerted rearrangement processes be reversible.

Solvent exerted only a modest effect upon the rearrangement rate constant,

compared with the solvent effects observed in comparable ionic chemistry.  Likewise,

migrating group electronic effects were small in comparison with those observed in

solvolysis reactions.

Attempts to trap the 2-methyl-1-heptene radical cation—a fragment of a
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hypothetical ion pair intermediate—with unlabelled trifluoroacetate ion were largely

unsuccessful, indicating that a dissociated ion pair or a solvent-separated ion pair cannot

be involved.

Plots of lnkr against 1/T showed slight, but consistent, curvature which suggests

that two competing mechanistic paths are in operation.

Others' high-level theoretical ab initio calculations15 indicated that the difference

in energy between transition states for the 1,2 (i) and 3,2 (ii) concerted shifts of a

trifluoroacetoxy group was 12 kJmol-1, which compared favourably with an experimental

value for the difference in activation energies for the two reaction paths of 9.5 kJmol-1 in

benzene.

Evidence in support of the intermediacy of an alkene-radical-

cation/trifluoroacetate-anion pair is weaker than for the concerted shifts theory.

Experimental evidence indicates that log10A for the 1,2 shift is about one unit larger than

that for the 3,2 shift.  However, there is no significant increase in the overall experimental

log10A value as the amount of 1,2 shift increases.

There have been claims that a 1,2 concerted shift is faster than the 3,2 shift

because it is more polarized.3,14,39,41  In contrast are the results of MO calculations

which reveal that the TS for 3,2 shift is actually slightly more polarized than its 1,2

counterpart, for the rearrangement of 1,2 acyloxy-2-methyl-1-propyl radicals.15

Significant proportions of the isomeric alkenes 2-methyl-1-heptene and 2-methyl-

2-heptene were sometimes detected by GC in the reactions between 1-bromo-2-methyl-2-

trifluoroacetoxyheptane and tributyltin hydride or tris(trimethylsilyl)silane, particularly at

low concentrations of the hydrogen atom source.  It is possible that trifluoroacetate ion is

being eliminated from the 2-methyl-2-trifluoroacetoxy-1-heptyl radical (6.3), although

the mechanism for the formation of the alkenes has not been studied in detail.

Simple calculations predict that the half-life of the 2-methyl-1-heptene-radical-

cation/trifluoroacetate-anion pair is of the same order of magnitude as the time taken for a

half-rotation of the trifluoroacetate group, namely a few picoseconds.  The short lifetime

of such an intermediate may explain why an alkene radical cation cannot be trapped with a
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nucleophile.

Esr spectroscopy experiments showed there to be no strong conformational

locking of the β-acyloxyalkyl radicals.  In β-substituted ethyl radicals, electronic effects

were about as strong as steric effects.  This indicates that if there is a significant electronic

interaction between the unpaired spin and either of the ester oxygen atoms, it does not

occur until there is considerable breakage of the alkoxy C–O bond.

6.3 Related radical-mediated rearrangements and β -
eliminations

The rearrangements of β-acyloxyalkyl, β-phosphatoxyalkyl, β-nitroxyalkyl and

β-sulfonatoxyalkyl radicals have recently been reviewed.14  Also covered in the same

review were the fragmentation reactions of β-acyloxyalkyl radicals, their thiocarbonyl

analogues, β-phosphatoxyalkyl and β-sulfatoxyalkyl radicals.  Most of the elimination

reactions are considered to take place by what the authors termed a "radical-ionic"

mechanism, where an alkene radical cation is created by the departure of an anionic β-

substituent.  The authors considered that β-substituted alkyl radicals prone to

rearrangement are intermediate in reactivity between those showing no reactivity and

those undergoing fragmentation.  This leaves the question: at what point does the reaction

path change from apparently polarized and concerted to eliminative?  It is only reasonable

to expect that there is a transitional reaction path consisting of inner-sphere elimination

and subsequent recombination.

Zipse and Bootz could not locate a stationary point on the energy surface

corresponding to a contact radical-cation/anion pair for the rearrangement of either the 2-

methyl-2-acetoxy-1-propyl or 2-methyl-2-trifluoroacetoxy-1-propyl radicals using ab

initio MO calculations.15  There is little evidence for carboxylate elimination from

radicals of this type.

Zipse and coworkers have identified stationary points corresponding to contact

radical ion pairs in an ab initio study of the β-phosphatoxyalkyl radical rearrangement,

provided the system contains strongly stabilising substituents.16  Unfortunately, the
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energetics as well as the characteristics of these intermediates depend on the level of

theory.  Eliminations from β-phosphatoxyalkyl radicals, however, are well documented

and play a crucial role in the fragmentations of nucleotide C4' radicals.14  For example,

radical 6.5 eliminates a disubstituted phosphate anion under slightly acidic aqueous

conditions at room temperature, forming isobutylene radical cation with a rate constant of

3 ×  104 s - 1 .1 7   Rate constants have also been measured by a pulsed-

radiolysis/conductivity method for the elimination of chloride, bromide, methyl sulfonate

and propyl sulfate anions from alkyl radicals with leaving groups in the β position under

the same conditions.17  The 1,2 rearrangements of β-chloroalkyl and β-bromoalkyl

radicals are also well documented.18-21
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Recently, the UV-vis spectra have been recorded for stabilised alkene radical

cations produced by elimination of diphenyl-22 or diethyl23 phosphate from β-

phosphatoxyalkyl radicals during laser flash photolysis experiments.  A general method

for the detection of alkene radical cations under these conditions using a triarylamine

reporter has been published.24  There are reports that alkene radical cations, formed by

elimination of substituted phosphate from β-phosphatoxyalkyl radicals, have been

trapped intermolecularly25,26 and intramolecularly27,28 with nucleophiles.  One system

exhibits stereochemical memory effects.28 Of course, like the old SN1 vs. SN2

mechanistic debates, it can be notoriously difficult to establish whether the leaving group

has actually departed prior to nucleophilic attack.  Zipse's calculations29-33 provide

substantial theoretical support for the SRN2c reaction (a radical analogy of SN2'), thus

allowing scope for a bimolecular displacement step in the trapping experiments.  General
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SN2' and SRN2c reaction types are illustrated below (scheme 6.2).

X
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CH2 X

Nu ••
Nu ••+
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SRN2c
•

Scheme 6.2

The bulk of evidence indicates that the factors which accelerate β-oxyalkyl radical

rearrangements (and β-eliminations) include hydrocarbon framework substituents capable

of stabilising a radical cation, polar solvents, elevated temperature and a high propensity

for the migrating group to act as a leaving group.  Giese and coworkers have published a

Brönsted plot correlating pKa of the dialkylphosphate leaving group with rate constant for

the fragmentation of 4'-nucleotide radicals.34

A similar comparison is provided for a larger variety of rearrangements (table

6.6).  Where data was available, values for the rearrangement rate constant (kr) and RE

are provided.  Most rearrangements were conducted in organic solvents, but the

rearrangement of the protonated hydroxyl radical is in aqueous acid.  The pKa values for

the parent acid HX are for aqueous solution, and may differ from values in hydrocarbon

solvents.  Values of RE were recalculated from original data when mistakes were found in

the original papers.

It is difficult to establish structure-activity relationships when the nature of the

carbon framework, temperature and solvent varies.  However, it is clear that migrating

substituents which are also good leaving groups tend to migrate more quickly and with a

higher proportion of 1,2 shift, than poor leaving groups.  Chlorine undergoes a 1,2 shift

very rapidly and bromine (pKa HBr = –8) even more so.20  The size and shape of the

migrating group must play a role in the regiochemical outcome of the rearrangement.

There is little doubt that a systematic investigation into the effect of migrating group

structure upon kr and RE would provide valuable mechanistic information.
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Elimination reactions tend to occur when the carbon framework has substituents

which stabilise positive charge (particularly α-alkoxy groups) and where the β-

substituent may easily depart with an electron pair.  It appears that it is the hardness

(concentration or lack of delocalisation) of the charge on the carbon skeleton and on the

migrating group which determines whether there is enough electrostatic attraction to keep

the radical ion pair fragments together.  Hardness of charge in both fragments will only

result in rearrangement.  Softness in both fragments will result in elimination.  Mixed

hardness will produce results somewhere between these two extremes.  Studies of

radicals which undergo both β-acyloxyalkyl rearrangement and β-elimination should

prove fruitful.

CH2

X

R2
R1

•

R2

R1 X
•

Table 6.6. Rate constants and RE  as a function of pKa

X R1 R1
T

(˚C) kr  (s
-1) RE (%)

pKa of
HX Ref.

