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Presentational Conventions

A number of presentational conventions have been adopted in this thesis:

• Italics are used when a term is defined, but not thereafter.

• Spelling is according to the (Australian) Macquarie Dictionary, in particular the
version which is searchable on the Web (http://www.dict.mq.edu.au/).

• References to archival publications are used in preference to Internet URLs.

• In cases when URL references are necessary, a URL is inserted in parentheses
like this (http://pastime.anu.edu.au/nick/pubs/). Each URL refers to a Web
page as it appeared on 23 May 2000.

• Equations from other studies are presented here using a standard notation, which
is described in Table 2.2. While every effort has been made to avoid introducing
errors, readers should consult the original studies for authoritative versions.
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Abstract

Published methods for distributed information retrieval generally rely on cooperation
from search servers. But most real servers, particularly the tens of thousands available
on the Web, are not engineered for such cooperation. This means that the majority of
methods proposed, and evaluated in simulated environments of homogeneous coop-
erating servers, are never applied in practice.

This thesis introduces new methods for server selection and results merging. The
methods do not require search servers to cooperate, yet are as effective as the best
methods which do. Two large experiments evaluate the new methods against many
previously published methods. In contrast to previous experiments they simulate a
Web-like environment, where servers employ varied retrieval algorithms and tend
not to sub-partition documents from a single source.

The server selection experiment uses pages from 956 real Web servers, three dif-
ferent retrieval systems and TREC ad hoc topics. Results show that a broker using
queries to sample servers’ documents can perform selection over non-cooperating
servers without loss of effectiveness. However, using the same queries to estimate
the effectiveness of servers, in order to favour servers with high quality retrieval sys-
tems, did not consistently improve selection effectiveness.

The results merging experiment uses documents from five TREC sub-collections,
five different retrieval systems and TREC ad hoc topics. Results show that a broker us-
ing a reference set of collection statistics, rather than relying on cooperation to collate
true statistics, can perform merging without loss of effectiveness. Since application of
the reference statistics method requires that the broker download the documents to
be merged, experiments were also conducted on effective merging based on partial
documents. The new ranking method developed was not highly effective on partial
documents, but showed some promise on fully downloaded documents.

Using the new methods, an effective search broker can be built, capable of address-
ing any given set of available search servers, without their cooperation.
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Chapter 1

Introduction

A large proportion of Web content is not indexable by centralised Web search engines.
Even when considering only the indexable documents, engines have partial coverage
and infrequently update their indexes. For this reason, it is common for a document
provider to run its own search server, which provides the most comprehensive (and
perhaps only) index of its documents. This is the case, for example, at britannica.com
and amazon.com. Tens of thousands of these smaller search servers are available on
the Web.

A person who wishes to use these numerous smaller servers faces several prob-
lems. They must somehow discover which servers exist. For a particular query they
must select which to search, use varied server query interfaces and view servers’ non-
comparable results lists, one after the other. These difficulties are faced on the Web,
but also in any environment of distributed search servers.

A search broker acts as an intermediary between a user searching for informa-
tion and a set of search servers. It may perform automatic server selection, choosing
servers which are likely to be most useful. It may also concurrently query the selected
servers and present their results to the user in a single merged list. It does so by inter-
facing with the various servers to retrieve their results then applying a results merging
method. A broker which responds to queries with a merged results list provides the
query-response interface of a centralised search server, while actually performing a
distributed search.

The effectiveness of a broker over a given set of servers depends on the effective-
ness of its server selection and results merging methods. Its selection method must
choose servers which return relevant documents. Its merging method must rank the
combined results, which might number in the tens or hundreds, such that the relevant
results are in top ranks.

A generally applicable broker can address any set of available search servers with-
out requiring explicit cooperation. Examples of explicit cooperation are exporting
term occurrence statistics or running uniform search software. Generally applicable
brokers can address a wider range of information needs by addressing a wider range
of existing search servers. If a new search server arises which is of interest to users,
a generally applicable broker can search it “as is”. Other brokers would require the
new server to either cooperate or be excluded.

Making a generally applicable broker raises interesting research problems. For

1
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2 Introduction

example, many server selection methods are based on the assumption that search
servers export statistics describing term occurrences in their documents. Based on
these statistics, the methods tend to select servers with more query term occurrences.
If search servers do not cooperate by exporting term occurrence information, how can
the broker perform selection?

This thesis shows that a search broker can be generally applicable without sacri-
ficing effectiveness.

1.1 Research approach

This thesis considers the problems of effective server selection and results merging
in an environment where not all servers cooperate. It proposes new methods and
evaluates them against numerous existing methods including those which require co-
operation. The question is whether methods which do not require cooperation can be
as effective as state of the art methods which do.

Evaluation experiments are based on methodology from the Text Retrieval Con-
ference (TREC) [Harman 1999], but with some innovations.

The new selection and merging methods are not yet implemented in a broker.
However, they are simple extensions of methods already used by the Web search
broker Inquirus [Lawrence and Giles 1998], so their addition to a broker would be
straightforward.

The thesis does not explicitly report all joint research conducted throughout the
author’s thesis project. It excludes work on Web search evaluation (Hawking, Craswell,
Thistlewaite, and Harman [1999], Craswell, Bailey, and Hawking [1999] and Hawk-
ing, Craswell, Bailey, and Griffiths [2000]), aglets (Craswell, Haines, Humphreys,
Johnson, and Thistlewaite [1997]) and miscellaneous TREC efforts (Hawking, Thistle-
waite, and Craswell [1997], Hawking, Craswell, and Thistlewaite [1998a], Hawking,
Craswell, and Thistlewaite [1998b], Hawking, Craswell, and Bailey [1999] and Hawk-
ing, Voorhees, Craswell, and Bailey [1999]). All this work contributes to the author’s
understanding of the field, but is not crucial to effective, generally applicable distrib-
uted information retrieval. The two large evaluation experiments in this thesis have
also been reported in two conference papers which are the original work of the au-
thor: Craswell, Hawking, and Thistlewaite [1999] and Craswell, Bailey, and Hawking
[2000].

Chapter 2 surveys distributed information retrieval, including its problems, meth-
ods and evaluation methodology. Chapter 3 introduces new server selection and re-
sults merging methods, and states hypotheses concerning their effectiveness. Chap-
ter 4 discusses experimental methodology, explaining decisions made in the design
of selection and merging experiments. Chapters 5 and 6 present evaluation experi-
ments in selection and merging respectively, including results, discussion and conclu-
sions. Chapter 7 presents overall thesis conclusions and implications for the field of
distributed information retrieval. Appendix A describes the distributed information
retrieval terminology which is applied consistently throughout this thesis.



Chapter 2

Distributed Information Retrieval

This chapter introduces the field of distributed information retrieval. It begins by de-
scribing the relationship between past work in the field and new work presented in
this thesis. Then its three remaining sections each deal with a different aspect of that
past work. Section 2.2 describes problems and terminology in distributed informa-
tion retrieval, Section 2.3 describes solutions, including previously published selec-
tion and merging methods as well as currently available search brokers. Section 2.4
surveys past effectiveness evaluation experiments in the area, including experimental
methods and results.

2.1 Relationship with previous research

The study of distributed information retrieval lies at the intersection between infor-
mation retrieval and distributed systems. From the former comes the goal of effective-
ness, that a person who enters a query in the broker should find relevant information.
This thesis attempts to develop effective methods, and evaluates the effectiveness of
new methods against numerous other methods. Several previous studies have also
concentrated on effectiveness and performed effectiveness evaluation experiments
(Section 2.3 describes methods and Section 2.4 describes evaluation experiments).

From distributed systems comes the issue of breadth of applicability. A broker
and search server are incompatible if one requires communication which the other
does not support. For example, a STARTS [Gravano et al. 1997] search broker requires
that all servers be compatible with the Stanford Proposal for Internet Meta-Searching.
Because most Web search servers are not STARTS compatible, such a broker is not gen-
erally applicable in a Web environment. Many of the studies concerned with effective
distributed information retrieval have introduced methods which are not generally
applicable. Conversely, other studies have introduced methods which are generally
applicable, and implemented in a Web search broker, but have never undergone ef-
fectiveness evaluation. This thesis attempts to develop methods which are generally
applicable.

This thesis draws on generally applicable distributed information retrieval meth-
ods in three ways. First, it evaluates previously unevaluated generally applicable
merging methods, to see how they compare to merging methods which rely on server

3



4 Distributed Information Retrieval

cooperation. Second, the methods it introduces are based on the functionality of the
operational Web search broker Inquirus [Lawrence and Giles 1998]. Because Inquirus
is generally applicable, and the new methods require no further cooperation from
search servers, the new methods are also generally applicable.

Third, its evaluation experiments attempt to model real Web search servers. Previ-
ous experiments in the area (see Section 2.4) have often split documents from a single
source, for example a single TREC sub-collection, amongst multiple search servers
and applied homogeneous retrieval systems at the server. By contrast, Web servers
such as those listed by InvisibleWeb (http://www.invisibleweb.com/) and CiteLine
(http://www.citeline.com/) use varied retrieval systems and seldom split docu-
ments from a source amongst several servers. Most are site-search servers, indexing
a single source. Both evaluation experiments in this thesis model heterogeneous re-
trieval systems and avoid splitting a single source amongst multiple search servers.
The latter choice leads to a greater server size variation and topic skew than in some
previous experiments.

The thesis also draws on methods which require cooperation. The new meth-
ods, probe queries for selection and reference statistics for merging, are enabling tech-
nologies for existing server ranking and document ranking algorithms. For example,
probe queries allow CORI server ranking [Callan et al. 1995] to take place without
server cooperation. Reference statistics allow Okapi BM25 [Robertson et al. 1994] to
be applied in results merging, again without server cooperation.

New methods are applicable to information retrieval environments beyond the
client/server/broker environment. The selection and merging methods introduced
here would be equally applicable in an environment of distributed, interacting, inten-
tional agents [Danzig et al. 1991; Clark and Lazarou 1997]. Merging methods could
be applied in parallel information retrieval (see [Rasmussen 1991]), where multiple
processing nodes are used to speed up retrieval. Reference statistics (see Chapter 3)
have already been used to merge results from eight nodes in TREC [Hawking et al.
1998a]. This saved each node from collating full statistics from the 100gigabyte VLC2
[Hawking et al. 1998b]. The new merging methods could equally be applied in data
fusion (for example [Vogt and Cottrell 1998]), where multiple retrieval methods, mul-
tiple query variants or multiple document representations are combined to enhance
retrieval effectiveness.

Chapter 4 introduces innovations in evaluation methodology, attempting to im-
prove on experimental methods described in Section 2.4. Merging evaluation is based
on simulated input rankings, which are combined to simulate many heterogeneous
server configurations. The selection evaluation is less novel, but still is the first to use
Web data and one of the first to use heterogeneous retrieval systems and document
partitioning by source for modelling distributed servers. Also in selection, this thesis
challenges evaluation methodologies based on ideal server ranks.

http://www.invisibleweb.com/
http://www.citeline.com/
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Netscape

Document client

pastime.anu.edu.au

Document server

Response: Document full text

<HTML><HEAD><STYLE TYPE=...

Request: Document identifier

/nick/work.shtml

Figure 2.1: Document request. The client request contains a document identifier and the
server’s response contains the full text of the document in question, if available. In this case
the Netscape Navigator client is requesting the document with http://pastime.anu.edu.au/

nick/work.shtml as its Uniform Resource Locator (URL) [Berners-Lee et al. 1994]. The client
sends an HTTP [Berners-Lee et al. 1999] request to http://pastime.anu.edu.au for the doc-
ument identified (within the server) as /nick/work.shtml. The server’s response contains the
full text of the document in question (which is in the HyperText Markup Language (HTML)
[W3C 1998]).

2.2 Problem description

2.2.1 Clients, servers, brokers and users

A distributed system is a collection of autonomous computers which cooperate in order
to achieve a common goal. They do so without sharing memory or clock, and commu-
nicate by passing messages over a communication network. Ideally, the person using
such a system is not aware of the different computers, their location, storage replica-
tion, load balancing, reliability or functionality. Instead the system should appear as
though it runs on a single computer (see “distributed system” in [Howe 1999]). Prac-
tical systems succeed to varying degrees in providing such transparency, as was put
best by Leslie Lamport: “A distributed system is one in which I cannot get something
done because a machine I’ve never heard of is down.”

This thesis considers the problem of distributed information retrieval, the basic
unit of which is the electronic document. Documents may be full-text, bibliographic,
sound, image, video or mixed-media records, although methods studied here oper-
ate over the text contained in or associated with each document. A document server
is set up by some individual or organisation wishing to publish a set of electronic
documents. The publisher is referred to loosely as a document source. A person views
such documents using a document client, for example a simple Web browser. To view
a document the client sends a request containing a document identifier, such as an In-
ternet URL, and the document server returns the document in question if available.
This document-pull process is familiar to any person who has used the Web (see Fig-

http://pastime.anu.edu.au/nick/work.shtml
http://pastime.anu.edu.au/nick/work.shtml
http://pastime.anu.edu.au
/nick/work.shtml
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c) User’s view of results

a) Simple search

b) User’s view when entering query

Netscape

Search client

query: "internet"

Search server

SCALEplus

response: R=<D,o>

Figure 2.2: Simple search. This figure illustrates a simple search of the SCALEplus Web
search server. The simple search client sends a query to the search server, which returns a
list of results R = 〈D,o〉 (see explanation in text). Also illustrated are the query (b) and the
response (c) as they would appear in the Netscape client.
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Figure 2.3: Search broker network communication. The broker conducts several concurrent
simple searches (see Figure 2.2). The user first provides the broker with a query q, either
through the broker’s graphical user interface (illustrated here) or by connecting to the broker
using a client such as a Web browser. The broker selects servers (s′1,s

′
2, . . . ,s

′
n), retrieves their

results (R1,R2, . . . ,Rn) and generates a merged results list RM . The broker provides the same
query-response interface as a single search server (Figure 2.2), taking a query and returning
ranked results, but bases its results on those of multiple distributed search servers.
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ure 2.1).
An information retrieval problem arises when a person has access to many doc-

uments and requires some systematic organisation or search facility to find relevant
information. A common form of information retrieval system is one which takes a
query from the person who wishes to find information, and returns a list of documents
which are estimated likely to be relevant. Retrieval of relevant information may also
be aided by browsing amongst document hyper-links or some category/directory hi-
erarchy.

A distributed information retrieval problem arises when the documents are spread
across many document servers. In such a situation it may be possible for a single in-
formation retrieval system to request every document from every document server,
and perform its search task over the combined document set. Alternatively, various
search servers may be set up on the network each covering documents from one or
more document servers. In any case such networked information retrieval systems
usually provide their search service to clients across the network (as opposed to re-
stricting their service to a single machine). An information retrieval system available
across the network is called a search server (Figure 2.2), and it is accessed using a search
client.

Systems which return search results, such as search servers and other information
retrieval systems, usually return to the user a ranked results list R. The minimal con-
tent of R= 〈D,o〉 is a set of document identifiers D and some ordering o over D. Other
information may also be present in results, for example each result in Figure 2.2 has a
relevance score (such as 0.98) and a document summary. A system is more effective if
its results document set D contains more relevant documents, or the same number of
relevant documents ranked more highly (o). A system is more efficient if it has reduced
the costs involved in finding R. The cost of search includes several factors. Computa-
tion or storage resources may be expended at client or server. Network resources such
as bandwidth may be expended in their communication. Monetary network usage or
per-search charges might also apply. Users want a system which is both effective and
efficient, in the latter case particularly minimising the costs which apply to the user.
However this thesis focuses on effectiveness.

If the system is a search server, its effectiveness depends on the documents it in-
dexes and its retrieval system. A retrieval system implements several retrieval algo-
rithms, for ranking, stemming, case folding, relevance feedback and other functions.
Several examples of such algorithms are described by Frakes and Baeza-Yates [1992].

One type of search client is a simple client, such as Netscape Navigator in Figure 2.2.
Users of a simple client face a number of problems. First, they may be have difficulty
finding new servers and selecting which to search, particularly in an environment
such as the Web where there is no exhaustive list of servers and servers do not export
descriptions of their documents. Further, if useful results are spread across multiple
search servers, the user must query each in turn after learning the query language
and interface conventions of each. This process of learning and querying sequentially
is time consuming. The simple client also fails in terms of transparency, because the
user is aware of search server heterogeneity, delays and down time. Finally, a simple
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Figure 2.4: Search broker information flow. Given Sand q the broker selects a subset S′ ⊆ S,
retrieves R1,R2,R3 from those servers and builds the merged list RM . The query q usually
guides each stage of the process, although in certain cases it may be ignored, for example if
the broker’s policy is to always select all its servers S′ = S.

client does not provide a unified view of results from different servers. The user has
no indication of how results from one list compare to those of another, or even how
each document matches their query. For example, one server given the query “david
hawking” might return only documents containing the phrase, while others might
return documents containing one word or the other, or even documents containing
words with the same stem such as “hawk” and “hawker”.

A search broker is a more sophisticated search client. Given a query and a set of
search servers, it selects a set of servers likely to return relevant documents, queries
them concurrently and produces a single ranked results list (see Figures 2.3 and 2.4):

〈S,q〉 Selection−→ 〈S′,q〉 Retrieval−→ 〈(R1, . . . ,R|S′|),q〉
Merging−→ RM
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The broker’s task begins with a set of search servers Sand a query q. A broker is set up
to address servers S, analogously to a search server set up to search some document set.
Identification of servers S is usually performed manually, as noted by Hawking and
Thistlewaite [1999] and Fuhr [1999] who calls it the problem of database detection. In-
telliSeek Inc (http://www.invisibleweb.com/) claim to have a semi-automatic server
identification technique, but this is only available internally to its editorial team. The
query q is provided by the user, and describes their information need.

During server selection the broker selects a subset S′ of servers Swhich are best for
answering the user’s query q. Choice of best servers might depend on both effective-
ness and efficiency considerations. This thesis makes a simplifying assumption that
all servers have the same search cost and the user wishes to maximise the quality of re-
sults based on bounded costs |S′| ≤ 10. As will be shown in Chapter 4 the contribution
of a server to final results quality depends on the documents it indexes, its retrieval
system, the documents and retrieval systems of other servers selected so far and the
broker’s merging method (see Sections 4.1.1 and 4.1.2). Finding the best selection is
therefore a complex optimisation problem. Section 2.3 describes previously published
selection methods.

During retrieval the broker applies the query q at servers S′ to obtain results lists
R1, . . . ,R|S′|. As described previously, each results list Ri = 〈Di ,oi〉 consists of a doc-
ument set Di and an ordering oi . The broker must employ the appropriate retrieval
methods — communication protocol, query language and results parser — to retrieve
each list Ri . However, for a given set of servers S′, these methods have little influence
over final broker effectiveness. Rather, the retrieval system and document set at server
s′i determines the quality of Ri . In an environment such as the Web the broker designer
usually has no control over server effectiveness. Instead the broker’s retrieval meth-
ods either succeed or fail in retrieving Ri . Currently operating Web search brokers
(described later) demonstrate that it is possible to succeed, so this thesis concentrates
on the broker’s methods which do influence its effectiveness: selection and merging.

During results merging the broker combines results R1, . . . ,R|S′| into a merged re-
sults list RM = 〈DM,oM〉, such that DM = D1∪ ·· · ∪D|S′| and oM is an effective ranking.
Merging may be based on properties of R1, . . . ,R|S′|, downloaded documents DM or
information provided by cooperating servers.

A broker may apply very simple methods for selection and merging. For exam-
ple, it may select S′ = S for every query as does MetaCrawler [Selberg and Etzioni
1997]. It may also merge results lists by simply concatenating the incoming lists as
does DogPile (http://www.dogpile.com/). Such selection and merging is likely to be
ineffective in an environment of many search servers, some of which return no rele-
vant documents. Selecting all servers is also inefficient, again because it may lead to
querying servers which contribute no useful information. This thesis considers more
effective selection and merging methods.

http://www.invisibleweb.com/
http://www.dogpile.com/
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2.2.2 Practical considerations

Having described in the abstract the entities in a distributed information retrieval
system and their interactions, this section ends by describing practical considerations
in distributed search.

