BEYOND FRAGMENTATION:
LIZARD DISTRIBUTION PATTERNS IN
TWO PRODUCTION LANDSCAPES AND THEIR IMPLICATIONS
FOR CONCEPTUAL LANDSCAPE MODELS

Joern Fischer

A thesis submitted for the degree of Doctor of Philosophy of
The Australian National University (July 2004)

CENTRE FOR RESOURCE & ENVIRONMENTAL STUDIES
THE AUSTRALIAN NATIONAL UNIVERSITY, CANBERRA
DECLARATION

This thesis is my own work except where otherwise acknowledged (see Acknowledgements and Preface).

Joern Fischer
July 2004.
ACKNOWLEDGEMENTS

First, I would like to thank my supervisory panel. I am grateful to David Lindenmayer for his supervision, guidance, and support, which has greatly assisted my professional development. I would also like to thank Ann Cowling for her supervision and statistical advice, particularly during the first half of my PhD. Scott Keogh acted as an advisor on my supervisory panel, and his comments were particularly helpful during the design phases of my field projects.

I am also thankful to other collaborators who devoted time and thought to various aspects of my work. Simon Barry provided very helpful advice on the analysis of data from the Tumut survey. The collaborative contributions of Ioan Fazey, Robyn Briese and Emily Flowers are outlined in detail in the Preface of this thesis, and I greatly appreciate their input.

I am grateful to everyone at the ANU’s Centre for Resource and Environmental Studies for making it such a friendly, flexible and inspiring workplace. I am particularly thankful for numerous discussions on various ecological and non-ecological issues with Ross Cunningham, Ioan Fazey, Annika and Adam Felton, Sandy Gilmore, Ben Gilna, Donna Hazell, Adrian Manning, Henry Nix, Glenn Sannecki, Darius Tubelis, Adrian Wayne, and David Wilson. In addition, I would like to thank all general staff at CRES, who do a great job of keeping the centre going whilst providing outstanding administrative and technical support.

This research would not have been possible without financial support. I was a grateful recipient of an Australian Postgraduate Award, and am particularly thankful for additional financial support from the ANU Endowment for Excellence. Project funding is acknowledged at the end of every chapter, and was obtained from the Australian Society of Herpetologists, the Ecological Society of Australia, the Linnean Society of New South Wales, and the Royal Zoological Society of New South Wales. In kind support was provided by State Forests of New South Wales – I am particularly grateful to Matthew Pope, Roger Davies, Jason Vincent and Ed Merrett for their help and time at various stages of my PhD.
Similarly, I thank the farmers who allowed me to survey their properties for reptiles, particularly Ken Skinner, Nick and Sally Keatinge and Vivan MacWhinney.

I am also grateful to many people who have helped me during various stages of my field work. The time, effort, and enthusiasm put in by Jenny Burmester, Junko Kondo, Emily Flowers, John Tabor, Bradd Johnson, and Suzi Bond were particularly noteworthy. Other helpers also made fantastic contributions, including Robyn Briese, Jane Bryan, Tom Burmester, Angela Dennis, Ioan Fazey, Matt Forrester, Michelle Gilbert, Melissa Griffin, Donna Hazell, Juliana Lazzari, Salim Mazouz, Adrian Wayne, David Wilson, and Dave Wong. Mason Crane, Chris MacGregor and Damian Michael provided helpful comments on field-related aspects of my work at various stages.

Many people have read various parts of this thesis or provided constructive criticism in other ways. I would like to thank all journal editors and peer reviewers who have been involved with the review of chapters in this thesis. Mike Austin enthusiastically discussed continuum theory with me, and encouraged me to pursue my ideas of applying the theory to animal ecology. I would also like to thank Karl Nissen for his help with using a Geographical Information System, and Sharon Downes for useful discussions on reptile ecology.

Last but not least, I would like to thank my family and friends for supporting me throughout my PhD, especially at some of the more turbulent times. I deeply appreciate their love, faith and encouragement.

Ethics approval for live trapping and marking animals was obtained by the Animal Experimentation Ethics Committee at the Australian National University. Relevant permits from State Forests of New South Wales and New South Wales National Parks and Wildlife Service also were obtained.
PREFACE

With the exception of Chapter 1 (Introduction) and Chapter 10 (Conclusion), this thesis is presented as a series of logically connected manuscripts, which have been published or have been submitted for publication. The content of published papers is presented as it appears in the journal acknowledged at the beginning of a given chapter, with the exception of minor stylistic changes. For example, the labelling of tables and figures was changed for consistency (e.g. Figure 1 from the paper presented in Chapter 2 was re-labelled to Figure 2.1 etc.). In all cases, the copyright of published papers is held by the journals, and permission was obtained to reproduce the papers in this thesis.

The vast majority of work on all papers was carried out by the primary author (JF), including literature searches, data collection, data analysis and manuscript write-up. However, all papers or manuscripts list other workers as co-authors to acknowledge their contributions to specific aspects of different papers. David Lindenmayer made useful contributions to all manuscripts, through helpful discussions, proof-reading, and in some cases providing data from his own work (Chapter 8, Appendices 1-3). Ann Cowling provided statistical and technical advice on the experimental design and data analysis presented in Chapters 2 and 3. Similarly, Simon Barry provided statistical advice on the analyses presented in Chapters 4 and 5. Ioan Fazey contributed to Chapters 7 and 8 by discussing important concepts with me, drafting some paragraphs of an initial version of the manuscript and proof-reading later versions. Robyn Briese contributed her legal knowledge to Chapter 7, wrote the corresponding section of an earlier version of the manuscript, and proof-read the final manuscript. Emily Flowers is listed as a co-author for Chapters 4 and 5 because she contributed several weeks of outstanding assistance in the field.

Because core chapters of this thesis are intended as stand-alone pieces of work for publication in scientific journals, some repetition between chapters was unavoidable. In addition, minor stylistic differences between chapters resulted from different journals’ requirements. For example, depending on the journal a chapter was written for, chapters may begin with an “abstract” or a “summary” respectively. Similarly, although Australian
spelling is used for the vast majority of the thesis, some chapters were targeted at American journals and therefore use American English.

ABSTRACT

Fauna conservation outside protected areas can make an important complementary contribution to conservation within reserves. This thesis aimed to contribute new information and analytical frameworks to the science of fauna conservation in human-modified landscapes. Two approaches were used: (1) empirical data collection and analysis, and (2) the discussion and development of conceptual landscape models.

Empirical work focused on lizard distribution patterns in two production landscapes in southeastern Australia. Lizards were targeted because ectotherms are frequently neglected by conservation biologists. The “Nanangroe grazing landscape” was used for sheep and cattle grazing. In this landscape, approximately 85% of pre-European woodland cover had been cleared, and understorey vegetation was sparse. Lizards were surveyed at 16 landscape units, which were stratified by aspect, topographic position and amount of tree cover. Each landscape unit contained three sites, and each site contained three plots. Regression modelling showed that different species responded differently to their environment. For example, the four-fingered skink (*Carlia tetradactyla*) and Boulenger’s skink (*Morethia boulengeri*) were more likely to occur at woodland sites with northerly aspects, whereas the striped skink (*Ctenotus robustus*) and olive legless lizard (*Delma inornata*) were more likely to inhabit sites with a simple microhabitat structure. Statistical analysis further showed that the habitat attributes that lizards were related to varied continuously through space, and over different spatial scales. For example, invertebrate abundance (a proxy for food availability) varied most strongly over tens of metres, whereas the amount of grass cover varied most strongly over hundreds to thousands of metres. Thus, work at Nanangroe revealed spatially complex patterns of lizard occurrence and habitat variables.

The “Tumut plantation landscape” was a spatial mosaic of native eucalypt (*Eucalyptus*) forest patches embedded within a plantation of the introduced radiata pine (*Pinus radiata*). In this landscape, thirty sites were surveyed for lizards. Sites were stratified by forest type and patch size, and included eucalypt patches, pine sites, and extensive areas of eucalypt forest adjacent to the plantation. Regression modelling showed that lizard species responded
to various habitat attributes, including elevation, the amount of eucalypt forest within 1 km of a site, invertebrate abundance and ground cover. Variables related to habitat fragmentation often were significant predictors of lizard occurrence. However, work at Tumut suggested that important additional insights into lizard distribution patterns could be obtained by considering variables related to food and shelter resources, and climatic conditions.