-Cl Me Me ~1010 –7 20

-OH2+ Me Me –1.74 35

-ONO2 Ph H 80 84 –1.37 36

-OCOCF3 Ph H 80 ≈ 105 ? 19 0.52 36

-OCOCF3 n-C5H11 Me 80 3.4 × 105 18-45 0.52 37

-OSO2tol Ph H 80 81 0.70 38

-OPO(OPh)2 Ph H 80 8.0 × 105 81 1.1 39

-OCOPh Me Me 75 3.5 × 102 ~0 4.20 40

-OCOPr Ph Me 75 1.6 × 105 ~0 4.82 41
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6.4 The mechanism of the rearrangement of N -alkoxy-
2(1H)-pyridinethiones

The mechanism of the catalysed rearrangement of N -alkoxy-2(1H ) -

pyridinethiones is not fully understood.  Kinetic evidence indicates that the rate limiting

step may be the intermolecular transfer of the migrating group.  Results from a mass

spectrometric analysis of an isolated intermediate also support the participation of

intermolecular processes.  An intermolecular process has previously been shown to be in

operation in the analogous rearrangement of 2-alkoxypyridine N-oxides.  A crossover

experiment is necessary to establish whether the rearrangement of N-alkoxy-2(1H)-

pyridinethiones occurs with intermolecular alkyl transfer.

Stereochemical experiments have demonstrated that the rearrangement cannot

occur via one, concerted mechanism.  It remains possible that this isomerization does

belong to a class of rearrangements which proceed via a transition structure in which 5

electrons are delocalised over 5 atoms, although other processes must also be in operation

alongside this 1,4 concerted shift.

6.5 Final remarks

It is difficult to devise experiments which would enable one to distinguish

between the cooperation of two concerted, pericyclic processes and the intermediacy of a

radical ion pair.  This endeavour is sure to provide continuing challenges to workers in

the field.  In the case of the rearrangement of the 2-methyl-2-trifluoroacetoxy-1-heptyl

radical (6.3) to the 2-methyl-1-trifluoroacetoxy-2-heptyl radical (6.4), it has not been

possible to unequivocally establish the mechanism.

It became evident that solvent plays an important role in the rate of rearrangement

and in the regiochemistry.  Therefore, future theoretical calculations must take into

account solvent effects since the mechanism in the gaseous state may differ markedly

from that observed in not only a polar solvent, but non-polar solvents also.

One might expect the rate of processes which involve contact ion pairs to show

considerably smaller solvent effects than reactions with more completely solvated
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intermediates.  For CIPs, the overall charge within the solvent sphere sums to zero.  The

solvation enthalpy will be less for CIPs since each of the oppositely-charged fragments

are less stabilised due to an incomplete solvent sphere.  The solvation entropy will also be

lower for CIPs because the solvent molecules are less ordered than in a completely-

solvated solvent-separated (SSIP) or solvent-shared ion pair.

For intermediates with very short lifetimes, it is possible that the distinction

between polarized, concerted transition states and tight ion pairs may become an artificial

one.  The parameters which determine this segregation are bond length, bond strength

and charge distribution.  The location of the valence electrons in two adjacent atoms

formally governs whether they are covalently bonded.  Solvents exert a significant

influence on the positions of valence electrons in solutes at any point in time.  For β-

acyloxyalkyl radical rearrangements in which the migrating group is a stronger conjugate

base (weaker leaving group) and in which the alkyl framework does not readily delocalise

a developing positive charge, any such radical ion intermediate must have a half life of

considerably less than 10 picoseconds (cf. section 6.2.5).  For species with little

stabilisation, it is envisaged that the actual time interval may not be much larger than the

period of a molecular vibration (10-50 fs).

The rate constants for valence bond tautomerism have been measured for the

trimethylcyclopropenyl radical (> 108 s-1)42 and for a number of conjugated and highly

hindered aryloxy radicals (≈ 2 × 107 s-1 at RT).43-45  One is led to wonder whether it is

possible that the resonance structures of a carboxylate ion become time-resolved on the

timescale of the lifetime of a radical ion intermediate in such a way that regiochemistry is

directly affected.

From a quantum-mechanical perspective, a tight radical ion pair should exist in a

number of discrete, quantised geometries.  Are there two of these allowed states which

are isomorphic with the polarized transition structures?  At what point does a strong

electrostatic interaction become a partial bond?
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7.1 Melting points are uncorrected and were determined using a Reichert microscope

Kofler hot-stage apparatus.

7.2 Elemental analyses were performed by the ANU Microanalytical Services Unit,

Canberra.

7.3 Infrared spectroscopy

Routine infrared spectra were recorded with a Perkin-Elmer 686 infrared

spectrophotometer.  Liquid samples were generally prepared as a thin film, smeared

between NaCl plates.  Solid samples were run as either a Nujol mull smeared between

NaCl plates, or as a solution contained in a NaCl cell of cavity thickness 0.5 mm run with

a reference cell to balance solvent absorptions.  Polystyrene film was used as a

wavenumber reference.

FTIR spectra were generally recorded by the ANU Infrared Spectrometry Service

on a Perkin-Elmer 1800 fourier transform infrared spectrophotometer, coupled to a

Perkin-Elmer 7500 computer.  Samples were prepared as KBr pellets.  Some FTIR

spectra were recorded on a Perkin-Elmer 1600 series instrument, using 4 scans for both

background and sample spectra.

Infrared data are listed as the wavenumber (υmax) in units of cm-1, followed by a

description of the peak's size and/or shape.  Abbreviations used to indicate peak

characteristics are: vs (very strong); s (strong); m (medium); w (weak); asym

(asymmetric); and br (broad).

7.4 Optical rotations were measured on a Perkin-Elmer 241 polarimeter, at a wavelength

of 589 nm and at ambient temperature, in spectroscopic grade solvents.

7.5 Molecular ultraviolet and visible spectra were recorded using a Hewlett-Packard

8450A spectrophotometer.  Spectroscopic grade solvents were used in preparing

solutions.

7.6 Bulb-to-bulb distillations were performed with a Buchi GKR-50 Kugelrohr

apparatus.  The boiling temperature quoted is that which just causes the liquid to distil.

7.7 Liquid Chromatography

7.7.1 Flash chromatography was performed according to an established method,1 using

Merck Kieselgel 60 (230-400 mesh ASTM).

7.7.2 Vacuum liquid chromatography (VLC) was performed according to an established
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method,2 with the same type of silica.

7.7.3 Analytical thin layer chromatography (TLC) was performed using either Whatman

type MK6F, precoated silica microscope slide plates (75 mm × 25 mm × 10-12 µm), or

Merck Kieselgel 60 plates (100 ×  200 ×  0.25 mm), both containing a 254 nm

fluorescence indicator.  Once developed, chromatograms were first inspected under

ultraviolet light, then sprayed with either 3% vanillin in conc. H2SO4 or alkaline KMnO4

solutions, and heated at ca. 200˚C until spots became visible.

7.7.4 Preparative scale thin layer chromatography was undertaken using Merck 20 × 20

cm glass plates coated with Kieselgel 60 (with F254 indicator), generally of thickness 2

mm.

7.7.5 Radial chromatography was performed on a Chromatotron, model 7924, using

plates coated 2 mm thick with Merck Kieselgel 60 PF254 (with gypsum).  A hand-held

short-wave ultraviolet lamp was used to detect UV-absorbing compounds on the plate

during chromatography.

7.8 Gas Chromatography

7.8.1 Analytical

Three capillary GC instruments were used for analytical gas chromatography.

High-purity helium was used as the carrier and make-up gas for each.  Each instrument

employed flame ionisation detection.  Capillary columns with prefix "BP" were

purchased from SGE.  The details for each instrument follow.

i) A Varian 6000 Vista Series instrument, fitted with an SGE Unijector control module

(replacing the original injector), was used for the majority of the work.  A

dimethylpolysiloxane (BP1) capillary of dimensions 25 m × 0.32 mm I.D. × 0.5 µm film

thickness was employed, with a carrier gas average linear velocity of 30 cm s-1.  A

Hewlett-Packard 3390A integrator controlled signal plotting and integration.

ii) A Varian 3400 instrument with an on-board integrator was fitted with both a 25 m  ×

0.32 mm I.D.× 0.5 µm film thickness Carbowax (BP20), and a 25 m × 0.32 mm I.D. ×

0.5 µm film thickness 95% dimethyl, 5% diphenyl polysiloxane (BP5) capillary.  Both

capillaries employed a carrier gas average linear velocity of 40 cm s-1.

ii) A Varian 3400 instrument, coupled to an HP 3390A integrator, contained a 14%

cyanopropylphenyl, 86% dimethyl polysiloxane (BP10) capillary, of dimensions 25 m ×
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0.5 µm × 0.32 mm I.D.  The average linear carrier gas velocity was 40 cm s-1.

7.8.2 Chiral analytical GC3

The ratios of enantiomers in selected optically active mixtures were determined by

using a Chirasil-Val WCOT capillary column  (Applied Science), of length 25 m and I.D.

of 0.30 mm.  The film thickness was not stated.  This column was installed in either

instrument i) or ii).

7.8.3 Preparative scale gas chromatography

This work was performed using a Varian 6000 Vista Series GC equipped with a

thermal conductivity detector (TCD), containing a 2 m × 4 mm I.D. glass column, packed

with 10% SE30 (dimethyl polysiloxane) on 80/100 Gas-Chrom Q support (Applied

Science).  The carrier gas flow was set to 20 mL min-1 (average linear velocity = 2.65 cm

s-1); the injector temperature to 200˚C; detector oven temperature to 200˚C; and detector

filament an indicated 230˚C, giving a detector current of 150 mA.  The column oven

temperature was usually 60˚C.  A Hewlett-Packard 3396A integrator controlled signal

plotting and integration.