Why not build a central index?

If the goal of a search broker is to provide a search service over the documents of
search servers S, why not download the documents in question and provide a cen-
tralised search service?

One reason is cost. In early 1999a search broker covering 12 large search servers
could cover 42%of the estimated 800million Web pages, while the largest individual
search server covered only 16% [Lawrence and Giles 1999]. Each of the large search
servers was expensive to run, downloading a large number of documents (Web crawl-
ing) and maintaining the required hardware and personnel to provide fast search re-
sults to the world. By contrast, a search broker could cover more than double the num-
ber of documents with minimal expenditure. Making use of existing search servers is
less expensive than building a central index.

The other reason is access permissions. For example, CareData and InvisibleWeb
claim their thousands of search servers cover documents “hidden” or “invisible” to
other indexers. Documents are invisible because of access restrictions such as:

• A robot exclusion request [Koster 1994] restricts access by outside indexers. Doc-
ument providers make an exclusion request if they wish to avoid crawling by
outside indexers, which can increase the provider’s server load, network traffic
and network bill. Providers may also request exclusion on documents which
are updated much more frequently than the outside indexer updates its index.
For example, a news site might update its documents every day but an outside
indexer might only update its index once a week. This means that soon af-
ter every index update the search server is likely to begin returning documents
which have changed or no longer exist.

• Most outside indexers on the Web rely on links to find documents (when crawl-
ing). In some cases a document set may be provided without links through a
search-only interface.

• Intranet documents or password-protected documents are not available for cen-
tral indexing. Even if they were made available for central indexing, their inclu-
sion in a generally-available search servers would be a potential security hole,
possibly allowing users without access permissions to find out about restricted
documents.

Search servers over invisible documents are usually set up by the provider of those
documents or with the explicit permission and cooperation of that document provider.
This allows any access restrictions to be bypassed. A prominent example of docu-
ments with access restrictions are the MEDLINE abstracts, searchable only through



12 Distributed Information Retrieval

the PubMed search server (http://www.ncbi.nlm.nih.gov/PubMed/) due to robot ex-
clusion and a lack of hyper-links. Whenever access restrictions apply to documents,
building a central index may not be an option, while distributed search may.

Why build a generally applicable broker?

A server which is not generally applicable might, for example, rely on servers to be
STARTS [Gravano et al. 1997] or Z39.50 [ANSI/NISO 1995] compliant. There are tens
of thousands of search servers on the Web, according to InvisibleWeb (http://www.
invisibleweb.com/), the vast majority of which do not support such standards. It is
also rare for search server software, such as the products listed at SearchTools (http:
//www.searchtools.com/), to support such standards. The advantage of a generally
applicable broker is that it can address one or more servers which do not explicitly
cooperate, while a broker which relies on cooperation can address none.

Will search server administrators find search brokers acceptable?

By performing concurrent search and results merging, a search broker allows users to
quickly find documents from various servers. However, in doing so it also bypasses
individual search server results pages. Some search server administrators will find
this acceptable, others will not.

A common situation on the Web is for a document provider to set up a search
service with the sole purpose of improving access to its documents. This is the case
with many servers listed by InvisibleWeb. In such cases, bypassing the search results
should not be a problem. Being associated with a broker should increase, or at least
not reduce, user access to a search server’s results.

However, not all search servers administrators would be pleased to be searched
by a broker. For example, a search engine company provides results with related
branding, advertising, services and links. It derives no benefit from increased traffic to
documents it returns, because it has no strong association with document providers.
A broker in effect “steals” and “rebadges” the product of a search engine company, its
results page, simply by reformatting it into a merged list. It is possible for the merged
list to maintain some of the search engine’s branding and advertising. However, if a
search broker were to become highly popular, search engines still might take technical
or legal action to block it.

This is one reason why this thesis concentrates on the tens of thousands of Invis-
ibleWeb search servers rather than the handful of advertising funded search engine
company servers.

What about server discovery?

This thesis presupposes that a search broker administrator knows of some useful set
of search servers S, then configures the broker to address those servers. This is analo-
gous to a Web site administrator knowing of some document set and then configuring

http://www.ncbi.nlm.nih.gov/PubMed/
http://www.invisibleweb.com/
http://www.invisibleweb.com/
http://www.searchtools.com/
http://www.searchtools.com/
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a search server to search them. However, on the Web it is possible to discover new doc-
uments automatically based on hyper-links using a Web crawler. The crawler allows
a Web search engine to index documents which the engine’s administrators never ex-
plicitly instructed should be indexed. An analogue for this is a search broker which
can find its own servers S using automatic means. As stated previously, IntelliSeek
claim to have a semi-automatic method for discovering search servers, but few details
of it have been released. Automatic server discovery is a largely unexplored problem
area.

What about retrieval methods, particularly query translation?

This thesis is concerned with building an effective broker, which operates over some
existing set of search servers. In designing such a broker, choice of selection and merg-
ing methods is the major determinants of broker results quality. The broker’s meth-
ods for retrieving results Ri from server s′i have very little influence over effectiveness,
since the broker has no control over servers’ documents and retrieval system.

However, the problem of retrieval from search servers on the Web is difficult. The
broker must deal with a variety of CGI search interfaces. It must also handle changes
in the interface, either by adapting to minor changes in the HTML form or gracefully
ignoring a changed server until the broker is manually updated to handle it. Results
presentation may also change over time, and the broker should also adapt to those
changes. Finally, there is some small scope for a broker’s design to influence the qual-
ity of results returned by a server. Query translation, changing the query entered by
the user into a format acceptable to the search server, can be performed well or badly
by the broker. If performed well it can improve the server’s effectiveness and there-
fore the broker’s. However, none of these questions are considered further in this
thesis, because their impact on broker effectiveness is small.

What about document volatility?

There is a temporal dimension to distributed information retrieval, with two major
effects. First a search server’s index becomes out of date as documents change. Its
index is based on the contents of documents at some point in time. If documents have
changed since index time, the server might return documents which no longer exist or
no longer match the query. Also, a cooperating server might export other information
which has become out of date. Second, as documents and search servers change a
search broker can become out of date. For example, if the broker is performing selec-
tion based on server performance on past queries, it is using information which may
no longer be applicable.

These problems stem from document volatility. A perfect solution would depend
on cooperation. A document server could notify the search server and broker every
time a document changes, to allow for updating of information. However, such an
approach might be highly inefficient.

None of the previously published methods fall into this perfect category. How-
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ever, some methods are better than others. Selection based on lightweight probes (the
methods are described in full later) is better than selection based on STARTS, because
probes get fresh information before each query, while STARTS information updates
are less regular. However, lightweight probes are not perfect since the search server
responding to the probe might have an out of date index with respect to current doc-
ument contents.

Merging based on document downloads is better than merging based on server co-
operation, since documents might have changed since the cooperating search servers
last updated their index. Downloading the latest version of documents DM from doc-
ument servers allows the merged list to precisely reflect current document contents.

Methods which get the most up to date information, lightweight probes and docu-
ment download, both require extra communication at query time. When implement-
ing a broker, a tradeoff must be made between up to date information and efficient
operation.

2.3 Solutions

2.3.1 Server selection methods

Many server selection methods are in fact methods for server ranking. A server rank-
ing method ranks servers S with respect to the query q. After ranking, some server
thresholding method may be applied — for example taking the top ten ranked servers
— to select servers S′. Server ranking methods described in detail here are CORI, CVV,
bGlOSS, vGlOSS and lightweight probes. These methods were originally intended to
rank cooperating servers which export ranking information (see Table 2.1), although
probe queries (see Chapter 3) allow ranking of non-cooperating servers. Server se-
lection methods which do not rank servers include query clustering and modelling
relevant document distributions. These instead predict the optimum number of doc-
uments to take from each server. Other non-ranking methods are based on Boolean
matching against manually assigned meta-data such as that used by InvisibleWeb
(http://www.invisibleweb.com/). All these methods are described below.

CORI

The CORI [Callan et al. 1995] method ranks search servers as document surrogates,
consisting of the concatenation of the server’s documents. Using the formulation from
the 1995 paper, the belief p(r1, . . . , rM|si) in server si due to observing terms r1, . . . , rM is
determined by:

T = dt +(1−dt) ·
log(DFi,k +0.5)
log(DFmax

i +1.0)

I =
log
(
|S|+0.5

SFk

)
log(|S|+1.0)

p(tk|si) = db +(1−db) ·T · I

http://www.invisibleweb.com/
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Required Information

Method df Size Vector Co/prox Manual

CORI o
Cue validity variance o
bGlOSS o o
vGlOSS o o
Lightweight probes o o
Manual/semi-manual methods o

Table 2.1: Information required for server ranking. Each server ranking method is based
on some information which the broker must extract from servers, such as server df docu-
ment frequencies, Size number of documents indexed, Vector document vector information,
Co/prox term co-occurrence and proximity information or Manual manual input such as rel-
evance judgments or server content summaries. Extraction of the first four without explicit
server cooperation is now possible using probe queries, described in Section 3.2.

Notation Meaning

si The ith search server
S The set of servers known to a search broker (s1,s2, . . .)
s′i The ith selected search server
S′ Subset of Sselected to answer a query (s′1,s

′
2, . . .)

tk The kth query term in q
q A query asked of the broker (t1, t2, . . .)
Q The number of unique query terms
Ri The results of s′i in response to a query q

RM The broker’s merged search results
DFi,k The number of documents in si containing tk

DFmax
i The maximum DF of any term in si

DFcoi,k,l The number of documents indexed by si which contain both tk and tl
DFproxi,k,l The number of documents indexed by si in which tk and tl occur within

a certain proximity of each other
SFk The number of servers si ∈ Swhere DFi,k > 0
SSi The number of documents indexed by si

TFi,k The number of times term tk occurs in server si

TFq
j The number of times term t j occurs in the current query q

|Vi | The vocabulary size of server si

Table 2.2: Notation. Notation used throughout this thesis.
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p(t1, . . . , tQ|si) =
∑Q

k=1 p(tk|si)
Q

(2.1)

DFi,k is a document frequency statistic, the number of documents in server si con-
taining term tk. DFmax

i is the maximum DF of any term in si . |S| is the total number
of servers and SFk is a server-frequency statistic, the number of servers with one or
more documents containing term tk. Q is the number of unique query terms. Servers
are ranked in descending order of belief. This notation is also described in Table 2.2.
Experiments in this thesis use the same default term frequency value (dt) and default
belief (db) as Callan, Lu, and Croft [1995], setting both to 0.4. It also uses the #SUM
operator, which is one of the supported CORI operators.

The formula is a modification of an INQUERY document ranking formula, using
DF instead of TF (term frequency, the number of times a term occurs in a document)
and SF instead of DF. To move far from the default belief db, a term needs a high
document frequency with respect to the maximum document frequency and a low
server frequency with respect to the number of servers. For example, server promise
scores are not calculated using CORI in Chapter 6, because high server frequency
statistics lead to very little variation from db.

bGlOSS and vGlOSS

Gravano and Garcia-Molina proposed the text-source discovery algorithms bGlOSS
[Gravano et al. 1994] and vGlOSS [Gravano et al. 1999] (vGlOSS was first described
as gGlOSS in [Gravano and Garcia-Molina 1996]). The bGlOSS method ranks servers
which each run a Boolean retrieval system, using document frequency and server size
information and according to some assumption about the distribution of query terms
in documents. For example, assuming that query term distributions are independent,
it is possible to estimate the number of documents matching a two term conjunctive
query as follows. Given a server with 1500 documents, with 200 containing term A
and 50 containing term B, the estimated number of documents satisfying the query
A∧B is 200

1500×
50

1500× 1500= 62
3. bGlOSS then ranks servers in descending order of

estimated number of relevant documents. Gravano and Garcia-Molina admitted the
assumption of independence is questionable, but claimed good experimental results
using it.

The vGlOSS [Gravano and Garcia-Molina 1996] server ranking methods Max(l)
and Sum(l) rank servers whose retrieval systems are based on a vector space model.
To understand the method it is first necessary to give a brief overview of vector space
retrieval. Each dimension in a simple vector space for document retrieval corresponds
to a term which occurs in the document collection being searched. A document d j

may then be represented as a vector in that space, with its weight in a dimension wt j,k

proportional to the term frequency of the corresponding term tk in the document and
perhaps inversely proportional to the document frequency of term tk in the collection.
Document vectors in the space are very sparse, containing non-zero weights for only
a fraction of the collection’s total vocabulary. To perform retrieval, the query is cre-
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ated as a vector in the document space and documents with the closest match, for
example using vector inner product, are ranked highest. Document vectors are often
normalised to retrieve documents of all lengths, rather than favour long documents
which may have greater weights due to verbosity rather than greater query match.

vGlOSS selection is based on the vector sum of the server’s normalised document
vectors as well as its document frequency statistics. The vector sum for server si and
term tk is:

cwti,k =
j<SSi

∑
j=0

wt j,k

where wt j,k is the weight of term tk in the normalised document vector representing
document d j of server si . So if two documents on server sn contain tm =“craswell”, and
the documents have tm weights 0.01 and 0.07, then cwtn,m = 0.08.

Max(l) and Sum(l) estimate summed scores of all documents which score above l ,
for a particular query and server. They are based on a high correlation scenario and
a disjoint scenario respectively (see Figure 2.5). Both are estimates, based exported
weights and document frequency statistics, of Ideal(l) the actual summed document
scores for documents scoring above l .

The following examples use sample statistics from Table 2.3. Each estimator as-
sumes weights are spread equally across all documents containing a term, so term A
contributes a score of 40÷200= 0.2 to each of 200documents, B contributes 0.1 to 50
documents and C contributes 0.25 to 20.

Under the high correlation scenario, Max(l), terms occur together as often as pos-
sible. Max(l) estimates that 20 documents contain query terms A, B and C, and each
document has a score of 0.55. A further 30 documents contain only A and B with a
score of 0.3, and 150documents only contain A scoring 0.2. If the threshold l for inclu-
sion in the merit sum is 0.25, an estimated 50 documents score above the threshold,
and the merit sum is Max(0.25) = 20×0.55+30×0.3 = 20. After calculating scores for
other servers in S, the broker then ranks in descending score order.

Under the disjoint scenario Sum(l), terms occur in different documents where pos-
sible. With a threshold of l = 0.25, the documents containing only A or only B do not
qualify, scoring only 0.2 and 0.1 respectively. The documents containing C do meet
the score threshold, and vGlOSS estimates the merit of the server to be the total scores
of those documents 20× 0.25 = 5. Servers are again ranked in descending order of
estimated merit.

For l = 0, all three produce the same ranking, so Max(0) = Sum(0) = Ideal(0). The
score Si achieved by a server si when l = 0 is:

Si =
Q

∑
j=1

cwti, j (2.2)

This formulation is used in Chapter 5, and was also used by French, Powell, Viles,
Emmitt, and Prey [1998] and French, Powell, Callan, Viles, Emmitt, Prey, and Mou
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A B C A B A

A

C

B

High Correlation Scenario

Disjoint Scenario

Figure 2.5: vGlOSS scenarios. Under the high correlation scenario, query terms occur to-
gether in documents as often as possible, so documents containing term C also contain A and
B. Under the disjoint scenario, terms do not occur together where possible, so sets have mini-
mum overlap.

tk DFi,k cwti,k

A 200 40
B 50 5
C 20 5

Table 2.3: vGlOSS example statistics. Example for a server si . tk is the term. DFi,k is the
document frequency of tk in si . cwti,k is the sum of weights for tk over all documents in si .
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[1999], although under a different evaluation framework.

CVV

The CVV [Yuwono and Lee 1997] server ranking method is based on the Cue validity
variance (CVV) of query terms. Terms which can better discriminate between servers
have a higher CVV and therefore contribute more to the suitability score Si :

CVi, j =
DFi, j

SSi

DFi, j

SSi
+ ∑|S|k6=i DFk, j

∑|S|k6=i SSk

CVVj =
∑|S|i=1(CVi, j −CV j)2

|S|

Si =
Q

∑
j=1

CVVj ·DFi, j (2.3)

SSi is the size, in documents, of server si . CV j is the population mean of CVi, j over all
servers. Servers are ranked in decreasing order of scores Si . A term needs high CVV
to influence selection, which corresponds to a high variation in DF. The formula lacks
server size normalisation. For example, if two servers have DF of ten for a given term
it does not matter if one server indexes a total of ten documents and the other ten mil-
lion, they will have the same Si . This means that CVV selection tends to favour large
servers. Evaluation shows that CVV selection improves if size variation is masked
(see Chapter 5).

Yuwono and Lee also proposed two other server ranking methods, but described
them in less detail than CVV. The df · isf method prefers servers which have a high
document frequency (df) for a query term which is not present in many search servers
(inverse server frequency isf). The score of a server Si is:

Si =
Q

∑
j=1

DFi, j · log

(
|S|
SFj

)
(2.4)

using notation described previously.
The cluster centroid selection method represents a server’s documents in a vector

space and the server itself as the centroid of those vectors. Server ranking is then
based on the inner products of the centroid vectors to the query vector, analogously
to document vector ranking.

Lightweight probes

Hawking and Thistlewaite [1999] perform server selection using lightweight probes.
Given a large query q the search broker generates a two term probe query and sends
it to servers S. Probe results from server Si for terms tk and tl include:
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DFi,k Document frequency of tk in documents indexed by si ,
DFi,l Document frequency of tl in documents indexed by si ,
DFcoi,k,l The number of documents indexed by si which contain both tk and tl ,

and
DFproxi,k,l The number of documents indexed by si in which tk and tl occur within

a certain proximity of each other.
These results are combined in a linear function to generate a server score Si :

Si = c1DFi,k +c2DFi,l +c3DFcoi,k,l +c4DFproxi,k,l (2.5)

Values of parameters c1 . . .c4 were set after experimentation over a training set of doc-
uments, with 0≤ c1 ≤ 1, 0≤ c2 ≤ 1, c3 = 10 and c4 = 100. Probes were automatically
generated using 1-3 word queries, taken from TREC topic titles (TREC is described in
Section 2.4.1). For single term titles the term was repeated twice. For titles with more
than two terms, a set of DF statistics was taken from a separate document set, and the
two terms with DF closest to some ideal value were used in the probe. Servers are
sorted in descending order of score Si .

This thesis proposes a system of probe queries (Section 3.2) which is quite dif-
ferent from Hawking and Thistlewaite’s lightweight probes. Lightweight probes are
performed at query time, and require servers to cooperate by returning term occur-
rence statistics. By contrast, probe queries are performed before query time and are
compatible with any server capable of returning a results list.

Query clustering and modelling relevant document distributions

Voorhees [1995] proposed two server selection methods, each based on relevance
judgments of the top 100 merged results for each of several training queries. Rather
than ranking servers, the methods predict the optimum number of results to take
from each server, making S′ the set of all servers from which one or more results are
retrieved. The methods allow a broker to address any search server, since they do
not require servers to cooperate by exporting meta-data. Voorhees described methods
which do not require cooperation as “isolated”, and those which do as “integrated”.
The selection methods are the query clustering method and the modelling relevant
document distributions (MRDD) method.

In the Query Clustering method, the broker represents training queries for which
relevance judgments are available in a vector space. It then clusters query vectors and
calculates cluster centroids. It creates the current query q in the same vector space and
finds the closest cluster centroid. The number of documents retrieved from a server is
then proportional to its average number relevant for training queries in that cluster.

In the MRDD method, the broker finds the K training query vectors closest to
the current query’s vector. It then calculates for each server, the number of relevant
documents returned at each point in a ranking, on average over the K results lists. For
example, at rank 10 server s1 might have on average 2.7 relevant documents while
server s2 might have 2.0. However, server s2 might have a better average at rank five.
MRDD then chooses a level of retrieval from each server that maximises the expected
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number of relevant documents.

