Minimising the Decoherence of Rare Earth Ion Solid State Spin Qubits

Elliot Fraval

A thesis submitted for the degree of Doctor of Philosophy of the Australian National University

The Australian National University
July 2005
Statement of authorship

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university. To the best of the author’s knowledge and belief, it contains no material previously published or written by another person, except where due reference is made in the text.

Elliot Fraval
August 22, 2006
“In the beginning the Universe was created. This made a lot of people very angry and has been widely regarded as a bad move.”

– Douglas Adams
Acknowledgements

Firstly, I would like to thank my primary supervisor Matt Sellars. I have thoroughly enjoyed working with Matt and have come to respect his talent for problem solving and enthusiasm for this area of physics. I’d also like to thank Neil Manson who as my supervisor and the head of our group has been fundamental in creating the excellent working environment within the Solid State Spectroscopy group. Their interest in not just physics but life in general has contributed greatly to the experience of my study.

Particular thanks go to the Laser Physics Centre technicians, without whom the project would simply not have happened. Many thanks to Ian McRae, the god of all cryostats, John Bottega for his award winning singing, comedy, liquid helium and, like Craig McLeod, his invaluable hands. Thanks for helping me out in the workshop to get my head around the vast array of tools.

It has been a pleasure to share an office with Jevon Longdell and Jo Harrison. I thank both of them for putting up with my atonal singing, extreme musical taste and slapping out the occasional funk bass line to keep me sane in the lab. Big thanks to the lunch time crew for their laughs and bizarre conversational tangents pursued well beyond their reasonable ends.

Big thanks and group hugs to all of my muso friends that have helped me keep the correct balance of sanity and lack of it with the free psychiatry that playing original music is. In particular Nic, Marky, Dan and Candie that make up the rest of eyTis as well as the indominable Red Rocko and The Whalebone from The Milk. Youse guys rock! Thanks for keepin it real in the arts end of town :)

Last but by no means least thanks to all of my family and friends that have had to put up with me over the last few years. Definitely thanks to Irma for her editorial prowess and Amelie for her abstract corrections. To those friends I haven’t had the spare time for I will call.... no really, I will!

Elliot Fraval
July 2005
Abstract

This work has demonstrated that hyperfine decoherence times sufficiently long for QIP and quantum optics applications are achievable in rare earth ion centres. Prior to this work there were several QIP proposals using rare earth hyperfine states for long term coherent storage of optical interactions [1, 2, 3]. The very long T_1 (∼weeks [4]) observed for rare-earth hyperfine transitions appears promising but hyperfine T_2s were only a few ms, comparable to rare-earth optical transitions and therefore the usefulness of such proposals was doubtful.

This work demonstrated an increase in hyperfine T_2 by a factor of ∼7 × 104 compared to the previously reported hyperfine T_2 for Pr$^{3+}$:Y$_2$SiO$_5$ through the application of static and dynamic magnetic field techniques. This increase in T_2 makes previous QIP proposals useful and provides the first solid state optically active Λ system with very long hyperfine T_2 for quantum optics applications.

The first technique employed the conventional wisdom of applying a small static magnetic field to minimise the superhyperfine interaction [5, 6, 7], as studied in chapter 4. This resulted in hyperfine transition T_2 an order of magnitude larger than the T_2 of optical transitions, ranging from 5 to 10 ms. The increase in T_2 was not sufficient and consequently other approaches were required.

Development of the critical point technique during this work was crucial to achieving further gains in T_2. The critical point technique is the application of a static magnetic field such that the Zeeman shift of the hyperfine transition of interest has no first order component, thereby nulling decohering magnetic interactions to first order. This technique also represents a global minimum for back action of the Y spin bath due to a change in the Pr spin state, allowing the assumption that the Pr ion is surrounded by a thermal bath. The critical point technique resulted in a dramatic increase of the hyperfine transition T_2 from ∼10 ms to 860 ms.

