Chapter 7

Dielectric Self Energy in

Continuum Theories

7.1 Abstract

We investigate whether the accuracy of the Poisson-Boltzmann and Poisson-
Nernst-Planck equations can be improved in biological ion channels by including
a specific dielectric self energy term to overcome spurious shielding effects. By
comparing results with Brownian dynamics simulation, we show that although sig-
nificant qualitative improvements are obtained when considering single ion channels,
large errors still exist in many cases. The inaccuracies are much greater in multi-ion
channels. Thus neither theory can be reliably salvaged for quantitative studies of

biological ion channels in this simple manner.

7.2 Introduction

As noted previously, the PB and PNP equations have been widely used in studies
of biological ion channels. These include calculation of the forces and energy pro-
files seen by ions in channels [1,29,37,54,101,121,163,171,181,182,189,211], the
ionisation states of side chains [164, 174], and currents passing through the channel
[31,61,62,88,89,113]. The use of these techniques for calculation of potentials and
currents in narrow channels whose radius was smaller than the Debye length of the
electrolyte were called into question in chapters 5 and 6 as they were found to over-
estimate electrolytic shielding effects. When the PB equation is used in channels,
high concentrations of counter ions accumulate around a fixed test ion, which act to
eliminate the repulsive image force created by the dielectric boundary at the chan-
nel walls. Such high concentrations of counter ions around a test ion are not seen

when the mobile ions are treated explicitly as in BD. In such simulations, the image
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148 7. Dielectric Self Energy in Continuum Theories

forces felt by individual counter ions prevent them from easily entering the channel
and thereby suppress the large degree of shielding seen in the continuum theory.
Similarly, in PNP calculations the currents passing through narrow channels are
found to be much larger than in corresponding BD simulations, again as a direct
consequence of higher ionic concentrations found in the former method.

Extensive comparisons with BD simulations indicate that the problems in both
continuum theories arise from the fact that the dielectric self energy (DSE) contri-
bution is not properly taken into account. Because the self energy is proportional
to the square of the charge, it is positive for all ions, and it would repel them from
the dielectric channel boundaries leading to a suppression of their concentrations.
In numerical solutions of the PB and PNP equations, fractional charges are used
in a given region of the channel, which means that only partial image charges are
induced from that region. This is very different from the realistic case in which
monovalent ions carry a full charge of e. In this situation image charges are induced
in an ‘all or nothing’ way, either a large image force is induced (repelling the ion
away from the boundary) or there is no ion and thus no force. This DSE problem is
especially accentuated in those PNP calculations where equal amounts of positive
and negative electrolyte are found in the channel resulting in the dielectric repulsion
being completely cancelled out.

Given the computational simplicity of the continuum theories compared to sim-
ulation approaches and their widespread use, it would be desirable to find a solution
to the DSE problem highlighted above. A possible approach is to include an explicit
self energy term that would mimic the effect of the induced surface charges on ions
entering the channel. Such a term would prevent the build up of large counter ion
concentrations and possibly eradicate the spurious shielding effects seen in these
continuum models. This approach to correct the continuum theories is also being
pursued elsewhere [43,134]. Here we examine the consequences of including a DSE
term in the PB and PNP formalisms. The forces calculated using the modified
PB and the currents found from the modified PNP equations are again compared
with BD simulations to ascertain whether the suggested modification improves the

performance of the continuum approaches in ion channels.
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7.3 Theory

7.3.1 Modified PB equation

In the Poisson-Boltzmann theory, the mobile ions are treated as a continuous

charge density distributed according to the Boltzmann factor
n,(r) = ng, exp(—U, /kT), U, = z,ed(r). (7.1)

Here ny, is a background (or reference) density of ions of species v, U, is the electro-
static potential energy of an ion with charge z,e, and ¢(r) is the average potential
at the position r determined from the solution of Poisson’s equation (Eq. 2.1).

The crucial assumption of the PB theory in Eq. 7.1 is that at a given point,
the same average potential acts on ions regardless of their valence, and hence the
potential energy of anions and cations have opposite signs. This is a reasonable
assumption to make in a homogeneous system but it cannot be justified in an
inhomogeneous one with dielectric boundaries. Near a water-protein interface, a
mobile ion with charge z,e induces polarization charges of the same sign on the
boundary. These charges, in turn, generate a reaction potential ¢r that acts to
repel the ion from the boundary. The potential energy due to this reaction field,
called the dielectric self energy, is given by

1

Ugr = 3 z,edr(r). (7.2)

Since ¢g is itself proportional to z,e, U,g depends on the square of the ionic charge,
and hence it is always positive regardless of the valence of the ions. Thus the self
energy contribution to the total potential energy of an ion is the same for cations
and anions, which is incompatible with the assumption in Eq. 7.1. The PB equation
often bypasses the self energy problem because it results in equal densities of anions
and cations near a (neutral) dielectric boundary—since the average charge is zero,
there are no induced charges or reaction potentials to give rise to a self energy
contribution. The upshot is that the PB equation cannot lead to a suppression of
ionic densities near a dielectric boundary because it fails to take into account the
self energy contribution. A similar problem occurs in the Gouy-Chapman solutions
of the PB equation where counter-ions build up at a charged electrode. In that
case, this unphysical behavior is avoided by introducing a Stern or Helmholtz layer
that excludes ions from the immediate neighborhood of the boundary. While the
presence of this layer is motivated by the finite size of ions or the effect of the solvent

layer, in practice its thickness is used as a free parameter to fit the experimental
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data. In any case, the physics of repulsive self energy is very different and cannot
be modeled by such a simple exclusion zone for ions.

The above discussion about the lack of self energy in the PB equation suggests
an apparently simple remedy: modify the Boltzmann factor in Eq. 7.1 by adding a

self energy term to the potential energy
n,(r) = ng, exp[—(U, + U,r)/kT], (7.3)
so that the modified PB equation in a 1:1 electrolyte becomes
€V - [e(r)Vo(r)] = 2eng sinhleg(r)/kT] exp[~Ur/kT]| = pex- (7.4)

As an ion approaches a dielectric boundary, Ugr grows rapidly, and the exponential
factor in Eq. 7.4 provides a natural mechanism to suppress the ion densities. The
difficulty in this scheme, of course, lies in the calculation of Ur in a many-body
system in a self-consistent manner. For a single-ion, self energy is well defined—one
just needs to solve Poisson’s equation for the single ion and substitute the computed
reaction potential in Eq. 7.2. Indeed in a dilute electrolyte solution, where the effect
of ion-ion correlations may be neglected, this simple recipe should be quite adequate
for the self energy correction. However, at higher concentrations, the correlations
among ions lead to screening of their charges at relatively shorter distances (Debye
length), and the approximation of the reaction potential with that of a single-ion
becomes problematic. Unfortunately, there is no known method for incorporating
the ion-ion correlations in the calculation of the reaction potential. Nevertheless,
it is of interest to see whether the inclusion of the self energy correction at the
single-ion level improves the accuracy of the PB solutions sufficiently so that they
can be used in ion channels with some confidence. For this purpose, we compare
the results of the modified PB equation with those obtained from BD simulations.

The modified PB equation is solved using a finite difference method as described
previously for the standard PB equation (chapter 5). The DSE values are calculated
by solving the Poisson equation using the same technique, but with all the electrolyte
concentrations set to zero. A unit charge is placed at each of the grid points used
in the finite difference computation and the calculated values of Uy are stored in a
table. Entries from this table are utilized during the solution of the modified PB
equation (Eq. 7.4).

7.3.2 Modified PNP equations

As in the case of PB theory, the presence of dielectric boundaries creates prob-
lems for the application of PNP to narrow channels because DSE of ions is not

properly taken into account.
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The PNP equations can be modified in a similar manner to the PB equation by

including a specific DSE term in the potential energy of an ion:

zZ,en,

(9 + 6n/2) (7.5)

J,=—ez,D, (Vn,, +

The analogy between Eq. 7.5 and the modified PB equation can be seen most clearly
when the current vanishes. Then Eq. 7.5 can be easily integrated yielding the
modified Boltzmann factor given in Eq. 7.3. Here we solve Eq. 7.5 simultaneously
with Poisson’s equation (Eq. 2.1) using a finite difference procedure as described
previously for the PNP equations (chapter 6). The DSE values are implemented in

this process using a table as in the solution of the modified PB equation.

7.4 Results

7.4.1 Self energy in continuum theories

In continuum electrostatics, self energy refers to the intrinsic potential energy
of a charge or charge distribution. This is different from the DSE discussed above,
which arises from the interaction of a charge with a dielectric boundary. Because an
ion’s self energy is constant and has no effect on most results, it is routinely ignored
in electrostatic calculations involving discrete charges, and only the Coulomb inter-
actions among the charges are considered. In continuum theories, however, charges
are distributed continuously and it is not possible to isolate the self energy from the
Coulomb interaction. Thus when Poisson’s equation is solved in the PB and PNP
theories, the calculated potential energy of ions necessarily contains a self energy
contribution. This is not a concern in typical applications of continuum theories,
which involve a large number of ions (N > 1) in a nearly neutral electrolyte solu-
tion. First, the self energy is proportional to NV whereas Coulomb interaction scales
as N2, so its relative contribution would be negligible for large N. Secondly, near
electroneutrality in a large system means that the self energy due to any excess
charge has to be small. To give an example, when a charge ¢ is uniformly spread in
a water filled sphere of radius R, the self energy associated with this distribution is
given by

1 3¢

s = Amegey DR

For a unit charge with a dielectric constant of €, = 80, this yields Us; = (4.2/R)
kT where R is in A. Thus in large system (e.g. R > 100 A), self energy due to an

(7.6)

excess ionic charge is negligible.
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Ion channels do not satisfy either condition: they contain a rather small volume
of electrolyte which is far from being electroneutral—at least for the majority of
channels that are either cation or anion selective. Because the PB and PNP equa-
tions strive to maintain electroneutrality, this was not an apparent problem in earlier
applications of the continuum theories to ion channels. The introduction of the DSE
term, however, leads to a suppression of the counter ions in the channel and thereby
exposes the self energy problem more conspicuously. To get a feel for the size of this
effect, we show in Fig. 7.1 its influence in the simple case of electrolyte contained
within a sphere. In Fig. 7.1 A, a single ionic charge is confined inside a 4 A radius
sphere with e = 80 everywhere so that there are no dielectric boundaries. A single
ion should move freely within the sphere occupying all space evenly. In contrast, the
average concentration found using the (standard) PB equation (Fig. 7.1 A) exhibits
a central depression, which is simply caused by the Coulomb repulsion amongst the
charges distributed at all the grid points. The size of the corresponding potential
energy of the system can be simply calculated by summing the energy at each of
the grid points, 7, in the finite difference solution to Poisson’s equation as follows:

1
Us=3 Z%@bi, (7.7)

in which g; is the total charge of the electrolyte contained within the grid volume and
¢; is the potential at the grid point. The potential energy of the charge distribution
shown in Fig. 7.1 is about 1 kT. This self energy is, of course, entirely spurious
because the potential energy of an isolated ion is zero.

With increasing number of ions in the system, things get worse before recovering
at the large N limit. This is illustrated in Fig. 7.1 B, where the potential energy of
the system is plotted as a function of the number of monovalent ions in the sphere.
The solid line shows the potential energy obtained from the solution of the PB
equation at room temperature (7' = 298 K). As the charge in the sphere is increased,
the potential energy is seen to increase roughly proportional to the charge squared.
Thus for 2 ions it is about 4 kT and for 3 ions, 9 kT. The dotted line in the figure
shows the minimum electrostatic energy of the system that would be obtained at
T = 0 K when all the charges collapse to the boundary. Because the two curves are
quite similar, we simply present the potential energy for the corresponding discrete
charge configurations at T = 0 K (dashed line in Fig. 7.1 B). The discrepancy
between the continuum and discrete representations of the potential energy is seen
to grow with increasing number of ions. For two ions, contribution of the spurious
self-energy to the total potential energy is about 3 kT which may have a sizable

impact on the continuum theory results. The error introduced by spurious self
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Figure 7.1: Effect of self energy created by spreading the charge on an ion
in a continuous fashion. (A) The concentration found using the standard
PB equation is plotted against the radial position when a total of one ionic
charge is contained in a 4 A radius sphere. (B) The energy of the system as
the charge in the sphere is increased. Results are shown as found from the
PB equation at 298° K (solid line), 0 ° (dotted line) and as calculated with

discrete ions at 0° (dashed line). In both cases € = 80 is used everywhere.
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energy would obviously be greater when dealing with divalent ions.

While channels are cylindrical and do not absolutely confine ions, we expect the
order of magnitude estimates presented above will have a bearing on the results of
the modified PB and PNP equations, particularly in multi-ion channels. Whenever
there is a net charge build up inside the channel, the repulsion arising from the
spurious self energy will push the electrolyte out of the channel, leading to a lowering
of the concentration inside. This process of self repulsion is required to understand

some of the results presented later.

7.4.2 Modified PB equation

The modified PB equation is tested by calculating the force on fixed test ions
as well as potential and concentration profiles within schematic channel models, in
a similar manner to that done in chapter 5 for the standard PB equation. The first
tests are made in cylindrical channels of varying radii whose shape is indicated in
Fig. 5.4. The dielectric constants are set to 2 in the protein and 80 for the water. An
average concentration of 300 mM is used in all cases, determined from the average
charge of cations and anions in the modified PB equation, and corresponding to 24
Nat and 24 ClI™ ions in the BD simulations.

Rather than repeating all the tests made previously for bare cylindrical channels
(no fixed charge), we show in Fig. 7.2 the summary of how the screening charge (A)
and force on a test ion (B) change with the channel radius when using the modified
PB equation. In both cases a test ion is held fixed at z = 12.5 A, where the force on
the ion is greatest. It can be seen that the inclusion of the DSE term dramatically
reduces the concentration of counter ions in the channel, well below that seen with
the standard PB equation. In Fig. 7.2 A the total electrolyte charge in the channel
(screening charge) is plotted against the radius of the channel. In the narrowest
channel studied (r = 3 A) there is essentially no screening charge in the channel,
in agreement with the BD results. So, in this case the unwanted shielding effects
found in the standard PB equation are removed as desired. But, at larger channel
radii, the amount of counter charge in the channel stays below that found in the BD
simulations, suggesting that the electrolyte screening may be suppressed too much.
Suppression of the counter charges in modified PB persists even after an agreement
between the standard PB, and BD results is obtained at r > 12 A.