Other methods

Xu and Callan [1998] suggested the broker could improve CORI selection based on
phrase occurrences in documents or using query expansion. Xu and Croft [1999]
suggested methods for manufacturing topic skew — assigning documents to search
servers so that relevant documents for a given topic tend to be concentrated at one or
a few search servers. Natural topic skew does exist in Web servers, see Section 5.1.1,
but central control over which documents are indexed by which server is not realistic
on the Web. However, Xu and Croft did improve on the effectiveness of CORI se-
lection using the Kullback-Leibler divergence measure to determine how well a topic
language model predicts the current query q.

Baumgarten proposed a probabilistic model for distributed information retrieval
over a multi-layer hierarchy of servers and brokers [Baumgarten 1997; Baumgarten
1999], which includes server selection. Under the model, brokers select servers so
as to maintain the top l merged results, without querying servers which would not
contribute to the top l . The selection method, is based on the broker’s estimation of
server retrieval status value distributions. Estimates are in turn based on statistics
exported by cooperating servers.

Zobel [1997] proposed a number of server ranking methods based on collection
statistics provided by cooperating servers. The most effective was an inner product
similar to Yuwono and Lee’s df · isf method. D’Souza, Thom, and Zobel [2000] sug-
gested an n-term indexing scheme, where the broker keeps an index of the distributed
documents based on a limited term vocabulary. Because of the smaller vocabulary,
the n-term index is smaller than a full central index. A different approach is for the
broker to keep the full vocabulary but index documents in groups of 10 [de Kretser
et al. 1998]. This central index is half the size of a per-document index. The broker
identifies the top ranked 100or 1000groups using the index, then queries the appro-
priate servers, listing the document identifiers of interest. This document identifier
list allows each selected server to process the query by consulting only a fraction of its
index.

The Web search broker SavvySearch [Dreilinger and Howe 1997] performs server
selection based on past “visit” and “no results” events. If the current query contains a
term tk and the user visits a results document, the future selection score of the server
which returned the result is boosted, for queries containing tk. If a server returns
no results for a query containing tk its future selection score is reduced for queries
containing tk. The Web search broker ProFusion also performs selection based on user
visits to results pages and query categorisation [Fan and Gauch 1999]. Since visit
events are not available with standard test collections, these methods have not yet
been included in large-scale evaluation and are not evaluated here.

A number of selection methods based on server classification have also been sug-
gested. CiteLine Professional (http://www.caredata.com/) and InvisibleWeb (http:
//www.invisibleweb.com/) categorise and summarise servers manually. Selection is

http://www.caredata.com/
http://www.invisibleweb.com/
http://www.invisibleweb.com/
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then based on the presence of query terms in category names and summaries. It is
a Boolean match, servers are not ranked. Chakravarthy and Haase [1995] classified
servers using WordNet [Miller 1995] style structures. Kirk, Levy, Sagiv, and Srivas-
tava [1995] proposed use of knowledge representation technology for characterising
servers and queries, along with methods for matching the two. Dolin, Agrawal, Dil-
lon, and El Abbadi [1996] used Library of Congress hierarchical meta-data descrip-
tions in their system Pharos.

Server selection methods based on server categorisation are also not evaluated
here. Those which rely on manual classification can not be implemented because doc-
uments used (the WT2g TREC test collection described later) have not been manually
classified. Due to time constraints even methods based on automatic classification,
based on manually derived training data, such as Pharos [Dolin et al. 1999] are not
evaluated here.

2.3.2 Results merging methods

A results merging method gathers information about documents DM and then gener-
ates a ranking oM with respect to query q. The two broad classes of merging method
are cooperative merging methods, which rely on cooperation from search servers,
and generally applicable merging methods, which are based on information such as
server-assigned document ranks. This section describes methods in both classes.

Note, no merging method is guaranteed to produce precisely the same results as
would a centralised search over the same documents. This is because only documents
returned by the selected servers make it into the merged list. If a server is not selected,
a top ranking document might be missed. If each selected server’s top ten results are
merged, a document might be missed because it is ranked at eleven or greater. Missing
a document which would be highly ranked in the merged list becomes more likely if
a server uses different collection statistics or document ranking algorithms than are
used in merging.

Merging with server cooperation

With the cooperation of servers, a broker can rank documents RM in the same order as
they would be by a non-distributed system. Such consistent merging has been known
as perfect merging [Hawking and Thistlewaite 1999] and merging with normalised
scores [Callan et al. 1995]. It orders the small document set RM based on a single rank-
ing algorithm and on consistent collection statistics. These statistics may be collected
from all the broker’s servers Sor servers selected for the current query S′.

One method for achieving a consistent merged ranking, the comparable scores
method, has two requirements:

1. Servers all generate document relevance scores using the same retrieval algo-
rithms (document ranking algorithm, stemming method, stopwords list) and
return these scores to the broker.
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Figure 2.6: Propagating statistics for merging Under scheme A [Viles and French 1995],
servers propagate their document frequency (DF) statistics amongst themselves before query
time, then provide results with comparable scores for merging. Under scheme B [Callan et al.
1995], servers also return comparable scores, but document frequency statistics are collated
at the broker and supplied with the query. Under scheme C [Kirsch 1997] there is no com-
munication before query time. Instead the servers return the necessary term frequency and
document frequency statistics with their results, and the broker uses the statistics for merging.
Notice that consistent scores in A and B are based on DF statistics for sall while those in C
are based only on statistics from s1 and s3. This is indicative of the problem of defining the
“collection” when collating collection statistics (addressed in Appendix A).
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2. If the ranking algorithm requires collection statistics, as the most effective al-
gorithms do [Harman 1992], all servers use the same collection statistics. This
consistency may be achieved by either:

• propagating and aggregating statistics between the servers Sbefore query
time [Viles and French 1995], or

• aggregating statistics at the broker before query time, and then at query
time providing servers with statistics on query terms [Callan et al. 1995;
de Kretser et al. 1998; Mazur 1994].

For an illustration of the communication required for such aggregation, see Fig-
ure 2.6.

If the above requirements are met, servers will return comparable scores and the bro-
ker merges by simply sorting documents in order of descending score.

The other method which produces a consistent RM, the statistics provision method
[Walczuch et al. 1994; Gravano et al. 1997; Kirsch 1997], ranks documents with re-
spect to collection statistics collated from servers S′ at query time. The servers return
statistics pertaining to q with their results. The broker uses these statistics to gener-
ate a consistent ranking. For example, if the broker’s merging is based on a simple
tf · idf document ranking, each server s′i would return with its results Ri query-term
frequency statistics for documents Di and query-term document frequency statistics
for its entire index. By summing document frequency statistics and using term fre-
quency statistics, the broker may then generate each document’s tf · idf score. The
merging is again consistent because documents DM are ranked in the same order as
they would be by a single index, except this time covering the documents of servers S′

and servers need not all run the same retrieval system, because the consistent scores
are generated by the broker.

Baumgarten’s probabilistic model for distributed information retrieval [Baum-
garten 1997; Baumgarten 1999] suggests a different merging method, also based on
server cooperation. Under the model, search servers must export statistics and em-
ploy some probabilistic ranking algorithm. The broker modifies document retrieval
status values from various servers according to server information, to obtain a merged
ranking consistent with the probability ranking principle [Robertson and Sparck Jones
1976].

Generally applicable merging methods

On the Web, where lack of server cooperation makes cooperative merging unfeasible,
brokers must employ different merging methods. Rank based merging methods use
the ordinal ranks returned by servers to generate oM. Ranks may be simply inter-
leaved [Callan et al. 1995; Smeaton and Crimmins 1996] such that the merged ranking
consists of all documents of rank one, followed by all documents of rank two, and so
on. Documents which appear in multiple results lists can have their rank improved
under this scheme. Alternatively the gap between a server’s documents in RM may be
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made inversely proportional to server promise (server selection score) [Yuwono and
Lee 1997]. This is similar to a method by Voorhees [1995], which chooses documents
from each incoming list using a weighted |S′| sided die. On that die, weights begin at
levels proportional to server promise, then decrease to zero as documents are chosen.

Score based merging methods use the relevance scores returned by servers. Note,
scores from different servers may be non-comparable due to differences in ranking
algorithms or collection statistics. When ranking algorithms differ, the magnitude
of scores may vary, for example ranging between 0− 1, 0− 100 or with no fixed
maximum. Even using the same ranking algorithm, different servers return non-
comparable scores because their scores are based on local collection statistics (rather
than statistics for all servers S′ or Sas in cooperative merging). The solution suggested
by Selberg and Etzioni [1997] is to scale the scores from each server to range between
two set values, then sort by scaled scores. A further refinement is to weight scaled
scores more highly if they originate from a server with a higher server promise. For
example by multiplying the scaled score by the server promise score [Gauch et al.
1996]. Callan, Lu, and Croft [1995] did this, but did not need to scale the scores first,
because they were already based on a uniform document ranking (scoring) algorithm.

Content based merging methods may be applied in situations where document
servers allow the broker to download document full texts. The Inquirus [Lawrence
and Giles 1998] search broker downloads documents, then employs the following
document ranking algorithm:

R = c1Np +

(
c2−

∑Np−1
i=1 ∑Np

j=i+1min(d(i, j),c2)

∑Np−1
k=1 (Np−k)

)/ c2

c1
+

Nt

c3
(2.6)

where R is the document’s score, Np is the number of query terms present in the doc-
ument (each term is counted once), Nt is the number of query term occurrences in the
document, d(i, j) is the minimum distance (number of characters) between the ith and
jth query terms, and c1, c2 and c3 are constants. Inquirus did not use a ranking al-
gorithm of proven effectiveness, because such algorithms require collection statistics,
which are unavailable from Web search servers.

2.3.3 Search brokers

This section gives examples of currently operating search brokers of various types,
emphasising their differences. It then describes current brokers which give a hint of
the next generation.

Example brokers

Brokers which run on a central server, to which a user connects with a Web browser,
are called central brokers. Those which run on the user’s computer are called client
brokers. General brokers are those which search search servers such as AltaVista
(http://www.altavista.com/) which cover documents from many sources. Other

http://www.altavista.com/
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brokers have a narrow focus. For example, a shopping broker searches shopping
servers and a medical search broker searches medical servers.

• Some central, general search brokers have very basic merging and selection,
such as DogPile (http://www.dogpile.com/). DogPile always queries all its
servers then presents a concatenation of their results lists.

• Central, general brokers with merging but selection S′ = Sinclude MetaCrawler
[Selberg and Etzioni 1997], C4 (http://www.c4.com/), Mamma (http://www.
mamma.com/) and InferenceFind (http://www.ifind.com/). InferenceFind also
performs clustering on its results.

• Central, general brokers with merging and some manual server selection in-
clude Inquirus [Lawrence and Giles 1998] and The BigHub (http://www.
thebighub.com/).

• Central, general brokers with merging and selection include SavvySearch
[Dreilinger and Howe 1997] and ProFusion [Gauch et al. 1996].

• At least one central, general broker without automatic retrieval or merging
but with selection over many search servers, is available on the Web: Invisi-
bleWeb.com (http://www.invisibleweb.com/).

• Central shopping search brokers include eBoodle (http://www.eboodle.com/)
and DealPilot.com (http://www.dealpilot.com/). These allow product
searches across multiple shopping search servers.

• Client, general brokers include Connectix Surf Express Deluxe (http://www.
connectix.com/), SearchBuddy (http://www.searchbuddy.com/) and Fusion
[Smeaton and Crimmins 1996].

• One client medical search broker, CiteLine Professional (http://caredata.
com/), performs selection based on manually generated meta-data but no con-
current retrieval or merging.

The remainder of the section notes interesting features of Inquirus and of server
selection brokers CiteLine Professional and InvisibleWeb.com.

Next generation brokers

Inquirus [Lawrence and Giles 1998] runs on a server at NEC Research Institute at
Princeton. It has manual selection amongst a number of fixed server subsets: Web,
News, Images and Web and News. For example, the Web set has 17 servers.1 Merg-
ing is based on downloaded document contents and a novel document ranking algo-
rithm (Equation 2.6). Inquirus is intended to search more of the Web than any single

1Inquirus Web search servers: HotBot, Direct Hit, Google, Infoseek, AltaVista, Excite, Northern Light,
Snap, Fast, Voila, WebTop , SearchEdu, Open Directory, Thunderstone, Yahoo Inktomi, EuroSeek and
Yahoo.

http://www.dogpile.com/
http://www.c4.com/
http://www.mamma.com/
http://www.mamma.com/
http://www.ifind.com/
http://www.thebighub.com/
http://www.thebighub.com/
http://www.invisibleweb.com/
http://www.eboodle.com/
http://www.dealpilot.com/
http://www.connectix.com/
http://www.connectix.com/
http://www.searchbuddy.com/
http://caredata.com/
http://caredata.com/
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server can. The indexable Web includes more than one billion non-duplicate index-
able documents (http://www.inktomi.com/webmap/). Since large Web search servers
have surprisingly low overlap, Inquirus covers more pages by combining the results
of multiple engines [Lawrence and Giles 1999].

CiteLine Professional (http://www.caredata.com/) specialises in medical data,
with |S| > 2000 specialist medical search servers. InvisibleWeb.com (http://www.
invisibleweb.com/) covers a broader range of search servers, with |S|> 10000. Nei-
ther broker is capable of automatic retrieval or merging, but both perform selection
based on manually assigned meta-data. Examples of coverage include the PubMed
(referenced previously), Internet Movie Database (http://imdb.com/) and New York
Times (http://www.nytimes.com/) search servers. The search servers often have a
comprehensive and up to date index, which covers a single document source.

This thesis explores the idea of building a generally applicable search broker sim-
ilar to Inquirus and incorporating highly effective selection and merging methods.
To that end later chapters introduce and evaluate methods for effective Web merg-
ing and selection which are extensions to Inquirus. The broker would cover search
servers such as those listed by CiteLine Professional and InvisibleWeb. The number
of servers |S|would depend on the application. In some cases a broker over ten or one
hundred specialist servers would be useful. In any case, the evaluation experiments
model single source, heterogeneous search servers such as those which exist on the
Web.

2.4 Published evaluation experiments

This section first describes general effectiveness evaluation methodology in informa-
tion retrieval. Then it summarises previously published effectiveness evaluation ex-
periments in server selection and results merging.

2.4.1 Overview of information retrieval evaluation

Many systems provide a search service by responding to an incoming query with a
list of search results, usually ranked in order of likely relevance to the query. These
include research systems [Voorhees and Harman 1998], search servers (as described
in Section 2.2) and search brokers. The goal of any search service is to return results
which satisfy the user, and because the goal is the same in both the distributed and
non-distributed case, similar experimental methods may be used in each. For this
reason this section now discusses the two main designs for system evaluation: the
user study and evaluation using a test collection.

In a user study, users spend time interacting with different search systems. Dur-
ing the interaction the experimenter records data such as the user’s behaviour, the
user’s stated levels of satisfaction, system inputs, system outputs and time taken.
Then, through analysis of this data, the experimenter draws conclusions about the
relative effectiveness of different systems. Although a user study experiment closely

http://www.inktomi.com/webmap/
http://www.caredata.com/
http://www.invisibleweb.com/
http://www.invisibleweb.com/
http://imdb.com/
http://www.nytimes.com/
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Topic: e.g. Falkland Petroleum Exploration...

Results:
1. www.falklandnews.com
2. www.bp.com
3. www.militaryhistory.com
4. www.naturalresources.gov.fk
5. www.falkland.gov.fk

Documents: e.g. Home pages of 1000 sites
www.bp.com, www.news.com, www.canberratimes.com.au

Relevance judgments for Falkland Petroleum Exploration...:
www.falklandnews.com is relevant

www.naturalresources.gov.fk is relevant
www.oilexploration.com is relevant

www.falkland.gov.fk is relevant

System

Effectiveness measurement: precision at 5 = 0.6

Query: falkland(1) petroleum(1) exploration(1)

"..Any document discussing petroleum exploration in..."

   (all other documents are irrelevant)

Figure 2.7: Test collection example. For a given topic, in this case one about offshore oil ex-
ploration near the Falklands, a query is generated in the query language of the system. Given
the query and test collection documents, a system produces a ranked results list. Using rele-
vance judgments — judgments are based on whether a human relevance assessor finds each
document relevant — the system’s effectiveness can be measured. In this case its precision at
five documents, the proportion of the top five judged relevant, is 3

5 = 0.6.

models real interaction between user and system — differing only when experimen-
tal requirements influence the user’s behaviour — it has some disadvantages. Every
user is different and user needs change over time, so it is impossible to give two or
more systems exactly the same task. In the act of querying one system, the user’s state
of knowledge changes. This in turn changes their future needs, queries and levels of
satisfaction with future results. Consequently the experimenter must record enough
data in a counterbalanced experimental design, allowing statistical analysis to reveal
general trends in effectiveness. Getting enough data can require a large experiment.
Also, to test a new facet of a system, the whole experiment should be repeated even if
the baseline system stays the same. Because user studies involve so much user input
and start each time from scratch, user study methodology is not applied in this thesis.

A test collection in this context is an abstract laboratory model — comprising docu-
ments, topics and relevance judgments — of a user’s behaviour when searching. Each
topic is a fixed statement of a user information need, usually in natural language,
which is used both as a basis for generating queries and for judging the relevance of
documents. For each topic, a relevance assessor views documents to judge whether
they are relevant. Real information needs change over time, but the topic and judg-
ments form a fixed picture of user preferences. Using this, the experimenter may
evaluate a system’s effectiveness by: (1) generating a query based on the topic (query
generation may be automatic or manual), (2) querying the system over the test col-
lection’s documents and (3) measuring the effectiveness of the system in returning
judged-relevant documents in high ranks. The whole process is illustrated in Fig-
ure 2.7.
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Commonly employed effectiveness measures are precision at N, the proportion of
the top N documents judged relevant, and recall at N, the proportion of all judged-
relevant documents in the top N. The experimenter should only use the latter measure
if sufficient relevance judgments have been made to identify practically all relevant
documents (see the description of pooling below). For applications where both recall
and precision matter, it is common to graph one against the other, to see how precision
degrades as recall increases. A single-number measure commonly used in research is
average precision, the area under the non-interpolated precision-recall graph. In exper-
iments concerning Web data, it is becoming more common to focus on early precision
[Hawking et al. 1999] rather than precision and recall. The reason for this is that users
searching the Web seldom look at a large number of documents for a single query
[Spink et al. 1999].

A test collection is an abstraction. To model a single user’s behaviour for a single
topic, input from as many as three individuals may be required: for topic generation,
manual query generation and relevance judging. The topic description and relevance
judgments are fixed despite the fact that a real user’s needs constantly change, even
during their viewing of a results list. However, this simplifying assumption of un-
changing information need allows two or more systems to be evaluated on precisely
the same task. In addition, once a test collection has been created it may be reused in
a number of different experiments, which require no new user data, as long as the ex-
perimenter is confident that practically all potentially relevant documents have been
judged. Because of the latter condition, only test collections with sufficiently complete
relevance judgments are used in this thesis.

A major expense in creating a test collection is in paying relevance assessors for
their time in making judgments. In the first test collections, all documents in the
collection were judged with respect to each topic, for example see work from 1967
reprinted as [Cleverdon 1997]. Although this guaranteed the identification of all doc-
uments that the assessors found relevant, the cost of the judging limited the number
of documents in test collections. Since then newer and larger test collections have
been built using the pooling method, notably in the context of the NIST Text REtrieval
Conferences (TREC) [Voorhees and Harman 1999]. Pooling involves combining top
results from many systems to build an assessment pool. If the pool contains enough
documents and the systems have been successful in returning documents which are
likely to be relevant, it may be assumed that the pool contains all relevant documents.
By judging only documents in the pool, assessors can identify most relevant docu-
ments while judging a fraction of the available documents. In TREC, several two gi-
gabyte test collections have been built with complete judgments, and documents have
already been collated for a ten gigabyte Web-data collection with complete judgments.

