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Summary of Thesis

Hypersonic vehicles, based on scramjet engines, have the potential to deliver
inexpensive access to space when compared with rocket propulsion. The tech-
nology, however, is in its infancy and there is still much to be learned from
fundamental studies.

Flows that represent the conditions inside a scramjet engine can be generated
in ground tests using a free-piston shock tunnel and a combustor model. These
facilities provide a convenient location for fundamental studies and principles
learned during ground tests can be applied to the design of a full-scale vehicle.

A wide range of diagnostics have been used for studying scramjet flows, includ-
ing surface measurements and optical visualisation techniques.

The aim of this work is to test the effectiveness of tunable diode laser absorption
spectroscopy (TDLAS) as a scramjet diagnostic.

TDLAS utilises the spectrally narrow emission from a diode laser to probe in-
dividual absorption lines of a target species. By varying the diode laser injec-
tion current, the laser emission wavelength can be scanned to rapidly obtain a
profile of the spectral line. TDLAS has been used previously for gas-dynamic
sensing applications and, in the configuration used in this work, is sensitive to
temperature and water vapour concentration.

The design of the sensor was guided by previous work. It incorporated aspects
of designs that were considered to be well suited to the present application.
Aspects of the design which were guided by the literature included the laser
emission wavelength, the use of fibre optics and the detector used. The laser
emission wavelength was near 1390 nm to coincide with relatively strong water
vapour transitions. This wavelength allowed the use of telecommunications
optical fibre and components for light delivery. Detection used a dual-beam,
noise cancelling detector.

The sensor was validated before deployment in a low-pressure test cell and
a hydrogen–air flame. Temperature and water concentration measurements
were verified to within 5% up to 1550 K. Verification accuracy was limited by
non-uniformity along the beam path during flame measurements.

Measurements were made in a scramjet combustor operating in a flow gener-
ated by the T3 shock tunnel at the Australian National University. Within the
scramjet combustor, hydrogen was injected into a flame-holding cavity and the
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sensor was operated downstream in the expanded, supersonic, post-combustion
flow. The sensor was operated at a maximum repetition rate of 20 kHz and
could resolve variation in temperature and water concentration over the 3 ms
running time of the facility.

Results were repeatable and the measurement uncertainty was smaller than
the turbulent fluctuations in the flow. The scramjet was operated at two fuel-
lean equivalence ratios and the sensor was able to show differences between the
two operating conditions. In addition, vertical traversal of the sensor revealed
variation in flow conditions across the scramjet duct.

The effectiveness of the diagnostic was tested by comparing results with those
from other measurement techniques, in particular pressure and OH fluores-
cence measurements, as well as comparison with computational simulation.

Combustion was noted at both of the tested operating conditions in data from
all three measurement techniques.

Computation simulation of the scramjet flow significantly under-predicted the
water vapour concentration. The discrepancy between experiments and simu-
lation was not apparent in either the pressure measurements or the OH fluo-
rescence, but was clear in the diode laser results.

The diode laser sensor, therefore, was able to produce quantitative results which
were useful for comparison with a CFD model of the scramjet and were compli-
mentary to information provided by other diagnostics.
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