The dynamics of an ion in the channel is determined by the force acting on it,
and so this is a primary quantity of concern. In Fig. 7.2 B the axial component
of the force on the test ion, normalised by the force experienced by a single ion

is plotted against the channel radius. A single ion in the channel experiences a
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Figure 7.2: Pore size dependence of the screening charge and force on a cation
held at z = 12.5 A in a cylindrical channel. (A) The net screening charge in
the channel (from z = —15 to 15 A) is plotted as a function of the channel
radius. The modified PB results (MPB) are shown by the solid line, standard
PB by the dashed line and the BD values by the filled circles fitted with the
dotted line. (B) The force on the cation normalised by the force on a single
ion (no electrolyte) is plotted as the channel radius is increased. Symbols are

as in A and the single ion results (dotted line) are indicated for reference.
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large force repelling it out of the channel due to the surface charges it induces along
the dielectric boundary of the channel. This force is found by solving Poisson’s
equation and is indicated by the dotted line in the figure for reference. As expected
in the narrow r = 3 A channel, both the BD and modified PB results agree with
the single ion result as no screening charge finds its way into the channel. In
intermediate radii channels the BD and modified PB results diverge, the forces
calculated from the modified PB equation lying closer to the single ion results as
there is less screening charge in this case. The two results converge again at a channel
radius of around 10 A. Looking at the force felt by the test ion in Fig. 7.2 B, it
is clear that the inclusion of the DSE term has lead to a dramatic improvement in
the PB results. However, in the intermediate radii channels, the discrepancy in the
force from that found in BD is still large (~ 50%), and is likely to be important in
quantitative studies of ion channels. The modified PB equation overcompensates
for the problems experienced by the standard PB equation, and now underestimates

shielding rather than overestimating it.

Biological ion channels contain fixed charges in the channel walls that help one
type of ion to permeate through the channel. For completeness, we also examine
the more realistic case of a r = 4 A channel with negative monopoles in the walls
making it cation selective. Here, we place a ring of eight negative monopoles each
with charge —0.09e spread evenly near each channel mouth at z = —12.5 and
z =12.5 A and set 1 A inside the boundary as done previously. The inclusion of
negatively charged monopoles at the channel ends, cancels the dielectric barriers
seen by cations, whilst doubling their height for anions. In Fig. 7.3 A we plot
the potential profile through the channel as found from the PB equation (dashed
line), modified PB equation (solid line), BD simulations (dash-dot line) and with
no electrolyte (ie. from Poisson’s equation), with no test ion present. The potential
found from the modified PB equation drops below that found with the standard PB
equation and is closer to the BD result, showing a significant improvement compared
to the standard PB results.

The improvement in the concentration profiles is also quite good as shown in
Fig. 7.3 B. Here we plot the cation concentration in the channel, corresponding to
the potential profiles shown in Fig. 7.3 A. The concentration found from the modified
PB equation is significantly lower than that found from the standard PB equation,
and only a little lower than that of the BD simulations. This slight reduction in

concentration compared to BD is presumably caused by the self energy repulsion.

It is worthwhile to stress that, unlike the PB equations, the modified PB equa-

tions are not self consistent because the DSE term is included in Eq. 7.4 in an ad
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Figure 7.3: (A) Potential profiles found in a 4 A radius cylindrical channel
with charges in the protein and no fixed test ion found using the standard PB
equation (dashed line), modified PB equation (solid line), BD (dash-dot line)
with 300 mM NaCl solution in the baths. The potential found from Poisson’s
equation with no electrolyte is shown by the dotted line. (B) Concentration
profiles corresponding to the results in (A). The BD results are indicated by
the dotted line.
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hoc manner. A consequence of this can be seen in a comparison of Figs. 7.3 A
and B. In the potential plot, the modified PB results lie closer to the standard PB
results than those found from BD simulations. However, in the concentration plot
the reverse is true. The reason for this is that the potential plotted is ¢ found from
Eq. 7.4, whereas the concentration is determined from ¢ + ¢gr/2 as indicated in
Eq. 7.3.

We next turn our attention to the slightly more complex case of the gramicidin
A channel. A model of the channel is constructed from recent NMR data [104]
including the partial charges of all the protein atoms. This model is described in
detail in chapter 9, and for the point of this study may be considered as a very
narrow, roughly cylindrical channel. The shape of the channel is shown in the
inset of Fig. 7.4. In Fig. 74 A and B, we again show the potential profile and
concentration of cations found in this channel without a test ion using each of the
methods described. Without any electrolyte the potential has a deep well created
by the distribution of partial charges in the protein, which act to attract cations
into the channel. Using the standard PB equation the potential is flattened out
as a large concentration of cations enters the channel negating the effect of the
distribution of partial charges. Using the modified PB equation, however, we find
that this potential profile remains largely unchanged from the solution of Poisson’s
equation, as only a small concentration of cations finds its way into the channel.
The potential found from the modified PB equation is remarkably similar to that
found from the BD simulations, the two agree to within a few percent. Comparing
the concentration profiles in Fig. 7.4 B, we find that in both cases the concentration
of ions in the channel is quite low. In this very narrow channel the inclusion of
the DSE term in the PB equation yields a dramatic improvement. This may not
be surprising as the channel is very narrow and, in fact, is found to be occupied
only 10% of the time. This means that the dielectric repulsion from the channel
boundary is a dominant effect, and can be approximated quite well by the repulsion

felt by a single ion.

We finally test the modified PB equation in a less favourable, and more compli-
cated case: the KcsA potassium channel. Not only does this channel have a more
complicated geometry, it is also always occupied by multiple ions. This means that
the calculation of the DSE term using a single ion may be less accurate, ion-ion
interactions that are difficult to describe in a continuum approach may become im-
portant, and errors due to the spurious self energy are more likely to be significant.
An open state channel shape is made from the KcsA crystal structure as described
previously [41] and is shown at the top of Fig. 7.5. The narrow ‘selectivity filter’ of
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Figure 7.4: (A) Potential and (B) concentration profiles as in Fig. 4 except
for the gramicidin A channel. 500 mM KCl is used in both cases. The shape
of the channel is indicated in the inset.
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the channel is surrounded by carbonyl oxygen atoms whose partial negative charges
create a deep potential well as seen from the solution of Poisson’s equation indicated
by the dotted line in Fig. 7.5 A. These negative charges attract potassium ions into
the channel, whose presence decreases the size of this well. Using the standard PB
equation, enough cations enter the channel to roughly cancel out the energy well.
In BD simulations, at least 2 ions are always present in the narrow section of the
channel. Because the volume of this section of the channel is very small, this leads
to a very large concentration there as seen in Fig. 7.5 B. The two peaks in the
concentration plot show clearly where the ions are most likely to be found. These
ions again act to cancel the potential well in the channel. The inclusion of the DSE
term in the PB equations however, leads to a worse agreement with the BD results
than is found with the standard PB equation. Less cation concentration builds up
in the channel, and consequently the potential well remains deeper in the modified
PB equation. Indeed, the difference in potential found using BD and the modified
PB equation is very large at over 700 mV.

Examining the concentration profiles in Fig. 7.5 B, it is interesting to note that
even the standard PB equation predicts a much lower concentration than is found
using BD. Indeed, whereas BD predicts a total of 4 ions in the channel, the PB
equation predicts only 2.5. (Note that the channel is wider at the left hand side,
and so even though the peak in concentration there looks small it represents at
least 1 ion). The reason for this may be erroneous self repulsion in the PB solution.
In the KcsA channel, multiple ions are present in the narrow selectivity filter, and
the self energy of this charge will act to reduce the concentration there in both the
standard and modified PB equations. The inclusion of the DSE term lowers the
number of ions found in the channel using the modified PB equation to just 1.5.

7.4.3 Modified PNP equations

Following the tests carried out in chapter 6 we calculated the current passing
through cylindrical channels of varying radii using the modified PNP equations and
compared them to currents found from BD simulations. In Fig. 7.6 we plot the
channel conductance for cylindrical channels of varying radius. Here the conduc-
tance has been normalised by the cross sectional area of the channel to factor out
the trivial increase in current with increasing area. All plots are carried out using
symmetrical 300 mM NaCl solution and an applied potential of 105 mV between
the reservoir ends. The PNP results from chapter 6 are indicated by the dashed
lines and show the slight downward trend created by access resistance effects. The

currents in narrow channels found from BD (data points fitted by dotted lines) are
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Figure 7.5: (A) Potential and (B) concentration profiles as in Fig. 4 except in
the KcsA potassium channel. 300 mM KCl is used in both cases. The shape

of the channel is indicated in the inset.
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well below the PNP values due to dielectric repulsion slowing the progress of ions
through the channel. When the DSE term is included explicitly in the modified
PNP equations the current is also suppressed in the narrow channels. Indeed, the
conductance is essentially zero in the 3 A radius channel in agreement with the BD
results. The normalised conductance also climbs as the channel radius is increased
in a similar manner to that seen in BD. There are some differences in intermediate
radii channels, but the differences are remarkably small (~ 35%). It appears that
the inclusion of an explicit self energy term in the PNP equations can reproduce

the BD results reasonably well in these bare cylindrical channels.

Next we consider the simple cation selective channel, discussed previously when
looking at the modified PB equation. It has been seen that in PNP these charges
spoil the coexistence of anions and cations and reduce the perfect shielding seen
in PNP studies of bare channels. The modified PNP equations, however, do not
perform as well in this case as in the bare channels as demonstrated by plotting
the normalised conductance in channels of varying radii in Fig. 7.7. The anion
currents found using the modified PNP equations agree closely with the BD results
at all radii. However, the cation agreement is not as good. Both predict very small
currents in the narrowest channel, but in BD the current climbs rapidly to more
than double that found with the modified PNP equations in the intermediate radii

channels. The results from both techniques converge again at large radii.

The reason for the discrepancy between the modified PNP and BD results is
demonstrated in Fig. 7.8, where we plot the cation (A) and anion (B) concentrations
in the 4 A radius channel with fixed charges. The inclusion of the DSE term stops
anions entering the channel, preventing the large concentration found using the
standard PB equation and yielding a good agreement with BD. But the cation
concentration is reduced too much by this self energy term, and the concentrations
found in the channel peak at a lower value than is found in BD near the fixed
charges. Obviously, the lower cation concentration results in a smaller current in
the modified PNP equations.

The inclusion of a DSE term leads to a dramatic improvement in bare channels,
in which the standard PNP equations once predicted perfect shielding of induced
surface charges. But, in the charged channels the modification appears to over
compensate for the electrolyte shielding. The results are, however, more realistic
and demonstrate a more accurate qualitative behaviour. But, the magnitude of the
currents predicted can be less than half what is found in the same situations using
BD.

So far we have considered only single ion cylindrical channels for examining
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Figure 7.6: Conductance of Nat (A) and Cl~ (B) ions in bare cylindrical
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of the modified PNP equations (MPNP - solid lines), standard PNP (dashed
lines) and BD simulations (data points fitted by dotted lines) are shown. The
ions are driven across the channel with an applied field of 105 mV between the

reservoir ends and a 300 mM NaCl solution is maintained in the reservoirs.
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the modified PNP equations. We next examine a multi ion channel, in which the
continuum approximation may have further problems in describing the interactions
between ions. We examine the currents found passing through a model L-type
calcium channel discussed in detail in chapter 8. The shape of the channel is shown
in the inset at the top of Fig. 7.9, and includes a narrow selectivity filter surrounded
by four negatively charged glutamate residues. These residues strongly attract
cations, holding one calcium ion, or two sodium ions permanently in the channel.
Conduction requires the entry of another ion making it a two calcium ion, or three
sodium ion process. Full details of the model are described in the following chapter.

The standard PNP equations give very poor results in this channel. The mag-
nitude of the calcium currents predicted are too large by an order of magnitude.
Indeed the calcium currents are greater than the sodium currents, the reverse of
what is found using BD and in experiment. The results found using the modi-
fied PNP equation are more sensible. Notably, the calcium current is reduced to
a more appropriate value, only around 35% greater than expected. The current
shows an initial non-linearity at low concentrations, suggesting that saturation has
been obtained. But after this it appears to increase fairly linearly. The sodium
current is only reduced a small amount when the DSE term is added. The cal-
cium current is reduced much more due to the larger DSE experienced by divalent
ions. But, whereas the calcium current found from modified PNP is larger than the
corresponding value from BD, the sodium current is only about half that found in
BD.

The modified PNP equations perform remarkably well in this multi ion channel,
but the errors in currents are still quite large. In our BD studies of the calcium
channel, we have been able to simulate mixtures of calcium and sodium ions to
better understand channel selectivity. The divalent calcium ions are more strongly
bound to the glutamate charges than a sodium ion. Unfortunately, a down side
of the continuum approach is that this feature cannot be reproduced as it requires
the localization of divalent and monovalent charges in discrete positions. Thus, the
continuum approach is more limited in the types of questions it can be used to

answer.

7.5 Conclusions

The continuum approach to studying ion channels is considerably simpler and
less time consuming than carrying out simulations, and it would be desirable, if

at all possible, to salvage it. In a simple attempt to do this we modified the PB
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Figure 7.9: Current-concentration relationships for (A) 300 mM CaCl; and
(B) 300 mM NaCl in the L-type calcium channel. The currents found using
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lines) and BD simulations (data points fitted by dotted line) are shown. The
shape of the channel and the locations of 2 of the 4 glutamate residues is

shown in the inset (squares).
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and PNP theories to include an explicit dielectric self energy term when calculating
electrolyte concentrations, as the lack of such self energy was shown previously to
create problems with these continuum models. Including this DSE term leads to a
significant improvement in the performance of the PB and PNP equations. However,
although fairly accurate in some situations the modified continuum methods are not

quantitatively reliable in all cases.

The modified PB equation accurately mimics the BD results in the narrowest
channels studied. This is not surprising, however, as it can be seen that the effect of
including the DSE term in the PB equation is to almost eradicate ion concentrations
in the channel, reducing us back to Poisson’s equation. In such narrow channels we
had already seen that counter ions were unable to enter and so Poisson’s equation,
which does not include any mobile electrolyte, gave accurate results. Agreement
between the modified PB theory and BD simulations is retained in wide channels
with » > 2 Debye lengths. However, at intermediate channel radii the agreement was
not as good, and errors of up to 50% were common. The validity of the modified
PNP theory mimicked that of the modified PB equation. Accurate results were
obtained in very narrow and very wide single ion channels, but errors were present
at intermediate radii. The inclusion of a DSE term yields a general qualitative
improvement, but where the standard continuum equations overestimate electrolyte

shielding, in many cases the modified continuum equations underestimates it.

Unfortunately the performance of the modified continuum equations is much
worse in the more realistic multi ion channel models we examined. When the modi-
fied PB equation was used to calculate concentration in the KcsA potassium channel
the results were found to be incorrect by an order of magnitude. The qualitative
shape, and magnitude of the potential found using the modified PB theory are both
incorrect. Using the modified PNP equation in a highly charged calcium channel
model led to similarly poor results. The predicted calcium currents were too high
and the sodium currents too low. In both the KcsA and calcium channel models, the
channel is highly charged and there are usually multiple ions resident in the channel.
This means that interactions between the discrete ions may be important in deter-
mining the ion dynamics, a property that is not well described in the continuum
picture where the ions are not localised, but rather spread across many grid points.
Also, the magnitude of the dielectric repulsion acting on an ion will change when a
second ion enters, thus the DSE correction term may be a less accurate represen-
tation of the forces felt by the ions in the multi-ion case. In addition, we showed
that the continuum theories also introduce erroneous energy due to self repulsion

which may be important in these multi-ion channels. The problems highlighted in
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these and earlier studies also indicate that the validity of using the PB equation for
calculating pK 4 values in ion channels also needs to be assessed.