In summary, an existing test collection with complete judgments may be used in
evaluation without any new user input. Evaluation by user study or use of a collec-
tion without complete judgments requires new user input. Because judging resources
are scarce and TREC test collections are adequate for the task, this thesis performs
evaluation using a two gigabyte TREC test collection with Web documents and two
TREC test collections each containing two gigabytes of news and government docu-
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ments. Each test collection has sufficient judgments, through pooling, for repeated
experiments with no new judging.

2.4.2 Selection evaluation

There are two main models for evaluating the effectiveness of server selection meth-
ods. System level evaluation includes the whole process depicted in Figure 2.4: selec-
tion, retrieval and merging. An effective selection is one which provides effective
results RM to the user, for a given server configuration and merging method. In the
other model, server merit evaluation, each server is assigned a “merit” value. Server
merit evaluation measures the proportion of all available merit captured in selected
or top ranked servers. Server merit evaluation is always based on some merit baseline,
which captures the notion of “server goodness”.

Baselines in server merit evaluation

Gravano and Garcia-Molina [1996] and Yuwono and Lee [1997] defined the merit of
a server using Ideal(l) (Equation 2.2), being the summed scores of documents scoring
above l for the current query. A better server under Ideal(l) is one which has more
documents scoring above l for the query or the same number with higher scores.

Rather than tying merit to a single document scoring algorithm, as does Ideal(l),
Zobel [1997] defined merit according to multiple algorithms. He defined desirable
documents as those returned in the top 100 by at least one of a number of retrieval
systems. Under this definition, a better server is one which indexes a greater number
of desirable documents.

Callan, Lu, and Croft [1995], Hawking and Thistlewaite [1999] and French, Powell,
Viles, Emmitt, and Prey [1998] defined server merit according to the number of docu-
ments indexed which are relevant to the current query. Under this relevance baseline,
a better server is one which indexes more relevant documents. This baseline requires
a test collection in which practically all relevant documents have been identified.

Measures in server merit evaluation

In system level evaluation, effectiveness of RM may be measured using precision, re-
call or average precision measures described previously. However, server merit eval-
uation requires different measures. Callan, Lu, and Croft [1995] built an ideal ranking,
in descending order of merit, and used mean squared errors between ideal and calcu-
lated ranks as an effectiveness measure:

MSE =
∑i<|S|

i=0 (Oi−Ri)2

|S|

where Oi is the ideal rank of server si and Ri is the rank assigned to si by the server
selection method. Mean squared errors vary arbitrarily if multiple servers have equiv-
alent merit, since in such cases Oi can also vary arbitrarily. For example, if the top three
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servers have identical merit, any one of them might have the ideal rank of one, but
the choice of which Oi = 1 influences MSE.

Gravano and Garcia-Molina [1996] proposed recall and precision analogues, for
use in selection evaluation.

Rn The proportion of merit captured by the top n servers.

Pn The proportion of servers in the top n which have non-zero merit.

French, Powell, Viles, Emmitt, and Prey [1998] proposed additional measures:

R∗ The proportion of merit captured by the top n∗ servers.

P∗ The proportion of servers in the top n∗ which have non-zero merit.

They defined n∗ as the number of servers known to have non-zero merit. The follow-
ing descriptions of selection evaluation experiments indicate which measures were
used.

Evaluation experiments

Callan, Lu, and Croft [1995] performed both system level and server merit evaluation,
using a relevance based merit definition and MSE. However, they did not compare
CORI selection to any other selection method. Xu and Callan [1998] followed up on
this, improving effectiveness of CORI selection using phrase occurrence information
and, in particular, query expansion.

Xu and Croft [1999] compared CORI and Kullback-Leibler selection, finding the
latter to be more effective. They used system level evaluation, dividing TREC doc-
uments into 100 search servers, each of which uses INQUERY retrieval with global
collection statistics allowing consistent merging based on document scores. In the
experiment, document assignments to search servers were based in some cases on
clustering. As mentioned previously, assigning documents to search servers in this
way is unlikely on the Web.

Voorhees and Tong [1997] evaluated query clustering and MRDD selection in com-
bination with weighted Voorhees merging. They performed system level evaluation
over five servers corresponding to five TREC subcollections. The servers had hetero-
geneous retrieval systems, of two different types. Results showed that query cluster-
ing and MRDD perform well, regardless of retrieval system. However, best results
were obtained using ten search servers, with all combinations of five sub-collections
and two retrieval systems.

Gravano and Garcia-Molina [1996] performed server merit evaluation of vGlOSS
using the Ideal(l) merit baseline, and Rn and Pn measures. They found that Max(l) is
a good estimator to balance Rn and Pn while Sum(l) maximises Pn . They also found
that for Ideal(0), Max(0) and Sum(0) give perfect answers.

Yuwono and Lee [1997] evaluated CVV, centroid vector selection, vGlOSS, CORI,
df · isf and bGlOSS selection. They used the evaluation methodology of Gravano and
Garcia-Molina, based on the same ideal ranking. They found that CVV was the most
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effective selection method, and document centroid selection was the second most ef-
fective although only marginally better than vGlOSS. They found CORI, df · isf and
bGlOSS selection to be least effective.

Zobel [1997] performed a server merit evaluation of several proposed selection
methods. Evaluation was with two separate sets of test data, partitioning TREC disk
two into 43 servers and TREC disk three into 91. Two measurement methods were
used, one measuring Rn at every level of n, using a relevance baseline the other using
Zobel’s new baseline described previously. This was based on the number of server
documents which would be returned by one or more of a number of retrieval systems.
Results showed the inner product server ranking method to be the most effective. A
similar experiment, comparing n-term indexing, CVV and inner product selection,
also found inner product to be most effective [D’Souza et al. 2000].

French, Powell, Viles, Emmitt, and Prey [1998] raised concerns over the merit defi-
nition suggested by Gravano and Garcia-Molina. They evaluated Ideal(0) server rank-
ing against a relevance baseline and found that it did not match well. In other words,
Gravano and Garcia-Molina’s ideal servers were not always the ones containing rele-
vant documents. Their testbed split documents from TREC discs 1–3 into 236search
servers. French, Powell, Callan, Viles, Emmitt, Prey, and Mou [1999] followed up on
this work, using the same testbed to compare vGlOSS and CORI. They found that
CORI selection is best under relevance based merit baseline. They also found that
vGlOSS approximates a size based ranking, giving preference to servers with more
documents.

Hawking and Thistlewaite [1999] performed both system level and server merit
evaluation, in the latter case using a relevance baseline. They compared several re-
alistic and control selection methods including their own lightweight probes method
and the query clustering method by Voorhees. Their 98 search servers indexed TREC
documents divided first into six by source, such as Associated Press and US Congres-
sional Record, then further divided into chunks of approximately equal size (in bytes).
Results showed lightweight probes to be superior to query clustering.

In summary, experiments which compare more than two selection methods have
been rare. Experiments on methods from two studies have been performed by Hawk-
ing and Thistlewaite [1999], French, Powell, Callan, Viles, Emmitt, Prey, and Mou
[1999] and [Xu and Croft 1999]. Given the controversy over merit baselines and con-
cerns raised in Chapter 4, it is not clear how much weight to give to the results. Fur-
ther, most studies published so far have assumed search server cooperation, possibly
including the running of homogeneous retrieval systems. By contrast, Craswell, Bai-
ley, and Hawking [2000] and Chapter 5 compare vGlOSS, CORI, CVV and a modifica-
tion of CORI. The experiment models an environment where servers do not cooperate
and have heterogeneous retrieval systems.

2.4.3 Merging evaluation

Merging evaluation methods are much less controversial, although experiments com-
paring multiple methods are rare.
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Evaluation methods

Merging evaluation is simply based on the quality of the merged list RM . If relevant
documents are ranked highly, the merging method has been effective. This may be
evaluated in terms of early precision, for example the precision at 10 of a merged
list of 100 indicates whether the merging method has succeeded in promoting rele-
vant documents. It may also be measured using average precision at any point in the
merged ranking, since average precision rewards both the presence and the rank of
relevant documents.

Evaluation experiments

Callan, Lu, and Croft [1995] compared four merging methods:

• Interleaving ranks,

• Raw scores from INQUERY based on local statistics,

• Comparable scores from INQUERY based on global statistics and

• Weighted scores according to server promise.

Measures were average precision and precision. Precision was measured at various
ranks, various levels of recall and point R in the ranking, where R is the number of
relevant documents for a query. They found that comparable scores and weighted
scores were equivalent and that, since comparable scores require collation of global
collection statistics, weighted scores seemed most promising in practice. Raw scores
were 10–20%worse, and interleaving was highly ineffective.

Other studies have introduced and evaluated new merging methods without com-
paring them to other methods. The experiments reported in [Craswell et al. 1999] and
again in Chapter 6 are the first to compare a large number of merging methods (all
those listed in Section 2.3.2).

2.5 Summary and conclusion

This chapter introduced several key ideas. It described how a search broker interacts
with multiple search servers and the user. It noted that selection and merging meth-
ods determine the effectiveness of a broker over a given set of servers. It surveyed
selection and merging methods, and a number of existing brokers. It also covered
evaluation of selection and merging methods.

Prior to this work no generally applicable, fully automatic methods for server se-
lection had been published. The few published merging methods of this type had not
been evaluated. Consequently, it has been unclear how to perform selection in a fully
automatic, generally applicable search broker. In addition it has been unclear which
merging method is best or even whether generally applicable merging methods are
effective at all. This thesis addresses both these problems by proposing new methods
and evaluating against numerous existing methods.
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Chapter 3

New Methods and Hypotheses

This chapter introduces new selection and merging methods, then states hypotheses
concerning their effectiveness. These hypotheses are tested in two large effectiveness
evaluation experiments in Chapter 5 and 6.

3.1 Using downloaded documents

The new methods assume that the broker downloads and analyses document texts.
Since search results consist of document identifiers, not documents, this involves a
separate stage after retrieval (see Figure 2.1). Document servers respond to requests
from brokers as they would to any other requester. For example, requests from a
user’s document viewing client or from a search broker downloading documents for
indexing (crawling), are no different.

MetaCrawler [Selberg and Etzioni 1995] was the first search broker to use docu-
ment texts, optionally downloading documents for “verification”. Web documents
are volatile and a search server’s index is always based on document contents at the
time of crawling. If documents have changed since the last crawl, it is possible for
Web search servers to return the identifiers of documents which no longer match the
query or no longer exist. MetaCrawler verification simply removes such bad results
from the merged results list.

Inquirus [Lawrence and Giles 1998] makes extensive use of downloaded docu-
ments. It performs verification, but also performs results merging based on docu-
ment texts as described in Section 2.3.2. In addition, from each document it gener-
ates a query biased summary to assist users in deciding which documents to view.
A query biased summary consists of passages extracted from the document, chosen
to include occurrences of query terms [Tombros and Sanderson 1998]. Finally, when
a user chooses to view a document, Inquirus intercepts the request and returns its
cached copy. The caching might mean the document arrives more quickly, but also
ensures the merged ranking is based on precisely the same document that the user
sees. In the cached copy, Inquirus also highlights occurrences of query terms, to help
the user in finding the relevant portion of the document.

Although one operational broker uses document texts for results merging, none
use them for server selection. However, server selection methods which use document

35



36 New Methods and Hypotheses

3.

1.

4.

2.

�

� ����
���

�
	����� � ���
� �

�����������
���

���
� �

�! 

Figure 3.1: Search broker network communication with document download. Document
download adds another stage of network communication to that depicted in Figure 2.3. (1)
The user queries the search broker. (2) The broker queries selected search servers S′ to obtain
their search results R1, . . . ,R3. (3) The broker requests the full-texts of documents DM from the
appropriate document servers. (4) The broker uses document texts for verification, summari-
sation, caching or merging, and returns merged results to the user.
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texts have been proposed. Query clustering and MRDD [Voorhees 1995] applied in
this context would rely on training query results documents being downloaded and
judged (see Section 2.3.1).

A study by Callan, Connell, and Du [1999] suggests query based sampling of
search servers. This involves constructing queries and sending them to all servers
S, then downloading the resulting documents. The broker can then perform selec-
tion based on statistics from the sampled documents. Documents sampled this way
from a server are a non-random sample of its full document coverage. However, the
study found that document frequency statistics from a few hundred downloaded doc-
uments can accurately reflect the statistics of a million documents. The study used sin-
gle term queries based on various query selection strategies, such as selecting terms
from documents downloaded so far or from a separate document set. Regardless
of the strategy, query based sampling produced reasonably unbiased statistics. The
study did not include effectiveness evaluation of selection based on sampled docu-
ments.

3.2 New server selection methods

This section describes the probe query method and a method for estimating the effec-
tiveness of heterogeneous servers.

Probe queries

The broker sends probe queries to all servers S. For each results list it downloads
the top n documents (Figure 3.2). From the downloaded documents, the broker may
extract statistics and apply server ranking methods such as vGlOSS, CORI, CVV and
others server ranking methods. This is possible without relying on the cooperation
of servers. Probe queries were developed independently from the very similar query
based sampling method of Callan, Connell, and Du [1999]. That study was published
before probe queries were reported.

Probe queries are multi-term queries taken from some available query log, rather
than single term queries selected on the fly as used for query based sampling. This
query selection strategy is chosen because (1) Choice of strategy seemed not to bias
the statistics extracted from a server [Callan et al. 1999] and (2) Multi-term queries
allow effectiveness estimation (see below). Later experiments evaluate whether probe
queries allow effective, generally applicable server selection, and if so how many
probes are necessary.

Probe queries are quite different from the lightweight probes proposed by Hawk-
ing and Thistlewaite [1999].

• Lightweight probes:

– Are sent to every search server, for every user query.

– Are a two term subset of the user’s current query.
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1. Probe queries over all servers S

2. Test queries over selected servers S’

... ...

... ...

Figure 3.2: Probe queries and test queries. (1) Before query time, the broker sends each probe
query to all search servers downloading their top results. The broker can then extract statistics
from the documents for use in server ranking, and can also use the results to estimate server
effectiveness. (2) Given a new query, the broker can apply server selection methods.

– Retrieve statistics describing term occurrences from search servers, using a
special protocol.

– Allow selection based on the retrieved statistics.

• Probe queries:

– Are sent to every search server, in a batch of perhaps 50. This happens
periodically, perhaps once per month, not at user query time.

– Are past user queries, taken from a query log.

– Retrieve results lists from search servers, then top ranked documents from
document servers. Neither of these require special protocols or other forms
of server cooperation.

– Allow selection based on term occurrence statistics, after extracting them
from downloaded documents.

Lightweight probes use more up to date information, but require extra communica-
tion at query time. Probe queries can potentially become out of date, but require
no additional communication at query time and are compatible with any available
search/document server.

For some applications, communication costs of the methods might be quite simi-
lar. Each lightweight probe retrieves four different statistics amounting to 16 bytes of
data. If the broker receives 100 queries per day and sends lightweight probes to 956
servers per query, the communication (not counting network packet headers etc) is 44
megabytes per month. For 1000 queries per day, the requirement would be about 440
megabytes per month.
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Figure 3.3: Predicting effectiveness. Over four probe queries, server A tends to have more
top-ranked documents in the merged list. Therefore it is estimated to be more effective. (The
top ten merged results are marked relevant in this example, but experiments in Chapter 5
mark the top twenty.)
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In contrast, using probe queries involves downloading documents. When experi-
ments in Chapter 5 simulate 50 probe queries over 956 servers, the broker downloads
(50×956=) 47 800 documents containing search results from the search servers and
discovers 60 000 unique documents which it downloads from document servers. So
the broker downloads 107 800 documents in total. If documents are on average 5120
bytes, and probe queries are carried out once per month, the communication is 526
megabytes per month. This number remains the same regardless of how many user
queries are processed per day.

By comparison, central indexing of the documents in the Chapter 5 experiments
would require a full crawl/download of the documents to a central search server.
If this occurred once per month, the communication would be about 2 000 megabytes
per month. By the end of the month, many documents may have been added, changed
or removed, and this would not be reflected in the central index. By contrast, with
distributed solutions, retrieval is always based on the 956 distributed search servers,
which would in many cases be updated daily or weekly.

Effectiveness estimation

Server ranking methods are usually based on term occurrence statistics within a
server’s documents. However, such methods do not take into account the effective-
ness of heterogeneous retrieval algorithms. For example, if two servers have the same
documents, but one runs a crude Boolean retrieval algorithm while the other em-
ploys a highly effective state of the art retrieval algorithm, the latter server is a better
selection. Given information on servers’ past effectiveness, it should be possible to
modify server rankings accordingly and increase effectiveness. However, in an envi-
ronment where relevance judgments are not available on past results, a more practical
approach is to estimate the server’s effectiveness.

A first attempt at automatic effectiveness estimation is as follows. The broker
sends the multi-term probe query to all servers, then merges the results using a highly
effective merging method based on downloaded document contents and reference sta-
tistics. Reference statistics, described below, are shown in Chapter 6 to allow highly
effective merging without cooperation.

The broker then marks the top 20 results in the merged list as relevant. Across a
number of probe queries the broker can calculate Ei , the expected number of marked
relevant documents from server si . For example, consider ten probe queries sent to
the server sn = www.cpac.org. If for each probe the top ten results were merged and a
total of eight documents were marked relevant, then En = 8

10 = 0.8. See also Figure 3.3.
In a top ten list from this server, the expected number of marked-relevant documents
is 0.8.

Marking the top 20merged probe query results as relevant is like a technique often
used during automatic relevance feedback, where the top ranked documents from an
initial query are assumed to be relevant and used for query expansion.

A CORI ranking, for example, could be modified by adding Ei times some constant
c to p(r1, . . . , rM|si). This modified belief value can then be used to build a modified

www.cpac.org
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server ranking and, after thresholding, a selection modified by estimated effective-
ness. This formulation, of weighted addition, was chosen during initial testing.

Probe queries and effectiveness estimation are simple extensions to a search broker
such as Inquirus, which has the machinery necessary to issue queries and download
documents. The only extra code required is that which extracts statistics and performs
selection.

3.3 New merging methods

This section introduces reference statistics and the feature distance document ranking
algorithm.

Reference statistics

Many of the most effective document ranking functions are based on both document
information and collection information [Harman 1992]. Document information is that
which may be extracted from a document’s text, such as a term’s frequency of occur-
rence, the distance between term occurrences and the size of the document. Collection
information is extracted from the corpus being searched. The most commonly used
forms of collection information are document frequency statistics — the number of
documents containing a given term — and the total number of documents in a collec-
tion.

In general a search broker can access document information, by downloading doc-
ument full-texts, but can not access the collection information of distributed servers.
True collection information, from servers S or S′, is only available if servers cooper-
ate (see Figure 2.6). For example, a search broker can not apply a tf · idf weighting
in merging without cooperation because, although it may extract the required tf in-
formation from downloaded documents, it has no df information. For this reason the
novel Inquirus ranking function (on page 25) does not use collection information.

Because true collection information is in general impossible to obtain, a new refer-
ence statistics approach is suggested here. The approach is to use collection informa-
tion extracted from a more accessible collection as a reference point, rather than true
collection information. For example, Inquirus can not access collection information
from non-cooperating Web search servers, but could instead use collection informa-
tion extracted from a different collection such as a readily available TREC collection
or even extracted from documents downloaded during probe queries.