7.9 Mass Spectrometry

Mass spectral data are listed as values of m/z, followed by the intensity of the ion

as a percentage of the base peak intensity (in parentheses).  The symbol M+• accompanies

the m/z value assigned to the molecular ion.  The symbols MH+ and MNH4
+ correspond

respectively to the protonated molecule and the species corresponding to the molecular

addition of the ammonium ion, commonly seen using CIMS with ammonia as the reagent

gas.

7.9.1 EIMS

Direct-probe, low resolution, electron impact mass spectra (EIMS) were recorded

at 70 eV on either a VG 7070F or a VG ZAB-2SEQ mass spectrometer.  Where

necessary, the compounds were frozen in the sample cup using liquid nitrogen, before

insertion into the vacuum lock.

7.9.2 HRMS

High resolution mass spectrometry (HRMS) provided accurate mass

measurements using EIMS at a resolution (10% valley) of ca. 6,000.  Peaks were

nominally matched using perfluorokerosene (PFK) to provide reference ions.
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7.9.3 CIMS

Chemical ionisation mass spectra (CIMS) were measured on the VG 7070F

instrument using NH3 as the reagent gas.  The ion source temperature was generally

maintained at ca. 200˚C, although lower temperatures were used for samples which were

temperature-sensitive.

7.9.4 GCMS

Gas-chromatography/mass-spectrometry was performed using a Hewlett-Packard

system, comprised of an HP 5890 gas chromatograph (splitless injection) connected to an

HP 5970 mass-selective detector (70 eV electron beam energy), fitted with an HP

59822A gauge controller.  An HP 59970 MS Chemstation computer was used to control

the system.  A dimethylpolysiloxane (HP1) capillary of 12.5 m length, 0.33 µm film

thickness and 0.2 mm I.D. was fitted to the chromatograph.  High purity helium was

used as the carrier gas, employing an average linear velocity of 40 cm s-1.

7.9.5 FAB MS

Fast atom bombardment mass spectra were recorded on the ZAB-2SEQ

instrument, using a 1:1 glycerol:thioglycerol matrix and a beam of Cs+ ions.

7.9.6 Electrospray MS

Positive electrospray mass spectra were obtained on a ZAB-AutoSpec instrument,

using acetonitrile as the solvent.

7.10 Electron Spin Resonance Spectroscopy

A Bruker 200D-SRC EPR spectrometer was used to measure esr spectra.  Values

of g were determined relative to a marker at g = 2.00333, in turn calibrated using a Bruker

ER 035 NMR gaussmeter.  The spectrometer was equipped with a Bruker ER 4111

calibrated variable temperature unit and an irradiation system containing a Hanovia L5175

Hg (Xe) lamp.  A more comprehensive description of the system used has been supplied

by Beckwith and Brumby,4 the only differences being that a frequency counter was

omitted and the IBM XT computer was replaced with an IBM 386 clone.  A simulation

program, designed by Brumby5 was used to aid in the analysis of the spectra.

7.11 Nuclear Magnetic Resonance Spectroscopy

7.11.1 1H nmr

The 1H nmr spectra of all compounds, unless stated otherwise, were obtained in

CDCl3 solution, internally referenced with tetramethylsilane (TMS).  Spectra were

recorded on these machines at their respective frequencies : a Varian Gemini (300.1
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MHz); a Varian VXR 300S, equipped with an Oxford magnet and broad-band probe

(299.9 MHz); and a Varian XL 200, with a broad-band probe (200.0 MHz).  Spectral

information is listed for each resonance as : chemical shift in parts per million (ppm)

downfield of TMS (0.00 ppm); multiplicity; peak integration (number of nuclei); coupling

constant, J, in hertz, if appropriate; and peak assignment.  Abbreviations used are s

(singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad), Ar, (aryl), Ph

(phenyl), o (ortho), m (meta), p (para), a (axial), e (equatorial), exch. (exchangeable

proton).  Combinations of multiplicities are listed as their consecutive respective

abbreviations, the multiplicities of clearly larger coupling constants cited first.

7.11.2 2H nmr

The spectra of deuterium-labelled compounds were recorded at 30.7 MHz on a

Varian XL 200 spectrometer, equipped with a broad-band probe.  Samples were run as

CHCl3 or CHCl3/CDCl3 solutions, using C6D6 (benzene-d6) as an internal reference

(7.27 ppm).  Spectral information is quoted as the chemical shift followed by peak

integration and assignment.

7.11.3 13C nmr

Unless stated otherwise, the 13C nmr spectra of compounds were recorded at 75

MHz, in CDCl3 solution.  The middle line of the 1:1:1 CDCl3 resonance (77.00 ppm)

was used to reference spectra indirectly to TMS (0 ppm).  Spectral information is listed

for each resonance as a chemical shift, a coupling constant with a heteronucleus (if

appropriate), followed by an assignment.  To establish the degree of hydrogen

substitution on carbons, the Attached Proton Test (APT)6 was used, in the first instance.

Where necessary, discrimination of APT carbon resonances of the same phase, but

differing in degree of hydrogen substitution was enabled by obtaining a fully-1H-coupled

carbon spectrum.  A group of resonances that could not be assigned unambiguously were

given tentative assignments and marked with asteriscs (*), or a similar symbol if there

was more than one group.

Spectra were recorded on the following machines at their respective frequencies: a

Varian Gemini (75.5 MHz); a Varian VXR 300S, equipped with an Oxford magnet and

broad-band probe (75.4 MHz); and a Jeol PNM FX200 (50 MHz).  Abbreviations used

for assignments include Ar (aryl), Ph (phenyl), o (ortho), m (meta), p (para), and i

(ipso).

7.11.4 17O nmr

Oxygen-17 nmr spectra were recorded at 298 K in a field of 7.04 T, using a

Varian VXR 300S (broad-band probe) spectrometer, operating at 40.7 MHz.  Chemical

shifts are listed in ppm, downfield of H2
17O (0 ppm).  For a more detailed description of
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how these experiments were performed, see Appendix B.

7.11.5 19F nmr
The 19F spectra of compounds were obtained with their CDCl3 solutions, using a

Varian Gemini spectrometer (with a broad-band probe) operating at 282.2 MHz, with a

transmitter offset of 9770 Hz.  The compound CFCl3 was used as an internal reference

(0.00 ppm).  Spectral information is quoted as: chemical shift, downfield of CFCl3;

multiplicity; peak integration (number of nuclei); coupling constant, J, in Hz; and

assignment.

7.11.6 2-D nmr spectra: COSY, HETCOR and LR HETCOR

Two-dimensional nmr experiments were performed on a Varian VXR 300S,

equipped with an Oxford magnet and broad-band probe, using CDCl3 solutions of

compounds.

7.12 Cyclic Voltammetry

Electrochemical measurements were taken using a PAR Model 170

Electrochemical System.  The cell was of a standard electrode configuration, consisting of

a polished platinum disc working electrode (0.5-1.0 mm diameter), platinum bar counter

electrode and a double-fritted Ag/AgCl reference electrode (Metrohm).  The internal

compartment of the reference electrode was filled with 0.45 M n-Bu4NBF4/0.05 M n-

Bu4NCl in CH3CN (or CH2Cl2).  The external compartment was filled with standard

electrolyte solutions, i.e. 0.50 M n-Bu4NBF 4 in CH3CN (or CH2Cl2).  The

ferrocenium/ferrocene couple was recorded at + 0.41 V in CH3CN at room temperature.

The electrolyte solutions were deoxygenated with nitrogen and the cell was

maintained under an inert atmosphere.  Low temperature measurements were recorded in

a jacketed cell, connected to a Lauda RL6 circulating cooling bath.  The temperature was

monitored by a Comark 2001 digital thermometer, with the probe located directly in the

electrochemical solution.

7.13 Purification of solvents for radical reactions

Purification procedures for solvents in which reactions with tributyltin hydride

would be performed were chosen so that contaminants which might interfere with

processes mediated by carbon and tin-centred radicals, would be removed.  These

contaminants included alkenes, halogenated compounds, acids, bivalent sulfur-containing

compounds and carbonyl-containing compounds.  Solvents for reactions involving

trifluoroacetate esters were also dried to limit the extent of hydrolysis of the esters.

Procedures for the purification of solvents for other physico-chemical studies are also
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described.  Many of these procedures were performed as reported in the literature,7-12 or

are adaptations of these procedures.  All distillations were performed under dry nitrogen.

The air pressure in Canberra averages 720 mmHg and boiling points are uncorrected.  All

solvents were stored in well sealed, dark glass bottles, under an atmosphere of dry

nitrogen, unless specified otherwise.