Satisfied that the optimal static magnetic field configuration for increasing T_2 had been achieved, dynamic magnetic field techniques, driving ei-
ther the system of interest or spin bath were investigated. These techniques are broadly classed as Dynamic Decoherence Control (DDC) in the QIP community. The first DDC technique investigated was driving the Pr ion using a CPMG or *Bang Bang* decoupling pulse sequence. This significantly extended T_2 from 0.86 s to 70 s. This decoupling strategy has been extensively discussed for correcting phase errors in quantum computers [8, 9, 10, 11, 12, 13, 14, 15], with this work being the first application to solid state systems.

Magic Angle Line Narrowing was used to investigate driving the spin bath to increase T_2. This experiment resulted in T_2 increasing from 0.84 s to 1.12 s. Both dynamic techniques introduce a periodic condition on when QIP operation can be performed without the qubits participating in the operation accumulating phase errors relative to the qubits not involved in the operation.

Without using the critical point technique Dynamic Decoherence Control techniques such as the *Bang Bang* decoupling sequence and MALN are not useful due to the sensitivity of the Pr ion to magnetic field fluctuations. Critical point and DDC techniques are mutually beneficial since the critical point is most effective at removing high frequency perturbations while DDC techniques remove the low frequency perturbations. A further benefit of using the critical point technique is it allows changing the coupling to the spin bath without changing the spin bath dynamics. This was useful for discerning whether the limits are inherent to the DDC technique or are due to experimental limitations.

Solid state systems exhibiting long T_2 are typically very specialised systems, such as 29Si dopants in an isotopically pure 28Si and therefore spin free host lattice [16]. These systems rely on on the purity of their environment to achieve long T_2. Despite possessing a long T_2, the spin system remain inherently sensitive to magnetic field fluctuations. In contrast, this work has demonstrated that decoherence times, sufficiently long to rival any solid state system [16], are achievable when the spin of interest is surrounded by a concentrated spin bath. Using the critical point technique results in a hyperfine state that is inherently insensitive to small magnetic field perturbations and therefore more robust for QIP applications.
Contents

Acknowledgements vii

Abstract ix

1 Introduction: From Classical to Quantum Information 1

1.1 Classical Information Processing 2
1.1.1 Theoretical Developments 2
1.1.2 Towards Quantum Hardware 4
1.1.3 Information goes Quantum 5
1.1.4 The Power of Hilbert Space 7
1.2 Quantum Computing Requirements 8
1.3 The Two Level Atom .. 10
1.3.1 The Density Matrix 12
1.3.2 Dynamics on the Bloch Sphere 14
1.3.3 Quantum Process Tomography 16
1.4 Decoherence .. 19
1.4.1 System Bath Interactions 20
1.4.2 Decoherence on the Bloch Sphere 22
1.5 Error Correction ... 23
1.5.1 Quantum Error Correction Codes 24
1.5.2 Decoherence Free Subspaces 25
1.5.3 Dynamic Decoherence Control 25
1.5.4 A Quiet Corner of Hilbert Space 26
1.6 Why the Rush? ... 27
1.7 Other application and fundamental interest 27

2 Rare Earth Ion Spectroscopy 29

2.1 Introducing The Lanthanides 30
2.2 4f Energy Levels ... 32
2.3 Hyperfine Interaction ... 34
2.3.1 Yttrium Orthosilicate: The Gracious Host 36
8 Future Decoherence Challenges
8.1 Exchanging Praseodymium for Europium 124
8.2 Stoichiometric Materials . 125
8.3 Considerations for QIP in Stoichiometric Materials 126
8.4 Minimising Decoherence in Stoichiometric Defect QIP Systems 127

9 Conclusions and Future Work 129
9.1 Strategies for Further Increases in Decoherence Time . . . 132
9.1.1 Improved RF Control . 132
9.1.2 Rabi Frequency and Inhomogeneous Broadening 132
9.1.3 Eulerian Decoupling . 133
9.2 Other Applications For Long T_2 Optically Active Solids 133
9.2.1 Slow and Stopped Light 133
9.2.2 Stark Echo Quantum Memory 134

Appendices . 135
A Y$_2$SiO$_5$ site position calculation 136
B Full Critical Point List . 150
C Published Papers . 153

Bibliography 175