Such reference statistics allow the broker to employ a highly effective document
ranking method, such as the Cornell variant of the Okapi BM25 probabilistic ranking
function [Singhal et al. 1995; Robertson et al. 1994]:

wk = TFk×
log(SSi−DFi,k+0.5

DFi,k+0.5 )

2× (0.25+0.75× DL
AVDL)+TFk

(3.1)

where wk is the weight ascribed to a document due to occurrences of term tk and



42 New Methods and Hypotheses

for purposes of maintaining consistent notation it is assumed that the document is
on some server si . Notation only used in this equation (therefore not in Table 2.2) is
TFk the number of times tk occurs in the document, DL the length of the document
and AVDL the average document length. Document weights due to query terms are
summed to give an overall score. Documents are then ranked in decreasing order
of score. Reference statistics required are DF, SSand AVDL. Document downloads
provide the document information, TF and DL.

Feature distance

In practice, the search broker might not wait until the last, slowest document has ar-
rived before presenting merged results to the user. The system is more likely to apply
a timeout on downloads, and if several of perhaps 100 documents do not make it, they
are simply left out of the merged list. Another measure for saving time and bandwidth
in document downloads is to base merging on partial document downloads: perhaps
only using the first four kilobytes of each document, cutting down the network traffic
if some documents are very large. Particularly for users with a slow connection, for
example modem users, effective merging with partial download would be attractive.

Feature distance merging is based on the postulate that a ranking algorithm which
gives higher weight to term occurrences near the start of each document will degrade
gracefully with partial document downloads. Naturally the algorithm would also
have to be highly effective on full documents. Hence hypotheses concerning both full
and partial download are stated in Section 3.4.

A feature is defined as an occurrence of a query term within a document. The score
achieved by a document is the sum of the scores achieved by its features. A feature
score is based on four intuitions:

• Features which occur near the start of a document are more important than those
near the end, so score decreases with the distance (l ) of the feature from the start
of the document.

• Features which occur close together are more important than those which occur
far apart, so score decreases with the distance (d) between the current feature
and the previous feature.

• The first time a feature occurs is more interesting than later times, so score de-
creases as the number of previous occurrences (n) increases.

• Terms which occur often in a collection are less important than rare terms, as
captured in a simple tf · idf weighting. For this reason a feature score is inversely
proportional to DF, the document frequency of the term within the collection.

Preliminary experiments [Craswell, Hawking and Thistlewaite 1999] using feature
distance ranking suggested the following two feature distance ranking functions wA

and wB. The former was most effective in general, while the latter had interesting
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effectiveness results using reference statistics and partial document download:

wA =
1

n·
√

d ·DF · ln(l)
(3.2)

wB =
1

n1.1 · ln(d) · ln(DF +1) · ln(l)
(3.3)

Feature scores, based on downloaded texts and reference statistics (see above), are
summed to obtain document scores, which are used to generate the merged list in
decreasing-score order. Both wA and wB are heuristic in nature, and were derived
through tuning on 1% of the 3125experimental configurations in the TREC-6 testbed
described in Chapter 6 and in Craswell, Hawking, and Thistlewaite [1999]. They are
not based on an underlying retrieval model. The comparative usefulness of different
“intuitions” has not been analysed. For example, it might be the case that the l term
does not enhance effectiveness and can be left out.

3.4 Hypotheses

The following hypotheses concern the effectiveness of the new methods: probe queries,
effectiveness estimation, reference statistics and feature distance merging. Those re-
lated to selection are given an “S”, and those related to merging an “M”. The hypothe-
ses marked with an asterisk (*) are central to the thesis: if they hold then a search
broker can be generally applicable without sacrificing effectiveness.

* S1 Probe query based selection is as effective as selection based on information
from cooperating servers.

S2 Incorporation of estimated effectiveness Ei improves selection effectiveness.

* M1 Reference statistic based merging is as effective as cooperative merging.

M2 Feature distance merging is as effective as merging based on the highly effective
document ranking algorithm Okapi BM25.

M3 Feature distance effectiveness degrades more gracefully under partial download
conditions than that of other document ranking algorithms.

The next chapter discusses methodology for testing these hypotheses.

3.5 Summary and conclusion

This chapter introduced new methods for server selection and results merging. Probe
queries allow the broker to apply a method such as CORI, vGlOSS and CVV without
cooperation from search servers. Effectiveness estimation is an attempt to improve
selection effectiveness over heterogeneous search servers. Reference statistics allow
the broker to apply algorithms such as Okapi BM25 in results merging without server
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cooperation. Feature distance merging might improve merging effectiveness on par-
tially downloaded documents.

The probe query and reference statistic methods allow a search broker to address
non-cooperating servers, but it remains to be seen if they are effective. The other
methods are suited to realistic environments. The effectiveness estimation method
attempts to avoid a situation where a highly ineffective server is selected on the basis
of its documents’ term occurrence statistics. The feature distance method attempts to
avoid a large drop in merging effectiveness, which might arise if the broker partially
downloads documents for efficiency reasons.



Chapter 4

Evaluation Methodology

The preceding chapters introduced methods for distributed in formation retrieval and
the following chapters evaluate them. This chapter bridges the gap by addressing the
design of evaluation experiments. It describes previously used and new methodolog-
ical alternatives. It then explains evaluation experiment design decisions made here.

Section 4.1 highlights problems with server merit evaluation, indicating why this
thesis uses system level evaluation of selection methods. It then describes the neces-
sary steps for system level evaluation. Section 4.2 describes issues in merging evalua-
tion, including a novel method for generating simulated input rankings R1, . . . ,R|S′|.

4.1 Selection evaluation

There are two main approaches in server selection evaluation (see Section 2.4.2): sys-
tem level evaluation and server merit evaluation. Although there has been some dis-
cussion of merit definitions [Gravano and Garcia-Molina 1996; French et al. 1998],
there has been little comparison between system level and server merit evaluation.

This section argues for system level evaluation, for the time being, based on a
simple assumption and two small experiments. These indicate that merit definitions
are not yet well enough understood to perform merit evaluation with confidence.

The assumption is that a good selection S′ is one which leads to good merged re-
sults RM. For example, given the choice between a selection which maximises the
quality of RM and one which selects the servers containing the most matching docu-
ments, the former is optimal.

The first small experiment investigates whether the relevance based merit defini-
tion does maximise the quality of RM and compares it to two new baselines.

The second experiment shows that the additional merit gained by selecting a server
depends on which other servers have also been selected. So a server can not have a
fixed merit number that is uninfluenced by other servers.

These experiments do not mean that server merit evaluation should never be per-
formed. On the contrary, since merit experiments do not require simulation of re-
trieval and merging they are smaller than system level experiments. However, more
work would be required to determine whether server merit evaluation closely approx-
imates system level evaluation. Such work is beyond the scope of this thesis.

45



46 Evaluation Methodology

Precision at 20

Standard Significant difference
Baseline Mean deviation from Baseline 1.

1. Effectiveness (Precision at 10) 0.471 0.230 N/A
2. Density relevant 0.439 0.230 Yes (0.05)
3. Number relevant 0.419 0.246 Yes (0.05)
4. Ideal(0) 0.161 0.209 Yes (0.05)

Table 4.1: Comparing baselines (homogeneous retrieval). This table reports the measured
effectiveness of various baselines, using the 956 server testbed described in Section 5.1. Mea-
surement is of the precision at 20 of the merged result RM after selecting each baseline’s top
10 servers. The relevance based merit definition (baseline 3) does not describe the true contri-
bution of a server as well as the definition based on server effectiveness. Significance is tested
using a paired t-test, with the significance level in brackets (0.05).

Precision at 20

Standard Significant difference
Baseline Mean deviation from Baseline 1.

1. Effectiveness (Precision at 10) 0.406 0.223 N/A
2. Density relevant 0.378 0.213 Yes (0.05)
3. Number relevant 0.365 0.222 Yes (0.05)
4. Ideal(0) 0.131 0.200 Yes (0.05)

Table 4.2: Comparing baselines (heterogeneous retrieval). If servers run various retrieval
algorithms, the effectiveness based ranking is still the best baseline by a statistically significant
margin. See also Table 4.1.

4.1.1 Merit definitions may be incorrect

The merit baseline by Gravano and Garcia-Molina [1996] was Ideal(l), the summed
scores of documents with a vector space score above l for the current query. Gravano
and Garcia-Molina argued that there is no point in a server having relevant documents
if they are not returned to the user, so having high-scoring documents is paramount
and Ideal(l) is correct. French, Powell, Viles, Emmitt, and Prey [1998] argued that
there is no point in a server returning documents if they are not relevant, and so use a
relevance based merit baseline.

Both arguments are correct. It is both pointless for a server to have relevant docu-
ments if they are not returned and to return documents if they are not relevant. This
suggests a couple of new baselines:
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Relevance Density A server’s ability to return relevant documents might be indi-
cated by its ratio of relevant documents to total documents. An extreme ex-
ample is two servers each with ten relevant documents, but one indexes a total
of ten documents while the other indexes ten million. If merit is based on the
number of relevant documents alone, these servers have equal merit. Under this
definition one would have a merit of 1 and the other a merit of 1

1000000.

Effectiveness A server’s ability to return relevant documents is perfectly captured
by its effectiveness. For example, if the broker is to merge a server’s top ten
documents, it should select servers with the best precision at 10.

Using the system level evaluation framework described in Section 5.1, it is possible
to evaluate the four baseline merit definitions. See that section for a full description,
but in summary the framework simulates 956 search servers using the TREC WT2g
[Hawking et al. 1999] Web-data test collection. Server retrieval systems are either
homogeneous, all running Okapi BM25, or heterogeneous, using three different al-
gorithms. Merging is based on document download, BM25 ranking and reference
statistics. Results in Table 4.1 show that if all servers run BM25, the relevance base-
line is statistically significantly inferior to the effectiveness based ranking. Results in
Table 4.2 show that with heterogeneous retrieval algorithms the same is true.

These results indicate that a relevance based merit definition is not the best way of
capturing a server’s desirability in server selection. As mentioned previously, further
investigation would be required to determine whether this mismatch can produce
misleading evaluation results.

4.1.2 Server merit depends on other selected servers

Although the previous subsection showed that an effectiveness based ranking was
the best of four baselines, it did not show it to be optimal. This subsection shows
using two examples that, if the goal is to maximise the quality of results RM , there is
no (simple) optimal merit definition.

First, consider merging through simple interleaving of ranks. As illustrated in
Figure 4.1, once servers B and C have been selected, adding A can harm effectiveness.
So perhaps A has negative merit. But if no servers are yet selected, servers A and C
have equivalent, positive merit, contributing equally to overall effectiveness. Because
the contribution to effectiveness depends on merging, and merging depends on other
servers selected so far, merit depends on which servers have been selected so far.

Second, using the experimental environment described in Section 5.1 it is possible
to find an ideal selection of N servers by trying all selections of N and seeing which
maximises effectiveness. Using the measure average precision at 100 and topic 435,
such an exploration yields interesting results. The best selection of one server for topic
435is to select the server nko.org, whose top ten has relevant documents at ranks one
and four. No other server has a better top ten. Yet, nko.org does not feature in the
best selection of ten servers. Because of interactions in merging, documents which

nko.org
nko.org
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Figure 4.1: Retrieving relevant documents may reduce broker effectiveness. Defining merit
as effectiveness (baseline 1 in Table 4.2) servers A and C are equivalent, each contributing
one relevant document. If the broker is to select at most one server, A and C have equal and
positive merit. However, if the broker is to select at most three servers — in order to maximise
precision at 10 having merged using simple rank interleaving — it should select only B and
C. Adding A actually decreases effectiveness. This simple example illustrates that (1) a server
may have negative merit, even if it contributes a relevant document and (2) a server’s merit
depends on which other servers are already selected.
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rank highly in nko.org’s top ten do not rank highly in the merged list of 100. There
are ten servers better for the top 100than the single most effective server.

Further study is required to determine whether merit baselines, although inex-
act, allow evaluation results which agree with system level evaluation. It certainly
depends on the baseline. For example, Yuwono and Lee [1997] found that vGlOSS
was superior to CORI using the Ideal(l) baseline, while French, Powell, Callan, Viles,
Emmitt, Prey, and Mou [1999] found the opposite using a relevance baseline. System
level results presented here agree with the latter.

If server merit and system level evaluation agree sufficiently, server merit eval-
uation is preferable, because it allows experimentation without implementation of
retrieval and merging methods. However, currently it is safer to perform system level
evaluation, until merit definitions are better understood.

4.1.3 System level evaluation

System level evaluation compares the effectiveness of systems in some environment.
The systems are search brokers which perform selection and merging. The environ-
ment models distributed search servers, which partition and perform retrieval over
the documents of a test collection, and users of the broker. This section discusses
methodological choices in modelling brokers and environment.

In the experiment, different broker designs are evaluated — different combina-
tions of selection and merging methods — to determine which is the most effective.
The most effective broker design can then be applied in the real world.

However, the experiment does not compare different environments. Instead, the
modelled environment should closely resemble some real environment. In particular,
the modelled environment should be as close as possible to the environment in which
the best designed broker might be deployed. In this case, the chosen environment is
of search servers such as those listed by InvisibleWeb (http://www.invisibleweb.
com/). These servers are small and tend to be associated with a single Web document
provider. They are unlikely to sub-partition a source amongst several servers.

The steps to modelling broker and environment are:

1. Choose a test collection, whose documents the simulated search servers will
index, which provides:

• A natural partitioning of the documents into search servers,

• Enough search servers, and

• Enough documents per search server,

2. Model selection, including extraction of selection information,

3. Model search server retrieval systems over document partitions, and

4. Model merging including collation of information, for example full or partial
document download.

nko.org
http://www.invisibleweb.com/
http://www.invisibleweb.com/
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The test collection chosen must model characteristics of the search servers of in-
terest. Otherwise methods might be developed which rely on all servers being the
same size, covering similar subject areas or using homogeneous retrieval algorithms.
Search servers of interest in this case have the following characteristics. Many servers
exist. Most have an association with one or a handful of document providers, so it is
preferable to partition a test collection by source rather than by date. For example, it
is common for search servers to index Associated Press documents, for example Al-
taVista (http://news.altavista.com/) indexes them. Agreement amongst multiple
servers to each index a different date slice of Associated Press is far less common. Sin-
gle source servers vary in size more than servers which evenly partition a collection.
They also tend to have high topic skew. That is, relevant documents for a topic are
concentrated in a few servers rather than spread randomly.

To have enough servers and enough documents per server, a large collection is
preferable. This suggests TREC [Harman 1999] ad hoc and Web track test collections
as good candidates. Ad hoc document collections usually come from five sources. By
contrast, the WT2g Web track test collection covers 956 document servers. A parti-
tioning of WT2g by source yields 956 Web-data search servers of varying size with
significant topic skew, each covering documents from a single document provider.

In simulating selection, past studies have assumed that servers cooperate with the
broker by exporting statistics describing their documents. While such cooperation
allows efficient and effective selection, it is not common in Web search servers. The
alternative is to simulate probe queries and extraction of statistics from downloaded
documents. Having assigned a simulated retrieval method to a server, running probe
queries and extracting statistics from only returned documents is not difficult.

A retrieval system must be assigned to each search server, allowing the server’s
search results to be generated for probe and user queries. Past studies have assigned
homogeneous retrieval methods to servers, for example Xu and Callan [1998] assume
each search server runs INQUERY. It is equally possible to assign varied algorithms
to servers, and this is indeed more realistic when modelling a Web environment.

Finally it is necessary to simulate merging. Cooperative merging may be simu-
lated using a consistent retrieval algorithms and statistics from servers Sor S′. How-
ever, this is again unrealistic in the Web environment, where true global collection
statistics are not collated by the broker. Instead, the broker may use a generally ap-
plicable merging method. For example, it can use reference statistics with document
download and Okapi BM25.

4.2 Merging evaluation

There is only one approach to merging evaluation, exhibited in [Callan et al. 1995].
The experimenter applies multiple merging methods to the same input rankings
R1, . . . ,R|S′|, then evaluates merged lists to see which method has produced the most
effective output. However, simulating the entire selection and retrieval process to gen-
erate R1, . . . ,R|S′| requires non-trivial experimental effort and computation. It might

http://news.altavista.com/
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include heterogeneous retrieval over a large number of servers, selection with probe
queries then processing of test queries over selected servers.

The innovation introduced here is to simulate input rankings. Fast simulation
allows more inputs to be generated with less experimental set-up and computation.
This allows merging methods to easily be evaluated in a greater variety of conditions.

4.2.1 Simulating input rankings

Past runs are available for some test collections. For example, official TREC runs are
available to conference participants at the conference’s web site (http://trec.nist.
gov/). The experimenter may use such runs, which are over an entire test collection,
to simulate runs over document partitions. For example, if one partition contains only
Federal Register documents, a run over that partition may be simulated by removing
all non-Federal Register documents from a full, official run.

Rankings simulated in such a way may not be identical to the rankings which
the system would have produced over a single partition. Most systems base their
output on collection statistics, and the simulated ranking will be with respect to global
statistics. However, the results will be similar to those produced by a real system, and
obtained with much less effort in implementing or installing retrieval systems and
less computation time. TREC runs originate from diverse, complex retrieval systems,
much more so than could be easily set up by a single experimenter. Finally, generating
input rankings from official runs is repeatable by other experimenters in a way which
is not strongly subject to mistakes.

There are two dangers in simulating input rankings. First, if a test collection has
many partitions, even an official TREC run listing 1000 documents per topic may
not contain enough documents to make up the required partition runs. For example,
partitioning WT2g by document server yields 956 search servers, making it unlikely
that a sizable run for any partition will come from an official top 1000. The second
problem is simulating selection, a time consuming process.

Both problems can be solved by partitioning a test collection into a small number
of sub-collections, for example partitioning TREC-6 ad hoc documents by source into
five sub-collections. Since each of these usually contains some query term occurrences
for every TREC topic, it is plausible that the five are selected servers S′ from some
larger set S. With only a handful of partitions it is likely that most official top 1000lists
will have more than enough results to simulate R1, . . . ,R5 of size at least 30documents
and usually much larger.

Evaluation with simulated input rankings is suited to a test collection with few
partitions and large available results lists, such as TREC ad hoc test collections. Sys-
tem level evaluation, as argued earlier, is suited to a test collection with many more
natural partitions. Despite requiring different test collection characteristics, both types
of evaluation are valid, and both are used in this thesis.

http://trec.nist.gov/
http://trec.nist.gov/
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4.3 Summary and conclusion

This chapter argued that despite the simplicity of server merit evaluation experiments,
it is not clear that selecting servers with the highest merit always leads to the best
search results. It then described methodological choices in selection and merging eval-
uation experiments. This included a simulation of servers using WT2g partitioned
by source and with heterogeneous retrieval algorithms, which models Web search
servers more closely than previous testbeds. It also included a method for reducing
the size of merging experiments by simulating the retrieval results of servers S′ in a
simple and repeatable fashion.

Based on server merit discrepancies, it can be concluded that, for the moment,
it is safest to perform system level evaluation. This may change if future experi-
ments show server merit evaluation results to closely approximate system level re-
sults. Methodological choices made here are carried through to evaluation experi-
ments in Chapter 5 and Chapter 6.



Chapter 5

Server Selection Experiments

The primary question is whether selection based on probe queries is as effective as
selection based on full server information (hypothesis S1, Section 3.4). Also evaluated
is selection augmented by estimated server effectiveness (hypothesis S2). In addition
the evaluation includes a comparison of various server ranking algorithms, and a
comparison of distributed and centralised search within the testbed.

Section 5.1 describes the experimental methods employed, including implementa-
tion details of the evaluated methods. Section 5.2 presents results of the experiments.
Section 5.3 discusses the implications of these results, particularly with respect to hy-
potheses S1 and S2. Section 5.4 presents further experiments, which test the generality
of results. Section 5.5 outlines conclusions.

5.1 Method

The previous chapter argued that the effectiveness of a selection method is best eval-
uated according to the final results RM presented to the user. Therefore this chapter’s
experimental methodology is to simulate the whole distributed retrieval process:

〈S,q〉 Selection−→ 〈S′,q〉 Retrieval−→ 〈(R1, . . . ,R|S′|),q〉
Merging−→ RM

This process requires partitioning of a test collection into servers, then for each selec-
tion S′ the application of servers’ retrieval systems and the broker’s merging method.