7.13.1 Hexane

A sample of AR grade 95% hexanes was washed repeatedly with ca. 5% of its

volume of concentrated H2SO4, until the acid layer no longer became coloured.  The

organic phase was then washed consecutively with 10% of its volume of distilled water,

25% aqueous Na2CO3, distilled water, and then filtered through silica.  The hexanes

were distilled from sodium wire under nitrogen, collecting the fraction of bp 65-66˚C.

7.13.2 Benzene

AR grade benzene was treated with one quarter its volume of AR grade ethanol

and crystallized whilst stirring vigorously at –10˚C.  The resulting slurry was filtered

under vacuum and the precipitate was melted and washed thrice with distilled water,

filtered through a column of silica, then distilled from sodium wire (no benzophenone),

under nitrogen.

7.13.3 Toluene

AR grade toluene was distilled twice from sodium wire.

7.13.4 tert -Butylbenzene

Aldrich (99%) tert-butylbenzene was washed repeatedly with ca. 10% of its

volume of concentrated H2SO4, until a fresh portion of acid was no longer discoloured,

then consecutively with 10% aqueous NaOH, twice with distilled water, and dried over

MgSO4. The drying agent was removed by filtration and the solvent was distilled,

collecting the fraction of bp 166-167˚C.

7.13.5 Acetonitrile
HPLC grade acetonitrile was distilled under nitrogen, from CaH2 (2g/L) and

stored over dried 4Å molecular sieves.

7.13.6 Propionitrile

A slightly yellow sample of Aldrich propionitrile (reported purity 98% by GC)

was washed successively with 30% of its volume of 2 M aqueous HCl, distilled water, 1

M aqueous K2CO3, distilled water, then saturated aqueous NaCl solution.  After filtering
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through silica, the nitrile was stirred with 15g/L CaH2, then filtered through celite and

distilled from 10g/L P2O5.  The distillate was treated with 10g/L CaH2 and redistilled,

collecting the fraction of bp 93.8-94.2˚C (99.3% by GC).

7.13.7 N -Methylacetamide

Aldrich (99%) N-methylacetamide was preliminarily dried over powdered CaO,

filtered, then distilled by kugelrohr under reduced pressure.  It was then dried more

rigorously in the presence of P2O5, in a dessicator at 0.5 mmHg.  It was stored under

nitrogen, in a flask, sealed with two septa (one inverted on top of the other).

7.13.8 Perfluoromethylcyclohexane

Perfluoromethylcyclohexane was filtered through silica, then fractionally distilled,

collecting the fraction of bp 72.5-74.5˚C.

7.14 Purification of solvents for other purposes

7.14.1 Chloroform for pyridinethione rearrangements

UV-spectroscopic grade chloroform was washed twice with distilled water to

remove ethanol, filtered through a short plug of anhydrous K2CO3, then distilled from

P2O5.

7.14.2 Acetonitrile for electrochemistry

A literature procedure (Method B)13 was followed to obtain solvent of sufficient

purity for electrochemistry.

7.15 Reagents for synthesis

For synthetic purposes, most commercial fine chemicals and AR grade solvents

were used without further purification.  Purification and/or drying (when necessary) was

usually performed by established methods.7  Mention is usually made in the text or

respective experimental sections where purification of reagents has been necessary.

7.16 Evaporation of solvents

Unless stated to the contrary, the terms "evaporation", "evaporated", "removal" and

"removed" when concerning solvents, mean that solvent(s) were vaporised from solutes,

under reduced pressure, using a Buchi Rotavapor.  If the residues were sufficiently

involatile, high vacuum ( ≥0.001 mmHg) was used to remove traces of solvent.  When

compounds have been purified by wet chromatographic methods, it is inferred that the

solvent(s) have been evaporated afterward.  Relative proportions of solvents in mixtures

are expressed as v/v %.
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7.17 Organic extracts were dried with powdered, anhydrous MgSO4, unless otherwise

stated.  It is implied that the drying agent is removed by filtration, before evaporation of

the solvent.

17.18 Nomenclature

Compounds have been named according to IUPAC rules14 in the experimental

sections of each chapter.  Isotopically-labelled compounds have been indexed by the

Boughton System (see the ACS Chemical Abstracts indexing system) applied to the

IUPAC rules.  Numbers in square brackets adjacent to the names of compounds in

experimental sections are CAS registry numbers.
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Appendix A

A description of the analytical method used to obtain
rearrangement rate constants and a derivation of the
integrated rate expression

A1. Analytical method

Rate constants for radical rearrangement processes have been determined directly

by methods such as kinetic esr spectroscopy1 and laser flash photolysis2.  However,

these techniques involve the use of complicated and expensive instruments and sometimes

limited by the range of temperatures over which measurements may be taken.  A reliable

clock method was therefore developed3 for the indirect determination of radical

rearrangement rate constants, making it possible to obtain these desired kinetic data

cheaply and conveniently.

Such a method relies upon the fact that the initial radical, once formed, may react

by one of two competing paths, one of which has a known rate constant.  If the reagent

and product concentrations can be determined, a computer program may be used to

calculate the ratio of the rate constants for these two processes, at each reaction

temperature.  The unknown rate constant is easily determined with knowledge of one rate

constant and the ratio of the two.

UBr

U

UH

R

RH

Bu3Sn

Bu3SnH Bu3SnHkH1 kH2

kr

•

• •

k–r

Scheme A.1
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Scheme A.1 represents this concept diagrammatically.  Here U represents

unrearranged and R represents rearranged.  This scheme illustrates the overall reaction

of an organobromide, UBr, with the radical-mediated reducing agent tributyltin hydride.

However, the analytical method is also applicable to any other system in which chain

reactions take place and reactive intermediates of low concentration are present, which can

either rearrange or react directly with a chain propagating reagent of steadily decreasing

concentration.

Radical U• is formed by the reaction of UBr with tributyltin radicals, the kinetics

of which are unimportant to the analysis.  U• may then either rearrange to radical R• in a

first order process, with rate constant kr, or react with a molecule of tributyltin hydride in

a second order manner, forming the non-rearranged product, UH, with rate constant kH1.

A2. Derivation of the integrated rate expression

The rate law for the latter reaction may be written:

d

dt

[UH]
  =  kH1[U•][Bu3SnH]                                      (A.1)

Radical R• also reacts with tributyltin hydride, forming the rearranged product,

RH, with rate constant kH2.   For an irreversible process (kr  >> k-r ), the rate of formation

of RH is approximately equal to that for R•.  We can then write:

    
d

dt

[RH]
   ≈   kr[U•] .                                                 (A.2)

By division of equation A.1 by A.2, we get:

    
d

d

[UH]
[RH]

   =   
k

k
H1 3

r

[Bu SnH]
  .                                          (A.3)

The equality:

[UH]t  +  [RH]t  +  [Bu3SnH]t  =  [Bu3SnH]i                                                                                 (A.4)
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holds for all times t.  By differentiating A.4 with respect to [RH], we obtain:

d[UH]

d[RH]
  +  

d[RH]

d[RH]
  +  

d

d

[Bu SnH]
[RH]

3    =   
d

d
i[Bu SnH] 

[RH]
3    =     0

∴  
d[UH]

d[RH]
  +  1  +  

d

d

[Bu SnH]
[RH]

3    =   0

 ∴  
d[UH]

d[RH]
   =   − 1  

[Bu SnH]
[RH]

3+








d

d
.                                    (A.5)

By combining equations A.3 and A.5, we get:

k

k
H1 3

r

[Bu SnH]
   =   − 1  

[Bu SnH]
[RH]

3+








d

d

∴   
k

k
H1 3

r

[Bu SnH]
  +  1   =   − 

d

d

[Bu SnH]
[RH]

3

∴   
k k

k
H1 3 r

r

[Bu SnH] +  
   =   − 

d

d

[Bu SnH]
[RH]

3

∴    d[RH]   =   − 
k d

k k
r 3

H1 3 r

[Bu SnH]
[Bu SnH] +  

  ∴  d[RH]   =   − 
k

k
r

H1

d

k k

[Bu SnH]
[Bu SnH] +  /

3

3 r H1









                              (A.6)

Equation A.6 is in a form suitable for integration, so it can be written:

d[RH]
i

f

∫    =   −
k

k
r

H1

 
d

k ki

f [Bu SnH]
[Bu SnH] +  /

3

3 r H1
∫   .                   (A.7)
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Since it is known4 that:

dx

a + bx∫   =  
1

b
 ln(a + bx)

we can integrate A.7 to obtain:

[RH]f   =   −
k

k
r

H1

 

i

f
k

k
ln r

H1
3  +  [Bu SnH]  























=  −
k

k
r
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k

k

k

kf i
r

H1
3

r

H1
3 +  [Bu SnH]  –  ln  +  [Bu SnH]
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 .       (A.8)

Since the equation A.8 could not be solved analytically, a computer program was

used to iteratively solve for kr/kH1, the ratio of rate constants, when supplied with values

for the variables [RH]f, [Bu3SnH]i and [Bu3SnH]f.  The quantity [Bu3SnH]f was equal

to zero in this work by simply making it the limiting reagent.  The concentration of the

rearranged product, RH, was determined by gas chromatography.  The value of kr/kH1

and that of kH1 obtained from the literature5,6 for that temperature, are multiplied to yield

the desired rate constant, kr.
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Appendix B

1 7O nmr spectroscopy: Optimisation of acquisition
parameters for accurate quantification of the ratio of 17O
label in carbonyl and alkoxy oxygens of esters

B.1 Introduction

Oxygen is an important element, forming compounds with all of the elements

except some of the noble gases.  It is a constituent of many functional groups and is

fundamental in living systems.  Oxygen has three stable, naturally occurring isotopes:

16O (99.762%), 17O (0.038%) and 18O (0.200%).1  Chemical and biological studies

based on the properties of oxygen have usually focussed on the mass spectrometry of 18O

enriched molecules.  This technique is limited because the exact location of the label can

be difficult to assign with confidence and a high enrichment is usually required for

accurate quantitative work.  In recent years advantage has been taken of the difference in

chemical shift of an nmr-active nucleus (eg. 13C, 31P) attached to an 16O and to an 18O

atom2.  The position of an 18O label in a molecule can often be established this way, but

the technique suffers from a difficulty encountered in accurate quantitation and, being an

indirect method of observation, 18O nuclei attached solely to nmr-inactive nuclei escape

detection.