More sophisticated statistical mechanical descriptions of electrolytes are being
developed, but at this stage, as far as we are aware, none of these theories can
correctly take into account the self energy terms in ion channels. The prime appli-
cations of density functional theory in inhomogeneous systems are concerned with
electrolytes near a highly charged plane [80] or hard-sphere fluids in a cavity [70],
neither of which is directly relevant to ion channels. In the former, the image forces
are simply ignored (considering the high charge on the planes, this is presumably
a good approximation), while in the latter there are no image forces. The only
study that comes close to an ion channel like situation is that of Lehamani et al.
[118], who discuss transport of ions in the pores of Nafion membranes. The authors
employ the mean spherical approximation (MSA) to improve on the PB results but
ignore the ion-boundary interactions. Given that these are large pores with radius
20 A, our tests suggest that PB/PNP theories should work quite well, and their
neglect of ion-boundary interaction is justified. Interestingly, Lehamani et al. [118]
find that the ion-size effects taken into account via MSA, play a negligible role at
physiological concentrations, confirming that it is the neglect of the ion-channel in-
teraction that is responsible for the failure of PB/PNP theories, and not the neglect
of ion-size or correlation effects.

As the continuum theories are designed for use in situations containing a large
number of ions, they need to be constantly tested if they are to be applied to ion
channels in which only a few ions are present. Here we used a simple approach to
try to improve the PNP and PB theories for use in ion channels. Although it led
to a major improvement, it does not appear to give reliable results in all situations.
This is likely to be a common problem with attempts to fix a statistical theory for
use in cases with only a few ions—errors are going to be difficult to overcome in
all situations. We are thus left to use simulation methods unless, or until, a more
sophisticated continuum description can be developed that is applicable in the ion
channel environment. Brownian and molecular dynamics are now well developed for
use in ion channels. Given that these simulations can be used to predict macroscopic
phenomena such as channel currents that used to be the domain of the continuum
theories, as well as being able to explore situations that continuum approaches
cannot (such as ionic mixtures in BD or microscopic properties in MD), simulation
methods provide an attractive alternative to the continuum theories. In the next
chapter I apply BD simulations to study a real biological ion channel: the L-type

calcium channel.



170 7. Dielectric Self Energy in Continuum Theories



Chapter 8

A Model of Calcium Channels

8.1 Abstract

The mechanisms underlying ion transport and selectivity in calcium channels
are examined using electrostatic calculations and Brownian dynamics simulations.
We model the channel as a rigid structure with fixed charges in the walls, repre-
senting glutamate residues thought to be responsible for ion selectivity. Potential
energy profiles obtained from multi-ion electrostatic calculations provide insights
into ion permeation and many other observed features of L-type calcium channels.
These qualitative explanations are confirmed by the results of Brownian dynamics
simulations, which closely reproduce several experimental observations. These in-
clude the current-voltage curves, concentration-conductance relationship, block of
monovalent currents by divalent ions, the anomalous mole fraction effect between
sodium and calcium ions, attenuation of calcium current by external sodium ions,

and the effects of mutating glutamate residues in the amino acid sequence.

8.2 Introduction

A central problem in studies of ion permeation through biological membrane
channels is to understand how channels can be both highly selective and yet still
pass millions of ions per second. Calcium channels exemplify this problem; they are
ubiquitous in excitable cells and extremely selective, passing calcium over sodium at
a ratio of 1000:1 [83]; yet, the picoampere currents they support require more than
105 calcium ions to pass every second [203]. Unlike potassium channels, which have
a narrow selectivity filter and only allow ions of a particular size to pass [3, 6, 58],
calcium channels select between ions of almost identical radius, the Pauling radii of
sodium and calcium ions being 0.95 A and 0.99 A respectively. Moreover, calcium

channels are known to admit much larger ions, the largest observed is tetramethy-
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lammonium with a radius of about 2.8 A [138]. Thus, a different mechanism of
selectivity from that in the potassium channel must be at play, one that relies on
the different charges on the ions. Monovalent ions can permeate through the channel
in the absence of calcium at much higher levels of conductance than can any diva-
lent ions [8,83,109,112], but are blocked when the calcium concentration reaches
only 1 uM [8,109]. That this block is dependent on membrane voltage 68,116, 129]
and the direction of ion movement [111,112] has been taken as evidence for a multi-
ion binding (or selectivity and blocking) site residing in the pore. Four glutamate
residues in close proximity are believed to line the pore and to be a component of
the selectivity filter of the channel, as point mutations of these change the char-
acteristics of selectivity [18,63, 105,153, 216]. The glutamate residues are expected
to be highly charged and to strongly bind the calcium ions in the channel leading

them to block the passage of sodium ions.

A number of theoretical models have been developed to try to explain perme-
ation and selectivity in the calcium channel. Single-file rate theory models in which
ions sequentially hop from one site to another have been used most extensively
[203]. Because of the difficulty in obtaining both high selectivity and throughput
with a single binding site [22], these models originally contained two sites in which
repulsion between ions in neighbouring sites increases transit rates [8,84]. As the
two-site models could not accommodate the mutation data, a new rate model was
recently proposed, where a single-site is flanked by lower affinity sites to aid the exit
of ions from the central site [51]. Other mechanisms involving single sites have also
been developed, such as competition between calcium ions for the binding charges
[14,216]. These rate theory models have provided many useful insights as to how
calcium channels may achieve their selectivity with a high throughput. However,
as previously noted, they cannot be used to relate the structural parameters of the
channel to functional elements [137]. For example, in these theories no physical dis-
tances or shapes are used and there is no direct connection between energy minima

used in the theory and physical sites in the pore.

A first attempt to relate the observed properties of the calcium channel to its
structure was made using PNP theory [151]. The shortcomings of the PNP theory
as applied to a model calcium channel were pointed out by McCleskey [137] and
Miller [143]. These criticisms have been given a solid foundation in the comparisons
of PNP theory with BD simulations (chapter 6), which show that the mean field
approximation used in the PNP theory completely breaks down in narrow channels
such as the calcium channel. The good agreement between the PNP results and

the channel data, often put forward as a proof of its validity, is seen in hindsight as
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a fortuitous outcome of mixing incorrect physics with unrealistic parameter values.
For example, the calcium diffusion coefficient employed in the PNP fits (10~° times
the bulk value) is 10,000 times smaller than the microscopic estimates obtained
from molecular dynamics simulations, which suggest at most a ten-fold reduction in
calcium diffusion compared to the bulk value [7]. Agreement with experiment also
relies on the inclusion of ad hoc chemical potentials whose electrostatic origin is not
clear.

The failure of the mean field approximation in narrow channels indicates that
any theory that aspires to relate channel structure to its function must treat ions
explicitly. Because all the atoms in the system are treated explicitly in molec-
ular dynamics, it would provide the ultimate approach to the structure-function
problem. Unfortunately, as noted in chapter 2, the computation of most channel
properties (e.g. conductance) using molecular dynamics is still beyond the capa-
bilities of current computers. The only remaining alternative is BD simulations.
Multi-ion interactions were found from BD to be instrumental in explaining the
high throughput of potassium channels [40], and are expected to play a similarly
significant role in understanding the high conductance of calcium channels.

The aim of this chapter is to construct a simple model of the structure of calcium
channels and examine its various properties using electrostatic calculations and BD
simulations. The parameters in the model are determined from either molecular
dynamics or a variational principle that optimizes the quantity in question. Thus
there are no free parameters that are fitted to data, nor ad hoc chemical potentials
that are arbitrarily chosen. The model relates structural features to functional roles
and, as will be seen, successfully predicts many of the observed properties of the

calcium channel using only the principles of electrodynamics.

8.3 Channel model

The crystal structure of calcium channels is not known at present. Nevertheless,
through a judicious use of important clues from various experiments one can develop
a simplified model of the calcium channel that should be sufficiently accurate for
the purposes of electrostatic calculations and BD simulations. The cross section of
the channel model employed in this work is shown in Fig. 8.1. A three-dimensional
shape of the channel is generated by rotating the curves in Fig. 8.1 about the
axis of symmetry (z axis) by 180° (see figure 3.1 for a diagram of the 3D BD
system). The channel extends from z = —25 A to 25 A, long enough to span a

typical membrane. In constructing this model, we have followed the basic topology
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of the potassium channel; that is, a narrow selectivity filter, connected to a wide
chamber that tapers off as it approaches to the intracellular side. One significant
difference from the potassium channel is the existence of a relatively short vestibule
on the extracellular side with a fairly wide opening. This is suggested by molecular
modeling studies [56, 57,76, 184] of the known amino acid sequences of the calcium
channel [60,142,197]. A larger external mouth compared to the internal one is
required to explain the asymmetry between the inner and outer saturation currents
[110].

The radius of the selectivity filter is determined from the size of the largest
permeable ion (tetramethylammonium) as 2.8 A [138]. Interpretation of the muta-
tion data in reaction rate theories suggests that the four glutamate residues (EEEE
locus) in the selectivity filter must be in close proximity in order to form a single
binding site [18,63,216]. This is further supported by the voltage dependence of
calcium block, which suggests that calcium binds at the same location whether en-
tering the channel from the inside or outside [112]. Therefore we have chosen the
length of the selectivity filter to be 5 A, which is much shorter than in the potassium
channel (12 A). The position of the selectivity filter in the channel is not known,
though it is suspected to be towards the external side of the channel as it is more
accessible to ions from the outside of the channel than from the inside [112]. Our
trials with various positions of the selectivity filter in the channel also confirm this
conjecture: when the filter position is further removed from the external mouth, it
is not possible to reproduce most of the known properties of calcium channels. The
wide chamber near the middle plays a similar stabilizing role to that in potassium

channels, providing a water filled cavity for ions exiting from the selectivity filter
[178].

The highly charged glutamate residues forming the selectivity filter play an
essential role in determining the channel conductivity and selectivity, and therefore,
choosing their positions and charges correctly is of critical importance. The four
glutamate residues are modeled by 4 fixed charges located in close proximity, but
spread asymmetrically in a spiral pattern 1 A inside the channel wall. The placement
of charges in an asymmetric pattern rather than in a ring helps to account for the
mutagenesis studies which show that the removal of each charge has a different effect
on channel conductance. The four charges are located at z = 10.50, 11.83, 13.17
and 14.5 A and each rotated by 90° from the last (only two are shown in Fig. 8.1).
Finally to overcome the large image forces at the intracellular end of the channel
we have placed 4 mouth dipoles, 5 A in length, with their inner ends 1 A inside

the pore wall at z = —17.5 A. The charges on glutamates and mouth dipoles are
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Figure 8.1: Model calcium channel. The three dimensional channel model is
generated by rotating the curves about the central axis by 180°. The positions
of two of the four glutamate groups are shown by the squares, and the inner
end of 2 of the 4 mouth dipoles by the diamonds. The other two groups lie
into and out of the page. The intracellular end of the channel is on the left

and the extracelluar side on the right.

optimized to obtain the maximum ionic currents as discussed below.

The dielectric constant of the channel protein is taken uniformly as € = 2. The
dielectric constant of water inside the channel environment is not well known as

it is difficult to determine its value directly from experiments. Recent molecular
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dynamics simulations of water inside narrow channels have suggested that it may
be considerably lower than its bulk value [183]. On the other hand, BD simulations
of ion permeation in potassium channels indicates that current ceases to flow if € in
the channel is lower than 40 [40]. In view of these uncertainties, we have adapted the
minimal value of € = 60 that allows large conductance through the model channel.

Further justification for this choice will be given later.

8.4 Channel parameters

The three channel parameters that are not known experimentally and need to
be determined by other methods, are the magnitude of the charges on glutamate
residues and mouth dipoles, the dielectric constant of water and the diffusion co-
efficient of ions in the channel. A straightforward fit of these parameters to the
available data is not very satisfactory since one is likely to find many possible sets
that eventually have to be distinguished on their physical merits. Therefore, we
prefer using guiding principles such as optimization or a more explicit theory (e.g.
molecular dynamics) in estimating these quantities.

The determination of the molecular structure of the proteins may help to find
the magnitude of the charge of residues in the channel. In the mean time, we expect
that the charges in the channel would have evolved to maximize the transit rate of
calcium ions. In Fig. 8.2 A we show the dependence of the calcium current on gluta-
mate charges. The BD simulation results in this figure are obtained using symmetric
150 mM CaCl, or NaCl solutions with an applied field of —2 x 10" V/m (correspond-
ing to a potential of approximately —200 mV producing an inward current). As the
charge on the glutamate groups is systematically increased (while the charge on the
mouth dipoles is held fixed), the calcium current found from BD simulations sharply
increases from zero to a narrow peak at a charge of 1.3 x 1071 C before dropping
steeply again at greater charge strengths. In fact, no calcium current is measured
during our simulations if the charges are less than 1.0 x 107'® C or greater than
1.6 x 10 ** C. The sodium current also peaks at the same value, but conducts over a
greater range of glutamate charges as is shown by the open circles. It is noteworthy
that the peak calcium current occurs for such a narrow range of glutamate charges.
A fully charged glutamate group has a charge of e (1.6 x 107! C). However, in an
electrolyte solution the charges are likely to become protonated, leading to a lower
effective charge on the residues. [35,36,145,167]. As the amount of protonation is
not known, we use the optimum value of the glutamate strengths, 1.3 x 1071° C,

for the remainder of this study.
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In a similar investigation, the strength of the mouth dipoles is varied whilst the
glutamate charges are held fixed at their optimal value. As shown in Fig. 8.2 B,
the outward calcium current is critically dependent on the charge strengths as in
the case of the glutamate residues. The current is maximum when a charge of
0.5 x 1071 C is placed on each of the four dipoles. A further increase in the
dipole strength reduces the current rapidly (filled circles, Fig. 8.2 B). In contrast,
the inward current exhibits a different dependence on the mouth dipole strength
(diamonds, Fig. 8.2 B). The current increases steeply with the dipole strength and
then remains constant with a further increase. In all subsequent simulations, we
use a charge of 0.6 x 107!° C, which falls between the optimum values of inward

and outward currents and gives close to the maximum value for each.

Molecular dynamics studies of water in spherical cavities [217] and narrow pores
[183] suggest that the dielectric constant € is substantially reduced from the bulk
value. The effect of changing the dielectric constant on the results of BD simulations
in narrow pores (the potassium channel) has been examined elsewhere [40]. This
study also found that the optimum charge strengths are insensitive to the value of
the dielectric constant. The dielectric constant of water in the channel is chosen
as € = 60. While this value is rather close to the bulk value, the channel ceases
to conduct calcium ions if lower values of € are employed. For example, when the
dielectric constant e inside the channel is assumed to be 50 and a potential difference
of —200 mV is applied, the current across the channel is only 2.4 4+ 0.6 pA, compared
to 7.1 + 0.6 pA with e = 60. With a further reduction of € to 40, the current is
reduced 0.4 £+ 0.2 pA (during a simulation period of 3 us). Virtually no conduction
takes place with an applied potential of —100 mV and € of 50. In a simulation
period of 5.5 s, only one calcium ion crosses the channel, resulting in a current of
0.06 pA.