The Nanangroe and Tumut landscapes were in close proximity, but together spanned an altitudinal gradient of 900 m. An investigation of changes in lizard community composition with altitude showed that (1) only one species was common to Nanangroe and Tumut, (2) different species had different altitudinal preferences, and (3) ecologically similar species replaced one another with increasing altitude. These results highlighted that even in highly modified landscapes, natural gradients (such as climate) can play an important role in shaping animal assemblage composition and species distribution patterns.

Empirical work suggested that, in some landscapes, the frequently used “fragmentation model” is a relatively weak conceptual basis for the study of animal distribution patterns. The fragmentation model implicitly assumes that “habitat patches” can be defined unequivocally across many species, and that patches are located within a relatively inhospitable matrix. Where these assumptions are breached, conservation guidelines arising from the fragmentation model may be too simplified. In spatially complex production landscapes, it may be more appropriate to maintain habitat heterogeneity at multiple spatial scales than to focus solely on the management of large, pre-defined patches.

Given the potential limitations of the fragmentation model, a new, more holistic landscape model was developed. The “continuum model” was derived from continuum theory as developed for plant ecology. The continuum model recognises (1) spatial continua of environmental variables, and (2) species’ individualistic responses to these variables. For animals, key environmental variables may be related to the availability of food, shelter, sufficient space, and suitable climatic conditions. Unlike the fragmentation model, the continuum model is inherently process-based and thus may help to link the perceived gap between patterns and processes in landscape ecology.

Three general conclusions arise from this thesis:

1. Some heterogeneous production landscapes support many native species, and therefore represent important conservation opportunities.
2. In some modified landscapes, the fragmentation model does not capture the complexity of animal distribution patterns. In those landscapes, conservation recommendations derived from the fragmentation model may be overly simplistic.
3. The continuum model may be a useful extension of the fragmentation model. It provides a process-based conceptual basis for empirical work on animal distribution patterns.
TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION ... 1
 1.1. BACKGROUND .. 1
 1.2. THE CASE FOR OFF-RESERVE CONSERVATION ... 1
 1.3. OBJECTIVE AND AIMS .. 2
 1.4. THESIS STRUCTURE .. 3

SECTION A: EMPIRICAL INVESTIGATIONS .. 5

CHAPTER 2: THE CHALLENGE OF MANAGING MULTIPLE SPECIES AT MULTIPLE SCALES: REPTILES IN AN AUSTRALIAN GRAZING LANDSCAPE .. 7
 2.1. SUMMARY ... 7
 2.2. INTRODUCTION ... 8
 2.3. METHODS .. 9
 2.3.1. Study site .. 9
 2.3.2. Experimental design .. 9
 2.3.3. Survey protocol .. 11
 2.3.4. Covariates used in the analysis .. 11
 2.3.5. Data analysis .. 12
 2.4. RESULTS ... 14
 2.4.1. Principal components analyses ... 14
 2.4.2. Logistic regression models ... 16
 2.4.3. Species richness .. 25
 2.4.4. Components of variance of habitat variables .. 25
 2.5. DISCUSSION .. 27
 2.5.1. Habitat relationships .. 27
 2.5.2. A spatially nested survey design .. 28
 2.5.3. Implications for conceptual landscape models ... 29
 2.5.4. Conservation implications ... 31
 2.6. CONCLUSION .. 31
 2.7. ACKNOWLEDGEMENTS ... 32

CHAPTER 3: HABITAT MODELS FOR THE FOUR-FINGERED SKINK (CARLIA TETRADAECTYLA) AT THE MICROHABITAT AND LANDSCAPE SCALE .. 33
 3.1. ABSTRACT .. 33
 3.2. INTRODUCTION .. 34
 3.3. THE TARGET SPECIES .. 34
 3.4. STUDY AREA .. 35
 3.5. METHODS ... 35
 3.5.1. Experimental design ... 35
 3.5.2. Survey protocol .. 36
 3.5.3. Habitat quantification ... 37
3.5.4. Data analysis

3.6. RESULTS

3.6.1. Habitat models

3.6.2. Co-occurrence model

3.6.3. Body condition and tail loss

3.7. DISCUSSION

3.7.1. Landscape-scale habitat and microhabitat requirements

3.7.2. Habitat used by adults and juveniles

3.7.3. Co-occurrence with other species

3.7.4. Body condition and tail loss

3.7.5. Currently common – forever safe?

3.8. CONCLUSION

3.9. ACKNOWLEDGEMENTS

CHAPTER 4: LIZARD DISTRIBUTION PATTERNS CHALLENGE THE FRAGMENTATION PARADIGM IN AN AUSTRALIAN PLANTATION LANDSCAPE. 1. AGGREGATE MEASURES OF LIZARD OCCURRENCE

4.1. ABSTRACT

4.2. INTRODUCTION

4.3. METHODS

4.3.1. Study area and experimental design

4.3.2. Survey protocol

4.3.3. Explanatory variables for regression analyses

4.3.4. Response variables for regression analyses

4.3.5. Regression analyses

4.3.6. Nestedness analysis

4.4. RESULTS

4.4.1. Overview

4.4.2. Regression Analyses

4.5. DISCUSSION

4.5.1. Consistency of site and plot-level analyses

4.5.2. Lizard biomass and abundance

4.5.3. Lizard species composition and species richness

4.5.4. Expanding the fragmentation paradigm

4.6. ACKNOWLEDGEMENTS

CHAPTER 5: LIZARD DISTRIBUTION PATTERNS CHALLENGE THE FRAGMENTATION PARADIGM IN AN AUSTRALIAN PLANTATION LANDSCAPE. 2. IS CONTINUUM THEORY A VIABLE ALTERNATIVE?