The three following subsections describe the modelled search servers, broker and
user.

5.1.1 Search servers: documents and retrieval

This experiment uses the WT2g [Hawking et al. 1999] TREC [Voorhees and Har-
man 1999] test collection. WT2g contains two gigabytes of Web documents, from
956 document servers, for example http://greenpeace.org/ and http://www.

londontransport.co.uk/. The documents are partitioned on document server
boundaries, making 956 search servers, each indexing all and only documents from
one document server. The selection methods evaluated here do not rely on a one to
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Study Document type Partitioned by Servers

Callan et al. [1995] TREC news/gov. Source, disk 17
Gravano and Garcia-Molina [1996] Newsgroups Group 53
Yuwono and Lee [1997] SMART Source 4
French et al. [1998] TREC news/gov. Source, date 236

This chapter TREC Web (WT2g) Source 956

Table 5.1: Test collections used in published experiments. It is easy to find search servers
which index one particular document server (source). Partitioning WT2g by source simulates
such servers. By contrast it is less common for multiple search servers to index one news-
group each or to subpartition news documents by date. Such scenarios are less realistic. In
WT2g the relevant documents are spread across 956 servers, giving low density of relevant
documents per server and high topic skew (Figure 5.2). However, this reflects topic skew in
real Web servers. Also, the collection-wide density of relevant documents in TREC-8 WT2g
experiments was the same as that in the main TREC-8 task (about 0.9%) [Hawking et al. 1999].
(Note: Yuwono and Lee used collections supplied with the SMART system, called CACM,
CISI, CRAN and MED.)

one mapping between search and document servers. The one to one mapping simply
models a common situation on the Web, where a search server covers documents from
one source.

The 956servers have a wide range of sizes, from a handful of documents to several
thousand (see Figure 5.1). Average server size is 259documents, close to the figure of
289 documents reported for live Web servers by Lawrence and Giles [1999]. Miss-
ing from the server set are large servers, for example those covering an online news
archive. One reason for this is that the test collection is based on a Web crawl, but
many such collections are “invisible” to crawlers. See the discussion on page 11 for
more information. Also missing are the very large search servers run by search engine
companies.

Larger test collections might, in future, allow realistic experiments with larger
servers. For example, using WT10g it might be possible for some search servers to
index multiple, related document servers. However, a test collection based on Web
crawling will never include Web documents that are truly “invisible” to crawlers. In-
clusion of such documents would require cooperation from the document providers.

The 956servers here also have considerable topic skew, with relevant documents
for a given topic tending to be concentrated at a few servers rather than spread across
many servers (see Figure 5.2). Such skew is a property of search servers which cover
one source, a common situation on the Web. This is in contrast to previous published
experiments, where servers often subdivided a larger, homogeneous collection (Ta-
ble 5.1).

Each server runs one of three document ranking algorithms. The first is highly
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effective, the Cornell variant of the Okapi BM25 probabilistic ranking function (Equa-
tion 3.1). The function was modified slightly for use in retrieval here. In the usual
BM25 function, the presence of a term which occurs in more than half the server’s
documents will actually reduce a document’s relevance weight. Such occurrence sta-
tistics are unlikely in a two gigabyte TREC ad hoc collection, but are much more likely
on a small server with high topic skew. For example, the womenspace.com server in-
dexes 114 pages, all of which contain the word “women”. However, this does not
mean that for the query “women clergy” a document should be penalised for con-
taining the word “women” more times. Similarly for the query “u.s. investment in
africa” the server bayes.econ.umn.edu has the word “investment” in 32of its 64doc-
uments, but this does not mean the word is not important for ranking with respect to
the query. A partial solution to this problem, implemented here, is to allow each term
to have only non-negative effects on BM25 scores, by setting any negative effects to
zero.

The second ranking algorithm is intended to be much less effective, ranking servers
based on their summed query term frequencies. This simulates a Web search server
which gives documents a bonus for having more term occurrences but does not use
more sophisticated models or statistics. Its formulation is:

Countdi =
M

∑
k=1

TFi,k (5.1)

where M is the number of query terms and TFi,k is the number of times term tk occurs
in document di . Documents are ranked in descending order of Countvalues.

The third “ranking” algorithm simply requires a Boolean conjunction of the query
terms, listing matching documents in arbitrary order.

ANDdi = 1 if ∀ tk ∈ q : TFi,k > 0 (5.2)

= 0 otherwise

q is the user’s (possibly multi-term) query. Returning only documents with AND= 1
provides results consistent with a simple Boolean search server.

Because the three algorithms vary in effectiveness and approach, they are broadly
consistent with the variation in Web search server retrieval systems [Hawking,
Craswell, Thistlewaite and Harman 1999]. All three retrieval algorithms are imple-
mented in PADRE [Hawking et al. 1998a].

For topics 401–450there are 888server-topic pairs where it was possible for a rele-
vant document to be returned. This is to be expected given the natural (and realistic)
topic skew exhibited by the partitioning. Mean precision at 10 in those cases was 0.147
for BM25, 0.120for count and 0.084for Boolean retrieval. BM25 does not achieve great
effectiveness, however a perfect retrieval algorithm in the same situation would only
achieve 0.232. Low precision is due to the low number of relevant documents per
server. Searching these servers, which can only return relevant documents in 888out
of 956×50= 47800possible server-topic combinations, it is interesting that a realistic

womenspace.com
bayes.econ.umn.edu
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search broker can achieve a mean precision at twenty of around 0.2 (see Figure 5.3).
With 956servers each running one of three algorithms there are 3956 different pos-

sible server configurations, a very large number. This is realistic. On the Web the
number of search servers and variety of available retrieval systems is greater, so the
potential number of configurations is far larger.

The resources available for this experiment allowed for only a few configurations.
Randomly choosing several configurations, then repeating the whole experiment for
each, would have made the experiment far too large. If too few configurations were
chosen, they might not be representative of the whole set. Instead a single, uniform,
heterogeneous configuration was constructed, by listing the servers in increasing or-
der of size (in documents), then assigning algorithms in alternating order. This en-
sured that a roughly even number of servers used each algorithm, and that some very
small and some very large servers used each.

One might think that in the real Web more systems run bad algorithms than good,
given the number of servers which return no results or seem to use search systems
hand-coded by amateurs. However, without studying the effectiveness of such sys-
tems, an even distribution seemed to have the benefit of simplicity, fairness and even-
ness.

A homogeneous configuration with BM25 at each search server is also used in
Section 5.4 for further experiments.

5.1.2 The broker: selection and merging

This experiment does not assume cooperation from search servers. Instead, merging
and selection are based on downloaded document contents as described in Chapter 3.

Probe queries allow the broker to apply server ranking methods such as CORI.
However, since they involve downloading the top 10 documents from each server
for each query, sending too many probe queries can be expensive. Because of this
several levels of probing — several choices of how many probe queries to execute —
are evaluated. A set of 200probe queries come from titles of TREC topics 151–200and
251–400 (201–250have no titles). Levels of probing are at 10, 25, 50, 100, 150and 200
probe queries, choosing newer queries. For example the 10 probe query level used
topics 391–400.

Probe queries have some interesting implications in implementation. For example,
it is possible for probe queries to retrieve no results from a server. For the two term
query “A B”, a BM25 server will return no results if neither A nor B is present in any
indexed document. A Boolean server will return no results if no document contains
both A and B. Ten probe queries found some information on 702 servers, while 200
found information on 948servers. The 8 missing servers ranged in size from 9 to 217
documents (on average 63) and all were Boolean servers. Amongst the implications
of having no information on a server are that it will never be selected, and that server
size (SSi) is 0. When computing server rankings in such cases, for example with CVV
selection, division by zero was handled by making the result 0/0 = 0.

The second stage of selection is server ranking. Four server ranking methods are
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evaluated here:

1. CORI selection as described in Equation 2.1.

2. Cue validity variance (CVV) as described in Equation 2.3.

3. The vector space variant of GlOSS (vGlOSS), described on page 16.

4. CORI selection modified according to servers’ expected effectiveness, as de-
scribed on page 40.

The first three server ranking methods have been evaluated together before [Yuwono
and Lee 1997], although not in system level evaluation over Web documents with
heterogeneous retrieval algorithms. The fourth method is new.

Modified CORI has a tuning constant c. This was set by using the ideal form
of expected effectiveness E′ (which is actual mean effectiveness). Hand tuning was
applied to provide optimal effectiveness with E′, giving a constant of c = 0.03. This
gives a sensible value for c without tuning against the real data Ei . This value of c was
used in applying both the “CORI plus Ei” and “CORI plus E′i ” methods.

The third stage of selection is thresholding. The number of servers to query is
governed here on grounds of efficiency. It is assumed all servers have equivalent
search costs and the user is willing to bear the cost of selecting only 10 servers per
query. This number reflects the number of servers queried by existing Web search
brokers. MetaCrawler queries 13 servers, Profusion queries 3–9 and Inquirus queries
17.

Merging of selected servers’ top 10 lists is based on document download, refer-
ence statistics and the Okapi BM25 document ranking algorithm (Equation 3.1). This
combination is shown to be highly effective in the next chapter. Reference statistics
in this case are taken from a 10% sample of the 100 gigabyte TREC VLC2 Web-data
collection [Hawking et al. 1999]. WT2g is a subset of VLC2, so it might be thought that
the 10% VLC2 sample and WT2g might have very similar statistics. However, a real
broker using probe queries would have an even better picture of the statistics, having
downloaded tens of thousands of documents during probing. Experiments here use
the 10% VLC2 sample for simplicity.

For each selection of 10 servers the broker merges up to 100 documents, because
servers return their top 10 documents, but may return fewer if they do not have
enough which match the query.

Central indexing

The main purpose of this experiment is to compare selection methods over the 956
search servers. However, a small side-experiment is also conducted. This models a
central indexer over the 956document servers.

There is one problem with simulating a central indexer, which is simulating its
coverage of the documents in question. A central search engine which covers tens or
hundreds of millions of documents still only covers a small fraction of the indexable
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Web [Lawrence and Giles 1999]. So one way of simulating central indexing would
be to simulate a 10% coverage found to be common by Lawrence and Giles, by not
indexing 90% of WT2g documents. However, central engines have limited coverage
due to scalability problems faced when indexing millions of document servers. These
limitations would not apply in a central index of 956servers.

Limited coverage of a 956 server index would come from another source. Some
Web document servers exclude some or all of their documents from indexing (see
discussion on page 2.2.2). If InvisibleWeb is to be believed, there are tens of thousands
of Web document servers whose documents can not be centrally indexed, but can
be searched using local search servers. So a central indexer trying to cover the 956
document servers would be excluded from indexing some proportion of them.

Here, evaluation under three levels is considered: all servers, 50%of servers and
25%of servers. As with the assignment of retrieval systems, the set of servers which
are unavailable for indexing is selected by listing servers in decreasing size order and
indexing every second or every fourth. For all levels of central indexing, the retrieval
method is BM25, with the same queries used in distributed retrieval, no stemming,
case folding and no relevance feedback.

5.1.3 User model

The test collection used here, from the TREC-8 small Web task [Hawking et al. 1999],
comprises:

• Two gigabytes of Web documents which are a subset of VLC2, containing all
VLC2 documents from each of 956 document servers. Servers were chosen on
the basis of having relevant documents in the TREC-7 Very Large Collection
track,

• 50 research-style topics (TREC topics 401–450) and

• Pooled relevance judgments for each topics, made by NIST.

In this experiment, the user’s query is based on the titles of TREC topics, usually
consisting of 2–3 words which succinctly describe the information need. Short queries
are used because real Web users tend to use few query terms [Spink et al. 1999].

For each test query, results are merged then evaluated according to precision at 20.
Precision at 20 was chosen because Web users do not often look beyond the first page
of search results [Spink et al. 1999] and most Web brokers return 20–50results on their
first page [Lawrence and Giles 1998; Selberg and Etzioni 1997; Fan and Gauch 1999].
Precision at 20 has also been used in official TREC Web-data experiments [Hawking
et al. 1999].

5.2 Results

As shown in Figure 5.3, CORI outperforms vGlOSS and CVV, particularly with many
probe queries or full information obtained from cooperating servers. The performance
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Figure 5.3: Selection effectiveness with probe queries and heterogeneous servers. This fig-
ure presents evaluation results over various levels of probe queries for test topics 401–450.
CORI, vGlOSS and CVV have data points for (from left to right) 10, 25, 50, 100, 150 and 200
probe queries. The rightmost points are based on full collection information, as would be
available from cooperating servers, not probe queries. For reference, the figure also includes
three results from Table 5.2, based on selecting 10 servers with the most relevant documents,
all 956 servers and 10 random servers. Numbers in parentheses are the number of servers
selected per query. Note, a discussion of efficiency issues appears, starting on page 37.
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Figure 5.4: Selection effectiveness based on effectiveness estimation (heterogeneous
servers). This figure is the same as Figure 5.3, with the same probe query levels and topics
401–450, but shows modification of CORI by Ei , estimated effectiveness, and E′i , true effec-
tiveness. There is no rightmost point for CORI plus Ei , because the method for effectiveness
estimation requires probe queries and no probe queries are conducted in the full cooperation
case. Only E′i achieves a improvement over CORI which is statistically significant, and then
only at 10 and 25 probe queries.
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of vGlOSS and CVV with full information is close to their performance with only 10
probe queries. CORI steadily degrades with fewer probes, falling by as much as 0.05
in the 10 probe query case, equivalent to one fewer relevant document per results
list on average. Two tailed, paired t-tests at a 0.05 level show that CORI with full
information is equivalent to CORI with 150or 200probe queries but superior to CORI
with 100, 50, 25 and 10 probe queries.

With fewer probes vGlOSS effectiveness improves, while CVV varies. No realistic
selection of 10 servers is superior to a selection of all 956. However, a relevance based
selection of 10 is significantly superior. All realistic selections are far superior to a
random selection of 10.

Figure 5.4 shows that CORI modified by Ei disappointingly provides no consis-
tent improvement over plain CORI, so statistical tests were not conducted. However,
using known expected effectiveness E′i provides a consistent improvement, which is
significant at the 10 and 25 probe query points (using t-tests as described previously).

Note, these results rely on six t-tests of full information against probe queries and
six t-tests of CORI against CORI plus E′i . Section 5.4 performs more tests. With 12
tests, each with a 95%confidence of being correct, there is a 1− (.9512) = 45%chance
that at least one test is incorrect. However, the chance that several particular tests are
incorrect is much less. For example, full information CORI is statistically equivalent to
150and 200probe queries. The probability of precisely those tests both being wrong
is low. For this reason, the results may be presented with some confidence.

Table 5.2 shows results for a central index with 100%, 50%and 25%coverage. In-
terestingly, distributed retrieval over a very effective selection of 10 servers is superior
to a 100%index. The 50%index achieves 0.227equivalent to CORI selection based on
full information (the rightmost CORI point in Figure 5.3). The 25% index, achieving
only 0.135is less effective than most selections of 10 servers.

5.3 Discussion

The most important test is of hypothesis S1. Results show that selection based on 200
or 150 probe queries is as effective as selection based on full information, at a 0.05
confidence level. With fewer probe queries there is a significant drop in effectiveness,
although it is not clear at what point a loss would be noticeable to the user. For exam-
ple, there is a statistically significant difference between the full cooperation and 100
probe query cases, but it only involves a 14% fall in mean effectiveness. In any case,
at 150and 200probe queries results are achieved which are statistically indistinguish-
able from results in the full cooperation case. So hypothesis S1 holds for high levels
of probe queries.

It is interesting that selection based on fewer than 50000documents can have ef-
fectiveness so close to that based on all 250000documents. This indicates that probe
queries are a good way of obtaining information about Web search servers without
relying on their explicit cooperation.

Hypothesis S2 was that effectiveness estimation Ei can improve selection effec-
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Precision at 20

Proportion Standard
Selection method selected Mean Deviation

Ten most relevant 10/956 0.365 0.222
Centralised 100% index N/A 0.343 0.239
Select all servers 956/956 0.247 0.266
Centralised 50% index N/A 0.227 0.222
CORI plus E′i 10/956 0.208 0.205
CORI plus Ei * 10/956 0.200 0.208
CORI * 10/956 0.190 0.202
vGlOSS Max(0) * 10/956 0.155 0.213
Centralised 25% index N/A 0.135 0.170
CVV * 10/956 0.131 0.168
Random selection 10/956 0.011 0.043

Table 5.2: Distributed vs centralised. This table presents results over test topics 401–450and
the heterogeneous server configuration. It lists results for four realistic selection scenarios,
each selecting 10 servers based on 50 probe queries (marked with *). It also presents results
for central BM25 retrieval over 100%, 50% and 25% of the servers (using title only queries
and no relevance feedback as used in the distributed case). Finally, it presents results based
on selecting all 956 servers, selecting the 10 with the most judged-relevant documents and
selecting 10 random servers. All methods have large spread (standard deviation).
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tiveness. It is not necessary to perform statistical tests to see that Ei provides no im-
provement that is statistically significant or noticeable to the user (Figure 5.4). This
is disappointing. However, this lack of improvement may be due to a low potential
for improvement. Using the perfect indication of server effectiveness E′i , which is the
mean effectiveness of a server across test queries using official relevance judgments,
only provides a significant improvement at the 10 and 25 probe query levels. Even
these might be too small to be noticeable to the user.

This might mean that in the current testbed differences in effectiveness are not
useful in selection. Alternatively the method of modifying CORI according to effec-
tiveness, by adding the estimate times a constant c = 0.03, might be the problem. The
testbed explanation is plausible. With extreme topic skew illustrated in Figure 5.2 the
presence of relevant documents might be a much more important influence on se-
lection than the effectiveness of server retrieval algorithms. Effectiveness estimation
might be more important in situations where more servers (of varying effectiveness)
have relevant documents to offer. For example, it might be useful in situations where
multiple servers cover the same document collection. In addition, the small server
sizes in this testbed might mask differences in effectiveness, as was suggested ear-
lier when it was found that BM25 and “count” retrieval had similar effectiveness.
Although effectiveness estimation failed, the possibility of statistically significant im-
provement using E′i confirms that selection can be improved by taking server effec-
tiveness into account.

In Figure 5.3, the initial upward slope of CVV and vGlOSS from the full informa-
tion to the 200probe query case may indicate some problem with server size normal-
isation. Without size normalisation, the broker might be confused by size variation
in servers and tend to select larger servers. Probe queries mask server size variation,
perhaps explaining the improvement of CVV and vGlOSS. This fits with the observa-
tion by French et al [French et al. 1999] that vGlOSS correlates well with a size-based
server ranking.

A notable feature of CVV is that it gives a bonus to query terms with high doc-
ument frequency variance, assuming that they will be good discriminators between
servers. However, this may not be a good assumption, at least in this testbed. For
example, the test queries included the terms fluids and mirjana. In document rank-
ing the latter term would be considered more important than the former, because it is
rare. Instead, in the CVV method, fluids has the highest CVV of all query terms and
mirjana has the lowest. This is because the document frequency of mirjana is usually
0 and sometimes 2 or 3. By contrast, fluids appears in 297 servers in between 1–232
documents in each. The intuition that terms with varying document frequencies are
good discriminators may not be correct, particularly for terms which only appear a
few times in a few servers such as mirjana.