The diffusion coefficient of ions inside the channel can be estimated from molec-
ular dynamics simulations. There are a number of such studies which indicate that
the diffusion coefficient is significantly reduced from its bulk value inside narrow
channels [5-7,131,175,190,191]. Allen et al. [7] have carried out a systematic
study of diffusion coefficients of K*, Na*, Ca?" and Cl~ ions in cylindrical chan-
nels with radius varying from 3 to 7 A. Here we use their estimates as a guide and
use 0.5 times the bulk diffusion coefficient for calcium ions in the channel chamber
(=25 < 2 < 7.5 A) and 0.1 times the bulk in the selectivity filter (7.5 < z < 20 A).
Corresponding values of 0.5 and 0.4 times the bulk value are used for sodium. The

bulk values are employed in the reservoirs for all ions.

In Fig. 8.3, we illustrate the sensitivity of the channel conductance on the choice
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Figure 8.2: Dependence of channel current on fixed charge strengths. (A)
The current passing through the channel with 150 mM CaCls (filled circles,
left side scale) and 150 mM NaCl (open circles, right side scale) under a —200
mV driving potential is plotted against the charge on each of the glutamate
groups. The magnitude of the charge on the mouth dipoles is fixed at 0.6
x1071? C. Filled circles are obtained from a 1.0 s and open circles from a 0.5
ps simulation period. (B) The outward (filled circles) and inward (diamonds)
current passing through the channel with 150 mM CaCly in the reservoirs and
a —200 mV driving force is plotted against the magnitude of the charge on
each end of the mouth dipoles. The charge on the glutamates is held at 1.3
x1071? C. Results are obtained from a 2 us simulation period. Error bars
in this and following figures have a length of one standard error of the mean

and are not shown when smaller than the data points.
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of diffusion coeflicient. Here the diffusion coefficient of calcium ions is systematically
varied from 0.05 to 0.5 times its bulk value in the selectivity filter while it is kept
at 0.5 times the bulk in the chamber, and the resulting current is plotted. Contrary
to intuitive expectations from continuum theories, the current does not increase
linearly with the diffusion coefficient but rather saturates as one approaches towards
the bulk value. For example, at the chosen value of 0.1 times the bulk, the calcium
current is suppressed by only a factor of 2 rather than 10. Thus, we expect the
results presented in this paper to be quite robust against variations in the diffusion
coefficients.
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Figure 8.3: Dependence of calcium current on the ion diffusion coefficient in
the narrow neck region of the channel (7.5 A < z < 20 A) plotted as a fraction
of its bulk value (0.79 x 107° m2s™!). A concentration of 150 mM CaCl; is
maintained in the reservoirs and a —200 mV driving force is used. Results

are obtained from a 2 us simulation period.

8.5 Permeation of calcium and sodium ions

The ion-channel and ion-ion interactions hold the clue to understanding ion

permeation mechanisms in channels. Therefore we first present a detailed study
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of multi-ion potential energy profiles in the model channel to gain some useful
insights. A quantitative description of ion permeation that includes the effects of
the thermal motion of ions and their interaction with water molecules requires a
dynamic approach, which will be discussed in the following sections by performing

BD simulations.

8.5.1 Energy profiles

The ion-channel interaction has basically two components; a repulsive force due
to the induced charges on the protein boundary and the electrostatic interaction of
the ion with charge residues and dipoles in the channel wall. The simple Coulomb
interaction between two ions is modified in the channel environment because they
also interact via the surface charges induced by each other. All these effects are
properly taken into account by solving Poisson’s equation with appropriate bound-
ary conditions as mentioned in chapter 3.

For a single ion, a potential energy profile is constructed by calculating the
potential energy of the ion held at a fixed z position far from the channel and
then repeating these calculations at discrete (1 A) steps as the ion approaches the
channel. While the main pathway of ions in the channel is along the central axis,
due to the asymmetric placement of glutamates, an ion’s equilibrium position could
deviate from the central axis by about 1 A near the selectivity filter. To take
this effect into account, the ion is held fixed only in the z direction but allowed
to move in the z and y directions to ensure that it is equilibrated in the x — y
plane. To construct multi-ion profiles, one or more ions are placed in the channel
at equilibrium positions, and the potential energy of another ion is calculated as it
is brought into the channel in 1 A steps. Before calculating the potential energy of
this ion at each fixed position, the ions in the channel are always equilibrated so
that the force on them is zero and the system energy is at a minimum. As in the
single ion case, only the z position of the external ion is fixed, and it is allowed to
equilibrate in the z — y plane. The profile constructed in this way is equivalent to
the total electrostatic energy required to bring the charge on the ions from infinity
in infinitesimal amounts. The method used in minimizing the energy is detailed
elsewhere [40].

The profile for an ion moving through the channel with no fixed charges in
the walls is shown in Fig. 8.4. An ion entering the channel meets a steeply rising
potential barrier, which is proportional to the square of the ion charge. Thus the
barrier height for calcium ions (28 kT, solid curve labeled a) is four times larger than

for sodium ions (7 kT, dashed curve labeled b). When the ring of four mouth dipoles
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and four glutamate charges are included in the model, this barrier is turned into
a deep well. Again this well is deeper for divalent ions (58 kT, solid curve labeled
d) than for monovalent ions (36 kT, dashed curve labeled c), though the difference
is much less pronounced because ion-charge residue interaction is proportional to
the ion charge (the energy difference between a-d is exactly twice that between b-
¢). For both types of ions, the well is deep enough so that a single ion would be
permanently trapped in the selectivity filter.

Once an ion has entered the energy well, a second ion will see a very different
profile, altered by the presence of the first. The profile seen by a second calcium
ion when a first ion is in the energy well under a driving potential of —100 mV is
shown in Fig. 8.5. The curve on the right (dashed) shows the potential energy of
the second ion as it approaches the channel from the right while the one on the
left (solid) shows the same when it enters from the left. Clearly both ions can still
reside in local energy minima indicated by the arrows in the figure. The ion in the
left well faces an energy barrier of about 4.7 kT, which it can surmount as a result
of their random motions and the mutual Coulomb repulsion. Once this happens,
the ion on the left will move toward the interior mouth of the channel under a steep
potential gradient. When the channel is occupied by two calcium ions, a third ion
meets a very steep barrier preventing its entry into the channel. The above study
of multi-ion potential energy profiles thus indicates that the conduction of divalent
ions is most likely to be a two-ion process.

For monovalent ions a different picture emerges. The well is in fact deep enough
(20 kT) to hold two ions in a stable configuration at 2 = 9 and 13 A, as indicated
by the lower curves in Fig. 8.6. The two disjointed curves again correspond to the
second ion being brought into the channel from the left (solid) and right (dashed),
respectively. In the absence of divalent ions, two monovalent ions are most likely
to be found together in the narrow part of the channel. When two monovalent ions
are in the channel, the profile seen by a third ion is also shown in Fig. 8.6 (upper
curves). In this case there is no longer a large potential well in the selectivity filter,
and only a very small energy barrier (1 kT) preventing the left-most ion in the filter
moving to the small well at the interior region created by the mouth dipoles. So the
conduction of monovalent ions is expected to be a three-ion process, and because
they face a smaller barrier, their permeation rate should be much higher than that
of the divalent ions.
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Figure 8.4: Electrostatic energy profile of an ion traversing the channel. The
potential energy of an ion held at 1 A intervals in the z direction but allowed
to move to its minimum energy position in the & and y directions is plotted
for a calcium ion (solid line labeled a) and a sodium ion (dashed line labeled
b) in the absence of any fixed charges. When the glutamate groups and
mouth dipoles are included, as shown in the inset, the profiles are replotted
for calcium (solid curve labeled d) and sodium ions (dashed line labeled c).
No applied potential is used. We note that 1 kT = 4.11 x 1072 J.
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Figure 8.5: Electrostatic energy profiles with 2 calcium ions in the channel
under a —100 mV driving force. The potential energy of a calcium ion entering
the channel is calculated at 1 A intervals along the z axis while another
calcium ion is resident in the filter (dashed curve). Similarly the potential
energy encountered by the left hand calcium ion as it attempts to cross the
channel is calculated at 1 A intervals (solid curve). The second ion is allowed
to move to its minimum energy position in the narrow channel neck in both
cases. The equilibrium positions of the two calcium ions in the channel are
indicated by the arrows. It should be noted that these are 2 distinct curves
and the driving potential cannot be calculated from the total energy drop

from right to left.
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Figure 8.6: The energy profiles as in Fig. 8.5 except for a sodium ion with
one (lower curves) or two (upper curves) other sodium ions in the channel

neck. An applied potential of —100 mV is used.
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8.5.2 Current - voltage relationships

We study the conductance properties of calcium and sodium ions under vari-
ous conditions by performing Brownian dynamics simulations. The current-voltage
relationships shown in Fig. 8.7 A and B are obtained using symmetrical solutions
of 150 mM CaCl, or 150 mM NaCl, respectively and are fitted by the solid lines.
Since the calcium current is so small at low applied potentials, it takes exorbitant
amounts of simulation time to gain reliable statistics. For this reason values lower
than +80 mV and —60 mV are not shown. The current-voltage relationship for the
sodium current is fairly linear through the origin although it does show some degree
of nonlinearity at large applied voltages. In contrast, the calcium current deviates
noticeably from an ohmic relationship as the applied potential is increased beyond
4100 mV. This superlinearity is a result of the large energy barrier in the channel,
which presents less of an impediment to ion movement as the driving potential is
increased [42]. In both relationships, there is a small asymmetry between the inward
and outward currents. The current-voltage relationships obtained experimentally
from L-type calcium channels appear to exhibit less asymmetry for both sodium
and calcium ions [168,169]. We find from BD simulations that the symmetry of
the calcium current depends crucially on the position and strength of the mouth
dipoles. Thus any discrepancy between the experimental findings and the results
of our simulations can be improved by adjusting these. With less charge on the
dipoles the outward current becomes greater and the inward current smaller (see
Fig. 8.3 B). Also, moving the dipoles closer to the interior mouth of the channel
produces greater rectification, the inward current becoming much larger than the
outward.

At —120 mV and with 150 mM solution, the inward currents for calcium and
sodium are, respectively, 1.2 + 0.2 pA and 14.7 4+ 1.6 pA, giving the respective
conductance values of 9.7 pS and 122 pS. These values are fairly close to the exper-
imentally determined values of 8 - 9 pS for calcium with 100 - 110 mM solution and
85 - 90 pS for sodium in 150 - 200 mM solution [83,149,168]. The superlinearity
seen at large applied potentials has been observed in the I-V curves with symmet-
ric solutions [168], which are reproduced for calcium and sodium in the insets of
Fig. 8.7 A and B.

8.5.3 Ions in the channel

The average distribution of ions in the channel for calcium and sodium ions

under a —200 mV applied voltage is shown in Fig. 8.8 A and B, respectively. To
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Figure 8.7: Current - voltage relationships. The magnitude of the current
passing through the channel with a symmetric solution of (A) 150 mM CaCly
and (B) 150 mM NaCl in both reservoirs is plotted against the strength of the
driving potential. Experimental results [168] in similar conditions are shown
in the insets for comparison. A simulation period of 4 to 8 us is used for

calcium and 0.5 us for sodium.



8.5. Permeation of calcium and sodium ions 187

find the average number of ions in each section of the channel, we divide it into 30
layers of thickness 1.6 A as indicated in the inset, and compute the average number
of ions in each layer throughout the simulation. For calcium ions, there are on
average 1.9 ions in the channel, occupying the narrow selectivity filter most of the
time. The ion distribution shows two clear peaks, indicating where the ions are
most likely to be found at each end of the filter. Again, this supports the conclusion
that calcium conduction requires multiple ions. For sodium there are on average
3.1 ions in the channel, and again the ions are most likely to be found in the narrow
section. Sodium ions are more likely to occupy the interior end of the channel than
the calcium ions, which can be easily understood in terms of the two- and three-ion
profiles in Figs. 8.5 and 8.6, respectively.

Our BD simulations support the conjectures derived from the potential energy
profiles, that conduction is achieved by the interaction between multiple ions in the
channel, and that the channel is always occupied by one or more ions. For 150 mM
CaCl, or 150 mM NaCl at —200 mV, the relative time the narrow section of the
channel (4 < z < 18.5 A) is occupied by one or more ions is shown in Table 1. That
the filter is so often multiply occupied by calcium suggests that the time taken for
one of the ions to move out of the filter, over the energy barrier toward the interior
mouth is one of the rate limiting steps. This is shown more conclusively below. For
sodium the filter is again occupied most commonly by 2 ions, suggesting that once
a third ion enters conduction happens quite quickly. The different times between
when an ion enters the channel and an ion traverses it for calcium and sodium
reflects the different energy barriers presented in each case: sodium conducts much
more quickly as it sees a much lower barrier.

Table 8.1: Relative time selectivity filter is occupied by one, two or three ions
in 150 mM CaCly or 150 mM NaCl.

No. ions in filter
1 ‘ 2 ‘ 3

Ca’ | 26% | 74% | 0%
Nat | 6% |77 % | 18 %

Under a +200 mV driving force producing an outward current, the distribution of
ions in the channel is very different as is shown for calcium and sodium in Fig. 8.9 A

and B. With 150 mM CaCl, in the reservoirs there is still on average 1.9 calcium
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Figure 8.8: Average number of ions in the channel with an applied potential
of —200 mV. The channel is divided into 30 sections, as shown in the inset,

and the average number of ions in each calculated over a simulation period
(0.5 ps) with (A) 150 mM CaCl; and (B) 150 mM NaCl in the reservoirs.
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ions in the channel, but rather than being predominantly located in the narrow neck
of the channel as was the case in an inward current, the ions are now almost equally
likely to be found near the internal channel mouth as in the narrow filter. Indeed,
the region near the internal mouth is occupied 85% of the time. The filter is always
occupied, but, in contrast to the situation with an inward current, usually by only
one ion (95% of the time). For sodium, the distribution of ions in the channel is
very similar under either a —200 or +200 mV driving potential. As the energy
barriers in the channel are small for sodium, the effect of the driving potential on

the barriers does not significantly alter where ions are likely to be found.

Figure 8.10 demonstrates where ions reside in the channel predominantly in
a 2-dimensional representation of the system. When there is a -200mV potential
driving calcium ions into the cell there are two clear peaks in the narrow region of
the channel, indicating that there are usually 2 ions in this region separated by only
a few angstroms. There is also a small peak where ions are temporarily delayed
at the intracellular end of the channel (Fig. 8.10 A. The ions are repelled from
the channel walls by the induced charges, resulting in a region of no concentration
around the channel walls. When calcium ions are driven in the other direction, as in
Fig. 8.10 B, a clear peak is seen at the intracellular end of the channel, and only one
peak in the selectivity filter. When sodium ions are passing through the channel,
as in Fig. 8.10 C the ion concentration is more spread, but clear peaks are still seen

in the selectivity filter and at the intracellular end of the channel.