5.1. ABSTRACT

5.2. INTRODUCTION

5.3. METHODS

5.3.1. Study area and experimental design

5.3.2. Lizard and habitat surveys

5.3.3. Re-framing continuum theory for animal ecology

5.3.4. Data analysis

5.4. RESULTS

5.4.1. Common species: abundance models

5.4.2. Moderately common species: presence models

5.4.3. Uncommon species: presence models

5.5. DISCUSSION

5.5.1. Consistency with community level analyses

5.5.2. The continuum concept for fauna in modified landscapes

5.5.3. Conservation implications

5.6. CONCLUSION

5.7. ACKNOWLEDGEMENTS

CHAPTER 6: THE SENSITIVITY OF LIZARDS TO ELEVATION: TWO CASE STUDIES AT THE LANDSCAPE SCALE
<table>
<thead>
<tr>
<th>Section/Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.</td>
<td>INTRODUCTION</td>
<td>110</td>
</tr>
<tr>
<td>6.3.</td>
<td>THE TARGET LANDSCAPES AND THEIR TEMPERATURE REGIMES</td>
<td>111</td>
</tr>
<tr>
<td>6.4.</td>
<td>METHODS</td>
<td>112</td>
</tr>
<tr>
<td>6.4.1.</td>
<td>Datasets</td>
<td>112</td>
</tr>
<tr>
<td>6.4.2.</td>
<td>Data analysis</td>
<td>113</td>
</tr>
<tr>
<td>6.5.</td>
<td>RESULTS</td>
<td>115</td>
</tr>
<tr>
<td>6.6.</td>
<td>DISCUSSION</td>
<td>117</td>
</tr>
<tr>
<td>6.6.1.</td>
<td>Overview</td>
<td>122</td>
</tr>
<tr>
<td>6.6.2.</td>
<td>Biological attributes of lizards</td>
<td>122</td>
</tr>
<tr>
<td>6.6.3.</td>
<td>Species composition and species richness</td>
<td>123</td>
</tr>
<tr>
<td>6.6.4.</td>
<td>Conservation implications</td>
<td>124</td>
</tr>
<tr>
<td>6.7.</td>
<td>CONCLUSION</td>
<td>124</td>
</tr>
<tr>
<td>6.8.</td>
<td>ACKNOWLEDGEMENTS</td>
<td>124</td>
</tr>
<tr>
<td>7.1.</td>
<td>ABSTRACT</td>
<td>129</td>
</tr>
<tr>
<td>7.2.</td>
<td>INTRODUCTION</td>
<td>130</td>
</tr>
<tr>
<td>7.3.</td>
<td>REPTILES AND BIRDS IN THE NANANGROE GRAZING LANDSCAPE</td>
<td>130</td>
</tr>
<tr>
<td>7.4.</td>
<td>ECOLOGICAL FUNCTIONS OF THE MATRIX</td>
<td>137</td>
</tr>
<tr>
<td>7.4.1.</td>
<td>A soft matrix can provide habitat</td>
<td>137</td>
</tr>
<tr>
<td>7.4.2.</td>
<td>A soft matrix can enhance connectivity</td>
<td>138</td>
</tr>
<tr>
<td>7.4.3.</td>
<td>A soft matrix can link multiple habitats for a given species</td>
<td>139</td>
</tr>
<tr>
<td>7.4.4.</td>
<td>The matrix samples the most productive parts of the environment</td>
<td>140</td>
</tr>
<tr>
<td>7.5.</td>
<td>CURRENT CONSERVATION PRACTICES AND THE FUTURE OF THE MATRIX</td>
<td>141</td>
</tr>
<tr>
<td>7.5.6.</td>
<td>Ways forward</td>
<td>142</td>
</tr>
<tr>
<td>7.6.</td>
<td>BARRIERS TO MATRIX MANAGEMENT</td>
<td>144</td>
</tr>
<tr>
<td>7.6.1.</td>
<td>Economic and historical constraints</td>
<td>142</td>
</tr>
<tr>
<td>7.6.2.</td>
<td>Legal constraints</td>
<td>143</td>
</tr>
<tr>
<td>7.6.3.</td>
<td>Scientific constraints</td>
<td>144</td>
</tr>
<tr>
<td>7.6.7.</td>
<td>Opportunities for change: understanding the legal framework</td>
<td>145</td>
</tr>
<tr>
<td>7.6.7.1.</td>
<td>Communicating complexity and urgency</td>
<td>146</td>
</tr>
<tr>
<td>7.6.7.3.</td>
<td>The need for practical research</td>
<td>147</td>
</tr>
<tr>
<td>7.8.</td>
<td>CONCLUSIONS</td>
<td>147</td>
</tr>
<tr>
<td>7.9.</td>
<td>ACKNOWLEDGEMENTS</td>
<td>148</td>
</tr>
<tr>
<td>8.1.</td>
<td>ABSTRACT</td>
<td>149</td>
</tr>
<tr>
<td>8.2.</td>
<td>INTRODUCTION</td>
<td>150</td>
</tr>
<tr>
<td>8.3.</td>
<td>THE FRAGMENTATION AND VARIEGATION MODELS</td>
<td>151</td>
</tr>
<tr>
<td>8.4.</td>
<td>A CONTOUR-BASED LANDSCAPE MODEL</td>
<td>155</td>
</tr>
<tr>
<td>8.4.1.</td>
<td>Four potential uses of habitat contours as a conceptual model</td>
<td>158</td>
</tr>
<tr>
<td>8.4.1.1.</td>
<td>Facilitating change in the way we think about landscapes</td>
<td>158</td>
</tr>
<tr>
<td>8.4.1.2.</td>
<td>Realistic experimental design and interpretation of field studies</td>
<td>158</td>
</tr>
<tr>
<td>8.4.1.3.</td>
<td>Communication between different strands of ecology</td>
<td>159</td>
</tr>
<tr>
<td>8.4.1.4.</td>
<td>Communication with land managers and land-use planning</td>
<td>160</td>
</tr>
<tr>
<td>8.4.2.</td>
<td>Making the link to quantitative ecological modeling</td>
<td>161</td>
</tr>
<tr>
<td>8.4.2.1.</td>
<td>The greater glider in the Victorian Central Highlands</td>
<td>161</td>
</tr>
<tr>
<td>8.4.2.2.</td>
<td>Potential future applications of empirical modeling</td>
<td>163</td>
</tr>
<tr>
<td>8.5.</td>
<td>CONCLUSIONS</td>
<td>163</td>
</tr>
<tr>
<td>8.6.</td>
<td>ACKNOWLEDGEMENTS</td>
<td>164</td>
</tr>
<tr>
<td>9.1.</td>
<td>ABSTRACT</td>
<td>165</td>
</tr>
<tr>
<td>9.2.</td>
<td>INTRODUCTION</td>
<td>166</td>
</tr>
</tbody>
</table>
9.3. THE TWO LANDSCAPE MODELS .. 167
 9.3.1. The fragmentation model .. 168
 9.3.2. The continuum model .. 170
9.4. WHERE WILL THE TWO MODELS WORK BEST? ... 171
 9.4.1. Examples where the fragmentation model has performed well 172
 9.4.2. Examples where the continuum model may perform well 173
9.5. LANDSCAPE MODELS AND THE TUMUT “NATURAL EXPERIMENT” 174
9.6. EMPIRICAL APPLICATION OF THE CONTINUUM MODEL 179
9.7. CONCLUSION .. 180
9.8. ACKNOWLEDGEMENTS ... 181

CHAPTER 10: CONCLUSION ... 183

REFERENCES .. 187

APPENDICES: NESTED SUBSET THEORY ... 215

APPENDIX 1: TREATING THE NESTEDNESS CALCULATOR AS A "BLACK BOX" CAN
LEAD TO FALSE CONCLUSIONS .. 217
 A1.1. ABSTRACT ... 217
 A1.2. INTRODUCTION .. 217
 A1.3. METHODS .. 219
 A1.3.1. Original datasets ... 219
 A1.3.2. Previously published datasets ... 220
 A1.3.3. Data analysis ... 220
 A1.3.3.1. Initial analysis: Assessment of nestedness using the nestedness calculator 220
 A1.3.3.2. Additional analyses: Assessing the validity of assumptions 221
 A1.4. RESULTS ... 222
 A1.5. DISCUSSION .. 224
 A1.6. CONCLUSION .. 227
 A1.7. ACKNOWLEDGEMENTS .. 228
 A1.8. REFERENCES .. 228

APPENDIX 2: PERFECTLY NESTED OR SIGNIFICANTLY NESTED - AN IMPORTANT
DIFFERENCE FOR CONSERVATION MANAGEMENT ... 233
 A2.1. ABSTRACT ... 233
 A2.2. INTRODUCTION .. 234
 A2.3. METHODS .. 235
 A2.3.1. Study area and dataset .. 235
 A2.3.2. Analysis .. 236
 A2.4. RESULTS ... 237
 A2.4.1. Assessing the ability of large patches to capture bird diversity 238
 A2.4.2. Species co-occurrence patterns ... 238
 A2.5. DISCUSSION .. 239
 A2.5.1. Reasons for highly significant but imperfect nestedness 240
 A2.6. IMPLICATIONS FOR CONSERVATION .. 246
 A2.7. ACKNOWLEDGEMENTS .. 247
 A2.8. REFERENCES .. 247

APPENDIX 3: NESTEDNESS IN FRAGMENTED LANDSCAPES: A CASE STUDY ON
BIRDS, ARBOREAL MARSUPIALS AND LIZARDS .. 253
 A3.1. ABSTRACT ... 253
 A3.2. INTRODUCTION .. 254
 A3.3. METHODS .. 256
 A3.3.1. The Tumut fragmentation "natural" experiment 256
 A3.3.2. Datasets .. 256

