Cytosine methylation, methyltransferases and flowering time in *Arabidopsis thaliana*

Ruth Kathleen Genger

A thesis submitted for the degree of Doctor of Philosophy of The Australian National University

April 2000

Statement of Originality

This thesis contains no material which has been accepted for the award of any other degree or diploma in any University. To the best of my knowledge, this thesis contains no material previously published, or the result of any work by any other person, except where due reference is made in the text.

Ruth Kathleen Genger

Acknowledgements

First I would like to thank my CSIRO supervisors, Liz Dennis and Jean Finnegan, for their support, guidance and patience throughout my PhD studies. I especially appreciated Jean's enthusiasm, her advice on my experimental work, and her constructive comments during the writing process. Thanks to Liz for her constant encouragement and her helpful comments and insights. To my ANU supervisors, Dennis Bittisnich, Michael Udvardi and Kieran Kirk, thank you for maintaining my ANU contacts.

As a student in the CRC for Plant Science, I benefited from a stimulating intellectual environment and received generous financial support. I also gratefully acknowledge the financial support from CSIRO Plant Industry arranged by Jim Peacock, which came when it was most needed. I am glad to have had the opportunity to conduct research within the exciting scientific environment of CSIRO Plant Industry.

My colleagues in the laboratory have provided practical advice and lots of laughter over the years: Lyndall Thorpe, Lynn Hartweck, Leigh Farrell, Frank Hoeren, Marc Ellis, Kath Kovac and Xiaomei Wallace. Thank you Kath for your friendship, sense of humour and proof-reading skills. Julie Glover, Amy Chin-Atkins, Ian Watson and Jo Luck have given me so much support, as have many others at CSIRO Plant Industry – warm thanks to you all. Jen Price and the staff of the phytotron provided great technical assistance – thank you. My new colleagues in Program U are a wonderful group to work with – thank you for your friendship and encouragement. Many thanks also to Tony Brown and Jeremy Burdon, who have borne with patience the long period of thesis writing.

My housemates Michelle Buxton and Simon Gaul have helped create a little oasis of sanity and peace ... you're both wonderful!

Finally, thank you to my wonderful family for their constant love and support. For helping me to keep going; for always being there when I needed you; for sharing laughter and tears – much love and thanks.

Abstract

Environmental signals such as photoperiod and temperature provide plants with seasonal information, allowing them to time flowering to occur in favourable conditions. Most ecotypes of the model plant *Arabidopsis thaliana* flower earlier in long photoperiods and after prolonged exposure to cold (vernalization). The vernalized state is stable through mitosis, but is not transmitted to progeny, suggesting that the vernalization signal may be transmitted via a modification of DNA such as cytosine methylation. The role of methylation in the vernalization response is investigated in this thesis.

Arabidopsis plants transformed with an antisense construct to the cytosine methyltransferase *METI* (AMT) showed significant decreases in methylation. AMT plants flowered significantly earlier than unvernalized wildtype plants, and the promotion of flowering correlated with the extent of demethylation. The flowering time of mutants with decreased DNA methylation (*ddm1*) was promoted only in growth conditions in which wildtype plants showed a vernalization response, suggesting that the early flowering response to demethylation operated specifically through the vernalization pathway.

The AMT construct was crossed into two late flowering mutants that differed in vernalization responsiveness. Demethylation promoted flowering of the vernalization responsive mutant *fca*, but not of the *fe* mutant, which has only a slight vernalization response. This supports the hypothesis that demethylation is a step in the vernalization pathway.

iv

The role of gibberellic acid (GA) in the early flowering response to demethylation was investigated by observing the effect of the *gai* mutation, which disrupts the GA signal transduction pathway, on flowering time in plants with demethylated DNA. The presence of a single *gai* allele delayed flowering, suggesting that the early flowering response to demethylation requires a functional GA signal transduction pathway, and that demethylation increases GA levels or responses, directly or indirectly.

In most transgenic lines, AMT-mediated demethylation did not fully substitute for vernalization. This indicates that part of the response is not affected by *METI*-mediated methylation, and may involve a second methyltransferase or a factor other than methylation. A second Arabidopsis methyltransferase, *METIIa*, was characterized and compared to *METI*. The two genes are very similar throughout the coding region, and share the location of their eleven introns, indicating that they diverged relatively recently. Both are transcribed in all tissues and at all developmental stages assayed, but the level of expression of *METI* is significantly higher than that of *METIIa*. The possible functions of *METI*, *METIIa*, and other Arabidopsis cytosine methyltransferase genes recently identified are discussed.