In 17O nmr, the site of substitution (type of functional group or position within a

functional group with inequivalent oxygens) is determined directly from the chemical

shift.  If two or more oxygens are labelled, the relative amount present in each can be

obtained from the ratio of the respective peak integrals.

The field of 17O nmr spectroscopy has been the subject of chapters in

monographs,3-6 whole monographs,7 as well as reviews.8   Of particular interest are

topics such as 17O enrichment methods9 and the use of 17O nmr as a mechanistic probe in

chemistry.10  Directly relevant to the work in this thesis is the use of 17O nmr in

establishing the proportions of label in ether and carbonyl positions of esters,11-15 to

enable the determination of rearrangement regiochemistry.
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Two problems, perceived as significant barriers to using 17O as an analytic tool,

are the labelling cost and the limit on molecular size.  Perhaps the most useful source of a

heavy-oxygen label is labelled water.  The price of 17O labelled water (A$ 700 g-1 for

36.8 atom% 17O,15 ) is significantly greater than that for H2
18O (A$ 175 for 98 atom%

18O,14) , yet 17O is still a relatively cheap isotope and the cost is by no means prohibitive

if efficient labelling methods are used.  As a marked decrease in the rate of molecular

orientation accompanies increasing size the line widths associated with 17O signals from

large molecules (MW > 500) can be quite substantial, sometimes too great for signal

detection.8  However, high-field magnets greatly decrease the effects of this problem.  A

line width of 500 Hz will correspond to only 12.2 ppm at 41 MHz, which is relatively

small when one considers that most oxygen resonances in organic molecules appear over

a range of 600 ppm.

It requires only a relatively low enrichment of 17O to obtain good, quantitative

spectra for small to medium-sized molecules.  Natural abundance spectra can be obtained

in reasonable time, but to double the spectral signal-to-noise ratio one must double the

17O concentration (isotopic content) of the sample or square the number of transients

acquired.  Therefore, isotopic enrichment of samples makes a great deal of sense.

Table B.1. Nmr parameters for the 17O nucleus

Spin number
5
2

Nuclear magnetic moment -1.894 µN

Gyromagnetic ratio -3.628 rad s-1 T-1

Electric quadrupole moment -0.0263 × 10-24 e cm2

Resonant frequency at 1T 5.772 MHz

Natural abundance 0.038 %

Chemical shift range ≥ 1500 ppm

Magnitude of one-bond coupling

constants (examples)

16.1 Hz for 13CO; (-)106 Hz for
1H3O+; 692 Hz for 129XeOF4

Relaxation times ≤ 200 ms

Relative sensitivity (1H = 1) 2.91 × 10-2
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The 17O nucleus has spin number  52  and is the only stable nmr-active isotope of

oxygen. Although 17O is a reasonably sensitive nucleus, its combination of low natural

abundance and large spectral line widths have made 17O nmr a relatively unpopular

method of chemical and biological research.  However, by increasing the abundance of

17O in a sample to 10 atom percent, the relative receptivity  becomes 3.12 × 10-3 times

that for 1H, atom for atom.  This now compares favourably with a value of 1.76 × 10-4

for 13C at natural abundance.  Relaxation times are relatively short because the principal

mode of relaxation is through the electric quadrupole.  The equality T1 = T2 generally

holds and T2 values may be obtained easily from spectral line widths by the relationship:

w1
2  =  

1
πT2

where w1
2  is the line width at half-height and T2 is the transverse relaxation time constant.

T1 represents the longitudinal relaxation time constant.   For a typical line width of 200

Hz, T2 is 1.6 ms.  Line widths may be reduced (T2 values increased) by increasing the

rate of molecular reorientation.  This is achieved in practice by using non-viscous, non-

hydrogen-bonding solvents and acquiring data at elevated temperature.  Reasonable line

widths may be achieved for molecules with molecular weight ≤ 500 g mol-1.

B.2 Overcoming transmitter breakthrough

An additional hindrance to obtaining good 17O nmr spectra has been the

combination of relatively low Larmor resonance frequencies and fast relaxation times.  At

lower frequencies high resolution FT nmr probes are prone to acoustic ringing, where the

residual RF signal resonates for a short time within the probe after the pulse has been

switched off.  This effect becomes significant for nuclei with short relaxation times

because the decaying RF pulse signal significantly distorts a large proportion of the FID,

causing "transmitter breakthrough", which manifests as an undulating baseline in spectra.

Elimination of this effect is possible by leaving a delay of up to several hundred µs

between the 90˚ excitation pulse and acquisition.  This is done at the expense of losing a



 Appendix B   325

sometimes significant proportion of the signal and introducing phase errors, which in turn

causes considerable errors when accurate peak integrals are required.  Acoustic ringing

decreases markedly at higher pulse frequencies however, so that shorter pre-acquisition

delay times are required with high-field spectrometers.  Baseline roll is also less of a

problem when 17O enriched samples are used owing to higher signal-to-noise ratios.

Figure B.1 illustrates how the transmitter spike at the beginning of the FID can be

eliminated by the correct choice of a pre-acquisition delay time.  Here the FID (total time

= 10,000 µs) for the relaxation of the 17O nucleus in the oxy-labelled β-bromoester is

shown for delays of 0, 10 and 50 µs.  No delay results in a marked spike at the beginning

of the FID, whereas a 10 µs delay eliminates this spike.  A 50 µs delay eliminates this

spike, but an unnecessarily large amount of the start of the FID is also lost.  A 10 µs

delay was therefore used in data acquisition.

B.3 Spectrometer parameters and method of acquisition

B.3.1 Spectrometer parameters

All of the 17O spectra were obtained in a field of 7.05 T on a Varian VXR 300

spectrometer operating at 40.681 MHz.  A spectral width of 30,030 Hz and transmitter

offset of 10,000 Hz were employed, corresponding with the transmitter  RF pulse being

centred at about 235 ppm.  For each spectrum 16,384 complex data points were collected

and zero filled to 32,768 complex points prior to Fourier transform, without exponential

weighting.  A 90˚ pulse of 21.0 µs duration was followed by a 10 µs delay before

acquisition, to arrest transmitter breakthrough.  The total acquisition time for each cycle

was 273 ms and the number of transients collected varied from 8192 (30 min acquisition

time) to ca.  2 × 105 (16 hours), depending upon sample concentration.  The S/N ratio for

the smallest peak of interest in each of the spectra was always greater than 6.

Quantitatively reliable spectra have been obtained with samples containing as little as 7 ×

10-6 moles of 17O in 16 hours.  The longitudinal relaxation time constant (T1) for the

oxy-labelled ester, 1-bromomethyl-1-methylhexyl trifluoroacetate, was determined to be

847 ± 90 µs and T2 values for all compounds were calculated from spectral line widths

and were in the range 500 - 2300 µs.
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Br
17O

CF3

O

Delay = 0 µs

Delay = 10 µs

Delay = 50 µs

Figure B.1.  A delay between the end of the excitation pulse and acquisition eliminates

"transmitter breakthrough".

B.3.2 Method for obtaining spectra

Once purified by preparative GC, samples of the labelled esters (3-20 mg of

compound of MW  ~ 227 gmol-1) were dissolved in ≥ 400 µL of distilled pentane

(viscosity = 0.240 cp at 20˚C) in 5 mm nmr tubes.  Spectra of reaction mixtures were
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obtained in their respective solvents, occasionally with a little pentane added.  To optimise

field homogeneity throughout the sample solution, the spectrometer was locked and

shimmed (in 1H mode) with a solution of equal volumes of pentane and CDCl3.  The

acquisition parameters for the spectrometer were then set to those for the 17O nucleus, the

probe was tuned to the transmitter frequency and the field was referenced externally  to

H2
17O (0 ppm),by placing a Wilmad capillary insert containing H2

17O (48.6 atom% 17O)

into the sample tube and acquiring four transients.  Acquisitions of sample spectra were

run unlocked at 298 K while spinning at 24 Hz.  The chemical shift data is reproducible

to within ± 2 ppm and the ratios of the integrals of ether and carbonyl oxygens are

estimated to have a precision of ± 0.3% between spectra of identical samples.