In Figure 5.3 a relevance based selection of 10 servers outperforms a selection of
all 956. This shows that querying fewer servers can improve broker effectiveness.
While CORI selection and others do not outperform the selection of 956, it would be
interesting to vary the number of servers selected and the number of documents re-
trieved per server to see how effectiveness might vary. Even with current parameters,
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10documents per server from 10servers, it is still worthwhile to perform selection for
reasons of efficiency. A broker querying a CORI selection of 10 achieves almost the
same effectiveness as a selection of 956with 10

956≈ 1% of the retrieval effort.
Another interesting result is that a highly effective selection of only 10 servers,

based on knowledge of relevance judgments, outperforms 100%central retrieval us-
ing BM25 (Table 5.2). Centralised BM25 results are crude, using no relevance feedback
or other techniques, however distributed results also use simple techniques. Further,
distributed results include only a fraction of the WT2g documents (those of only 10
servers) and are based on ineffective, heterogeneous retrieval algorithms.

A likely explanation for 10servers outperforming a central index stems from topic
skew. The 10 servers with the most relevant documents contained on average 83%of
a topic’s relevant documents. For 15 topics, the 10 contained all relevant documents.
Particularly for the latter topics, retrieval over the 10 servers is likely to be effective.
Centralised 100%retrieval has the same relevant documents, but adds a huge num-
ber of irrelevant documents which may contain query terms, which might explain its
lower effectiveness.

The results, that CORI outperforms vGlOSS, agree with French, Powell, Callan,
Viles, Emmitt, Prey, and Mou [1999]. They disagree with Yuwono and Lee [1997],
perhaps indicating a problem with the Ideal(l) merit baseline.

The results presented here are for a specific type of user in a specific configuration
of distributed environment. The user is most interested in the top 20 search results,
and is only prepared to wait for the broker to select and search 10 servers, merging at
most 100results. The configuration of the distributed environment includes a specific
assignment of heterogeneous retrieval algorithms to search servers. Central 50%and
25%indexes are over a specific server subset each. Therefore, the results describe what
happens in one realistic Web search configuration — more realistic than any previous
experiments in terms of document type, topic skew and server heterogeneity — but
results might vary using different parameters, a different Web-like testbed or even
on the live Web. Only more experiments of this type will test the generality of these
results.

5.4 Further experiments

This chapter has evaluated 38 broker designs. 35 came from five server ranking algo-
rithms by seven levels of information (six levels of probe query, plus the full informa-
tion case). The other three were brokers which select all, the 10 most relevant and 10
random servers.

The experiment explored 38 broker designs at the expense of exploring the space
of server configurations. This is because the primary experimental questions are best
answered by multiple algorithms over multiple levels of information. Adding another
dimension by including a representative sample of the 3956 possible server configura-
tions would blow out the experimental size beyond manageable levels.

However, it is desirable to confirm experimental results by testing against a second



66 Server Selection Experiments

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 50000 100000 150000 200000 250000

M
ea

n 
pr

ec
is

io
n 

at
 2

0 
ov

er
 5

0 
to

pi
cs

Documents downloaded during probe queries

Ten most relevant (10)
Select all servers (956)

CORI (10)
vGlOSS Max(0) (10)

CVV (10)
Random (10)
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BM25.
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representative server configuration. The homogeneous configuration represents a sit-
uation where all 956search servers run the same effective retrieval algorithm, Okapi
BM25.

Figure 5.5 and Figure 5.6 show results much similar to Figure 5.3 and Figure 5.4.
Data points move to the right because switching from Boolean to BM25 retrieval yields
more probe query documents. Data point move up because BM25 servers are more
effective, and the extra relevant documents make their way into the merged top 20.

CORI selection degrades slightly less sharply with fewer probe queries. This is
borne out by statistical tests, which only show a significant difference between full
information and the 10 probe query case. At all other levels of probing, effectiveness
is indistinguishable from that in the full information case.

In the homogeneous configuration modification by effectiveness Ei or E′i unsur-
prisingly yields no improvement. Effectiveness estimation was intended for differen-
tiating between heterogeneous servers. vGlOSS and CVV improve more steadily with
fewer probe queries, although vGlOSS dips at the 10 probe query level.

A very good selection of 10, based on relevance judgments, is still better than a
selection of 956. Realistic selections of 10 still do not outperform a selection of all 956,
although the best CORI points are statistically indistinguishable from the 956 server
case.

These additional results reinforce the finding that sufficient probe queries and full
cooperation allow similar levels of selection effectiveness. They also indicate that ef-
fectiveness estimation is best attempted in an environment where effectiveness differs
between servers.

5.5 Conclusion

Hypothesis S1 holds: there is no significant effectiveness difference between selection
based on sufficient probe queries and selection based on full information. This means
that a broker can perform effective selection without relying on server cooperation, in
an environment such as the World Wide Web.

Hypothesis S2 does not hold: effectiveness estimation does not improve effective-
ness. This may be due to the method of estimation, the method for modifying CORI
or the testbed. Even with true effectiveness figures E′i , based on relevance judgments,
only a small (but statistically significant) improvement in effectiveness was achieved.

Other results:

• CORI is best evaluated server ranking method, outperforming vGlOSS and CVV.

• All selection methods maintain a reasonable level of effectiveness based on probe
queries, even on as few as 10or 25. With fewer probe queries, CORI effectiveness
degrades but vGlOSS and CVV do not always.

• Distributed retrieval over 10servers per query is not as effective as retrieval over
a central index with 100%coverage. However, in the Web case such an index is
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unrealistic. For a 50%central index the distributed case fares better. In the 25%
case, distributed search is superior.

When adding server selection to a broker such as Inquirus, it might even be pos-
sible to eliminate the probe query stage, instead basing selection on results returned
during user queries. Building such a scheme which maintains effectiveness while be-
ing fair to all servers — it would be unfair if a server is never queried so never selected
— is a good subject for future work. Other obvious future work would be to evaluate
some of the other selection methods listed in Section 2.3.1 against CORI.
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Chapter 6

Merging Experiments

The primary question in this chapter is whether merging using reference statistics is
as effective as merging based on true statistics (hypothesis M1, Section 3.4). If so a
search broker can address non-cooperating servers without sacrificing effectiveness.
Another question is whether feature distance ranking outperforms other ranking al-
gorithms such as Okapi BM25 over full document download (hypothesis M2) and
partial document download (hypothesis M3). Results also show which rank, score
and download based merging methods are most effective.

Section 6.1 describes experimental methods, divided into three subsections on
modelling of search servers, the broker and the user. Section 6.2 presents results of
the experiments. Section 6.3 discusses the implications of these results, particularly
with respect to stated hypotheses, and compares the results to other published find-
ings. Section 6.4 presents further experiments, to test results generality. Section 6.5
outlines conclusions.

6.1 Method

Experiments here evaluate a number of merging methods using TREC ad hoc test col-
lections. Section 6.1.1 describes search servers and their retrieval results. Section 6.1.2
describes the broker’s selection and merging methods. Section 6.1.3 describes the user
model.

6.1.1 Search servers: documents and retrieval

Instead of partitioning test collection documents amongst servers S and simulating
retrieval, these experiments use methods described in Chapter 4 to simulate input
rankings from S′. In this case |S′|= 5, and the five servers are the TREC-6 test collection
documents partitioned by source:

• The Financial Times (1991–1994),

• Federal Register (1994),

• Congressional Record (1993),

71



72 Merging Experiments

• Foreign Broadcast Information Service (early 1990’s) and

• LA Times (1989–1990).

The five have between 27992 and 210158documents each, much larger than the
956 servers of the previous chapter which average 259 documents. Therefore while
the previous chapter modelled site-search servers, this chapter models larger search
servers, perhaps on the Web, which each cover content corresponding to some publi-
cation over the course of a few years.

Retrieval is of the top 30 results from each server, giving merged lists of at most
150documents. This is enough to make the merging task interesting, without going
beyond a size which would be practical in real document download based merging.
Since official TREC runs contain 1000documents per topic, it is almost always possible
to obtain a top 30 for each server.

For generating simulated retrieval results, five runs were chosen to represent a
wide range of systems and strongly test the performance of merging methods under
server heterogeneity. The runs were from:

• University of California Berkeley, based on logistic regression (Brkly22),

• Cornell University, based on the vector space model (Cor6A3cll),

• City University, London, based on the Okapi probabilistic model (city6at),

• MDS RMIT, using a limited-context vector space model (mds602), and

• Queens College CUNY, using a modified probabilistic model trained using a
spreading activation network (pirc7At).

For example, MDS over LA Times documents is simulated by removing all non-LA
Times documents from the MDS run.

Five systems with five servers gives 25 input rankings, and 55 = 3125 possible
server configurations, assuming any combination of retrieval algorithms is possible.
The 3125 include five fully homogeneous configurations, where all servers use the
same algorithm, and 120configurations with all five different algorithms. No config-
uration seems more likely than another. It is also not realistic to assume some central
coordinator decides on the configuration. Therefore a good merging method should
be able to deal with any configuration. For this reason these experiments evaluate
merging methods across all 3125possible configurations.

6.1.2 The broker: selection and merging

Selection is not required since the five modelled servers are assumed to have already
been selected from a larger set. However, some merging methods require an indica-
tion of server promise, to give preference to good server’s results in merging. Here
such methods are supplied with weights generated using a simple server selection
method, a df · isf weighting (Equation 2.4). The selection experiments in the previous



§6.1 Method 73

chapter made use of the best merging method described here, coming chronologically
after these experiments. These experiments do not use CORI selection, because at the
time it was not clear which selection method was best. However, see Section 6.4 for
investigation of CORI server promise in this testbed.

Merging methods were described in Section 2.3.2 but those evaluated are sum-
marised again here:

Interleaving Documents DM are sorted in increasing order of server-assigned rank. In
cases where incoming ranks are equal, order is arbitrarily determined by Perl’s
sort routine.

Yuwono and Lee interleaving Documents are interleaved unevenly such that the gap
between documents from a server is inversely proportional to server promise.

V interleaving The Voorhees method for interleaving requires the input rankings to
have length proportional to server selection score, then for documents to be re-
moved from lists at random with probability proportional to the list’s remaining
size. Here an approximation called V Interleaving is used. The largest server
promise score is scaled to 30, and smaller scores are scaled proportionately, then
scores are assigned to the appropriate incoming top 30 lists. Documents are re-
moved from each list with a probability proportional to its remaining score. The
score is reduced by one for each document removed, unless the reduction would
be to zero for a non-empty list.

Raw scores Raw scores produced by different systems are not comparable. For ex-
ample, MDS returns a vector match score ranging between zero and one, while
Okapi returns a retrieval weight with no fixed maximum used to give a proba-
bilistic ordering. In general scores are not even comparable if all servers use the
same algorithm, because they will be based on local collection statistics. How-
ever, merging according to such unmodified scores is included here as a point
of comparison for the methods based on score scaling.

Scaled scores The broker scales each server’s document scores to range between two
fixed values, then sorts according to scaled scores.

Weighted scaled scores A server’s scaled scores are multiplied by its server promise
score.

Random Documents DM are ordered randomly to generate RM.

Document download If the broker downloads documents DM, it can generate its own
ranking based on their content and some ranking algorithm. The following
ranking algorithms are applied:

Inquirus Lawrence and Giles [1998] proposed a ranking algorithm which does
not require collection statistics, (Equation 2.6).

BM25 The well known and highly effective Okapi BM25 document ranking al-
gorithm (Equation 3.1). This may only be applied using reference statistics.
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BM25 (no df) A modification of the Okapi BM25 document ranking algorithm
with no document frequency information, and length normalisation ac-
cording to a constant rather than the true average document length:

wi = TFi×
1

2× (0.25+0.75× DL
4096)+TFi

where wi is the relevance weight assigned to a document due to query term
ti (this weight is multiplied by the query weight of ti), TFi is the number
of times ti occurs in the document and DL is the length of the document in
bytes.

tf · idf A simple ranking algorithm, with weighting based on a term’s frequency
within the document and the document frequency of that term within the
collection (a collection statistic):

wi =
TFi

log(CS/DFi)

which may only be applied using reference statistics.

Feature distance Ranking algorithms designed to degrade gracefully under par-
tial document download, described in Section 3.3 with Equations 3.2 and
3.3. Feature distance merging may only be applied using reference statis-
tics. The two equations were a result of hand tuning on 1% of the 3125
server configurations.

Every effort has been made to correctly implement the merging methods evaluated.
This includes a reimplementation from first principles, described in Section 6.4, to
uncover any bugs in the code.

Under document download the BM25, tf · idf and feature distance algorithms all
require collection statistics. In this case the reference statistics are used, taken from
a random 10% sample of the TREC-6 documents, sampled by taking every 10th file
encountered on disk. This is consistent with the broker having access to some of the
documents in question, which is not an unreasonable assumption since it is down-
loading them for merging. If no occurrences of a term were found in the 10% sample,
the term’s document frequency is assumed to be one.

6.1.3 User model

These experiments use the TREC-6 ad hoc test collection. User needs over 50 queries
are described by TREC topics 301–350. A query is generated for a topic using un-
stemmed terms from the full topic description, with query weights corresponding to
the number of times the term occurs in the topic. These queries are more detailed than
those in the previous chapter, indicating a more in-depth searcher, willing to spend
more time on query construction. This is consistent with the use of news/government
documents and longer merged lists in this experiment. Relevance judgments are avail-
able for the documents and topics in question.
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Mean average precision

Configurations where
Reference True reference statistics

Method Statistics Statistics are superior

tf · idf 0.127 0.144 0%
BM25 0.186 0.188 0%
Feature distance wB 0.189 0.182 100%
Feature distance wA 0.191 0.191 58%

Table 6.1: Reference statistics (TREC-6). Document download based methods with and with-
out reference statistics. Mean average precisions are over 3125 observations.

Since the output of the merging process is a ranked results list (RM), standard in-
formation retrieval evaluation techniques can be applied in merging evaluation. The
measure is average precision, particularly average precision at 150.

Average precision at n=
∑num rel ret(n)

i=1
i

rank(i)

numrel

where rank(i) is the rank of the ith relevant document, numrel ret(n) is the number of
relevant documents in the top n results, and numrel is the number of relevant docu-
ments in the collections being searched.

Average precision was chosen because it is a standard TREC measure and because
it allows the whole of RM to be evaluated. By contrast, using precision at 150would
have resulted in all merging methods having the same effectiveness score, since in
each case DM is always the same. Early precision, for example precision at 20, would
be a viable measure, but was not used here.

6.2 Results

Table 6.1 compares document download based methods with reference statistics and
true collection statistics, over all 3125configurations. It only includes methods which
use some form of collection information. The rightmost column shows the proportion
of the 3125configurations where reference statistics are better than true statistics. For
tf · idf and BM25, reference statistics provide worse performance, but performance is
equivalent or better for both feature distance methods. For the three most effective
methods, the effect of reference statistics is small.

Table 6.2 presents results for all merging methods over all 3125 configurations.
The rightmost column lists the proportion of configurations where feature distance wA

merging was superior to other merging methods. Since most numbers are very high,
usually 85% or above, no tests of statistical significance need be applied. The table
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Average Precision

Configurations
Standard where wA

Method Information Mean Deviation is superior

Random None 0.062 0.005 100%
Inquirus C 0.085 0.008 100%
Interleaving R 0.120 0.011 100%
Raw scores S 0.123 0.038 97%
tf · idf CX 0.127 0.012 100%
Yuwono Lee interleaving RW 0.131 0.012 100%
Scaled scores S 0.134 0.016 100%
V interleaving RW 0.135 0.013 100%
Weighted scaled scores SW 0.151 0.015 100%
BM25 (no df) C 0.177 0.007 100%
BM25 CX 0.186 0.009 85%
Feature distance wB CX 0.189 0.011 68%
Feature distance wA CX 0.191 0.010 0%

Table 6.2: All merging methods (TREC-6). Means and standard deviations of average preci-
sion are over 3125 observations. The proportion of configurations for which wA was superior
is also listed. Merging information used by the broker; S: Scores, R: Ranks, W: Server promise
weight, C: Document content, and X: Reference Statistics.

Mean average precision

Drop in mean
Method Full download First 4 kB average precision

Inquirus 0.085 0.127 -0.042
tf · idf 0.127 0.129 -0.002
BM25 (no df) 0.177 0.166 0.011
BM25 0.185 0.172 0.013
Feature distance wB 0.189 0.176 0.013
Feature distance wA 0.191 0.173 0.018

Table 6.3: Feature distance with partial download (TREC-6) Effectiveness of ranking algo-
rithms using full and partial document download. Mean average precisions are over 3125
observations.
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Figure 6.1: Feature distance vs BM25. Histogram of pairwise differences in mean average
precision between feature distance wA and BM25 over 3125 configurations. The improvement
due to the feature distance, though consistent, is very small.

also shows a number of other results. Random merging is the worst method. The top
three methods are based on document downloads and reference statistics, while the
fourth is a download based method without collection statistics. Score based methods
outperform rank based methods. Modification according to server selection scores
improves score based merging (weighted scaled scores) and rank based merging (V
interleaving and Yuwono and Lee interleaving).

Table 6.3 tests document download based methods under full document down-
load and under partial download conditions. Partial downloads are of at most 4k of
each document. For the more effective merging methods there is a drop in effective-
ness in almost all cases. Furthermore, the drop for feature distance merging is worse
than that of Okapi BM25. The Inquirus and tf .idf merging methods actually improve
or stay the same, but are not highly effective to begin with.

Figure 6.1 is a histogram of pairwise differences between feature distance and
BM25 merging over all 3125configurations. It shows that differences are small but
consistently in favour of feature distance.
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6.3 Discussion

The most important hypothesis tested here is hypothesis M1, that reference statistics
are as effective as true statistics in results merging. Table 6.1 shows merging effective-
ness at very similar levels with reference statistics and true statistics. In the case of
feature distance wB, reference statistics actually improve effectiveness, although the
reason for this is not clear. For wA the results are better in 60%of cases and on average
there is no noticeable drop in effectiveness. For Okapi BM25 there is a slight drop in
effectiveness, in 95% of cases, however, the change in effectiveness is unlikely to be
noticeable by a user. Similarly for tf .idf there is a fall in effectiveness, but perhaps not
one noticeable to the user. In any case, merging using more effective methods is not
harmed by switching to reference statistics.

This result means that effective merging may be achieved without collating true
collection statistics. Since collation requires cooperation from servers and extra net-
work communication, reference statistics are preferable. Even in cooperative merging,
the servers could use a standard set of reference statistics to save on collation effort.

Although propagation of true collection statistics is not necessary, collation of in-
formation about documents DM still is. Collating document information from cooper-
ating search servers, for example using term frequency information provided through
STARTS [Gravano et al. 1997], will always be more efficient than document down-
load. This is because transmission of a server’s pertinent scores and statistics requires
a single small network communication. Downloading a server’s documents from
the appropriate document servers requires multiple, larger network transmissions.
However, the many users of Inquirus find its document download times acceptable.
In addition, downloading documents allows results validation, summarisation and
caching (see Section 3.1). Document download also guards against dishonest search
servers, which might return inflated scores or statistics to promote their documents in
the merged list.

Hypothesis M2 was that feature distance merging is superior to Okapi BM25 merg-
ing. This is shown to hold both in the rightmost column of Table 6.2 and in Figure 6.1.
However, feature distance was tuned to TREC-6 and a 1% sample of configurations
in this merging task, while BM25 was not. In addition, the improvement is so slight
that it would be imperceptible to a user. The result is interesting only because the
improvement is so consistent (Figure 6.1). This suggests two things. First, feature dis-
tance might be worth future investigation, perhaps in developing even more effective
formulations and some theoretical model for this type of retrieval. Second, it may be
that merging and retrieval, although both document ranking problems, are slightly
different. This would explain why BM25 is not optimal for merging. It may be pos-
sible to develop specialist merging algorithms which are more effective at merging
than any document ranking algorithm for retrieval over large document sets. If this
were the case, such specialist algorithms for reordering small document lists might
also have application in other results presentation tasks.