To demonstrate more explicitly the rate limiting steps for inward and outward
calcium currents, we show in Fig. 8.11 the time taken for different permeation events.
Fig. 8.11 A shows the energy profile presented to a calcium ion as in Fig. 8.5 except
under a —200 mV driving potential. The height of the central barrier, Vg, is 2.9
kT. Given that the narrow section of the channel is always occupied, the time
for a conduction event can be broken into two parts, 71, the time for a second
calcium ion to enter the filter from the reservoir; and 7» the time for one of the
ions in the filter to move across the central energy barrier once the second ion has
entered, as indicated in the figure. From a conditional probability analysis of the
ion trajectories in our BD simulations, we find that 7, takes an average of 33 ns or
74% of the average conduction time of 45 ns, making it the main rate limiting step.
The time for the second calcium ion to enter, 7 takes most of the remaining time
(11 ns), indicating that once an ion crosses the central barrier it exits the channel
almost instantaneously. This can also be seen in Fig. 8.8 A which indicates that
calcium ions rarely occupy the left hand end of the channel. That the time spent

waiting for one of the ions to cross the centre of the channel is the rate limiting step
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Figure 8.10: Concentration on the calcium channel, showing where ions dwell
predominantly with (A) 150 mM CaCls in the reservoirs and -200 mV driving
potential, (B) 150 mM CaCly and 4200 mV driving potential, and (C) 150
mM NaCl with a -200mv potential.
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for inward currents raises the question of whether an ion moves across the barrier
by its own thermal motion and the coulomb repulsion of the second calcium ion,
or whether it requires additional repulsion from a third ion entering the channel
vestibule. A conditional probability analysis of how many ions are in the right hand
half of the channel (0 < z < 25 A) whilst the innermost calcium ion is crossing the
central barrier (—10 < z < 0 A) shows that 99 % of the time there is only one ion,
and so the entry of a third ion into the channel is not required for calcium transit.

A similar analysis is shown for a +200 mV driving potential creating an outward
current in Fig. 8.11 B. The conduction process is divided into the time for an ion
to enter the left hand end of the channel, 71, and the time for it to move across the
central energy barrier (Vg = 3.7 kT) into the filter, 7, as indicated. Again, the rate
limiting step is the time to climb the central barrier, 75, which takes an average
of 61 ns, accounting for 85% of the total conduction time (81 ns). The time spent
waiting for an ion to enter the internal mouth of the channel accounts for most of
the remaining time (16 ns), indicating that once two ions enter the filter one quickly
exits. This is clearly explained by examining the energy profile which shows that
there is virtually no barrier preventing this external exit.

Since climbing over the central barrier is the main rate limiting step in calcium
permeation, calcium conductance will depend crucially on the barrier height. The
height of the barrier, Vg decreases fairly linearly for both inward and outward
currents as the driving potential is increased, which, not surprisingly, results in
larger currents. However, this does not mean that the current will also vary linearly
as can be seen in the current-voltage curves (Fig. 8.7).

8.5.4 Conductance - concentration relationships

If the transport of ions is dependent on two processes, one of which depends on
concentration (access to the channel) and one which does not (permeation in the
channel), then we expect the current, I, to eventually saturate with increasing ion
concentration ¢, leading to a current-concentration relationship of the Michaelis-
Menten form [40]:

I
I= 7% 8.1
1+ K,/c (81)

Here I, denotes the saturation current and K, the concentration at half~-maximum
current.

The current-concentration relationship found from BD simulations indeed has
this form and is in close agreement with the experimentally observed shape [69, 83].

In Fig. 8.12 A the current-concentration relationship obtained from BD simulations
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Figure 8.11: Rate limiting steps for ion permeation. The energy profile pre-
sented to a calcium ion as in Fig. 8.5 and the main time consuming steps for
ion permeation are shown for (A) a —200 mV and (B) a +200 mV driving
potential. In A the ions permeate from right to left and meet a central energy
barrier Vg = 2.9 kT. In B the ions permeate in the opposite direction and
meet a barrier of 3.7 kT. The time taken for a second ion to enter the channel,

71, and the time for an ion to cross the central barrier, 7, are indicated.
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(filled circles) are compared to the experimental results of Hess et al. [83] (diamonds
and dotted line). The BD data has been fitted using Eq. 8.1 (solid line) with a max-
imum current I, = 7.5 pA and point of half maximum K, = 13.9 4+ 2.5 mM. This
compares well with the K value of 13.9 mM found experimentally. The different
scales in the figure arise as a higher applied potential is used for the BD simulations
as required to obtain reliable statistics with a limited amount of computer time.
The current-concentration relationship found with BD simulations for sodium
has a similar shape, but saturates much more slowly as can be seen in Fig. 8.12 B.
Again this is fitted by a Michaelis-Menten equation with the value I, = 71 pA
and K, = 240 mM. No experimental data is available for comparison in this case.

In both plots, a driving force of —200 mV is employed.

8.6 Mixtures of calcium and sodium ions

It is important to see whether our model channel can account for experimental
results with more than one ion species present. In particular we look at mixtures
of calcium and sodium ions as an example of selectivity between monovalent and
divalent ions. To answer such questions as the effect of each type of ion on the
permeation of the other and the competition between different types of ions to access
the selectivity filter, we again first consider potential energy profiles for mixed ions
and then carry out BD simulations.

8.6.1 Energy profiles

We look at the energy profiles with a mixture of calcium and sodium ions to gain
an intuitive picture of how the presence of calcium ions may affect the permeation
of sodium ions. We construct the energy profiles shown in Fig. 8.13 for a sodium
and a calcium ion entering a channel occupied by an ion of the other species so
that we can compute the energy required to push a resident calcium ion out of the
channel. In this and the following figures, a potential of —100 mV is applied. The
profile on the right between z = 14 to 40 A (dashed line) shows the potential energy
of a sodium ion as it is moved in 1 A steps from the reservoir, while the resident
calcium ion is allowed to adjust its position so as to minimize the total energy of
the system. The initial position of the calcium ion is indicated as a filled circle in
the inset and the positions of the sodium ion approaching from the reservoir toward
the calcium ion is indicated by the open circle. The profile on the left (solid line)
represents the energy barrier seen by the calcium ion as it moves out towards the

intracellular space in 1 A steps while the sodium ion is allowed to adjust its position
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Figure 8.12: Conductance-concentration relationships. The current obtained
with symmetrical solutions of varying concentrations of (A) CaCly (filled
circles) and (B) NaCl (open circles) in the reservoirs. An applied field of
—200 mV is used and the data points are fitted by the solid line using Eq. 8.1.
In A the experimental data of Hess et al. [83] is shown by the open diamonds
and dotted line for comparison. Note that the different scales on the simula-
tion and experimental results are largely due to the different applied potentials
in each case. For the BD results a simulation period of 4 to 8 us and 0.5 us

are used for calcium and sodium respectively.
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so as to minimize the total energy of the system. Not surprisingly, the channel can
easily hold a calcium and a sodium ion in stable equilibrium. The difference from
the two calcium ion case (Fig. 8.5) is that the barrier faced by the calcium ion on the
left is increased from 5 kT to 16 kT in the present case, which is insurmountable.
Clearly, the Coulomb repulsion provided by a sodium ion is inadequate for ejecting
the resident calcium ion from the selectivity filter.
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Figure 8.13: Energy profiles indicating calcium block. The right curve
(dashed line) shows the potential energy of a sodium ion given that there
is a calcium ion in the filter as indicated in the inset. The left curve (solid
line) shows the potential energy of a calcium ion given that there is a sodium
ion in the filter. The energies are calculated at 1 A intervals as in Fig. 8.4

under a —100 mV driving potential.

If another sodium ion is brought in from the extracellular reservoir, while a
calcium and a sodium ion are resident on the left and right sides of the selectivity
filter respectively, it meets a steeply rising Coulomb barrier. In fact, unlike all the

previous cases shown in Figs. 8.5, 8.6 and 8.13, there is no stable equilibrium for
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one calcium and two sodium ions in the channel. The Coulomb barrier prevents the
second sodium ion from moving towards the channel interior so that it is unable to
dislodge the calcium ion from its minimum energy position. Even if a second sodium
ion enters the exterior mouth through random motions, this will be a temporary
event as it will be ejected quickly under the strong Coulomb repulsion from the
resident ions. Thus, we expect from the study of the energy profiles that once a
divalent ion enters the selectivity filter of the channel, it will permanently block the
passage of monovalent ions.

We next examine if the presence of one or more sodium ions in the channel is
likely to block the passage of calcium ions. As before, we place one sodium ion
in the selectivity filter and examine the profile encountered by a calcium ion as it
enters from the right (solid line in Fig. 8.14 A), and the profile encountered by a
sodium ion as it attempts to traverse the channel under the influence of the electric
field as well as the repulsive Coulomb force exerted by the calcium ion (dashed line
in Fig. 8.14 A). The calcium ion sees a large potential drop attracting it in to the
channel and there is only a small barrier preventing the sodium ion from exiting
the channel. Thus, a single sodium ion in the filter will not prevent a calcium
ion entering. The same conclusion is reached with two sodium ions in the channel
(Fig. 8.14 B). The calcium ion still sees an attractive potential (solid line) and will
easily access the channel. The profile on the left (dashed line) shows the potential
energy of the inner sodium ion as it attempts to exit the channel to the intracellular
side. As this is a well rather than a barrier, the left-most sodium ion will be easily
pushed out once a calcium ion enters the channel. Thus, monovalent ions cannot
prevent divalent ions from crossing the channel. Experimentally, however, a high
sodium concentration attenuates the calcium current. An explanation of this feature
requires BD simulations, and, as shown in a later section, the experimental findings

are replicated in our model.

8.6.2 Current - voltage relationships

BD simulations, carried out with a mixture of calcium and sodium ions in the
reservoir, confirm the block of sodium current by calcium ions conjectured above
from the inspection of the potential energy profiles. Once a calcium ion enters the
narrow section of the channel it prevents sodium ions from crossing the channel but
not vice versa. The current-voltage relationship obtained in the presence of a com-
bination of calcium and sodium ions is pronouncedly different from that obtained
from a solution containing only one cationic species. Fig. 8.15 shows the magnitude
of the current as the voltage is varied with 100 mM CaCl,; and 50 mM NaCl in
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Figure 8.14: Energy profiles as in Fig. 8.13 except with a calcium ion on the
right side of either (A) one, or (B) two sodium ions as shown in the inset.
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the external reservoir, and only 50 mM NaCl on the internal side. Again we have
not carried out simulations between £100 mV due to the large simulation times
required to gain reliable statistics at low currents. Due to the asymmetric con-
centrations, the reversal potential is roughly 50 mV. Below this point, the inward
current is mostly carried by calcium ions as they block sodium permeation. The
conductance value is around 25 % lower than that found for calcium alone. How
the presence of sodium lowers the calcium current is discussed below. The external
current, however, climbs rapidly above the reversal potential reaching a larger value
than the inward current as it is carried by more rapidly permeant monovalent ions.
This outward monovalent current, however, displays a different shape to that seen
for sodium alone, rising slowly at first and then very rapidly at higher potentials.
The reason for this is that calcium ions on the external side of the channel still oc-
casionally move against the driving potential and fall into the channel, blocking the
monovalent current. At higher positive applied potentials, this no longer happens
and the sodium current is not impeded.

The general shape of this graph agrees closely with that found experimentally
in similar conditions by Rosenberg et al. [169] which is represented in the inset.
(Note that these experimental results are obtained using Ba?>" and Li" ions which

have different conductance values to Ca>* and Na™.)

8.6.3 Mole fraction effect

Experimental studies of the calcium channel have shown a remarkable behavior
in mixtures of monovalent and divalent ions. As the relative concentration of calcium
to sodium is decreased, the conductance of the channel first decreases to a minimum
and then increases again to a maximum when there is no calcium present [8]. This
so called ‘anomalous mole fraction effect’ has been a major subject of attention in
calcium channel literature (see, for example, [51,151,203]).

To investigate this behavior in our channel model, we conduct BD simulations
holding the sodium concentration fixed at 150 mM (8 ions in each reservoir) and
measure the calcium and sodium currents in the channel at different calcium con-
centrations as shown in Fig 8.16 A. The calcium current is determined at higher
concentrations (> 37.5 mM) through BD simulations. As noted in the previous
sections, sodium only conducts through the channel until it becomes blocked by a
calcium ion. Thus, to calculate the sodium current we need only find how long it
takes for a calcium ion to enter the channel and the rate at which sodium conducts
before this. The time taken for a calcium ion to enter the channel is determined at

18 mM and above by repeatedly running BD simulations and calculating an average
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Figure 8.15: Asymmetric I-V curve with a mixture of Ca?t and Na™ ions.
The calcium (filled circles) and sodium (open circles) current passing through
the channel is calculated at various applied voltages with 100 mM CaCls; and
50 mM NaCl in the external reservoir and 50 mM NaCl in the internal one.
Data points represent the results of 2.5 to 7.5 us simulations. Experimental
data with a similar mixture of Ba2* and Li* ions [169] is shown in the inset

for comparison.
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time for calcium entry. At low calcium concentrations, we can expect that sodium

will conduct up until this point as if there were no calcium ions present.

This same technique, however, does not allow us to probe calcium concentrations
lower than 18 mM, as we must have a very large reservoir to include a calcium ion.
In such cases the BD simulations become cumbersome and impractical as we also
have to simulate the motion of a very large number of sodium and chloride ions.
To obviate these problems, we extrapolate to lower concentrations using values at
higher ones. We note that if our reservoir is larger than about two Debye lengths
the effect of the channel and fixed charge environment will be totally screened out
at the reservoir edges, allowing us to mimic lower concentrations by letting calcium
ions randomly enter the reservoir as if in a larger bulk solution. In other words,
the time for an ion to enter the finite reservoirs is inversely proportional to the
calcium concentration. (For example, at a concentration of 2 mM we would expect
the ion to be in the reservoir only one tenth as long as at 20 mM.) Because sodium
only conducts before the channel becomes blocked by calcium or closes through some
other gating mechanism, when the time taken for calcium block becomes larger than
the mean open time of the channel (~ 1 ms for an L-type calcium channel [82, 83])
the sodium current saturates at its value in the absence of calcium. Although
extrapolating the time to block in this way determines the shape of the sodium
current curve, the position of the half maximum current is highly dependent on the
time taken for the channel to block at higher concentrations. Thus, comparing this

value with experimental data still provides an important test of our model.

The values of the calcium and sodium current at different calcium concentrations
normalised by the maximum value of each, are shown by the filled and open circles
in Fig. 8.16 A, respectively. (It should be noted that the magnitude of the calcium
current is significantly lower than that for sodium.) As the calcium concentration
decreases, the calcium current also decreases as was the case in the concentration
conductance curve, since it takes longer for a second calcium ion to enter the channel
as required for conduction. With further reduction in calcium concentration, it takes
longer for a calcium ion to enter and block the channel, meaning more sodium ions
are able to pass through the channel before this occurs. Thus the sodium current
keeps increasing until it saturates when the time to block reaches the mean open
time of the channel.

