The Preservation and Sustainability of Research Data

Dr Markus Buchhorn,
Director, ICT Environments
Australian National University;

Formerly:
Head, ANU Internet Futures
Grid Services Architect, APAC
Grid Services Coordinator, Grangenet

This talk is based in parts on the “AERES” survey and report for APSR with Paul McNamara: www.apsr.edu.au
Research Data

- This is not about publications but primary, derived or simulated data,
 - Which (may) lead to publication
 - Scholarly inputs and outputs

- Why is it different?
 - Data has a very different lifestyle

- Why is it hard?
 - Data has very different, and more complex, problems

- E-Research infrastructure?
 - Transparent and appropriate access to all resources,
 - to enhance research processes and build greater knowledge
We sort of **know** this…

- **A (good) Repository**
 - is the sum of these things, and more…
 - Interfaces and services for management and curation, processes, security, standards, support, etc.
...and we can **architect** things around it...

Repository Federation

- IRP
- Metadata-flows
- "Portal" or Federation interface

AAA Services

- AAA flows

AAA flows

Users
- Computing
- Collaboration
- Visualisation

Access protocols

Queries, Curation

This all applies even with a single repository
...and we can identify the services
We can classify the processes.

Version 5.1
Markus Buchhorn
Let’s look at Application Areas

- Geosciences
 - Minerals, oils and gases, tectonics, Govt, Surveys, Industry
 - Many data sources (spatial and physical) and simulations

- Bioinformatics
 - Genomics, proteomics, …
 - Public datasets, private queries, private annotations

- Chemistry
 - Simulation, need data services mainly

- High Energy Physics
 - Large expensive instruments, projects
 - Massive data, computation and simulation

- Earth Systems Sciences
 - Massive remote sensing data sets, large and complex simulations

- Astronomy
 - Big data, complex reduction process, big simulations, long-term research
Application Areas - 2

- **Financial**
 - Many sources, Stock/Financial exchanges, news, ...
 - Timeliness and also long time scales are both important

- **Music, Arts, Sports**
 - Performance and creation, formal and practice
 - Education focus

- **Linguistics, Musicology**
 - Archives of digitised cultural material
 - Complex analyses

- **Social Science Data**
 - Census, health, surveys, ...
 - Complex data structures, qualitative data

- **Archaeology**
 - Digitised physical materials, spatial and chronological data
Consider just *some* of the issues…

- **Sustainability of data**
 - Data formats, Simplex vs Complex (compound) objects
 - Software (Algorithms, implementations, OS)
 - Versioning (Recalculation, interpretation, validation, derivatives)
 - Underlying infrastructure (hard and soft)

- **Describing data: Metadata**
 - Varied research schemas (1 is nice, but most have zero or five…)
 - Scientific description can be itself contentious…
 - Many types: (Provenance and processing, Preservation, curation and valuation, Subjective metadata, annotations)

- **Rights around data:**
 - Needs Authentication and Authorisation to be working, and to scale
 - Requires *identities* and *roles* to be understood
 - Privacy, Security
 - Ownership - Not always (almost never!) with the researcher
 - Time-varying (Data sourced under old agreements, people die, agreements expire, …)
So why do this anyway?

- Create opportunities
 - For re-analysis, re-use; expected or otherwise

- Solve problems
 - Waste of $$, people and collection effort
 - Loss of irretrievable data
 - Inability to verify research

- Requirements (have to do it)
 - National good, cultural heritage, input to policy
 - Reference materials
 - Atlas, catalogues, …

- Value not just in collection but in accessibility
Is it happening already?

- Data re-use/re-analysis
 - Ever more examples, some very good, some horror stories…
 - Policy conflicts
 - Data must be kept
 - Data must be deleted (ethics; anything involving people)

- But…
 - New culture
 - This data has value outside of my domain, or after my project?
 - New capabilities, provided by the Internet
 - Discovery of who has useful data
 - Accessibility of useful data
 - New data is easier to cope with than old data
 - Introduce new workflows and processes starting now
 - Recover old data as/when needed
 - New (and old) fears by users (see later)
Some of the players: Government and funders

- **Strengths:** Control $$ and Policy,
 - and some data (ABS, BoM, GA, RTA, AADC. …)