Hypothesis M3 was that feature distance effectiveness degrades gracefully under
partial document download. Partial download allows the broker to present its merged
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results more quickly by cutting off long documents at some fixed time or bandwidth
limit. In this case a 4k limit was used to test the degradation of different methods.
The result was that partial download almost always harms effectiveness, and that it
harms feature distance methods more than Okapi BM25, so the hypothesis does not
hold. In addition the decrease from 0.191 to 0.173 may be noticeable to a user. To
determine whether such a decrease is worthwhile, further experiments would have to
be conducted, into the time and bandwidth savings which accompany partial down-
load. For example, if results come twice as quickly, a drop in effectiveness might be
justified for certain applications.

The remainder of this section discusses other interesting features and implications
of the results. Table 6.2 shows that score based merging is superior to rank based
merging (except for raw scores which are ineffective as expected). Modification by
df .isf slightly improves both score and rank based methods. The superiority of score
based methods might be explained by a score’s ability to capture more fine grained
comparisons between documents. For example, two documents with adjacent ranks
might be revealed by their scores to have identical or very different levels of matching
against the current query. The implication is that generally applicable search brokers
which do not download documents should use score rather than rank based merging.
The improvement using crude df · isf on score based merging suggests that further
improvements might be possible using more effective selection scores (again see Sec-
tion 6.4).

Noticeable in Table 6.3 is that two merging methods improved under partial down-
load, although not enough to overtake other methods. A contributing factor might be
their lack of document length normalisation. Without length normalisation, an al-
gorithm can be “confused” by documents of varying length. This could make them
ineffective on full documents, and better in a partial download situation where long
documents have been truncated. It is also interesting to note that while partial doc-
ument download harms merging effectiveness, downloading part of a server using
probe queries in the previous chapter did not harm selection effectiveness as badly.

Finally, these results in general correlate with the results of Callan, Lu, and Croft
[1995]. They found that rank interleaving was the worst method while compara-
ble scores (cooperative merging) was the most effective. The difference is that their
weighted scores method was as effective as cooperative merging, perhaps a reflection
of the use of a homogeneous retrieval algorithm and a high quality server promise
indicator (CORI scores). Their raw scores method was of medium effectiveness, but
has no analogue here, being based on homogeneous retrieval methods.

6.4 Further experiments

The experiments presented so far this chapter and in [Craswell et al. 1999], have three
potential flaws which are addressed in this section.

The first potential flaw was in the testbed software. The initial version of the soft-
ware provided the results presented in Craswell, Hawking, and Thistlewaite [1999].
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This testbed was reimplemented with the benefit of more experience in early 2000.
The goal was to see if the new results match the original results and, if not, to find out
why.

Reimplementation confirmed that most results in the original paper were correct.
However, it turned up one bug and one bad decision in the old code (plus a a few other
very small differences which are not detailed here). The bug was that the effective-
ness of interleaving was inflated to roughly equal that of Yuwono and Lee merging.
Table 6.2 has been updated with the correct interleaving result. Note, a difference in
V interleaving between results reported here and the original paper is not a bug. It is
due to the nondeterministic nature of the algorithm.

The bad decision concerned the scaling of scores, affecting results for scaled scores
and weighted scaled scores. The original decision was to scale scores from each re-
trieval system to the range 0–1. However, correct behaviour is to scale scores from
each server in this way. For example, if two servers run the same retrieval algorithm,
with score ranges 0.2–0.5 and 0.3–0.7, the original behaviour was to scale within the
range 0.2–0.7. The correct behaviour is to scale one server within 0.2–0.5 and the
other within 0.3–0.7. This is because a broker in practice would most likely not know
that two servers run the same retrieval system so have semi-comparable scores. In
addition, in this testbed, two servers running the same algorithm have precisely com-
parable scores because they originate from the same official TREC run. Scaling scores
in the original way therefore increased the effectiveness of servers on very homoge-
neous configurations. For example, when all servers run Okapi BM25, the merged list
is based on comparable scores. Again, Table 6.2 has the updated results for scaled and
weighted scaled scores.

The second potential flaw was that feature distance algorithms were tuned using
the test collection (TREC-6) and a roughly 1% sample of the 3125configurations. This
made feature distance weightings specific to TREC-6 and the merging problem, while
BM25 is a more general algorithm. The reimplementation of the merging code also
increased its generality, making it easy to run the same experiment on the TREC-3 ad
hoc test collection. This was done and the experiments are reported in this section.

The third potential flaw was the crude server promise figure (df · isf) which might
have disadvantaged weighted scaled scores, V interleaving and Yuwono and Lee in-
terleaving. However, initial experiments with CORI server promise (belief values,
Equation 2.1, page 16) showed it to be incompatible with the current testbed. Here,
most servers contain most query terms, so usually |S|= SFk = 5. In CORI selection this
means that T is very small, so the final belief value does not stray far from db = 0.4.
A method such as V interleaving, which bases its merging on relative server promise,
will give roughly equal weight to all servers because server promise scores for five
servers are in the range 0.40–0.42. This problem stems from the fact that CORI is non-
committal on high-SF terms, combined with the fact that this testbed does not model
the broader range of servers S. Because of this, the df · isf server promise figure is
retained for these experiments.

The experimental method is the same, but replaces TREC-6 with TREC-3. The
servers are:
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Mean average precision

Configurations where
Reference True reference statistics

Method Statistics Statistics are superior

tf · idf 0.104 0.104 30%
Feature distance wB 0.136 0.135 93%
Feature distance wA 0.138 0.138 27%
BM25 0.147 0.147 20%

Table 6.4: Reference statistics (TREC-3). Document download based methods with and with-
out reference statistics. Mean average precisions are over 3125 observations.

• Wall Street Journal (1987–1992),

• Associated Press (1988–1989),

• Ziff-Davis,

• Federal Register (1988–1989), and

• US DOE abstracts.

The retrieval systems are from the same groups, except that to increase the variety of
search results the MDS system is replaced by PADRE, using a distance based metric
for ranking [Hawking and Thistlewaite 1994].

New results concerning hypothesis M1 are presented in Table 6.4. They support
even more strongly than those in Table 6.1 that use of reference statistics does not
harm effectiveness. Variation in the TREC-6 testbed results is not reflected here, even
though precisely the same code is used in both experiments. The explanation for this
is not obvious.

New results concerning hypothesis M2 are presented in Table 6.5. These results
confirm that tuning on 1%of TREC-6 server configurations made feature distance for-
mulations wA and wB specific to that testbed. On TREC-3 feature distance performs
less well than BM25, although is still more effective than rank and score based merg-
ing methods.

Merging methods are less effective in the TREC-3 testbed. This is difficult to ex-
plain because the TREC-6 input rankings generally contain fewer relevant documents
than the TREC-3 input rankings. One explanation is that although there are more rel-
evant documents in TREC-3 runs, they tend to be concentrated in AP and WSJ results
lists (Table 6.6). This skew might make the merging task more difficult, particularly
for methods based on ranks and scores.

V interleaving and Yuwono and Lee interleaving both perform less effectively than
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Average Precision

Configurations
Standard where wA

Method Information Mean Deviation is superior

Interleaving R 0.080 0.014 100%
Inquirus C 0.084 0.014 100%
V interleaving RW 0.094 0.017 100%
Yuwono Lee interleaving RW 0.095 0.017 100%
Scaled scores S 0.097 0.020 100%
Raw scores S 0.098 0.034 93%
tf · idf CX 0.104 0.017 100%
Weighted scaled scores SW 0.115 0.023 99%
Feature distance wB CX 0.136 0.020 73%
Feature distance wA CX 0.138 0.019 0%
BM25 (no df) C 0.146 0.019 2%
BM25 CX 0.147 0.019 0%

Table 6.5: All merging methods (TREC-3). Means and standard deviations of average preci-
sion are over 3125 observations. The proportion of configurations for which wA was superior
is also listed. Merging information used by the broker; S: Scores, R: Ranks, W: Server promise
weight, C: Document content, and X: Reference Statistics.

Server Mean Precision at 30

AP (TREC-3) 0.43
WSJ (TREC-3) 0.41
FR (TREC-3) 0.06
DOE (TREC-3) 0.04
ZF (TREC-3) 0.04

FT (TREC-6) 0.22
FBIS (TREC-6) 0.18
LA (TREC-6) 0.17
CR (TREC-6) 0.07
FR (TREC-6) 0.04

Table 6.6: Effectiveness of input rankings, TREC-3 vs TREC-6. Simulated input rankings
in the TREC-3 testbed have greater variation in effectiveness. These figures are a document
server’s mean precision at 30 across all five retrieval systems and 50 topics.
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Figure 6.2: BM25 (ref stats) vs BM25 (true stats). Histogram of pairwise differences between
BM25 with reference statistics and BM25 with true collection statistics over the TREC-3 test-
bed. As noted in Table 6.4, reference statistics are only superior 20%of the time. However, the
means come out exactly the same, and this histogram shows the differences are very small.
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score based methods over TREC-3 documents. Surprisingly, scaled scores do not out-
perform raw scores in the TREC-3.

6.5 Conclusion

Reference statistics do not cause a drop in effectiveness for the best merging meth-
ods, so hypothesis M1 holds. The implication is that an operational search broker
need not rely on servers exporting their collection statistics, at least on grounds of
effectiveness. Hypothesis M2 does hold for TREC-6, but this is due to tuning on 1%
of testbed configurations. Rather than recommending use of feature distance merg-
ing in an operational broker, these results suggest that further exploration of feature
distance formulations may be fruitful. Hypothesis M3 does not hold, because fea-
ture distance’s degradation is worse under partial download than BM25’s. For both
ranking methods, partial download yields a significant drop in effectiveness. Broker
designers considering merging based on partial downloads should consider this drop
in effectiveness and measure the possible gain in efficiency.



Chapter 7

Conclusions

Methods for distributed information retrieval are usually introduced in the context
of either general applicability or effectiveness evaluation, but not both. Studies which
concentrate on applicability usually describe a method’s implementation in a real Web
search broker, but without evaluation. Studies which concentrate on effectiveness
usually perform evaluation, but introduce methods which rely on cooperation from
search servers. Methods which require cooperation are restricted in application and
seldom used in practice.

Probe queries and reference statistics allow a broker to be both generally applica-
ble and effective. General applicability stems from having minimal requirements of
servers: search servers need only return search results and document servers need
only return documents. Effective selection is achieved with probe queries which allow
the application of CORI server ranking. Effective merging is achieved with reference
statistics which allow the application of Okapi BM25 document ranking.

7.1 Methods

Probe queries allow a broker to learn about server term occurrence statistics, then ap-
ply a server ranking method such as CORI. Evaluation shows that selection based on
sufficient probe queries is as effective as selection based on servers’ true term occur-
rence statistics. This indicates that a broker can perform effective selection without
relying on cooperation from search servers.

Effectiveness estimation allows a broker to learn about a server’s ability to return
relevant documents, then modify its server selection to favour more effective servers.
Evaluation of an initial estimation method over heterogeneous servers provides no
significant improvement in effectiveness. Even use of true (not estimated) effective-
ness figures provides only a slight improvement. Further investigation is required.

Reference statistics allow a broker to apply an effective document ranking algo-
rithm, such as Okapi BM25, without relying on server cooperation and collation of
true collection statistics. Evaluation shows merging based on reference statistics is as
effective as merging based on true statistics. This indicates that a broker can perform
effective merging without relying on cooperation from search servers.

Feature distance document ranking is designed to be effective in situations where
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merging is based on partially downloaded documents. Evaluation shows its effective-
ness on full downloads to be promising. After tuning to a 1% portion of the TREC-
6 configurations, it consistently outperformed BM25 on TREC-6 and came close on
TREC-3. However, on partial downloads it degrades as much or more than BM25.

Combining probe queries and reference statistics would allow a broker to address
a wide range of search servers without relying on their cooperation. The broker would
be as effective as a broker which requires and receives full cooperation. So this thesis
has successfully shown that a broker can be generally applicable without sacrificing
effectiveness.

Effectiveness estimation and feature distance were less successful. They were de-
signed to handle realistic Web conditions — with heterogeneous retrieval systems at
servers and document download limits — but were not central to the current investi-
gation of generally applicable, effective distributed search. For this reason, the thesis
concentrates on probe queries and reference statistics. However, the initial results re-
ported here indicate that the methods may be worthy of more detailed study in the
future.

7.2 Other contributions

This thesis makes number of other contributions to distributed information retrieval
research.

An important question when designing a search broker is with what kind of search
servers will it interact. Studies have often described a broker interacting with a set
of unspecified, homogeneous search servers, or with a small set of Web search en-
gines. This thesis describes an Inquirus-like broker interacting with a large number of
InvisibleWeb-listed servers (http://www.invisibleweb.com/). Such servers run het-
erogeneous retrieval algorithms and do not cooperate with brokers. They often index
documents from a single document provider, corresponding to document set parti-
tioning by source rather than by date or clustering [Xu and Croft 1999]. These charac-
teristics have influenced the design of new methods and evaluation experiments.

The selection experiments are amongst the first to incorporate heterogeneous re-
trieval algorithms and use a large number of search servers partitioned by source. Par-
titioning by source also provides greater server size variation and topic skew than in
previous experiments, which is consistent with real single-source Web search servers.
Results show that CORI selection is more effective than vGlOSS and CVV. Other re-
sults show that a very good selection of ten servers outperforms a centralised index,
and that a CORI selection of ten outperforms a central index of 25% of sources. The
overall recommendation is that a generally applicable broker should apply CORI se-
lection based on probe queries.

The merging experiments evaluate some generally applicable methods which have
never before been compared. These experiments are also the first to incorporate het-
erogeneous retrieval algorithms and a large number of server configurations. Results
show score based methods outperform rank based methods, and that modification of

http://www.invisibleweb.com/


§7.3 The future 87

such methods by server promise improves effectiveness. These results hold true over
two test collections with 3125server configurations each. Overall, it is recommended
that a generally applicable broker should download documents. This allows the most
effective merging plus document verification, summarisation and caching. If the bro-
ker does not download documents for efficiency reasons, it should apply score based
merging methods, modified by server promise scores if available.

In selection evaluation methodology, concerns were raised about server merit eval-
uation. New merit definitions, based on the density of relevant documents and server
retrieval effectiveness, were introduced which are better than the relevance based de-
finition favoured in recent studies. It was also shown that server merit depends on
which other servers have been selected so far. For this reason, server merit evaluation
is avoided in this thesis.

In merging evaluation methodology, a method for generating simulated input
rankings was suggested. The simulated inputs are similar but not identical to runs
which would be produced by real search servers. They also make it simple to sim-
ulate rankings from widely varying systems without much chance of experimental
error, in a way which can easily be repeated by other researchers.

7.3 The future

Given the above conclusions, a few avenues of research now become less interesting.
Methods which rely on server cooperation are less interesting. This thesis shows

that cooperation is not necessary for effectiveness. Also, if servers are cooperating
they could cooperate with a central indexer. By running an rsync [Tridgell and Mack-
erras 1996] server, a search server can eliminate most crawling costs. A single low-end
machine can provide a central search service over millions of documents [Hawking
et al. 1999]. Such a solution might be preferable to cooperating distributed search
servers, which would require significant cost and effort in maintenance and compli-
ance. It is only when documents are unavailable for central indexing — when coop-
eration is unavailable — that distributed search becomes interesting.

Efficient aggregation of true collection statistics for use in merging is less interest-
ing. Reference statistics allow effective merging with no aggregation overhead. Also,
evaluation of selection methods based on server merit is potentially incorrect. Until
merit definitions are better understood, server merit evaluation results are less con-
vincing.

In contrast, several interesting avenues of research have been raised.
Server merit definitions require further investigation. Server merit experiments

are less complex than system level evaluation experiments, because they do not re-
quire the experimenter to implement retrieval and merging methods. Comparing the
results of server merit and system level evaluation could be fruitful. If they agree,
future experiments can safely use server merit evaluation. If server merit evaluation
is found to be potentially misleading, it would be highly useful to streamline system
level evaluation experiments by providing standard results lists, extracted statistics
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and other information. Such a framework could be provided to interested TREC par-
ticipants.

Effectiveness estimation showed some promise. It would be interesting to investi-
gate situations in which such estimation is useful. For example, in cases where many
servers index relevant documents, but some less effective servers are less likely to re-
turn them. Better methods for estimation and for using estimates in selection could
then be developed.

Feature distance merging also showed some promise. It would be interesting to
investigate various feature distance formulations, to determine experimentally which
are most effective. It would also be useful to develop a more principled model which
explains the success of the algorithm, and which might shed further light on its devel-
opment and application.

Building a real search broker raises a number of interesting problems. Some search
servers have volatile content, so the broker would need to not only learn from its
probe queries, but adjust over time. It might be possible to eliminate the probe query
stage altogether, by learning from ongoing document downloads during merging.
However, such rolling learning would pose its own problems, including the problem
of fairness, where a server which is never selected can never be selected.

Implementation of a real broker would also validate the broker use case presented
in this thesis, that of addressing numerous small Web search servers. It would also
raise other, practical problems. For example, in an environment such as the Web,
methods which allow a broker to automatically discover and interface with new servers
would be useful. When using an effective broker on real search servers, it would be-
come clear how happy the server administrators are to have their server included or
excluded from the broker’s set. With a real broker, detecting and preventing “cheat-
ing” and “spamming” from search and document servers might even become an is-
sue.

7.4 Overall conclusion

The major finding of this thesis is that a search broker can be effective without relying
on cooperation from search servers. This is based on evaluation experiments which
model Web search servers. The next stage in research is to build and evaluate such a
broker.



Appendix A

Variation in Terminology

This brief appendix deals with variation in terminology.

Distributed information retrieval

There has been some variation in terminology in the field of distributed information
retrieval. In cases where different terms have been used to describe very similar con-
cepts, this thesis chooses one term and uses it consistently. The chosen terms are
defined in Section 2.2.

This thesis uses the following terms:

• Distributed information retrieval: A term also used by Xu and Callan [1998], Baum-
garten [1997] and French, Powell, Viles, Emmitt, and Prey [1998]. Has some-
times been known as networked information retrieval (for example [Voorhees
and Tong 1997; Fuhr 1999]).

• Server selection: A term also used by Yuwono and Lee [1997] and Hawking and
Thistlewaite [1999]. Has sometimes been known as collection selection (for ex-
ample [Zobel 1997; Callan et al. 1995]), selection of sub-collections (for example
[Baumgarten 1997]), text-source discovery (for example [Gravano et al. 1999])
and database selection (for example [French et al. 1998; Fuhr 1999]).

• Results merging: A term also used by Callan, Lu, and Croft [1995] and Hawking
and Thistlewaite [1999]. Has sometimes been known as database merging (for
example [Voorhees and Tong 1997]), collection fusion (for example [Fuhr 1999])
and subcollection fusion (for example [Baumgarten 1999]).

In each case, terms have been chosen which simply describe the process in question
and conform to the use of basic distributed systems (client, server, broker) terminol-
ogy.

The “collection”

This thesis uses the word collection to describe a set of documents over which a rank-
ing algorithm might operate, for example using collection statistics. It also describes
evaluation using a test collection.
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Use of the word is avoided in the context of a “distributed collection”. This is
because the word has already been used in several different ways. It is unclear which
is correct:

• All documents indexed by Sa broker’s search servers [Baumgarten 1997]. Some
merging methods use collection statistics from all servers S.

• All documents indexed by S′ currently selected servers [Gravano et al. 1997].
STARTS suggests merging based on collection statistics from servers S′.

• Documents indexed by si a single search server [Callan et al. 1995]. The broker
performs collection selection.

There are several other natural definitions of the collection:

• All documents indexed by any search server. Each broker, by addressing a
server set S, covers some subset of the whole distribued collection.

• All documents on any document server. A document need not be covered by a
search server to be part of the distributed collection.

• The documents of one document server. “Each document server provides a dif-
ferent document collection.”

• The documents of one document provider. For example, http://news.

altavista.com/ searches several news data collections, including Associated
Press.

Recognising the difficulty of defining the distributed document collection, particu-
larly in a Web context, this thesis avoids choosing any definition.

http://news.altavista.com/
http://news.altavista.com/
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