Beyond fragmentation

xi
A3.3.2.1. Birds .. 256
A3.3.2.2. Arboreal marsupials ... 257
A3.3.2.3. Lizards .. 257
A3.3.3. Analysis .. 258
A3.3.3.1. Quantification of nestedness .. 258
A3.3.3.2. Hypothesis 1: Assemblages in “controls” are not nested ... 258
A3.3.3.3. Hypothesis 2: Assemblages in fragmented forest are not nested due to differences in species’ responses to fragmentation ... 258
A3.3.3.4. Hypothesis 3: An assemblage shaped by fragmentation processes will be most strongly nested when environmental heterogeneity is minimal .. 259
A3.3.3.5. Hypothesis 4: An assemblage shaped by fragmentation processes will be most strongly nested when only extinction-prone species are analysed .. 259
A3.3.3.6. Which species were the numerical drivers of nestedness (e.g. common or uncommon ones)? 260
A3.4. RESULTS .. 260
A3.4.1. Hypothesis 1: Assemblages in “controls” are not nested .. 260
A3.4.2. Hypothesis 2: Assemblages in fragments are not nested due to differences in species’ habitat preferences and responses to modification .. 260
A3.4.3. Hypothesis 3: An assemblage shaped by fragmentation processes will be most strongly nested when environmental heterogeneity is minimal .. 261
A3.4.4. Hypothesis 4: An assemblage shaped by fragmentation will be most strongly nested when only extinction-prone species are analysed ... 262
A3.4.5. Which species were the numerical drivers of nestedness (e.g. common or uncommon ones)? ... 262
A3.5. DISCUSSION .. 270
A3.5.1. Assemblages in “controls” were not nested ... 270
A3.5.2. The assemblage of arboreal marsupials in fragments was not nested 270
A3.5.3. The assemblage of lizards was not nested .. 271
A3.5.4. The assemblage of birds in fragments was significantly nested 272
A3.5.5. Nestedness of birds in fragments was unrelated to environmental heterogeneity 273
A3.5.6. Nestedness of birds in fragments was highest for extinction-prone species 274
A3.6. IMPLICATIONS FOR CONSERVATION .. 274
A3.7. ACKNOWLEDGMENTS .. 276
A3.8. REFERENCES ... 276
APPENDIX 4: MAP OF SOUTH-EASTERN AUSTRALIA AND PHOTOS OF THE NANANGROE GRAZING LANDSCAPE AND TUMUT PLANTATION LANDSCAPE 285
LIST OF TABLES

TABLE 2.1. OVERVIEW OF THE REPTILES OBSERVED IN THE STUDY AREA. THE HABITAT DESCRIPTION IS A SUBJECTIVE SUMMARY OF FIELD OBSERVATIONS DURING THIS STUDY. SCIENTIFIC NAMES FOLLOW COGGER (2000). (1 = STATUS UNCERTAIN, BUT INFREQUENTLY OBSERVED IN THIS STUDY; 2 = OBSERVED INCIDENTALLY, BUT TOO LARGE TO BE PITFALL TRAPPED AND HENCE NOT ANALYSED STATISTICALLY; 3 = STATISTICAL MODEL REPORTED IN TABLE 2.4). 15

TABLE 2.2. RESULTS OF THE PRINCIPAL COMPONENT ANALYSES AT THE PLOT AND SITE LEVEL (* = LOG TRANSFORMED PRIOR TO ANALYSIS). THE ANALYSIS WAS CONDUCTED TO REDUCE THE NUMBER OF RELATED COVARIATES, AND OBTAIN A SMALLER NUMBER OF INDEPENDENT VARIABLES. .. 19

TABLE 2.3. PLOT LEVEL LOGISTIC REGRESSION MODELS. ONLY THE FOUR-FINGERED SKINK AND STRIPED SKINK WERE ENCOUNTERED SUFFICIENTLY FREQUENTLY TO ALLOW AN ANALYSIS AT THIS LEVEL (N = 144). FOR THESE SPECIES, THE LANDSCAPE MODEL AND MICROHABITAT MODEL AS WELL AS A MODEL IN RELATION TO VEGETATION ASSOCIATIONS ARE SHOWN... 21

TABLE 2.4. SITE LEVEL LOGISTIC REGRESSION MODELS FOR THE FOUR-FINGERED SKINK, STRIPED SKINK, BOULENGER’S SKINK AND OLIVE LEGLESS LIZARD (N = 48). FOR THESE SPECIES, THE LANDSCAPE MODEL AND MICROHABITAT MODEL AS WELL AS A MODEL IN RELATION TO VEGETATION ASSOCIATIONS ARE SHOWN................................. 23

TABLE 2.5. REPTILE SPECIES RICHNESS MODELS AT SITE LEVEL (N = 48). LANDSCAPE AND MICROHABITAT MODELS AS WELL AS A MODEL IN RELATION TO VEGETATION ASSOCIATIONS ARE SHOWN. * = BINARY VARIABLE CREATED TO DISTINGUISH BETWEEN THE 24 SITES WITH THE HIGHEST STANDARD DEVIATION OF SCOREPLOT (PC1) AND THE 24 SITES WITH THE LOWEST STANDARD DEVIATION OF SCOREPLOT (PC1). THE MICROHABITAT MODEL INDICATED THAT SPECIES RICHNESS WAS SIGNIFICANTLY HIGHER IN THE 24 SITES WITH ABOVE MEDIAN MICROHABITAT VARIABILITY. 26

TABLE 2.6. SUMMARY OF ADVANTAGES AND DISADVANTAGES OF A CONVENTIONAL SINGLE-SCALE EXPERIMENTAL DESIGN VERSUS A HIERARCHICAL, SPATIALLY NESTED EXPERIMENTAL DESIGN.. 29

TABLE 3.1. DEFINITION OF THE GROUND COVER CONDITION SCORE SUBJECTIVELY ASSIGNED TO EACH PLOT. (* = NO PLOTS SURVEYED FELL INTO THESE CATEGORIES).. 38

TABLE 3.2. TABULAR SUMMARY OF THE LOGISTIC REGRESSION MODELS PREDICTING THE PROBABILITY OF DETECTION FOR ADULT AND/OR JUVENILE FOUR-FINGERED SKINKS AS A FUNCTION OF LANDSCAPE VARIABLES, MICROHABITAT VARIABLES, AND THE CO-OCCURRENCE OF OTHER SPECIES. ... 41

TABLE 4.1. OVERVIEW OF EXPLANATORY VARIABLES. NATURAL LOGARITHM TRANSFORMATIONS WERE UNDERTAKEN FOR HIGHLY SKewed VARIABLES. ... 59

TABLE 4.2. UBIQUITY AND ABUNDANCE OF THE 13 LIZARD SPECIES CAPTURED (# = NUMBER OF)........ 64

TABLE 4.3. EXPLORATORY REGRESSIONS OF TOTAL NUMBER OF CAPTURE EVENTS, BIOMASS INDEX, SPECIES RICHNESS, AND LIZARD PROFILE OF A GIVEN SITE OR PLOT VERSUS ONE EXPLANATORY VARIABLE AT A TIME. SIGNIFICANT RELATIONSHIPS (P < 0.05) ARE INDICATED BY + (POSITIVE), - (NEGATIVE) OR ”Q” (QUADRATIC); “P” DENOTES SIGNIFICANCE AT THE PLOT-LEVEL, AND ”S” DENOTES SIGNIFICANCE AT THE SITE-LEVEL. .. 65
TABLE 4.4. SUMMARY OF REGRESSION MODELS DESCRIBING AGGREGATE MEASURES OF LIZARD OCCURRENCE. DIFFERENT MODELS WERE USED DEPENDING ON THE RESPONSE VARIABLE AND PRESENCE OF RANDOM EFFECTS (SEE TEXT). (MODEL ABBREVIATIONS: GLMMPQL = GENERALISED LINEAR MIXED MODEL, GLM = GENERALISED LINEAR MODEL, LME = LINEAR MIXED MODEL, LM = LINEAR MODEL, POISSON = DISTRIBUTION OF THE ERROR, QUASIPoisson = AS FOR POISSON, BUT ADJUSTED FOR OVERDISPERSION.)

TABLE 5.2. EXPLORATORY REGRESSIONS OF THE PRESENCE OR ABUNDANCE OF THE SEVEN MOST COMMON SPECIES IN THE STUDY AREA VERSUS ONE EXPLANATORY VARIABLE AT A TIME. SIGNIFICANT RELATIONSHIPS (P < 0.05) ARE INDICATED BY + (POSITIVE), - (NEGATIVE) OR "Q" (QUADRATIC); "P" DENOTES THE PLOT-LEVEL, AND "S" DENOTES THE SITE-LEVEL.

TABLE 5.3. SUMMARY OF REGRESSION MODELS RELATED TO THE PRESENCE/ABSENCE OR ABUNDANCE OF INDIVIDUAL LIZARD SPECIES AT THE SITE-LEVEL (SEE TEXT FOR DETAILS ON THE CHOICE OF MODELS).

TABLE 5.4. SUMMARY OF PLOT-LEVEL MIXED MODELS FOR THE PRESENCE/ABSENCE OR ABUNDANCE OF LIZARDS (SEE TEXT FOR DETAILS ON THE CHOICE OF MODEL).