- **Weaknesses:**
 - Policy politely suggests publicly-funded data should be well managed and appropriately accessible
 - No *teeth*, no *infrastructure*, no *recognition* if done
 - Funding is *project oriented*, infrastructure is *systemic*?
 - One-off grant for lifetime support?
Opportunities:
- Effective and coordinated policy, with $$ to back it up
- Build coordinated, sustainable infrastructure; skills, expertise
- Increase research effectiveness and leverage of $$ investment

Threats:
- Loss of irretrievable data
- Waste of $$ and effort in collecting the same data
- Insufficient data for policy input
 - Environment, healthcare, education, security, …
- Loss of research effectiveness; other countries are doing this
 - UK, US, Asia (Taiwan, Korea, …)
Another key player: Organisations, Institutions

- Not just Universities
- Employ the staff that collect the data
- Manage the funds acquired by staff
- May have obligations,
 - Probably “own” the data
 - Long-term support (beyond staff tenure)
 - Moral and legal (is research data a ‘record’?)
- But have pressures to leverage their work…
And Users, who are *human*...

- **Fear of missed “nuggets” in their data**
 - Milk it for everything, for ever and ever
- **Fear of missed errors**
 - Probably varies by domain and career-stage
- **Fear inappropriate leaks**
 - Privacy/ethics,
 - first-to-market,
 - relationship to data providers (drug users, fishermen, …)
- **Fear the cost of effort**
 - Takes time (and money) away from what they’re good at
- **Fear lack of recognition**
 - I’ve done it for the national good, how about some accolades?
- **Fear of trusting somebody else’s data**
 - That person, or their repository may have done something wrong
- **Fear unknown custodians/stewards**
 - Can’t do as good a job as my PhD students
Recognition

- “We” require data to be effectively deposited
 - But don’t have anything to back up this requirement

- Implies an effective *place to* deposit
 - Recognition (certification) of repositories
 - How good, and how sustainable? What are the metrics?

- Implies an effective *process of* deposit
 - Recognition of the deposit effort
 - How well is it deposited? 1 star deposit into a 5 star repository?
 - Recognition of the deposit content
 - Depositor gets recognition, somewhat like a paper
 - Which requires a sufficiently good effort, and a citable repository
 - Interesting question of who “owns” the data, and hence accrues recognition

- Who carries out recognition, certification?
 - Domain-specific skills, technology-specific skills
 - Curation, preservation skills
Skills – and the lack of them

• In Australia, and globally
 • Skills around discipline-specific data management
 • Need to learn from researchers what their issues are
 • Skills around generic data management
 • Need to learn library/archive skills for non-publication materials

• Need more “translators”
 • Who seem to come from disciplines and not from IT or IM
 • And more from Humanities/Social Sciences than Physical Sciences
 • Who seem to have given up academic careers
 • How can we create more of them?
 • And the generic research data curators?
Valuation – what to keep?

- Ideal model keeps everything, for ever
- Pragmatism dictates some data deletion
 - Who has, or wants, that responsibility?
- Cost is going down
 - Storage (physical media) is getting cheaper
 - Processes for management are starting to scale
 - Keeping everything is becoming reasonable
 - Keeping it for ever is becoming manageable

- **BUT:** May not be able to manufacture fast enough…
 - *Peak Storage Capability, like Peak Oil?*
Sustainability

- Follow the $$$

- Govt top-slice, or top-up to institution/user
 - Fund fewer people to do more things?
 - Fund the same number to do more with less?
 - Create a whole new funding stream?

- Institutional top-slice, or top-up
 - Same questions.

- Leave it to users/communities
 - Where there’s a will, …
 - But we need to support areas where there isn’t a will yet
Implementation?

- Get users out of data management at some level
 - Scale costs on infrastructures, services and skills that are sufficiently common

- Deal with user fears
 - Some of it needs education, some of it needs trust to be established

- Users provide domain specific skills and domain policies
 - Coordination role within a domain – required!
 - But need technical backing when it crosses some boundary
Who is thinking about this?

- Institutions and partnerships: APSR and other groups
- Govt: DEST, PMSEIC, NCRIS (SII), eResearch-CC, Productivity Commission, ...
- Funders and managers: ARC, NHMRC, AVCC/UA, ...

NCRIS:
- Emerging Australian National Data Service (ANDS)
 - Programs around: Policies, key services, repository management, and research practices
 - Foundation set of key services enabling the creation of a national data commons

Here’s hoping…