Table of Contents

		page
Statement of Or	iginality	ii
Acknowledgem	ents	iii
Abstract		iv
Table of Conter	nts	vi
List of Figures		xi
List of Tables .		xiv
Chapter One	General Introduction	1
1.1 The transiti	on to flowering	1
1.2 The vernali	zation response	3
1.3 Natural var	iation in flowering time and vernalization response	5
1.4 The "classic	cal" late flowering mutants	7
1.5 A model fo	r the control of flowering time	8
1.5.1	Floral repressors	9
1.5.2	The constitutive pathway	13
1.5.3	The photoperiod pathway	15
1.5.4	The vernalization pathway	17
1.6 The role of	gibberellic acid in the response to vernalization	20
1.7 Cytosine m	ethylation	23
1.7.1	Cytosine methylation as genome defense	24
1.7.2	Cytosine methylation and eukaryotic development	25
1.7.3	Cytosine methylation and expression of tissue-specific genes	26
1.7.4	Cytosine methylation and transgene silencing	27
1.7.5	Cytosine methylation and genomic imprinting	32
1.7.6	Endogenous genes regulated by methylation	35
1.7.7	Cytosine methylation and the vernalization response	37
1.8 Cytosine m	1.8 Cytosine methyltransferases	
1.8.1	Prokaryote cytosine methyltransferases	39
1.8.2	Mammalian cytosine methyltransferases	41

1.8.3	Other eukaryote methyltransferases	42
1.8.4	Plant cytosine methyltransferases	43
1.8.5	Cytosine demethylation	45
1.9 Scope of the	esis	48
Chapter Two	Materials and Methods	51
2.1 Plant growt	h conditions for flowering time experiments	51
2.2 Genomic D	NA extractions	51
2.2.1	CsCl gradient method of DNA purification	51
2.2.2	Dellaporta DNA mini-preparation	53
2.2.3	Modified Edwards DNA mini-preparation	54
2.2.4	Klimyuk DNA mini-preparation	55
2.3 Plant genot	yping procedures	55
2.3.1	Southern analysis	55
2.3.2	PCR analysis for presence of NptII gene	56
2.3.3	PCR analysis for nga8 and nga111 microsatellite markers	57
2.3.4	PCR for GAPB CAPS marker	58
2.4 Estimation	of methyl-cytosine levels by thin layer chromatography	58
2.4.1	Sample preparation	58
2.4.2	Thin layer chromatography	60
2.4.3	Analysis of thin layer chromatography	61
2.5 Cloning and	d characterization of METI and METII genomic clones	61
2.5.1	Screening cosmid library	61
2.5.2	Cloning and hybridization procedures	62
2.5.3	PCR for <i>METI</i> introns	63
2.5.4	Sequencing	63
2.6 RNA extrac	ctions and expression studies	64
2.6.1	Total RNA extractions	64
2.6.2	Screening expression libraries	65
2.6.3	Screening expression libraries by PCR for METII	67
2.6.4	RT-PCR for <i>METII</i> and <i>METI</i>	68
2.7 Plant transf	ormation by vacuum infiltration	70

2.7.1	Cloning the METI antisense construct into a binary vector	70
2.7.2	Vacuum infiltration	71
2.7.3	Selection for transformants	72
Chapter Three	The effect of reduced DNA methylation on the flowering time	
and vernalizati	on response of Arabidopsis thaliana	74
3.1 Introduction	۱	74
3.2 Materials an	nd Methods	79
3.2.1	Plant lines	79
3.2.2	Assay for the presence of the transgene	80
3.2.3	Measurement of flowering time	80
3.2.4	Estimation of DNA methylation	81
3.3 Results		82
3.3.1	Plants with decreased DNA methylation flower early	82
3.3.2	Plants from 4 independent METI antisense families flower early	84
3.3.3	The promotion of flowering is correlated with the degree of	
	demethylation	86
3.3.4	Effect of different light conditions and photoperiods on flowering	
	time	90
3.3.5	Decreased methylation does not completely substitute for	
	vernalization	92
3.3.6	Decreased DNA methylation (ddm1) mutant flowers early under	
	short days	94
3.4 Discussion		96
Chapter Four	Effect of demethylation on the flowering time of late flowering	
mutants of Arai	bidopsis thaliana	103
4.1 Introduction	1	103
4.2 Materials ar	nd Methods	107
4.2.1	Introduction of a METI antisense construct into late flowering	
	mutant backgrounds	107
4.2.2	Experiments to measure flowering time	109
4.2.3	Analysis of F3 lines after measurement of flowering time	110