The resulting picture is the well-known mole fraction effect. As the calcium
concentration is decreased, the total current passing through the channel first de-
creases and then increases again. For comparison, experimental results [8] are shown

in Fig. 8.16 B. Our extrapolation from BD simulations predicts the half maximal
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Figure 8.16: Mole fraction effect. (A) The Ca2* (filled circles) and Na*t (open
circles) currents across the channel determined with different symmetrical
calcium concentrations in the reservoirs from BD simulations as described in
the text. The sodium concentration is held fixed at 150 mM in both reservoirs
and the applied voltage at —200 mV in all cases. (B) A representation of the
experimental results from [8] are shown for comparison. Calcium currents
come from 2 to 3 us simulation periods, sodium currents from the simulation

of 35 blocking events.
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sodium current to occur at a calcium concentration of ~ 8.6 x 10~ M, close to
the experimentally determined value of ~ 8.8 x 10~7 M. Although we have held the
sodium concentration at 150 mM throughout, the data points on the right hand side
of the experimental figure are obtained with no sodium present. As discussed below,
the presence of sodium can attenuate the calcium current, therefore our values of
calcium current can be expected to be lower than those in the experimental curve.
Also, it is worth noting that the simulation data is normalised by the current at
near its saturation value, the experimental data, however, is normalised by a lower
value than this. If the saturation current were to be used in the experimental data,

the normalised calcium current would be lower than shown.

8.6.4 Attenuation of calcium currents by sodium

We have seen that once a calcium ion enters the channel, it prevents sodium
ions from permeating. A number of results suggest that the presence of monovalent
ions can also slow the permeation of calcium ions. For example, at physiological
concentrations of sodium and calcium, external sodium attenuates calcium current
through the channel [158]; in channels carrying outward lithium currents, high ex-
tracellular concentrations of lithium ions slow the rate at which calcium ions exit
the pore, producing the so called ‘lock in effect’ [111]; finally increasing the external
concentration of lithium is found to slow the entry rate of external calcium ions
into the pore [111]. All of these results suggest that the external monovalent ions
interfere with the entry and exit of calcium ions on the external side of the pore.

To examine the effect of external sodium ions in our model, we hold the calcium
concentration in each reservoir fixed at 150 mM (8 ions in each reservoir) and vary
the sodium concentration from 0 to 300 mM. Fig. 8.17 A shows the normalized
channel current obtained by dividing the current by that in the absence of sodium.
The BD simulation results (filled circles) show that, as the sodium concentration
is increased, the calcium current severely decreases. The BD data points are very
close to the experimental results of Polo-Parada and Korn [158], which are indicated
by the open diamonds and fitted with the equation (dotted line):

Y =1 ([Na]*/ICg + [Na]*), (82)
where ICsy = 118.5 mM and k£ = 1.2. Thus, the blocking of calcium current by

external sodium is very well reproduced in this model.

It has been suggested that the block by external sodium is a consequence of
calcium and sodium ions competing for the high affinity site in the pore, and Dang
and McCleskey [51] take this effect to be evidence for a low-affinity site on the
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Figure 8.17: Attenuation by external sodium. (A) The normalized channel
current, calculated by dividing by the value in the absence of sodium, is shown
as the sodium concentration in the reservoirs is varied in BD simulations (filled
circles). The calcium concentration is held fixed at 150 mM in both reservoirs
throughout and a —200 mV driving potential is used. The experimental
data and fit from [158] is shown by the open diamonds and dotted line for
comparison. (B) The percentage of time that the external vestibule of the
channel is occupied by Ca?" (filled circles) or Na™ (open circles) given that
there is a calcium ion in the channel neck for the simulations shown in A. A

3 to 4 ps simulation period is used.
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outside of the main high-affinity site. To understand the reason behind this blocking,
we examine how an increase in the sodium concentration influences the calcium
concentration near the external mouth of the channel. In Fig. 8.17 B we show the
probability of finding a calcium ion (filled circles) or a sodium ion (open circles) in
the external vestibule of the channel given that there is a calcium ion in the filter.
In the absence of sodium ions in the electrolyte, the chance of finding a calcium ion
in the vestibule while another one is in the filter is 44%. However, when sodium ions
are introduced this probability drops rapidly. A sodium ion in the vestibule cannot
push the calcium ion out of the filter but it provides sufficient Coulomb repulsion
to prevent other calcium ions from entering the vestibule, effectively stopping the
conduction process. Due to its random motion, the sodium ion eventually leaves
the vestibule and allows the other calcium ions to enter, but as can be seen in
Fig. 8.17 B the presence of a sodium ion in the vestibule significantly decreases the
chance of a calcium ion finding its way into the entrance of the channel. With a
sodium concentration of 300 mM, a calcium ion enters the vestibule while another
is in the filter only about 10% of the time. Thus the current is expected to be
less than a quarter of its value in the absence of external sodium, consistent with
the 75% attenuation observed in experiments. The above analysis suggests that
the attenuation of channel current by external sodium is the result of competition
between ions accessing the external vestibule of the channel rather than due to the
presence of a specific low-affinity binding site.

Chloride ions play an important role in helping to alleviate the attenuation
by external sodium. Since the attenuation of current is a result of sodium ions
inhabiting the channel vestibule and preventing calcium ions from entering, the
calcium current will be strongly dependent on how long it takes for sodium ions
to exit from the vestibule once they have entered. As seen in Fig. 8.13, a sodium
ion, once inside the channel, faces a sizable barrier (7 kT) to move back to the
external reservoir. This would be a very rare event if there were no assistance
from counter ions. When chloride ions are prevented from entering the vestibule
(through an artificial block introduced into the BD simulations), the sodium ions
attenuate the current much more effectively than when chloride ions are free to
enter. As an example, with 150 mM calcium and 37.5 mM sodium (8 and 2 ions) in
each reservoir, the current when the chloride ions are prevented from entering the
vestibule is 3.2+ 0.8 pA compared to 8.7+ 0.8 pA when they are free to roam. This
example highlights the role played by the counter ions in pulling the sodium ions
out of the vestibule with their Coulomb attraction.
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8.6.5 Mutation studies

Mutations of the glutamate residues have provided many useful insights into the
binding and selectivity of the calcium channel. The replacement of one or more of
the glutamate residues with neutral or positively charged residues severely lowers the
conductance of the channel for divalent ions, and to a lesser extent for monovalent
ions [18,153]. Also, the block of monovalent currents by divalent ions is severely
hampered, only arising at much higher divalent concentrations than for wild type
channels [18,63,105,216], giving evidence that the glutamate residues form a single
binding zone leading to the high selectivity of the channel.

Here we attempt to replicate these experimental findings using our model cal-
cium channel. In the BD simulations, we mimic the experimental site-directed mu-
tagenesis by removing one of the charges representing the glutamate residues. With
only three remaining glutamate residues in the channel, we find that the current is
maximized when the charge on each amino acid is a full 1.6 x 107® C. That proto-
nation should occur to a lesser degree in the mutated channel is plausible because
there is less charge in the channel to attract and bind protons, and protonation is

believed to be due to a cooperative effort of two or more glutamates [35, 36, 145].

Examination of the potential energy profiles with three glutamate charges shows
that the energy wells become less deep, so they are expected to be less effective in
attracting cations. In Fig. 8.18 A we show how the selectivity of the channel for
Ca over Na, and the effectiveness of calcium block, diminish when the innermost
(squares) or outermost (triangles) glutamate group is removed, compared to when
all are present (filled circles). The plot shows the dependence of the sodium current
on calcium concentration normalised by the maximum value in the same way as in
Fig. 8.16 A. As noted earlier the values in this plot are extrapolated from values
at higher concentrations. We find that the removal of one of the glutamate groups
results in calcium ions taking longer on average to enter and block the channel,
suggesting that sodium ions get more of a chance to permeate through the channel
and so it becomes less selective. When one of the central groups is removed we find
the shift in selectivity is of similar range to the cases shown. For comparison we
have shown some of the experimental data from Yang et al. [216] in Fig. 8.18 B.
These curves show the fractional lithium current passing through the channel as a
function of calcium concentration and indicate the range of selectivity shift when
one of the glutamate groups is replaced with glutamine. Our BD results show a
shift in selectivity similar to that found experimentally, but the range of the effect
is not as large. Naturally, a more accurate modeling of the channel is required to

improve agreement with the experiment.
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Figure 8.18: (A) The effect of removing glutamate charges on the channel
selectivity in our model is shown by plotting the sodium current passing
through the channel at different calcium concentrations with all four gluta-
mate charges in place (filled circles), the outermost glutamate charge removed
(triangles) and the innermost glutamate charge removed (squares), otherwise
all conditions are as in Fig. 8.16 A. Data points come from the simulation of 35
blocking events. (B) A selection of the experimental data with all glutamate
residues in place (filled circles) and when two different residues are replaced

with glutamine (triangles and diamonds) from [216] is shown for comparison.
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8.7 Conclusions

Although the crystal structure of the calcium channel is not yet known, we have
constructed a model of the calcium channel using constraints derived from a number
of experimental measurements. For the purposes of carrying out electrostatic calcu-
lations and BD simulations, this model is a rigid and fixed structure. Most notably
the channel contains a narrow region surrounded by the glutamate residues near
the extracellular end that forms the selectivity filter of the channel and is respon-
sible for many of the channel’s distinctive characteristics. The narrowness of this
section of the channel prevents ions from passing each other making this a single
file model, a point which is essential for explaining the mechanism of calcium block.
The highly charged glutamate groups create a deep potential well which attracts
surrounding cations. Once an ion enters this region of the channel, the depth of this
well makes it difficult for that ion to exit on its own. Thus, this section of the chan-
nel is permanently occupied and roughly corresponds to the binding site discussed
in reaction rate models. It is worth noting that binding in this model is simply an
electrostatic phenomenon created by the charges on the glutamate residues, and no
chemical bonding or flexible amino acid groups are required. The model shape also
has a wide but short external vestibule responsible for the attenuation of calcium
current by sodium ions. The remainder of the channel is made up of a wider central
chamber converging to a narrower intracellular entrance, similar in shape to the
recently crystallized KcsA potassium channel.

Despite several gross simplifications in its construction, our rigid model is able
to give a very clear explanation for many of the observed properties of calcium
channels and reproduces a number of experimental results. We have demonstrated
that permeation is a multi-ion process (2 ions for calcium and 3 ions for sodium),
and the Coulomb repulsion plays a crucial role in this process. Selectivity arises
from the strong electrostatic attraction of a divalent ion in the energy well and the
inability of a monovalent ion to push it out. The conductance values of calcium and
sodium ions closely match the experimental data. Similarly, the current-voltage and
conductance-concentration curves deduced from BD simulations bear close resem-
blances to those measured experimentally. We also offer plausible physical explana-
tions for the anomalous mole fraction effect between calcium and sodium and the
results obtained from studies involving site-directed mutagenesis.

There are several fine details of the channel that stochastic dynamics simu-
lations cannot unravel. Among these are the permeation or selectivity sequence
among monovalent and divalent ions (eg. Ba?" conducts more rapidly than Ca?")

and the blockage of the channel by certain divalent ions, such as nickel and zinc. We
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expect that the differences between the permeation properties of these ion types is
due to differences in how they interact with surrounding water molecules. The phys-
ical mechanisms underlying these phenomena may be elucidated by using molecular
dynamics simulations, or if that fails, through ab initio methods. Because these
methods are computationally very intensive, they cannot be used directly in model-
ing conductance of ion channels. Thus, to capture all these details in one theoretical
model we need to develop a computational approach that combines molecular and
Brownian dynamics simulations, the former explaining microscopic properties of
the channel and providing parameters that can be used in the latter to explain its

conductance and other related properties.
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Chapter 9

Continuum Electrostatics and the

Gramicidin Channel

9.1 Abstract

We investigate the validity of continuum electrostatics in the gramicidin A chan-
nel using a recently determined high-resolution structure. The potential and electric
field acting on ions in and around the channel are computed by solving Poisson’s
equation. These are then employed in Brownian dynamics simulations to obtain
concentration profiles and the current passing through the channel. We show that
regardless of the effective dielectric constant used for water in the channel or the
channel protein, it is not possible to reproduce all the experimental data on gram-
icidin A. Thus continuum electrostatics cannot provide a valid framework for the
description of ion dynamics in gramicidin channels. Using experimental data and
molecular dynamics simulations as guides, we have constructed potential energy
profiles that can satisfactorily describe the available physiological data. These pro-
files provide useful benchmarks for future potential of mean force calculations of
permeating ions from molecular dynamics simulations of gramicidin A. They also
offer a convenient starting point for studying structure-function relationships in
modified gramicidin channels.

9.2 Introduction

Gramicidin A (GA) is an antibiotic polypeptide that consists of 15 amino acid
residues. Its [-helical, head-to-head dimer in membranes forms a single-file ion
channel [205] that selectively conducts monovalent cations, binds divalent cations
and rejects all anions (for reviews see, [11,27,107,208]). Recent high-resolution
structures of the GA channel have been determined from solution NMR [15] and

211
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solid-state NMR studies [103,104,186]. In the absence of structural information
for biological ion channels, the GA channel has been the main focus of theoretical
investigations for a long time [155,177]. The recent determination of the crystal
structure of the KcsA potassium channel [58] has now shifted the attention to
biological ion channels. Nevertheless, with its simple and well-defined structure
and ample functional data, the GA channel should continue to play a prominent
role as a test bed for theories of ion permeation.

Modeling of the GA channel has evolved from simple electrostatic calculations
with rigid dielectric boundaries [98, 120, 144] to sophisticated all-atom MD simula-
tions with GA embedded in a lipid bilayer and solvated with water [39,214,215].
These developments are reviewed in several articles to which we refer for a com-
plete list of references [155,161,177]. Most of the potential or free-energy profiles of
ions obtained in these MD studies are in qualitative agreement with the observed
binding sites at each end of the channel and a central barrier in between them. How-
ever, the calculated energy barriers for the translocation of ions are in the range of
20-30 kT [99,176], which are too high to predict the experimental conductances.
Indeed, these profiles have been tested by McGill and Schumaker [139] by inserting
them into a diffusion theory of permeation. They found that the magnitudes of the
profiles had to be reduced substantially to reproduce the observed currents. For
the microscopic models, the problem with the profiles most likely lies in the force
fields used in the MD simulations. Recent high-resolution NMR studies of cation
transport in the GA channel [199,200] have shed further light on this problem by
demonstrating that the GA peptide remains rigid upon cation binding and the ion
is solvated by just two carbonyl oxygens. In contrast, early microscopic models typ-
ically predicted a rather flexible backbone with the carbonyl oxygens swinging by
20-40° so that four carbonyls and two water molecules provide adequate solvation
for the cation in the channel. More recent studies suggest that a permeating sodium
ion moves off axis to be solvated by the carbonyl oxygens so that the channel may
be less flexible. Nevertheless, the carbonyl oxygens are still observed to rotate in
substantial amounts in the presence of a sodium ion [215]. In the rigid scenario,
the missing solvation energy is presumably provided by the water molecules in the
channel having a more ordered structure than in the flexible models. In this regard,
inclusion of the polarization effects in the standard MD force fields would be very

desirable.