TABLE 5.5. SUMMARY OF PLAUSIBLE ECOLOGICAL RELATIONSHIPS OF THE TARGET SPECIES WITH FOUR KEY ENVIRONMENTAL GRADIENTS DEFINED A PRIORI. RELATIONSHIPS ARE BASED ON TABLES 5.2, 5.3 AND 5.4, AND HIGHLIGHT STATISTICAL CORRELATIONS THAT MAY POINT TOWARDS ECOLOGICAL PROCESSES. ECOLOGICAL INFORMATION ON THE SPECIES IS BASED ON GREER (1989) AND REFERENCES THEREIN (PREFERRED BODY TEMPERATURES) AND FIELD OBSERVATIONS FROM THE PRESENT STUDY (LOCATION WHERE ACTIVE; MEAN OBSERVED SNOT VENT LENGTH).

TABLE 6.1. BIOCLIMATIC SUMMARY OF THE NANANGROE (N) AND TUMUT (T) LANDSCAPES BASED ON OUR SURVEY SITES IN BOTH LANDSCAPES.

TABLE 6.2. BIOLOGICAL ATTRIBUTES THAT WERE RECORDED FOR EACH SPECIES.

TABLE 6.3. LIST OF SPECIES OBSERVED AT NANANGROE AND TUMUT. SPECIES ARE SORTED BY THEIR ELEVATION PROFILE SCORE OBTAINED FROM A CORRESPONDENCE ANALYSIS. RELATIVELY LOW VALUES OF THIS SCORE CORRESPONDED TO HIGH CAPTURE RATES AT LOW ELEVATION CLASSES, WHEREAS HIGH VALUES CORRESPONDED TO HIGH CAPTURE RATES AT HIGH ELEVATION CLASSES (SEE TEXT FOR DETAILS). THE THREE-TOED SKINK WAS THE ONLY SPECIES OBSERVED IN BOTH STUDY AREAS, AND IN THE TABLE FALLS BETWEEN THE NANANGROE LIZARDS (TOP) AND TUMUT LIZARDS (BOTTOM). VARIOUS BIOLOGICAL ATTRIBUTES WERE CORRELATED WITH A SPECIES’ ELEVATION PROFILE SCORE (E.G. FAMILY, DISTRIBUTION, COLOUR AND PATTERN, REPRODUCTION; SEE TABLE 6.2 AND TEXT FOR ADDITIONAL DETAILS) (CONTINUED NEXT PAGE).

TABLE 6.4. SUMMARY OF SIGNIFICANT REGRESSION MODELS FOR THE CAPTURE RATES OF SINGLE SPECIES AND SPECIES RICHNESS AT NANANGROE AND TUMUT (SEE METHODS SECTION FOR DETAILS).

TABLE 7.1. SYNTHESIS OF RECENT RESEARCH ON BIRDS IN THE NANANGROE AREA THAT DEMONSTRATED THE BENEFITS OF A SOFT MATRIX FOR BIRDS.

TABLE 7.2. OVERVIEW OF THE REPTILES OBSERVED IN THE NANANGROE AREA (LINDENMAYER ET AL. 2001A; FISCHER ET AL. UNPUBLISHED DATA). THE TABLE IS A SUBJECTIVE SUMMARY THAT INDICATES WHICH SPECIES USED WOODLAND PATCHES OR THE MATRIX RESPECTIVELY. AN ASTERISK INDICATES SPECIES THAT WERE OBSERVED TOO INFREQUENTLY TO COMMENT ON THEIR USE OF THE MATRIX.

TABLE 9.1. COMPARISON OF THE ORIGIN, ASSUMPTIONS, LIMITATIONS AND CONSERVATION OUTCOMES ARISING FROM THE FRAGMENTATION MODEL AND CONTINUUM MODEL RESPECTIVELY.
TABLE 9.2. SITUATIONS WHERE THE FRAGMENTATION MODEL AND CONTINUUM MODEL RESPECTIVELY ARE LIKELY TO BE REASONABLE SUMMARIES OF FAUNAL DISTRIBUTION PATTERNS. 169

TABLE 9.3. SUMMARY OF FINDINGS ON VERTEBRATE DISTRIBUTION PATTERNS IN THE TUMUT FRAGMENTATION "NATURAL" EXPERIMENT. SOME PATTERNS OF VERTEBRATE DISTRIBUTION MATCHED PREDICTIONS FROM THE FRAGMENTATION MODEL. HOWEVER, OTHER PATTERNS MAY BE MORE EFFECTIVELY EXPLAINED BY THE CONTINUUM MODEL, WHICH RECOGNISES SPECIES-SPECIFIC DIFFERENCES, GRADUAL CHANGES THROUGH SPACE, AND SUGGESTS AN EXPLICIT LINK BETWEEN THE AVAILABILITY OF SUITABLE FOOD, SHELTER AND CLIMATIC CONDITIONS, AND ANIMAL DISTRIBUTION PATTERNS. 177

TABLE A1.1. EXAMPLE OF A HYPOTHETICAL FIELD PRESENCE/ABSENCE MATRIX (THREE SPECIES BY THREE PATCHES, (A)), AND THE RESULTING PROBABILITIES OF CELL OCCUPANCY IN CORRESPONDING "NULL MATRICES" RESULTING FROM TWO DIFFERENT NULL MODELS. NOTE THAT THE NULL MODEL BY PATTERSON AND ATMAR (1995, (B)) DOES NOT TAKE INTO ACCOUNT THAT SOME SPECIES MAY BE MORE UBIQUITOUS THAN OTHERS, WHILE THE NULL MODEL INTRODUCED IN THIS PAPER (C) ASSIGNED PROBABILITIES OF OCCURRENCE ON THE BASIS OF A SPECIES’ ACTUAL UBIQUITY IN THE FIELD. 222

TABLE A1.2. T-VALUES FOR THE ACTUALLY OBSERVED FIELD DATA (TOP ROW) AND MEAN SIMULATED T-VALUES USING (1) THE NULL MODEL USED IN THE NESTEDNESS CALCULATOR (MIDDLE ROW), AND (2) OUR OWN NULL MODEL THAT TOOK INTO ACCOUNT THAT SOME SPECIES WERE MORE UBIQUITOUS THAN OTHERS (BOTTOM ROW). THE STANDARD DEVIATION OF THE MEANS AFTER 50 MONTE-CARLO SIMULATION RUNS IS GIVEN IN PARENTHESES. A COMPARISON OF THE TOP ROW WITH THE MIDDLE AND BOTTOM ROWS ILLUSTRATES THAT ALL FOUR DATASETS WERE SIGNIFICANTLY NESTED ACCORDING TO BOTH METHODS (P<0.02; WE CANNOT INFER HIGHER LEVELS OF SIGNIFICANCE BECAUSE ONLY 50 RANDOM SIMULATIONS WERE OBTAINED). HOWEVER, A COMPARISON OF THE MIDDLE AND BOTTOM ROWS SHOWS THAT THE VAST MAJORITY OF OUR RANDOM PRESENCE/ABSENCE MATRICES ALSO WERE CONSIDERED SIGNIFICANTLY NESTED BY THE NESTEDNESS CALCULATOR. 223

TABLE A2.2. NUMBER OF SENSITIVE SPECIES CO-OCCURRING WITH A CHOSEN TARGET SENSITIVE SPECIES: (1) ON AVERAGE ACROSS ALL PATCHES, (2) IN THE LARGEST PATCH WHERE THE TARGET SPECIES WAS OBSERVED, AND (3) IN THE THREE LARGEST PATCHES WHERE THE TARGET SPECIES WAS OBSERVED. SPECIES ABBREVIATIONS ARE GIVEN IN THE APPENDIX. NO RELATIONSHIP BETWEEN THE NUMBER OF CO-OCCURRING SPECIES AND A GIVEN TARGET SPECIES’ DISCREPANCY MEASURES WAS DETECTED. 243

TABLE A3.1. OVERVIEW OF GLOBAL NESTEDNESS TESTS CONDUCTED FOR BIRDS, ARBOREAL MARSUPIALS AND LIZARDS FOLLOWING 200 RUNS USING RANDNEST (SEE METHODS SECTION FOR DETAILS). 263