4.3 Results	
4.3.1	Selection of METI antisense-containing lines for the late flowering
	mutants
4.3.2	Vernalization response of late flowering mutant lines
4.3.3	Demethylation caused by METI antisense expression
4.3.4	Effect of demethylation on flowering time of late flowering
	mutants
4.3.5	Effect of <i>FRI</i> on flowering time
4.4 Discussion	
Chapter Five	The role of gibberellic acid in the early flowering response of
METI antisens	e plants
5.1 Introduction	n
5.2 Materials an	nd Methods
5.2.1	Effect of GA ₃ on flowering time of <i>METI</i> antisense plants
5.2.2	Effect of gai mutation on flowering time of METI antisense plants
5.3 Results	
5.3.1	Effect of GA on flowering time of METI antisense plants
5.3.2	Effect of reduced methylation on flowering time of gai mutants
5.4 Discussion	
Chapter Six M	Iultiple cytosine methyltransferase genes in Arabidopsis thaliana
6.1 Introduction	n
6.2 Materials an	nd Methods
6.2.1	Isolation of <i>METII</i> genomic clones
6.2.2	Restriction and hybridization analysis of Ac71 and COS5K
6.2.3	DNA sequencing and sequence analysis
6.2.4	PCR to identify <i>METI</i> intron positions
6.2.5	Protein modeling
6.2.6	Expression studies
6.2.7	Mapping the chromosomal location of <i>METII</i>
6.3 Results	
6.3.1	Sequence analysis of a methyltransferase-like ORF

6.3.2	Arabidopsis has a second DNA methyltransferase gene	151
6.3.3	Methyltransferase domain	153
6.3.4	Amino terminal domain	154
6.3.5	Chromosomal location of METIIa	157
6.3.6	Expression pattern of METI and METIIa	157
6.4 Discussion		160
Chapter Seven	General Discussion	167
7.1 The role of r	nethylation in the vernalization response	167
7.2 Future work		170
7.2.1	Down-regulation of <i>FLC</i> by vernalization and demethylation	170
7.2.2	The role of GA in the vernalization response	175
7.2.3	Other Arabidopsis cytosine methyltransferases	177
7.3 Final conclusions		180
References		

List of Figures

		following page
Figure 1.1	A model of pathways to flowering in Arabidopsis	9
Figure 3.1	Spectra of three fluorescent light sources used in	
	flowering time experiments	81
Figure 3.2	Promotion of flowering in plants from T2 and T3	
	generations of METI antisense transgenic family #10	82
Figure 3.3	Flowering time of vernalized and unvernalized T3 plants	
	of METI antisense line 10.1	83
Figure 3.4	Correlation of methylation level with promotion of	
	flowering by demethylation in lines from families 4, 10,	
	22.6 and 39	88
Figure 3.5	Flowering time of unvernalized plants from lines 10.1 and	
	10.4	89
Figure 3.6	Relationship between the C24 vernalization response and	
	the proportion of that response for which the early	
	flowering response to demethylation substitutes	92
Figure 3.7	A model for passive demethylation through disruption of	
	maintenance methylation during DNA replication	98
Figure 4.1	A model for the transition from vegetative growth to	
	flowering, showing the role of the floral repressor FLC in	
	the autonomous and vernalization pathways	104
Figure 4.2	Crossing and selection procedures	107
Figure 4.3	Polymorphism between C24 and Ler using the GAPB	108
	marker	
Figure 4.4	Identification of F2 plants from crosses between fe or fca,	
	and C24 or METI antisense line T3#10.5, homozygous	
	for the mutant locus	108