This development is a mixed blessing for the lower-resolution permeation theories
such as the PNP equations and BD simulations. On the one hand, the NMR

experiments appear to justify the assumption of a rigid channel structure used in
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these theories, which is often one of the main criticisms of them. On the other hand,
the long range order of the water molecules in the channel imposed by this rigid
structure creates even more serious problems for employing continuum electrostatics
in PNP and BD approaches. In a bulk solution, the electric field of an ion and
hence the polarization of the surrounding water molecules drops as 1/r%. Because
of the focusing of the electric field by the dielectric boundary, the reduction in the
field of an ion in a channel is not as severe as in bulk. Nevertheless, continuum
electrostatics predicts a substantial reduction in polarization of channel waters with
distance from an ion, in disagreement with the MD predictions that the water dipoles
are well aligned along the channel axis. Notwithstanding such criticism from the
microscopic quarters [155,174,177], the PNP theory has recently been applied to
the GA channel, giving an apparently successful description of the current-voltage
relations [31,88,113]. In view of the problems of the validity of the PNP theory
in narrow channels presented in chapter 6, this success is even more remarkable
and warrants closer scrutiny. Thus, the main thrust of this work is to perform
continuum electrostatic calculations using the high-resolution structure of the GA
channel [104] and employ these results in BD simulations to see whether these

methods can provide a consistent description of the available experimental data on
the GA channel.

There are several outstanding issues in the GA channel that we will attempt
to address in this study. The most pressing question is the value of the effective
dielectric constant in the channel €., and whether such a uniform value exists at all.
While semi-microscopic calculations suggest . = 3-5 [154], the bulk value of 80 is
employed in the PNP calculations quoted above. To resolve this question, the whole
range of €. values will be considered when solving Poisson’s equation. A second
issue is the origin of cation selectivity of the GA channel. It has been argued that
because the GA peptide is charge neutral, there is no obvious mechanism to explain
its valence selectivity. Various mechanisms based on intricate ion-peptide-water
interactions have been proposed to explain this property [55,172,193]. However,
in all these semi-microscopic and microscopic calculations, the GA peptide has a
flexible structure, and it is not clear how much of these results would carry through
if it were rigid. In addition, the PNP calculations of potential and concentration
profiles inside the channel suggest that the valence selectivity can be understood
simply in terms of the charge distribution in the peptide. It is important to ascertain
whether the electrostatic interaction between an ion and GA peptide could indeed
discriminate between cations and anions. Such a simple basis would obviate the

need to look for more complicated explanations for valence selectivity.
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If one cannot trust the free energy profiles obtained from MD simulations, and
continuum electrostatics fails to give reasonable potential energy profiles, what other
avenues are available for progress? Solving the inverse problem, that is, going from
experimental data to potential may provide a more rewarding alternative to direct
studies of the GA channel under the present circumstances. Using insights from
experiments and simulations, one can construct a potential profile that provides a
satisfactory description of physiological data when fed into BD simulations. Such a
study was undertaken earlier by relating potential profiles to sodium currents using
electro-diffusion equations and one-dimensional BD [38, 95]. This inverse technique
is extended here to potassium permeation using 3-dimensional BD. Although one-
dimensional BD should do a reasonable job of representing the single file motion
in the narrow GA channel, the extension to 3-dimensions has the advantage that
the entry and exit of ions to the channel can be explicitly modeled. It also allows
ions to move off axis to interact more intimately with the carbonyl oxygens as
seen in MD simulation of sodium ions. Compared to the continuum theory, BD
accounts for individual ion motions and self energies in a direct manner which the
electro-diffusion equations cannot.

Besides providing a better understanding and a united explanation for various
channel observables, potential energy profiles found with this ‘inverse’ technique
would also be useful in related studies of the GA channel and its analogs. For
example, it could be used in constraining the free-energy calculations in MD simu-
lations when searching for more appropriate force fields in a channel environment.
Another area rich in applications is the structure-function relationship in modified
GA channels [107]. Changes in the GA structure have ranged from mutations in
the amino acid sequence to fluorination of specific residues that modulate dipole
strengths [10,12,24,28,49,152]. Especially in the latter case, where changes in
dipole strength can be easily incorporated in the potential profile for the native
structure, one could predict the expected functional changes with a minimal com-
putational effort. Here we construct a potential profile for potassium ions that could

be used for such purposes in modified GA channels.

9.3 Gramicidin A structure

A high-resolution structure of the GA channel has recently been determined
from solid-state NMR spectroscopy via refinements of the initial structure against
both the experimental constraints and the CHARMM global energy [104]. Here we

use the atomic coordinates stored in the Protein Data Bank with the accession
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code IMAG. This structure is slightly different from that of Arseniev et al. [15],
which has been employed in most of the GA model studies in the past (see below
for a comparison of the two structures). For consistency with the high-resolution
structure, the partial charges on the atoms are taken from the all-atoms PARAM22
[133] version of the CHARMM force field. The effect of using partial charges from
another force field (AMBER, [46]) will be discussed in the Results Section.

To define the surface of the channel (and hence the dielectric boundary), the radii
of atoms in the GA peptide are required. We employ the minimum set derived by
Li and Nussinov ([126], Table VI). Following their recommendation, the Coulombic
radius is used for the polar N and O atoms and the van der Waals radius for the
rest of the non-polar atoms. (Had we used the van der Waals radius for all the
atoms, the channel radius would be about 10% smaller, leading to a slightly higher
self-energy for ions.) Slices of channel profiles generated by this data set are shown
in Fig. 9.1 A and B.

The GA dimer is embedded in a neutral membrane of length 33 A, modeled as a
uniform dielectric medium (with dielectric constant equal to that of the GA peptide)
without any charges or dipoles. This length and model matches that of relatively
neutral glycerylmonoolein (GMO) membrane. It is also close to the thickness of
diphytanoylphosphatidylcholine (DPPC) (35 A), so that results of BD simulations
can be compared with experiments involving both types of membranes, although
the dipoles in the DPPC membrane may affect the current. Since GMO is wider than
the GA dimer, hydrophobic matching is used in smoothly joining the membrane to
the GA head groups [79] as indicated in Fig. 9.1. Finally, to complete the simulation
system, cylindrical reservoirs of 30 A radius and length are connected to each end
of the channel. When filled with an electrolyte solution, these reservoirs provide an
adequate representation of the intra- and extra-cellular baths.

As described in chapter 3, the calculation of potentials is too slow to be carried
out at each time-step during BD simulations, and is too cumbersome to be pre-
calculated and stored when employing a complete 3-dimensional shape. For this
reason, in BD simulations, an axially symmetric form of the channel boundary
is employed for convenience (Fig. 9.1 C). This shape is generated by averaging
the radial distance around the circumference and modifying it further until the
calculated potential profile roughly matches the one obtained from the original
shape shown in Fig. 9.1 A and B. Provided these potential profiles are very similar,

the use of a symmetric shape should not modify our results.
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Figure 9.1: (A) and (B) Two slices of the channel boundary down the cen-
tral axis at different azimuthal angles ¢. The regions of different dielectric
constant are noted in (B). The values shift from the channel value (e.) to the
bulk value (ep,) smoothly over a 5 A distance centered about the dotted lines.

(C) A transverse section of the axially symmetrized channel shape.
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9.4 Modifications to BD simulations

Due to the narrowness of the gramicidin channel, ions and water molecules must
move in single file. This presents a further constraint on the motion of ions in
the channel not encountered in previous BD simulations. If there are two ions in
the channel, then they will be separated by an integer number of ‘trapped’ water
molecules and the distance between the ions must remain relatively constant. The
intervening water molecules will prevent the ions getting closer, and gaining a larger
separation would create a vacuum in the channel. We ensured that this condition
is held in our simulations by subjecting both ions to the following additional force

whenever a second ion entered the channel:

F(r)=a(1/r® - 1/7“8). (9.1)

Here r is the distance between the ions and rg is a reference separation equal to
the nearest integer number of water molecule diameters when the second ion first
appears within the narrow section of the channel. This allows the ions to move
freely back and forth whilst constraining the separation between them to remain
roughly constant while they are both in the pore. The choice of the water diameter
in determining ry is not of critical importance, and we simply use the canonical
value of 2.8 A.

9.5 Results

9.5.1 Electrostatic calculations

Potential energy profiles of single ions reveal the binding sites and barriers in
the channel and thus provide clues on the permeability characteristics of a proposed
model. The absence of a well at an observed binding site or presence of a large
barrier (which would prevent conduction) would be sufficient grounds to reject a
model without carrying out expensive simulation work. The profiles in this section
are obtained from a finite difference solution of Poisson’s equation using the non-
symmetric channel boundary (Fig. 9.1 A and B). In Fig. 9.2 A we show how the
potential energy profile of a monovalent cation in the GA channel changes as the
effective dielectric constant of channel waters is reduced from ¢, = 80 to 5. Here
the dielectric constant of the GA peptide is set to €, = 2, representing its electronic
polarizability. The very low values of €. ~ 5 suggested by microscopic calculations
[154], are seen to lead to huge barriers (~ 55 k7). This will prevent conduction

of ions at any realistic applied potential as also noted by Partenskii et al. [154].
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When a larger polarizability is assumed for the GA peptide (¢, = 5), the barriers
are reduced by a factor of 2-3 but still remain too large to permit conductance for
low ¢, values (Fig. 9.2 B).
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Figure 9.2: Dependence of potential energy profiles on the effective dielectric
constant of water in the channel (¢.). The dielectric constant of the protein
is ep =2in (A), and e, = 5 in (B).
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At the other extreme of ¢, = 80 employed in the PNP calculations [31, 88,113],
the energy profile is almost flat, as shown in the lower-most profile in Fig. 9.2 A.
A more detailed picture of this profile is given in Fig. 9.3. At a first glance, this
profile with wells near the entrances and a central barrier appears quite reasonable.
However, at only 1.5 k7', the wells are not deep enough to provide binding sites, nor
is the barrier enough of an impediment to lead to the saturation of current. These
points will become obvious when we present concentration profiles and current-
concentration curves obtained from BD simulations below. In contrast, the potential
profiles obtained in PNP calculations exhibit a deep potential well across the entire
length of the channel. The discrepancy has been shown to arise from the neglect
of ion self-energies in PNP (see chapter 6). To make this point more explicit, we
decompose the profile obtained with . = 80 and &, = 2 into the self-energy part
due to the reaction field from the dielectric boundary (calculated by setting the
partial charges in the peptide to zero) and the ion-peptide interaction part due to
the partial charges, as shown in Fig. 9.4 A. It is seen that the flat profile follows
from the near cancellation of these two large components which have opposite signs.

One would end up with a deep potential well if the self-energy term were ignored.
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Figure 9.3: A more detailed picture of the bottom profile shown in fig. 9.2 A,

i.e. ¢, =80 and ¢, = 2.
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Figure 9.4: (A) Individual contributions to the the energy profile for e, = 80
and e, = 2 (middle) from the self-energy (top) and ion-peptide interaction
terms (bottom). (B) Potential energy profiles for a divalent cation (solid line)
and a monovalent anion (dashed line) for the above choice of ¢ values. The

monovalent cation result (dashed line) is included for reference.

Values of ¢, in between the two extremes discussed above do not provide any

improvement either. While the barrier height increases with decreasing e. (see,
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Fig. 9.2), the wells nearly disappear, thus disagreeing with the observed binding
sites. This point will again be made clearer with the BD simulations below. In
the following continuum electrostatic calculations, we will use the common ¢, = 80
and e, = 2 values as we have seen that variations from these only lead to a worse

agreement with the experimental data.

We next consider the potential energy profiles for divalent cations and monova-
lent anions (Fig. 9.4 B). Experimentally, the former bind and block the GA channel
and the latter are rejected. From a continuum electrostatics viewpoint, comparing
the energy profiles provides a stringent test of the model, because they are not inde-
pendent quantities but follow directly from the monovalent ion results in Fig. 9.4 A.
In fact, if we denote the valence of the ion by z, the self-energy term of a monovalent
ion by Us and the ion-peptide term by U, the profile for a divalent cation is given
by U, = 4Us + 2U, and the one for monovalent anion by U_; = Uy, — U,. Because
Up = —Us, one expects Uy =~ U_; ~ 2U;. This explains the similarity of the profiles
for divalent cations and monovalent anions in Fig. 9.4 B. The absence of any poten-
tial wells in the divalent cation profile provides the most direct and clear evidence
for the failure of continuum electrostatics in the GA channel. When such a large
barrier is used in BD simulations, it results in negligible ion concentrations inside
the channel in contradiction with the experimentally observed binding of divalent
cations (see below). The large barrier for anions, on the other hand, provides an
obvious mechanism for valence selectivity of the GA channel. Just like the divalent

cations, anions would not enter the channel in the presence of a 25 kT barrier.

One may question the reliability of such an inference on valence selectivity from
a continuum electrostatics calculation; after all, we have just condemned its use in
the GA channel. To answer this query, we need to consider the results in Fig. 9.4
in more detail. From microscopic calculations, we know that both the self-energy
and ion-peptide interactions are largely underestimated in electrostatic calculations
with . = 80. The large barriers observed at lower e, values would be canceled
by the ion-dipole interactions due to the ordered channel waters, which is ignored
in the continuum calculations. Clearly, these interactions are even more important
for divalent cations so as to provide the permanent binding sites at the channel
entrance. Switching the sign of a monovalent cation, however, changes basically the
sign of the ion-peptide interaction leaving the other terms more or less intact. If
the electrostatic results in Fig. 9.4 are underestimates as indicated by microscopic
calculations, then the barrier for valence selectivity can only go up in more realistic
calculations. Thus the proposed valence selectivity mechanism based solely on the

distribution of charges in the GA channel appears to be a robust result.
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It is important to check the sensitivity of the above results against variations in
the GA structure. Two significant parameters in this respect are the coordinates and
magnitude of the partial charges of the peptide atoms. In Fig. 9.5 A, we compare
the profile obtained using the structure of Arseniev et al. [15] with that of Ketchem
et al. [104]. The new profile has no wells and a 4 kT barrier, and could only lead
to worse agreement with experimental data than the old one. Not surprisingly,
the energy-minimized Ketchem structure leads to a lower profile than the Arseniev
one. In Fig. 9.5 B, we show the effect of changing the partial charges from the
CHARMM set (solid line) to AMBER (dashed line). The two sets have similar charges
on the backbone atoms but the CHARMM charges are a factor of 2 to 3 larger for the
side chain atoms. This explains the relative increase in the AMBER profile at the
entrances (less negative charges) and decrease at the middle (less positive charges).
Although the change in the profile is not significant, the disappearance of the central
barrier can be viewed as a backward step. It is also worth noting that the failure to
reproduce divalent binding sites is likely to be less dependent on the precise atomic
structure than the monovalent profiles. As the divalent profile is dominated by the
self energy, large variations in the position of the boundary would be required to

obtain binding sites.