TABLE A3.2. SPECIES BY SITES MATRIX FOR ARBOREAL MARSUPIALS IN “CONTROL SITES”. THE DATASET WAS NOT NESTED (P = 0.12; SEE TABLE A3.1). 263

TABLE A3.3. SPECIES BY SITES MATRIX FOR ARBOREAL MARSUPIALS IN FRAGMENTS. THE DATASET WAS NOT NESTED (P > 0.7; SEE TABLE A3.1). 265

TABLE A3.4. SPECIES BY SITES MATRIX FOR LIZARDS. THE DATASET WAS NOT NESTED (P > 0.11; SEE TABLE A3.1) (C = CONTROL, F = FRAGMENT, P = PINE OR CLEARCUT). 265
LIST OF FIGURES

FIGURE 2.1. SUMMARY OF THE HIERARCHICAL EXPERIMENTAL DESIGN USED TO SURVEY REPTILES. THE EXAMPLE HERE REPRESENTS A LANDSCAPE UNIT WITH (1) ASPECT = NORTHERLY, AND (2) TOPOGRAPHIC POSITION = RIDGE. CANOPY COVER WAS ALSO USED TO STRATIFY SITES, AND COULD BE EITHER “LOW” OR “HIGH”. THREE TREATMENTS (ASPECT, TOPOGRAPHIC POSITION, CANOPY COVER) WITH TWO LEVELS EACH RESULTED IN $2^3 = 8$ TREATMENT COMBINATIONS AT THE LANDSCAPE UNIT LEVEL. THERE WERE TWO REPLICATES OF EACH TREATMENT COMBINATION. HENCE, THERE WERE 16 LANDSCAPE UNITS, $16 \times 3 = 48$ SITES, $48 \times 3 = 144$ PLOTS, AND $144 \times 2 = 288$ PITFALL TRAPS. 11

FIGURE 2.2. GRAPHICAL REPRESENTATION OF THE PLOT LEVEL LOGISTIC REGRESSION MODELS SUMMARISED IN TABLE 2.3. ONLY THE FOUR-FINGERED SKINK AND STRIPED SKINK WERE ENCOUNTERED SUFFICIENTLY FREQUENTLY TO ALLOW AN ANALYSIS AT THIS LEVEL (N = 144). THE GRAPHS SHOW THE PROBABILITY OF ENCOUNTERING A SPECIES IN A GIVEN PLOT. A FLAT LINE INDICATES NO RESPONSE TO A CERTAIN HABITAT GRADIENT OR PRINCIPAL COMPONENT, WHILE A CURVE INDICATES A STATISTICALLY SIGNIFICANT RESPONSE TO A GIVEN HABITAT GRADIENT. 17

FIGURE 2.3. GRAPHICAL REPRESENTATION OF THE SITE LEVEL LOGISTIC REGRESSION MODELS SUMMARISED IN TABLE 2.4 (N = 48). THE GRAPHS SHOW THE PROBABILITY OF ENCOUNTERING A SPECIES IN A GIVEN PLOT. A FLAT LINE INDICATES NO RESPONSE TO A CERTAIN HABITAT GRADIENT OR PRINCIPAL COMPONENT, WHILE A CURVE INDICATES A STATISTICALLY SIGNIFICANT RESPONSE TO A GIVEN HABITAT GRADIENT. THE STRIPED SKINK AND OLIVE LEGLESS LIZARD RESPONDED TO THE FIRST PRINCIPAL COMPONENT, NO SPECIES RESPONDED TO THE SECOND AND THIRD COMPONENT, AND ONLY BOULENGER’S SKINK RESPONDED TO THE FOURTH PRINCIPAL COMPONENT. 18

FIGURE 2.4. NINETY-FIVE PERCENT CONFIDENCE INTERVALS OF THE COMPONENTS OF VARIANCE FOR SEVERAL CONTINUOUS VARIABLES MEASURED AT THE PLOT LEVEL. “MAX. SPIDERS”, “MAX. ANTS” AND “MAX. BEETLES” REFERS TO THE MAXIMUM NUMBER OF INVERTEBRATES CAPTURED IN ONE DAY OVER TWO WEEKS IN A GIVEN PLOT. NOTE THAT SOME VARIABLES VARIED MOST STRONGLY AT A FINE SPATIAL SCALE (E.G. INVERTEBRATE ABUNDANCE, THE BOTTOM ROW OF THE GRAPH), WHILE OTHERS VARIED MOST STRONGLY AT LARGER SPATIAL SCALES (E.G. GRASS COVER AT THE LANDSCAPE UNIT SCALE). 26

FIGURE 3.1. SUMMARY OF THE HIERARCHICAL EXPERIMENTAL DESIGN USED TO SURVEY REPTILES IN THE NANANGROE GRAZING LANDSCAPE. THE EXAMPLE HERE REPRESENTS A LANDSCAPE UNIT WITH (1) ASPECT = NORTHERLY, AND (2) TOPOGRAPHIC POSITION = RIDGE. CANOPY COVER WAS ALSO USED TO STRATIFY SITES, AND COULD BE EITHER “LOW” OR “HIGH”. THREE TREATMENTS (ASPECT, TOPOGRAPHIC POSITION, CANOPY COVER) WITH TWO LEVELS EACH RESULTED IN $2^3 = 8$ TREATMENT COMBINATIONS AT THE LANDSCAPE UNIT LEVEL. THERE WERE TWO REPLICATES OF EACH TREATMENT COMBINATION. HENCE, THERE WERE 16 LANDSCAPE UNITS, $16 \times 3 = 48$ SITES, $48 \times 3 = 144$ PLOTS, AND $144 \times 2 = 288$ PITFALL TRAPS. 36

FIGURE 3.2. GRAPHICAL REPRESENTATION OF THE EFFECT OF HIGH CANOPY COVER AT THE LANDSCAPE UNIT LEVEL ON THE PROBABILITY OF DETECTING A FOUR-FINGERED SKINK (ADULT OR JUVENILE) AT A PLOT. 43
FIGURE 3.3. GRAPHICAL PRESENTATION OF THE MICROHABITAT VARIABLES RELATED TO THE OCCURRENCE OF THE FOUR-FINGERED SKINK (ADULTS OR JUVENILES) AT THE PLOT LEVEL. THE X-AXIS SHOWS THE MAXIMUM NUMBER OF SPIDERS CAPTURED IN A PLOT ON A MORNING DURING EITHER OF THE TWO SURVEY PERIODS. .. 43

FIGURE 3.4. GRAPHICAL PRESENTATION OF THE RELATIONSHIP BETWEEN THE OCCURRENCE OF ADULT FOUR-FINGERED SKINKS AND THE VEGETATION ASSOCIATION OF A GIVEN SITE. 44

FIGURE 3.5. GRAPHICAL PRESENTATION OF THE PREDICTED PROBABILITY OF DETECTING AN ADULT FOUR-FINGERED SKINK IN RELATION TO THE PERCENTAGE CANOPY COVER OF A SITE. 44

FIGURE 3.6. GRAPHICAL SUMMARY OF THE LOGISTIC MICROHABITAT MODEL FOR JUVENILE FOUR-FINGERED SKINKS. THE GROUND COVER CONDITION SCORE IS DEFINED IN TABLE 3.1. 45

FIGURE 3.7. GRAPHICAL ILLUSTRATION OF THE EFFECT OF THE PRESENCE OF OTHER SPECIES ON THE PRESENCE OF THE FOUR-FINGERED SKINK ... 46

FIGURE 4.1. GRAPHICAL SUMMARY OF REGRESSION MODELS RELATED TO BIOMASS AND LIZARD ABUNDANCE AT THE SITE AND PLOT-LEVEL (TABLE 4.4). SOLID LINES INDICATE MODEL PREDICTIONS; DOTTED LINES INDICATE 95% CONFIDENCE INTERVALS. ACTUAL DATA ARE SHOWN AS SMALL CIRCLES. NOTE THAT SITE-LEVEL BIOMASS REFERS TO THE BIOMASS INDEX DESCRIBED IN THE METHODS SECTION AND IS NOT A TRUE ESTIMATE OF LIZARD BIOMASS AT A SITE. .. 69