Figure B.2 shows the spectra for a T1 determination of the oxy-labelled β-

bromoester (46.5% 17O enriched).  A zero amplitude for the resonance occurs at time T1,

which was determined to be 847±90 µs.  A total acquisition time of 273 ms for each

transient is therefore more than 300 times that of T1 value for the 17O nucleus in this

ester, so it can be assumed that complete relaxation of 17O nuclei in each of the labelled

compounds is occurring before the next excitation pulse occurs.

0.125
0.25

0.50

1.00 2.00 4.00 8.00 16.00 32.00 64.00

Figure B.2.  An inversion-recovery experiment to determine the spin-lattice

(longitudinal) relaxation time constant, T1, for the 17O nucleus of the oxy-labelled ester 1-

bromomethyl-1-methylhexyl trifluoroacetate.  The time values indicated are given in

milliseconds.
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B.4 17O nmr spectra

The 17O nmr spectrum of 1-bromo-2-methylheptan-2-ol (46.5% 17O enriched) is

shown in figure B.3.  The peak is centred at 47.1 ppm and is broadened due to the

effects of hydrogen bonding which decrease the rate of molecular reorientation in

solution.  A computer line-broadening function was used to improve the apparent S/N

ratio.  The coupling of 17O to 1H cannot be resolved but would be expected to be

approximately 80 Hz, like most alcohols.3

Figure B.4 shows the 17O nmr spectrum of oxy-labelled β-bromoester (46.5%

17O enriched) in pentane solution, externally referenced to H2
17O (0 ppm).  The ether

oxygen resonates at 176.7 ppm.  A line-broadening function was again used to improve

apparent S/N.  In this spectrum, coupling of 17O to 1H is not observed in the water peak.

It is interesting to note that the line width of the ether-type oxygen resonance is greater

than that for water owing to the larger molecular size of the ester.

Br
17OH

Figure B.3.  The 17O nmr spectrum of labelled 1-bromo-2-methylheptan-2-ol in pentane

solution
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Br
17O

CF3

O

Figure B.4.  The 17O nmr spectrum of oxy-labelled 1-bromomethyl-1-methylhexyl

trifluoroacetate in pentane solution, externally referenced to 17O-labelled water (0 ppm)

A spectrum of the mixture from the reaction of the β-bromoester with

tris(trimethylsilyl)silane (av. conc. = 0.030 M) and AIBN in benzene solution at 80˚C is

shown in figure B.5.  To prepare the sample for nmr the bulk of the benzene was

carefully distilled from the reaction solution and a small volume of pentane was added to

lower the viscosity.  The viscosity of benzene (0.65 cp at 20˚C) is significantly greater

than that of pentane (0.24 cp) and the effect of this and the viscosity of the by-products

upon spectral line widths is apparent.

A line-broadening function was used to improve apparent signal-to-noise.  The

peaks represent the alkoxy and carbonyl resonances of the rearranged product, 2-methyl-

1-heptyl trifluoroacetate and the directly-reduced product, 1,1-dimethylhexyl

trifluoroacetate.  The ratio of these products was determined by analytical GC to be

9.15:1 respectively.  Following this spectrum are the spectra of each of the constituents,

which were separated from each other and from by-products by preparative GC.
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Br
17O

CF3

O

(Me3Si)3SiH,

AIBN

benzene, 80˚C.

Figure B.5.  The 17O nmr spectrum of the mixture from the completed reaction of the

labelled bromoester with tris(trimethylsilyl)silane in benzene

*O CF3

*O

Figure B.6.  The 17O nmr spectrum of the labelled, rearranged product in pentane

solution, after being isolated from the rearrangement reaction mixture by preparative GC
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*O

CF3

O*

Figure B.7.  The 17O nmr spectrum of the labelled, directly-reduced product in pentane

solution, after being isolated from the rearrangement reaction mixture by preparative GC

The 17O spectrum of the rearranged product ester is shown in figure B.6.  The

smaller peak at 148.7 ppm is due to the alkoxy oxygen and the large peak at 357.2 ppm

to the carbonyl oxygen.  Figure B.7 shows the 17O nmr spectrum of the non-rearranged

product.  The peak at 185.9 ppm is due to the alkoxy oxygen and that at 363.2 ppm to the

carbonyl oxygen.  Note that there is a measurable proportion of label in the carbonyl

oxygen.  The line-broadening function was not used with either of these spectra.
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Appendix C

The assignment of the 13C and 1H nmr chemical shifts of
the heterocyclic ring systems of N - a l k o x y - 2 ( 1 H ) -
pyridinethiones and 2-(alkylsulfanyl)pyridine N-oxides

C.1 Introduction

A search through the chemical literature failed to find reliable assignments of the

1H and especially 13C chemical shifts of the atoms in the heterocyclic rings of N-alkoxy-

2(1H)-pyridinethiones (C.1) and their isomers 2-(alkylsulfanyl)pyridine N-oxides

(C.2).  Hartung and coworkers have investigated the structures of C.1a and C.2a (R =

CH3) in various solvents by 1H and 13C nmr but made only partial assignments.1  Two-

dimensional shift-correlated nmr spectroscopy was hence used to correctly assign the

resonances.

N
O

R

S

N S
R

O

1

2
3

4
5

6

1

2

3
4

5

6

C.1 C.2

N-Cyclohexylmethoxy-2(1H)-pyridinethione (C.1b, R = CH2c-C6H11) and 2-

(cyclohexylmethylsulfanyl)pyridine N-oxide (C.2b, R = CH2c-C6H11) were chosen as

the representatives of the two classes of compound.  Both these compounds are

crystalline (solid pyridinethiones decompose less quickly than those in a liquid state) at

room temperature, can be readily purified and the aliphatic substituents ensure that no

unnecessary complexity arises due to overlap of signals from the conjugated or aromatic

π-electron ring systems.

The 1H and 13C nmr spectra, obtained at 300 and 75 MHz respectively in

deuterochloroform solution, are provided for each compound.  Arrows are included

where an APT2 spectrum was run.  "Up" arrows represent CH2 and quaternary carbons
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and "down" arrows CH and CH3 groups.  It was possible to correctly assign some

closely separated resonances from their relative peak heights, as the magnitude of the

signal resonance is often approximately proportional to the numbers of degenerate atoms

contributing to the signal.

C.2 Assignment of the chemical shifts of N -
cyclohexylmethoxy-2(1H)-pyridinethione

The one-dimensional nmr spectra for N-cyclohexylmethoxy-2(1H)-pyridinethione

are provided below:

1H: 1.13 (m, 2H), 1.20-1.40 (m, 3H), 1.65-1.82 (m, 4H), 1.81-2.00 (m, 3H), 4.24 (d,

2H, J = 6.1 Hz), 6.66 (ddd, 1H), 7.17 (ddd, 1H), 7.68 (dd, 1H), 7.77 (dd, 1H); and

13C: 25.2↑, 25.9↑, 29.2↑, 36.0↓, 81.6↑, 113.6↓, 133.1↓, 137.8,↓ 138.0↓, 175.6↑.

In the 1H spectrum, it is clear from the multiplicities of the double doublet

resonances at 7.68 and 7.77 ppm that the hydrogens corresponding to these signals lie at

the extremities (positions 3 and 6) of the four sequential ring protons.  The two remaining

downfield signals at 6.66 and 7.17 hence represent the hydrogens at positions 4 and 5,

but absolute assignment of any one of these resonances cannot be made with certainty on

the basis of this spectrum alone.

A homonuclear shift-correlated spectrum (COSY) was obtained (figure C.1) and

the correlations for the pyridinethione ring function are listed in table C.1.

Table C.1.  1H–1H shift correlations for the heterocyclic

ring of N-cyclohexylmethoxy-2(1H)-pyridinethione

1H chemical shift (ppm) 1H chemical shift (ppm)

6.66 7.17 and 7.77

7.17 6.66 and 7.68

7.68 7.17

7.77 6.66
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Figure C.1. COSY spectrum of N-cyclohexylmethoxy-2(1H)-pyridinethione

From the correlations the chemical shifts of the consecutive hydrogens around the

pyridinethione ring were established to be 7.77 → 6.66 → 7.17 → 7.68.  In addition, the

OCH2 doublet at 4.24 ppm correlates strongly with a multiplet centred around 1.9 ppm.

The latter multiplet therefore corresponds to the methine of the cyclohexyl ring.  The

sequential order of the hydrogens around the ring, despite being valuable information,

still does not allow absolute assignment of any of the heterocyclic ring hydrogens or

carbons.