Figure 4.5	Days from germination to elongation of primary	
	inflorescence for F3 lines from crosses between fe and	
	either the T3 METI antisense line 10.5 (AMT) or C24	114
Figure 4.6	Days from germination to elongation of primary	
	inflorescences for F3 lines <i>fca</i> -AMT #21 and <i>fca</i> -C24 #1	114
Figure 4.7	Days from germination to elongation of primary	
	inflorescences for F3 lines <i>fca</i> -AMT #21 and <i>fca</i> -C24 #1,	
	showing different FRI genotype classes	118
Figure 5.1	Gibberellin biosynthesis pathways	126
Figure 5.2	Vernalization dependent and independent pathways to	
	flowering	129
Figure 5.3	Effect of vernalization and/or GA3 addition on flowering	
	time of METI antisense and C24 plants	134
Figure 5.4	Days from germination to elongation of primary	
	inflorescence for F1 plants from crosses between Ler and	
	AMT, gai and AMT, and gai and C24	136
Figure 6.1	Structure of the METII coding region	146
Figure 6.2	Structure of METII and METI genes, showing the	
	identical positions of introns II to XI	149
Figure 6.3	Southern analysis of Ac71 clone, showing fragments	
	which hybridize to regions of the METII cDNA clone	150
Figure 6.4	Comparison of the METII RT-PCR product, spanning the	
	predicted position of introns III and IV, with the genomic	
	sequence in this region	152
Figure 6.5	Comparison of the conserved methyltransferase motifs in	
	METI and METII	153
Figure 6.6	Structures of METI and METII predicted proteins,	
	modelled on the structure of M.HhaI	154
Figure 6.7	Alignment of methyltransferase domains of twelve	
	eukaryotic cytosine methyltransferases	154

Figure 6.8	Alignment of amino-terminal domains of eight plant	
	cytosine methyltransferases	155
Figure 6.9	Dotplot comparison of the mouse Dnmt1 and Arabidopsis	
	METIIa amino terminal domains	157
Figure 6.10	Detection of an RFLP for Ac71	157
Figure 6.11	Linkage map of Arabidopsis chromosome 4	157
Figure 6.12	DNA sequence downstream of the METIIa gene,	
	containing a second open reading frame	158
Figure 6.13	Products of RT-PCR with primers specific to METII	158
Figure 6.14	RT-PCR products for METI and METII	159
Figure 6.15	Southern analysis of METI and METII RT-PCR gels	159
Figure 7.1	Alternative models of pathways to flowering, focusing on	
	the mode of regulation of FLC through the vernalization	
	and autonomous pathways	172

List of Tables

		following page
Table 2.1	Primers flanking putative introns in METI	63
Table 3.1	Plant lines and growth conditions for experiments to	
	measure flowering time	80
Table 3.2	Days from germination to elongation of primary	
	inflorescence for METI antisense plants grown in	
	Experiment One	82
Table 3.3	Days from germination to elongation of primary	
	inflorescence for METI antisense plants grown in	
	Experiment Two	84
Table 3.4	Days from germination to elongation of primary	
	inflorescence for METI antisense plants grown in	
	Experiment Three	84
Table 3.5	Days from germination to elongation of primary	
	inflorescence for METI antisense plants grown in	
	Experiment Four	86
Table 3.6	Days from germination to elongation of primary	
	inflorescence for METI antisense plants grown in	
	Experiment Five	86
Table 3.7	Days from germination to elongation of primary	
	inflorescence for METI antisense plants grown in	
	Experiment Six	90
Table 3.8	Days from germination to elongation of primary	
	inflorescence for METI antisense plants grown in	
	Experiment Seven	90
Table 3.9	Promotion of flowering in METI antisense transgenic	
	lines as a proportion of the C24 vernalization response	
	under different light spectra	92

Table 3.10	Days from germination to elongation of primary	
	inflorescence for <i>ddm1</i> plants grown in long or short	
	photoperiods	95
Table 4.1	F2 plants generated from crosses of late flowering	
	mutants fe and fca with METI antisense line T3#10.5	
	(AMT) and C24 wildtype	112
Table 4.2	5-methylcytosine levels in F3 plants from crosses of late	
	flowering mutants fe and fca with METI antisense line	
	T3#10.5	115
Table 4.3	Flowering behaviour of unvernalized and vernalized F3	
	plants of four lines from crosses of <i>fe</i> with AMT or C24	116
Table 4.4	Flowering behaviour of unvernalized and vernalized F3	
	plants of two lines from crosses of <i>fca</i> with AMT or C24	118
Table 5.1	Analysis of flowering time of F1 plants from crosses	
	between gai and either AMT or C24, and between Ler	
	and AMT	136

Dedicated to my dear mother

Kathleen Elizabeth Genger

1929 - 1994

and my loving father

Johannes Jacobus Genger