FIGURE 4.2. GRAPHICAL SUMMARY OF SPECIES RICHNESS ANALYSES. PARTS A AND B SUMMARISE REGRESSION MODELS AT THE SITE AND PLOT-LEVEL (TABLE 4.4). SOLID LINES INDICATE MODEL PREDICTIONS; DOTTED LINES INDICATE 95% CONFIDENCE INTERVALS. ACTUAL DATA ARE SHOWN AS SMALL CIRCLES. PART C ILLUSTRATES THE MATRIX OF SPECIES BY SITES, AS SORTED FOR THE NESTEDNESS TEST RANDNEST (P = 0.12; SEE TEXT). .. 70

FIGURE 4.3. RESULTS OF THE CORRESPONDENCE ANALYSIS OF THE TOTAL NUMBER OF CAPTURE EVENTS FOR EACH LIZARD SPECIES AT A GIVEN SITE (CANONICAL CORRELATION = 0.83). ONE-DIMENSIONAL ROW SCORES FOR THE SITES ARE GIVEN ON THE Y-AXIS; ONE-DIMENSIONAL COLUMN SCORES FOR THE SPECIES ARE GIVEN ON THE X-AXIS. THE SIZE OF THE CIRCLES IS PROPORTIONAL TO THE NUMBER OF CAPTURE EVENTS FOR A GIVEN SPECIES-SITE COMBINATION. NOTE THE CLUSTERING OF CIRCLES IN THE BOTTOM LEFT AND TOP RIGHT CORNER, INDICATING THERE IS SOME TURNOVER IN SPECIES COMPOSITION BETWEEN SITES. .. 71

FIGURE 4.4. GRAPHICAL SUMMARY OF THE REGRESSION RELATED TO A SITE’S LIZARD PROFILE (TABLE 4.4; FIGURE 4.3). SOLID LINES INDICATE MODEL PREDICTIONS; DOTTED LINES INDICATE 95% CONFIDENCE INTERVALS. .. 72

FIGURE 5.1. CONCEPTUAL FRAMEWORK HIGHLIGHTING HOW THE CONTINUUM CONCEPT WAS FRAMED FOR THE APPLICATION TO THE CURRENT CASE STUDY ON LIZARDS. NOTE THAT KEY ENVIRONMENTAL GRADIENTS WERE DEFINED A PRIORI, AND SOME EXPLANATORY VARIABLES RELATED TO THESE GRADIENTS WERE MORE DIRECT THAN OTHERS (SEE TABLE 5.1). NO ATTEMPT WAS MADE TO QUANTIFY COMPETITION AND PREDATION, ALTHOUGH THESE PROCESSES MAY AFFECT LIZARD DISTRIBUTION PATTERNS. THE FRAMEWORK LENDS ITSELF TO A SPECIES-BY-SPECIES ANALYSIS BECAUSE DIFFERENT SPECIES ARE EXPECTED TO RESPOND INDIVIDUALISTICALLY. THIS IS A MAJOR DISTINGUISHING FEATURE COMPARED TO THE FRAGMENTATION PARADIGM. 87

FIGURE 5.2. SUMMARY OF SITE-LEVEL ABUNDANCE MODELS FOR THE TWO MOST COMMON SPECIES (TABLE 5.3). SOLID LINES INDICATE MODEL PREDICTIONS; DOTTED LINES INDICATE 95% CONFIDENCE INTERVALS. ACTUAL DATA ARE SHOWN AS SMALL CIRCLES. 95

FIGURE 5.3. SUMMARY OF SITE-LEVEL PRESENCE/ABSENCE MODELS FOR TWO MODERATELY COMMON SPECIES (TABLE 5.3). SOLID LINES INDICATE MODEL PREDICTIONS; DOTTED LINES INDICATE 95% CONFIDENCE INTERVALS. ACTUAL PRESENCES AND ABSENCES ARE SHOWN AS SMALL CIRCLES. .. 97

FIGURE 5.4. SUMMARY OF SITE-LEVEL PRESENCE/ABSENCE MODELS FOR THREE RELATIVELY UNCOMMON SPECIES (TABLE 5.3). SOLID LINES INDICATE MODEL PREDICTIONS; DOTTED LINES INDICATE 95% CONFIDENCE INTERVALS. ACTUAL PRESENCES AND ABSENCES ARE SHOWN AS SMALL CIRCLES. .. 98

FIGURE 5.5. GRAPHICAL SUMMARY OF THE RESPONSE OF THE SEVEN MOST COMMON LIZARD SPECIES TO TWO VARIABLES DEEMED PARTICULARLY IMPORTANT FOR SEVERAL SPECIES FROM STATISTICAL MODELS – ELEVATION AND PROPORTION OF EUCALYPT FOR EST WITHIN 1000 M. ALL THIRTY SITES ARE SHOWN: A GIVEN SPECIES’ PRESENCES ARE SHOWN AS CIRCLES AND ABSENCES ARE SHOWN AS CROSSES. THE SIZE OF THE CIRCLE IS
Beyond fragmentation

The graph summarises the wide range of responses by different species to two selected environmental gradients, and thus highlights the potential value of the continuum concept for the study of animal distribution patterns in modified landscapes.

Figure 6.1. The relationship between elevation and the capture rate of the striped skink at Nanangroe (p < 0.001).

Figure 6.2. The predicted relationships between elevation and six lizard species at Tumut. A = three-toed skink (p = 0.01), B = delicate skink (p = 0.01), C = mountain log skink (p = 0.02), D = Coventry’s skink (p = 0.02), E = Maccoy’s skink (p < 0.001), F = temperate water skink (p = 0.02). “Foss.” = fossorial species, “SM. helioth.” = small heliothermal species, “large helioth.” = large heliothermal species. Ecologically similar species replaced one another as altitude increased. To keep the figure easily interpretable, actual data points are not shown. However, relationships with elevation were similarly tight to other relationships reported in this paper (see Table 6.4 for details).

Figure 6.3. The relationship between elevation and species richness at Nanangroe. Dotted lines show 95% confidence intervals around the predicted relationship (p < 0.001).

Figure 6.4. The relationship between elevation and species richness at Tumut. Dotted lines show 95% confidence intervals around the predicted relationship (p = 0.04).

Figure 7.1. Results of bird surveys conducted at sixteen landscape units in the Nanangroe area in 2001/2002 (Fischer et al. unpublished data – see text for details). The data illustrate that bird species richness tended to be higher in more productive valley environments than on ridge tops.

Figure 8.1. Graphical presentation of a conceptual landscape model based on habitat contours. Key model features are that it (A) allows for species to differ in what constitutes suitable habitat, (B) recognises differences in the spatial grain of species, (C) contains the fragmentation model, and (D) contains the variegation model. Further characteristics and limitations are outlined in the text.

Figure 8.2. Graphical representation of how a conceptual model of habitat contours may assist communication between traditional reductionist science and pattern-based landscape ecology.

Figure 8.3. The predicted probability of detecting the greater glider in the Ada Forest Block (6700 ha) in the Central Highlands of Victoria, Australia.

Figure 9.1. Graphical summary of the fragmentation model. The fragmented landscape shown here has two patch types (A and B), and the patches of type A are connected by a corridor.

Figure 9.2. Schematic summary of the continuum model. Availability of food, shelter, space and suitable climatic conditions are assumed to give rise to patterns of species distribution and abundance (depicted as habitat contour maps). Hypothetical relationships for two species (A, B) are used as examples. Interspecific processes like competition and predation also may influence species distribution patterns.

Figure 9.3. Illustration of how the continuum model may be applied to empirical studies aimed at modelling the distribution of fauna. Although the theoretical framework is based on direct and resource gradients, in practice, quantifiable explanatory variables may sometimes need to be indirect.