A one-bond, 13C-1H heteronuclear shift-correlated (HETCOR) spectrum (figure

C.2) was recorded in order to establish carbon-hydrogen connectivity.  Table C.2 lists the

C–H correlations extracted from the HETCOR spectrum.
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Figure C.2. HETCOR spectrum of N-cyclohexylmethoxy-2(1H)-pyridinethione.  The

horizontal axis represents 1H  and the vertical axis 13C chemical shifts.

Table C.2.  13C–1H (1 bond) shift correlations for

 N-cyclohexylmethoxy-2(1H)-pyridinethione

13C chemical shift (ppm) 1H chemical shift (ppm)

25.2 1.32 and 1.80

25.9 1.25 and 1.74

29.2 1.13 and 1.94

36.0 1.94

81.6 4.24

113.6 6.66

133.1 7.17

137.8 7.68 or 7.77 (not resolved)

138.0 7.77 or 7.68 (not resolved)

175.6 no correlations
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The HETCOR spectrum permitted most C–H connectivity to be established.

There was also resolution of the signals contributing to the several-proton multiplets of

the cyclohexyl ring system, allowing accurate chemical shifts to be assigned. However,

the unambiguous assignment of the heterocyclic ring protons was still not possible.

A long-range (2 and 3 bond) 13C–1H shift-correlated heteronuclear nmr (LR

HETCOR) spectrum was hence obtained (figure C.3), which made unambiguous

assignment of the heterocyclic ring chemical shifts possible.  One-bond correlations are

absent in LR HETCOR spectra.  In addition, in aromatic and other extended π-systems,

3-bond interactions are usually more intense than 2-bond interactions.  The LR HETCOR

acquisition parameters were configured so that coupling constants of 9.0 Hz would

produced maximum correlation intensity.  Coupling constants significantly greater, or

less than, this value may cause correlations to appear absent from the spectrum.  The 2

and 3-bond C–H correlations are listed in table C.3.

Table C.3.  13C–1H (2 and 3-bond) correlations for the heterocyclic

ring of N-cyclohexylmethoxy-2(1H)-pyridinethione

13C chemical shift (ppm) 1H chemical shift (ppm)

113.6 7.68

133.1 7.77

137.8 and 138.0 (not res.) 7.77 (weak), 7.17 and 6.66

175.6 7.17 and 7.68 (weak)



 Appendix C   338

Figure C.3. LR HETCOR spectrum of N-cyclohexylmethoxy-2(1H)-pyridinethione.

The vertical axis represents 13C and the horizontal axis 1H chemical shifts.

The correlations most easily enabling the correct assignment of the heterocyclic

ring protons were that of the quaternary carbon at 175.6 ppm with the hydrogen

resonances at 7.17 (ddd) and at 7.68 ppm (dd).  These resonances thus belong to

hydrogens at positions 4 and 3 respectively.  The latter, 2-bond interaction is

considerably less intense than the former, 3-bond interaction.  Hydrogens at positions 5

and 6 hence resonate at 6.66 and 7.77 ppm respectively.

N
O

S

H3

H4

2-bond

3-bond

175.6

7.17

7.68
c-C6H11
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It was not possible, due to the limits of resolution, to unambiguously assign the

carbon resonances at 137.8 and 138.0 ppm.  It is expected that the greater downfield shift

of H6 will be reflected in the carbon shift as well, making 138.0 ppm the more likely

resonance attributable to the carbon at position 6.

All the aliphatic resonances have also been confidently assigned.  Complete

assignments are provided in figure C.4 (13C shifts in brackets). Geminal axial and

equatorial hydrogens were differentiated by chemical shift, the equatorial protons

resonating further downfield.  For  cyclohexane, the axial and equatorial protons resonate

at 1.19 and 1.67 ppm respectively.3  Asteriscs represent signals which could not be

unambiguously assigned, due to the resolution limits of the nmr experiments.

N

S

O7.68 (137.8)*

(175.6)

7.17 (133.1)

6.66
(113.6)

7.77 (138.0)*

(81.6)

4.24

1.94

(36.0)

1.13 (a)
1.94 (e)

(25.9)

1.32 (a) 1.80 (e)

1.25 (a) 1.74 (e)

(25.2)

(29.2)

Figure C.4. The complete assignment of the 13C and 1H nmr resonances for N -

cyclohexylmethoxy-2(1H)-pyridinethione, C.1b

These assignments agree with the partial assignments given by Hartung and

coworkers to N-methoxy-2(1H)-pyridinethione, but they have incorrectly assigned the

hydrogens at ring positions 4 and 5 of N-pentoxy-2(1H)-pyridinethione.1
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C.3 Assignment of the chemical shifts of 2-
(cyclohexylmethylsulfanyl)pyridine N-oxide

The one-dimensional nmr spectra for 2-(cyclohexylmethylsulfanyl)pyridine N-

oxide are provided below:

1H: 1.10 (m, 2H), 1.18-1.35 (m, 3H), 1.60-1.82 (m, 4H), 1.97 (dm, 2H), 2.78 (d, 2H,

J = 6.8 Hz), 7.05 (ddd, 1H), 7.13 (dd, 1H), 7.27 (ddd, 1H), 8.28 (dd, 1H); and

13C: 25.6, 25.8, 32.8, 36.5, 37.5, 120.0, 121.3, 125.9, 138.9, 153.3.

The 13C chemical shifts for a model compound, 2-(methylsulfanyl)pyridine N-

oxide, were estimated by applying the shift values for the substituent -SCH3 from nmr

tables for substituted benzenes,4  to the known shifts of pyridine N-oxide.5

N

O

139.4

127.2

125.7

N

O

139.8

123.6

125.7

CH3S
149.6

125.2

Known 13C chemical shifts
for pyridine N-oxide

Estimated 13C chemical shifts for
2-(methylthio)pyridine N-oxide

It was therefore probable that the quaternary carbon of 2-

(cyclohexylmethylsulfanyl)pyridine N-oxide would have the highest chemical shift and

the methine with the highest shift would be at position 6.  The resonance at 139.8 ppm in

the 13C nmr spectrum of 2-(cyclohexylmethylsulfanyl)pyridine N-oxide was tentatively

assigned to position 6 of the heterocyclic ring.  A HETCOR spectrum was obtained to

establish carbon-hydrogen connectivity (figure C.5) and table C.4 lists the pertinent

correlations.
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Figure C.5.  HETCOR spectrum for 2-(cyclohexylmethylsulfanyl)pyridine N-oxide.

The vertical axis represents 13C and the horizontal axis 1H chemical shifts.

Table C.4.  13C–1H (1 bond) shift correlations for

2-(cyclohexylmethylsulfanyl)pyridine N-oxide

13C chemical shift (ppm) 1H chemical shift (ppm)

25.6 1.23 and 1.76

25.8 1.19 and 1.69

32.8 1.10 and 1.97

36.5 1.66

37.5 2.78

120.0 7.05

121.3 7.13

125.9 7.27

138.9 8.28

153.3 no correlation
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Indeed, the quaternary carbon does have the highest shift at 155.3 ppm.  It can

also be immediately established that the proton connected to the carbon at position 6

(138.9 ppm) resonates at 8.28 ppm.

A COSY spectrum (figure C.6) was obtained to establish the sequential order of

heterocyclic ring hydrogens.  The correlations are listed in table C.5.

Table C.5.  1H–1H shift correlations for the aromatic ring

portion of 2-(cyclohexylmethysulfanyl)pyridine N-oxide

1H chemical shift (ppm) 1H chemical shift (ppm)

7.05 7.27 and 8.28

7.13 7.27

7.27 7.05 and 7.13

8.28 7.05

Figure C.6. COSY spectrum of 2-(cyclohexylmethylsulfanyl)pyridine N-oxide
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The order of hydrogens around the ring is therefore 8.28 (6)→7.05 (5)→7.27

(4)→7.13 ppm (3).  These hydrogens are connected respectively to the carbons which

resonate at 138.9 (6), 120.0 (5), 125.9 (4) and 121.3 ppm (3).  The correct assignments

for the cyclohexymethyl resonances were established similarly to those for the

pyridinethione.  The complete assignments are illustrated in figure C.7 (13C chemical

shifts in brackets) and agree with partial assignments published.1

N

O

S8.28 (138.9)

(175.6)

7.05 (120.0)

7.27
(125.9)

7.13 (121.3)

(37.5)

2.78

1.66

(36.5)

1.10 (a)
1.97 (e)

(25.8)

1.23 (a) 1.76 (e)

1.19 (a) 1.69 (e)

(25.6)

(32.8)

+

–
(153.3)

Figure C.7.  The complete assignment of the 13C and 1H nmr resonances for 2-

(cyclohexylmethylsulfanyl)pyridine N-oxide, C.2b
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Appendix D

The preparation, purification, purity determination and
storage of tributyltin hydride

D.1 Introduction

Tributyltin hydride is a mild, selective reagent used frequently to replace a variety

of functional groups with a hydrogen atom, or to mediate in the generation of carbon-

centred radicals which then undergo a variety of useful reactions including cyclisation,

addition and substitution.1-3  Considering the importance and widespread use of this

compound, a short description of its inexpensive preparation, purification, purity

determination and recommended storage will be presented.

Several problems with the use of tributyltin hydride have been encountered in the

ANU laboratories, the first of which is the substantial cost of the reagent at A$ 1.45 per

gram.4

The second problem was the difficulty associated with the purification of

tributyltin hydride.  Distillation can be a difficult procedure, especially if finely divided

solids are present in the sample.

The third problem is the determination of purity.  Rigorous kinetic work, for

instance, requires that the concentration of tributyltin hydride in reaction solutions is

accurately known, in turn demanding that the purity of the neat hydride is known

accurately.

The fourth problem is preservation of sample purity upon storage.  Pure tributyltin

hydride (a colourless liquid) often decomposes slowly to a white solid upon storage,

especially when leakage of air into the container is suspected. Neumann claims that the

hydride is oxidised first to the colourless liquid bis(tributyltin) oxide, then further to the

white solid dibutyltin oxide.3  Support for this claim is found in the observation that

formation of the white solid appears to cease once partially-oxidised tributyltin hydride

samples are stored in the absence of air.  Interestingly, no experimental support could be

found for the claim that tributyltin hydride is moisture-sensitive,4 as a pure sample could
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be left in contact with air-free water overnight with negligible decomposition.

D.2 Preparation

Tributyltin hydride is commonly prepared by the reduction of either tributyltin

chloride or bis(tributyltin) oxide with lithium aluminium hydride in diethyl ether.2  Other

methods include the reduction of bis(tributyltin) oxide with borane,5 reaction of tributyltin

chloride and sodium borohydride,6 or from the reaction of bis(tributyltin) oxide and

polymeric methyl siloxane.7  However, a simpler, cheaper, safer and higher-yielding

method has been described by Szammer and Otvos.8  This procedure consists of the

treatment of a 0.33 M ethanolic solution of bis(tributyltin) oxide with 0.7 molar

equivalents of sodium borohydride at room temperature.  The sodium borohydride

dissolves and the reaction proceeds according to the following equation, producing

tributyltin hydride and precipitating sodium metaborate.  Reaction progress can be

monitored by thin layer chromoatography, using iodine as an indicator.8

2 (Bu3Sn)2O  +  NaBH4  →  4 Bu3SnH  +  NaBO2

The original workers reported that the solvent was removed after 30 minutes by

rotary evaporation and the residue was extracted with hexane.  No further purification

was attempted.  Dry ethanol need not be used since the authors of the original procedure

claim that small proportions of water (< 10%) in the reaction solvent does not affect the

yield.8  It is important that there is no acetic acid present since acids react with Bu3SnH

and NaBH4.  We suggest that several changes be made to the original procedure.

Stirring the reaction overnight (30 min recommended by authors), provided the

reaction is kept under an oxygen-free atmosphere, is convenient and does not affect the

yield adversely.  The crude tributyltin hydride is purified by distillation after first

removing the ethanol by rotary evaporation and filtering off the precipitate.  Light

petroleum is added to the residue and the resulting suspension is filtered through a short

column of silica, eluting with several portions of the same solvent.  Fine particles should
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be removed since they cause frothing and bumping upon distillation.  The solvent is

removed under rotary evaporation, leaving crude tributyltin hydride as a colourless oil.

High yields (≥ 95%) of the tin hydride were usually obtained prior to distillation.

This procedure enabled the cost of the reagent to decrease to approximately A30c per

gram, 20% the price of that purchased commercially.4  This method has been used to

prepare tributyltin deuteride successfully and it is reported8 that tributyltin tritide has been

similarly prepared on a 0.1 mol scale.

D.3 Purification

Contaminants in the crude tributyltin hydride would be expected to be small

amounts of: unreacted bis(tributyltin) oxide, which is a colourless liquid with a boiling

point of 180˚C/2 mmHg4 (equivalent to 135˚C/0.15 mm); light petroleum from the work-

up procedure; non-polar impurities in the reagents and their possible reaction products;

and any of the decomposition products resulting from the atmospheric oxidation of

tributyltin hydride (very high boiling points expected).

It is possible to purify the crude tributyltin hydride by reduced-pressure kugelrohr

distillation, but since several distillations have bumped using this technique we

recommended conventional reduced-pressure distillation through a short-path apparatus.

Packed distillation columns flood easily during these distillations so their use is best

avoided.  Other workers have reported significant decomposition upon distillation,9 so

care must be taken during this step to avoid both excessive temperature and distillation

time.  We found the best method was to place the distillation flask—containing a rapidly

magnetically-stirred, homogeneous sample of the crude Bu3SnH—under a nitrogen

atmosphere and lower it into an oil bath maintained at 95-100˚C, then decrease the

pressure gradually using a bleed valve and high vacuum until distillation commences

(75˚C/0.15 mmHg).  This technique has reliably produced samples in good recovery, of

purities in excess of 98% (w/w).
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D.4 Purity Determination

Neumann3 lists several ways by which the purity of tributyltin hydride has

previously been measured: halide titration; treatment with 3 mols of ethylmagnesium

bromide which forms ethyl tributyltin, in turn analysed by GC against an internal

standard; infrared spectroscopy; and gas volumetrically by reaction with dichloroacetic

acid.  Recently, Crich and coworkers used 119Sn nmr spectroscopy with trimethylphenyl

tin as an internal standard.10  Three other methods of purity assay will be discussed: gas

chromatography; volumetric measurement of hydrogen evolved by reaction with

methanesulfonic acid; and titration with iodine.

Analytical gas chromatography, using a dimethylpolysiloxane-coated capillary

column, provides a method of detecting and quantifying all stable, volatile compounds

present in the tributyltin hydride sample.  Bis(tributyltin) oxide, hexabutylditin, dibutyltin

dihydride and possibly atmospheric degradation products may be detected in this way.

Purity determination precision of ±0.1% has been obtained.

The measurement by gas burette of the volume of hydrogen evolved by reaction of

a known mass of Bu3SnH with a large excess of stirred methanesulfonic acid is a reliable

method provided the equipment is well maintained and skilfully used and that the sample

does not contain a significant proportion of Bu2SnH2 (detectable by GC) or other

compounds which also liberate hydrogen upon reaction with acid.  Methanesulfonic acid

(pKa –2.0) is stronger than dichloroacetic acid (pKa 1.1), providing a faster and more

complete reaction.  The apparatus used for this measurement can be left permanently

assembled so purity determinations are quick and convenient.  Precision to ±1% is

usually possible.

Bu3SnH  +  CH3SO3H  →  H2 (g)  +  CH3SO3-SnBu3

 Titration of a known mass of Bu3SnH with a 0.1 M solution of iodine in benzene

to a permanent, pale pink endpoint (iodine excess)11 has been recommended by Szammer

and Otvos.8  We performed these titrations under nitrogen in a small two-necked flask.
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2 Bu3SnH  +  I2  →  2 Bu3SnI  +  H2 (g)

The reaction proceeds rapidly and this method can achieve a precision of better

than ±0.3%.  However, hexabutylditin also reacts with iodine (see below), interfering

with the analysis if it is present.11  We have observed that bis(tributyltin) oxide also

reacts with iodine in an as yet undetermined manner, producing a pale yellow solution.

Dibutyltin dihydride is reported to form hydrogen iodide when the same procedure is

used, although accurate quantitation is reportedly still possible by back-titration with

alkali to determine the amount of acid present.11

Bu3Sn-SnBu3  +  I2  →  2 Bu3SnI.

In summary, all three methods are quick and convenient.  Gas chromatography is

a good method of assay if a very accurate determination of purity is required—for kinetic

work for instance—although it does not easily provide a measure of "available H•

equivalent" as the other methods do.  Both of the other methods are reliable, although

they don't inform the analyst of the identity and proportion of contaminants.  Only the

iodometric analysis is practical for neat samples with a large proportion of solids present.

D.5 Storage

The choice and correct use of a storage container will determine the amount of

time the tributyltin hydride retains its purity.  For synthetic work samples are best stored

below 4˚C under dry nitrogen, in a container which is completely gastight and robust

enough to tolerate high vacuum.  A suitable container is a two-necked, round-bottomed

flask fitted with a greased stopper in one neck and a teflon "rotaflo" tap with a greased

Quickfit male joint in the other.  Before opening, the container is evacuated and the

contents are blanketed with oxygen-free nitrogen or argon via the rotaflo tap.  The

stopper is removed, ensuring that a stream of the inert gas is flowing continually over the

liquid and from the flask.  Slightly more of the reagent than needed is withdrawn.
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Contamination is avoided by ensuring not to pump the syringe in the reagent nor return

any excess.  Before re-storage the container is evacuated again and sealed under an inert

atmosphere.  Samples of tin hydride have been kept like this for months with no

measurable decrease in purity.

For kinetic work, where small volumes of tributyltin hydride of identical purity

are required, it is handy to store the reagent in 1-5 mL portions in sealed ampoules which

can be opened immediately before use.  The reagent is placed in the ampoule,

freeze/pump/thaw degassed several times and the ampoule is flame-sealed under vacuum.

Samples stored in this way may be kept indefinitely at 4˚C.
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