Figure A1.1. Example of the output produced by the nestedness calculator. The input was a random matrix produced by a null model that assumed that (1) species richness in patches was equal, and (2) some species had a higher probability of occurring in any given patch than others (underlying probabilities from Sfenthourakis et al. 1999). Given this null model, a given species had the same chance of occurring in all patches, but some species had a higher probability of occurrence in all patches than others (as in Table A1.1). The matrix was considered significantly nested by the nestedness calculator even though it was not nested – it only has an

xviii
Beyond fragmentation

INHERENT PATTERN FROM LEFT TO RIGHT, BUT IS LACKING A DIAGONAL PATTERN. PATCHES ARE LISTED FROM TOP TO BOTTOM, AND SPECIES ARE LISTED FROM LEFT TO RIGHT. .. 225

FIGURE A1.1B. EXAMPLE OF THE OUTPUT PRODUCED BY THE NESTEDNESS CALCULATOR. THE INPUT WAS A RANDOM MATRIX PRODUCED BY A NULL MODEL THAT ASSUMED THAT (1) SPECIES RICHNESS VARIED BETWEEN PATCHES, AND (2) ALL SPECIES WERE EQUALLY UBQUITOUS (DATA FROM FIGURE A1.1A, BUT ROWS AND COLUMNS WERE “SWITCHED AROUND”). GIVEN THIS NULL MODEL, EACH SPECIES HAD THE SAME CHANCE OF OCCURRING IN A GIVEN PATCH, BUT SOME PATCHES HAD AN INHERENTLY HIGHER CHANCE OF BEING OCCUPIED BY EACH AND EVERY SPECIES THAN OTHER PATCHES (I.E. AS IF COLUMNS AND ROWS WERE “SWITCHED AROUND” IN TABLE A1.1). THE MATRIX WAS CONSIDERED SIGNIFICANTLY NESTED BY THE NESTEDNESS CALCULATOR EVEN THOUGH IT WAS NOT NESTED – IT ONLY HAS AN INHERENT PATTERN FROM TOP TO BOTTOM, BUT IS LACKING A DIAGONAL PATTERN. PATCHES ARE LISTED FROM TOP TO BOTTOM, AND SPECIES ARE LISTED FROM LEFT TO RIGHT. .. 226

FIGURE A2.1. THE SPECIES BY SITES MATRIX SORTED BY PATCH SIZE. BLACK SQUARES INDICATE PRESENCES, WHITE SQUARES INDICATE ABSENCES. DESPITE THE HIGHLY SIGNIFICANT LEVEL OF NESTEDNESS (P = 0.002; SEE TABLE A2.1), THERE WERE A NUMBER OF UNEXPECTED PRESENCES AND ABSENCES, ESPECIALLY FOR UNCOMMON SPECIES..... 239

FIGURE A2.2. GRAPHICAL ILLUSTRATION OF HOW MANY OF THE LARGEST SITES WERE NEEDED TO CAPTURE A NOMINATED PROPORTION OF BIRD SPECIES IN AT LEAST ONE PATCH, OR IN AT LEAST THREE PATCHES. UNDER PERFECT NESTEDNESS BY AREA, THE SINGLE LARGEST PATCH WOULD HAVE CAPTURED 100% OF SPECIES ONCE, AND THE THREE LARGEST PATCHES WOULD HAVE CAPTURED 100% OF SPECIES PRESENT IN THREE LOCATIONS. THE TWO DIFFERENT CURVES HIGHLIGHT THE PROPORTION OF SPECIES CAPTURED IN AT LEAST ONE OR AT LEAST THREE PATCHES. SUBSTANTIALLY MORE PATCHES WERE NEEDED THAN PREDICTED UNDER PERFECT NESTEDNESS, ESPECIALLY FOR SENSITIVE SPECIES (PART C). .. 240

FIGURE A2.3. CO-OCCURRENCE PATTERNS IN THE LARGEST SITE WHERE A GIVEN TARGET SENSITIVE SPECIES WAS FOUND. PRESENCES OF CO-OCCURRING SPECIES ARE INDICATED BY A “1”, ABSENCES BY A “-”, AND “# SITES” INDICATES HOW MANY SITES A GIVEN SENSITIVE SPECIES WAS OBSERVED AT. REGARDLESS OF WHICH SENSITIVE SPECIES WAS CHOSEN AS THE TARGET SPECIES, IN THE LARGEST SITE WHERE IT OCCURRED, NO MORE THAN NINE OUT OF A POSSIBLE 20 OTHER SENSITIVE SPECIES CO-OCCURRED WITH IT. SEE APPENDIX FOR SPECIES ABBREVIATIONS. .. 241

FIGURE A3.1. SPECIES BY SITES MATRIX FOR BIRDS IN FRAGMENTS. DESPITE SUBSTANTIAL SCATTER, THE DATASET WAS HIGHLY SIGNIFICANTLY NESTED (P < 0.005; SEE TABLE A3.1). ... 267

FIGURE A3.2. THE DATASETS FOR BIRDS IN FRAGMENTS, PINE AND “CONTROL SITES” WERE RE-ANALYSED AFTER DELETING DIFFERENT COMBINATIONS OF SITES AND SPECIES (SEE APPENDIX FOR COMPLETE LIST OF RESULTING DATASETS). EACH DATA POINT IN THIS FIGURE CORRESPONDS TO A DIFFERENT DATASET, AND INCLUDES A DIFFERENT COMBINATION OF SPECIES AND SITES. DATASETS ARE LABELLED ACCORDING TO THE SITES THEY WERE COMPRISED OF: FRAGMENTS (F), PINE SITES (P) OR “CONTROL SITES” (C). ALONG THE X-AXIS, DATASETS WERE SORTED BY THE NUMBER OF CELLS IN THE SPECIES BY SITES MATRIX. THE PLOT SHOWS HOW MANY STANDARD DEVIATIONS A GIVEN DATASET’S OBSERVED DISCREPANCY WAS BELOW THE MEAN DISCREPANCY SIMULATED BY RANDNEST. DATASETS ABOVE THE DOTTED LINE WERE SIGNIFICANTLY NESTED AT THE P = 0.05 LEVEL. THE FIGURE HIGHLIGHTS: (1) LARGER DATASETS WERE MORE SIGNIFICANTLY NESTED; (2) MOST FRAGMENT DATASETS WERE NESTED; (3) FOR A GIVEN NUMBER OF CELLS IN A DATASET, THERE WAS CONSIDERABLE VARIABILITY IN THE SIGNIFICANCE LEVEL OBTAINED. .. 268

FIGURE A3.3. THE DATASET FOR BIRDS IN FRAGMENTS WAS RE-ANALYSED AFTER DELETING DIFFERENT COMBINATIONS OF SITES AND SPECIES (SEE APPENDIX). BELOW, EACH DATA POINT CORRESPONDS TO A DIFFERENT DATASET, AND INCLUDES A DIFFERENT COMBINATION OF SPECIES AND SITES. ALONG THE X-AXIS, DATASETS WERE SORTED BY THE NUMBER OF CELLS IN THE SPECIES BY SITES MATRIX. THE PLOT SHOWS HOW MANY STANDARD DEVIATIONS A GIVEN DATASET’S OBSERVED DISCREPANCY WAS BELOW THE MEAN DISCREPANCY SIMULATED BY RANDNEST. DATASETS ABOVE THE DOTTED LINE WERE SIGNIFICANTLY NESTED AT THE P = 0.05 LEVEL. IN PART A, DATASETS ARE LABELLED ACCORDING TO THE SITES THEY WERE COMPRISED OF: “A” (ALL TYPES OF SITES, I.E.
Beyond fragmentation

FIGURE A3.4. ASSESSMENT OF WHICH SPECIES WERE THE NUMERICAL DRIVERS OF NESTEDNESS IN THE BIRDS IN FRAGMENTS DATASET. IN PARTS A, B AND C, EACH DATA POINT IS A DIFFERENT BIRD SPECIES. PART A HIGHLIGHTS THAT MODERATELY WIDESPREAD SPECIES HAD THE HIGHEST ABSOLUTE DISCREPANCY. PART B SHOWS THAT UNCOMMON SPECIES HAD THE HIGHEST RELATIVE DISCREPANCY. PART C RANKS SPECIES ACCORDING TO THEIR HABITAT SPECIFICITY ALONG THE X-AXIS, AND USES LABELS FOR A SPECIES’ HABITAT SPECIFICITY FOLLOWING LINDENMAYER ET AL. (2003): NC (NOT CLASSIFIED), P (PINE SPECIALIST), G (GENERALIST), I (INTERMEDIATE), S (SENSITIVE). SENSITIVE SPECIES WERE OFTEN UNCOMMON IN FRAGMENTS. PART D HIGHLIGHTS THAT SENSITIVE SPECIES MAY HAVE HIGH RELATIVE DISCREPANCY VALUES (SINCE THEY WERE FREQUENTLY UNCOMMON IN FRAGMENTS).