9.5.2 Brownian dynamics simulations

The potential energy profiles presented above explain in qualitative terms why
continuum electrostatics fails in the GA channel. To make contact with experimen-
tal data and thus demonstrate this inadequacy more quantitatively, we next perform
Brownian dynamics simulations. The axially symmetric boundary is employed in
solving Poisson’s equation here for reasons discussed in section 9.3.

There have been many experimental -V measurements in the GA channel, and
the success of the PNP equations in matching these have been used as an argument
for its applicability in narrow channels [31, 88, 113|. Here we wish to point out that,
as long as the diffusion coeflicient of ions in the channel is a free parameter, fitting
linear I-V curves poses no problem for any channel model. As an example, the
I-V curve obtained from BD simulations of a 500 mM KCI solution with ¢, = 80
(filled circles) is compared to experimental data [9] (open squares) in Fig. 9.6. The
bulk values of the diffusion coefficients are employed for both ionic species in the
reservoirs but the diffusion coefficient of K* ions inside the channel, D, is reduced
by 80% in order to fit the data. Note that such a reduction is not required for the
Cl™ ions because they do not enter the channel. It is worthwhile to emphasize that

unlike the PNP equations, the current in the channel is not linearly proportional to
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Figure 9.5: (A) Comparison of the potential energy profiles obtained using
the structure of Ketchem et al. [104] and Arseniev et al. [15]. CHARMM partial
charges are employed in both cases. (B) Effect of using different sets of partial
charges on the potential energy profiles; CHARMM (solid line), AMBER (dashed

line). Ketchem et al. [104] structure is used in both cases.
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the diffusion coefficient in BD simulations. This shape of the current vs. diffusion
coefficient depends on the depth of the energy well and height of the energy barrier
(see Fig. 9.11 later). For the energy profile used to obtain Fig. 9.6, the current is
reduced by less than a factor of 2 when D is suppressed down to 10% of its bulk
value. A further reduction causes a steep decrease in current. It is worth noting
that ions never pass each other in the channel during simulations, the single file

nature of GA permeation is reproduced.
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Figure 9.6: Current-voltage relationships obtained from BD simulations of a
500 mM KClI solution (filled circles fitted with a line). Error bars have length

one standard error. Experimental data [9] is shown by the open squares.

The results plotted in Fig. 9.6 show that this model has no difficulty in fitting
the I-V data of the GA channel. However, we next show that this continuum
electrostatic model of the GA channel fails completely when its predictions are
compared with the observed binding sites and conductance-concentration curves.
In Fig. 9.7, we show the concentration profiles of K™ ions in the channel without an
applied potential (A), and with a 200 mV applied potential (B) obtained from BD
simulations using a 500 mM KCI solution as above. The potassium concentration
in the channel displays little hint of the expected binding sites at around +11 A

[199]. To be consistent with this data, we should see two large concentration peaks
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separated by an obvious depression. In our BD data, the central barrier causes a
dip in the concentration profile in the absence of a driving force (A), but as soon
as a potential difference is applied, this dip disappears (B) as ions can easily climb
it. Thus both the wells and the barrier in the potential energy profile are too weak
to yield a concentration profile consistent with experiments. It is interesting to
note that the channel is only occupied about 10% of the time, and almost never
doubly occupied. The PNP calculations also predict featureless profiles similar to
BD, except that the cation concentration in the GA channel is enhanced by an order
of magnitude compared to the bath solution, which is a direct consequence of the
energy well created by neglecting ion self-energies as discussed earlier [31,113].

In Fig. 9.8, we show the concentration profile for Ca%* ions obtained under
similar circumstances (500 mM CaCl, solution, 200 mV applied potential). As
emphasized above, the large barrier (Fig. 9.4 B) prevents the entry of Ca* ions
into the GA channel. Because the barrier gets higher with decreasing ¢., we will
not see binding sites for any value of dielectric constant. The lack of binding sites for
Ca?* ions in GA thus provides the most direct evidence for the failure of continuum
electrostatics.

A final piece of evidence demonstrating the failure of continuum electrostatics in
the GA channel is its inability to describe the observed saturation of conductance
with increasing concentration. This saturation is a direct result of rate limiting
steps in the channel and will not occur unless the ion has to climb substantial
energy barriers with heights greater than 1.5 k7' to move out of the energy wells in
the channel [42]. In this respect, the barrier in the GA channel is too small to induce
the saturation behavior (Fig. 9.2 A). A BD study of the current-concentration curve
for symmetric KCl solution confirms this expectation as shown in Fig. 9.9. The
potassium current keeps increasing with concentration with no sign of saturation,
in disagreement with the experimental data in which currents clearly saturate with
a half-maximum value of K~ 0.23 M [9].

So, although this model accurately reproduces the observed I-V data, it fails
to predict the observed binding sites or the saturation of current with increasing
concentration. Given these results one clearly has to look beyond the I-V curves
to test the validity of a theoretical approach. On the basis of the complete evidence
presented above, we have to conclude that this continuum electrostatics model fails
in the GA channel.
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Figure 9.7: Concentration profiles for potassium ions in the GA channel with
no applied potential (A) and 200 mV applied potential (B). In both cases, a
500 mM KCI solution is used in the reservoirs. The pore region is divided
into 16 equal segments, and each reservoir into two segments. The reservoir

concentrations are represented by shaded bars.
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Figure 9.8: Concentration profiles for calcium ions in the GA channel, ob-

tained using a 500 mM CaCl, solution and 200 mV applied potential.
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Figure 9.9: Conductance-concentration curve for potassium ions obtained
with a 200 mV applied potential fitted by the solid line.
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9.5.3 Potential energy profiles

The failure of continuum electrostatics in the GA channel leaves MD as the only
reliable method for the calculation of forces on ions in this channel. Unfortunately,
as noted in the introduction, none of the MD simulations of GA carried out so far
have yielded free-energy profiles that can reproduce experimental currents. The
force fields currently used in MD can be improved by including polarization effects,
and hopefully, once this is done, MD calculations of potentials of mean force will give
more satisfactory results. In the mean time, one can pursue the study of structure-
function relationships in GA indirectly by “guessing” the potential profile that will
reproduce the available data. Here we give an example of this inverse method by

constructing a potential energy profile for potassium ions in the channel.

The fact that GA is a very narrow, single-ion channel (except at high concen-
trations) makes this task relatively easy. As a first approximation, we can find
the profile along the channel axis and supplement it with a harmonic constraint in
the radial direction, thus reducing the search to a one-dimensional problem. The
shape of the axial profile is, of course, well known from both the experiments and
MD simulations. As shown in Fig. 9.10, it has two binding sites at about +11 A,
and a central barrier in between them. Here we ignore finer details such as small
oscillations in the barrier that are not likely to significantly influence the overall
conductance properties of GA. Note also that the exact location of the energy wells
(for example placing them at +£9 A) does not have much bearing on the channel
conductance found in BD. This is much more dependent on the depth of the wells,
Uw, and the height of the central barrier, U,,. These are two parameters that need
to be determined from the BD simulations by fitting the calculated conductance
under different applied potentials and concentrations to the available physiological
data. In the profile illustrated in Fig. 9.10, these two parameters, Uy and U}, are
fixed at 8 kT and 5 kT

The diffusion coefficient of K* ions in the GA channel is expected to be consid-
erably suppressed in the GA channel [175]. However, the spread in the estimated
values of DJ is too large to be able to choose a particular value. Therefore, we
consider D" as a third parameter to be determined from the BD simulations. The
variation of current with D" is illustrated in Fig. 9.11 for the profile with U, = 8 kT
and U;, = 5 kT. The current increases linearly with D at first but deviates from
it with increasing DZ. This nonlinearity arises from the fact that ions do not dif-
fuse in a flat energy landscape but have to surmount energy barriers. The results in
Fig. 9.11 demonstrate that the channel conductance can be easily fitted by adjusting

the diffusion coefficient of KT ions.
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Figure 9.10: Shape of the potential profile used in the inverse method. The
two basic parameters are the depth of the wells Uy and the height of the
barrier U, as indicated by the arrows. Note that the well depth refers to the
zero potential in the reservoir but the barrier height is measured with respect
to the well minimum. The curved parts are produced using a Fermi function
of the form 1/{1 + exp[+(z — z0)/d]}. The width of the well at half-max is
about 10 A. The profile shown with Uy, = 8 kT and Uy, = 5 kT gives the best
description of the physiological data on GA.
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Figure 9.11: Variation of the channel currents with the diffusion coeflicient
of KT in the channel. The depth of the well and height of the barrier used
are, respectively, 8 kT and 5 k7. The results are obtained using an applied

potential of 200 mV and an ionic concentration of 500 mM.
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To see how the U, and U, values influence the channel conductance, we have
carried out BD simulations using a wide range of values (Fig. 9.12). Here an applied
potential of 200 mV is used with a 500 mM KCI solution, and D" is reduced to
0.1 times the bulk value. Each curve in the figure shows how the channel current
decreases exponentially with the increasing barrier height Uj, for a fixed value of Uy,.
Note that when Uy, is fixed, the current increases with Uy, because a deeper well is
more successful in attracting the K ions into the channel and thereby facilitating
their conduction. The broken horizontal line across the figure indicates the experi-
mentally measured current of 4 pA [9]. Thus, for a given well depth, one can find
a matching barrier height that will reproduce the experimental conductance. The
requirement that the wells provide binding sites excludes the very low values for Uy,
(i.e. Uy > 4 kT), but otherwise it does not help in constraining the potential pa-
rameters further. This exercise exposes the dangers of relying exclusively on fitting
linear I-V curves in model studies. Not only can one fit the channel conductance
for a given potential profile by adjusting the diffusion coefficient, but even when D is
fixed, there are many sets of potential profiles that can fit the observed conductance.
Thus conductance alone cannot provide an adequate test for a phenomenological

permeation model.

We next consider the current-concentration curve and study its sensitivity to the
potential parameters and diffusion coefficient. The saturation seen in experimental
current-concentration curves cannot be reproduced for all values of diffusion coef-
ficient. For a given DZ a potential profile cannot necessarily be found which can
reproduce the observed saturation. A brief survey of possible diffusion values showed
that saturation did not arise when D was larger than 0.3 times the bulk value.
This indicates that the diffusion coefficient is more than just a scaling factor—it
plays a dynamical role in ion permeation, influencing the saturation properties of

the channel.

A successful description of saturation, however, is possible when the potential
parameters are chosen as Uy, = 8 kT, U, = 5 kT, and D is reduced to 0.1 times
the bulk value. In the remaining figures, we study in greater detail the consequences
of this chosen parameter set. In Fig. 9.13, the saturation curves obtained under two
different applied potentials (100 and 200 mV) are compared to the experimental data
of Andersen [9]. The calculated curves follow the experimental result closely at both
driving potentials. The simulation results are fitted with a Michaelis-Menten curve
as indicated by the solid lines in the figure. The calculated half saturation value of
250 mM is in good agreement with the experimental value of 230 mM at 200 mV. The
corresponding values at 100 mV are 90 mM (calculated) and 105 mM (experimental).
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Figure 9.12: Variation of the channel current with the barrier height U}, for
fixed values of Uy, (indicated at the top of each curve). An applied potential
of 200 mV and a 500 mM KCl solution are employed in the BD simulations.
The diffusion coefficient of potassium ions in the channel is suppressed to
0.1 times the bulk value. Each set of data is fitted by an exponential decay
function (solid and dashed lines). The horizontal dashed line indicates the

experimental current value [9].



234 9. Continuum FElectrostatics and the Gramicidin Channel

Fig. 9.14 shows an I-V curve obtained from simulation of a symmetric 500 mM
KCI solution. The results of our simulations (filled circles) are compared with the
experimental measurements (open circles) [9]. The agreement with the data is again

very good.
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Figure 9.13: Saturation of current with concentration at two applied poten-
tials, 100 mV (bottom curve) and 200 mV (top). The profile in Fig. 9.10 is
used in BD simulations with Uy, = 8 kT, U, = 5 kT and Dﬁh reduced to 10%
of the bulk value. The experimental data of Andersen [9] are superimposed

on the figures (open circles and open squares).

Finally, in Fig. 9.15, we show the concentration profiles for K* ions in the
GA channel obtained from a symmetric 500 mM KCI solution. As expected, the
ion concentration is very large at the binding sites and depressed in the middle,
regardless of whether there is an applied potential of 200 mV or not. The magnitude
of the concentration may appear too large at first sight. This is simply due to the
small volume available at the binding sites. In fact, there are only about 0.75 ions
on average at each site in the case shown. This also indicates that the channel
is often multiply occupied, unlike when the flatter profile found from continuum
electrostatics is used, as the larger wells more easily attract ions into the channel
and retain them at the binding sites. The number of ions in the channel increases

with concentration, as at higher concentrations ions can find their way into the
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Figure 9.14: Current-voltage relationship obtained with BD simulations using
the profile in Fig. 9.10. The results obtained by using 500 mM KCI solution
(black circles fitted with a line) are compared with the experimental data [9],

shown by open circles.
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channel more quickly. For example at 150 mM there are on average 0.8 ions in the
channel whilst at 1 M there are 1.75. An analysis of ion trajectories in the multiply
occupied channel shows that the inter-ion separation remains roughly constant for

any ion pair.
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Figure 9.15: Concentration profiles for potassium ions in the GA channel as

in Fig. 9.7, but using the profile in Fig. 9.10., with no applied potential.

While it is impossible to prove the uniqueness of the parameter set we have
obtained, our results nevertheless suggest that large variations from these values
are unlikely to lead to a satisfactory description of the data. For example, Fig 9.12
indicates that the potential parameters U, = 12 kT, U, = 5 kT may also work,
although the larger wells will increase the probability of multiple occupancy. It is
also of interest to compare our chosen profile with those of Chiu and Jakobsson
[38]. They reproduce sodium conductance properties via electro-diffusion equations
using a similar potential profile with the parameters U, = 5.4 kT, U, = 4.2 kT, and
a diffusion coefficient for Na™ ions that is 0.07 times the bulk value. McGill and
Schumaker [139] also find that similar well depths and barrier heights are required
to match experimental conductances using their diffusion theory. Thus, there is a
reasonable congruence between all the sets of parameters.

The saturation property of the GA channel is seen to provide the most sensitive
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quantity for the purpose of determining the potential energy profile of ions. In most
model studies of ion channels, conductance and I-V curves are studied in great
detail while no attention is paid to the saturation curve. In fact, as illustrated here,
reproducing the saturation curve provides a more stringent test for a permeation

model and should be given more consideration in future studies.

9.6 Conclusions

Our main result is that continuum electrostatics using a rigid protein structure
cannot provide a consistent description of all the available data on the GA channel.
Surprisingly, the use of a dielectric constant of 80 in the channel seems to give the
best results in our continuum electrostatics, despite the fact that from microscopic
considerations such a high value seems unreasonable in the narrow GA channel.
Although slight changes in the protein structure may alter the energy profiles, the
experimental data limits the amount of flexibility allowed, and it seems unlikely
that all the problems encountered could be overcome using a different or flexible
protein. Given the obvious problems in describing polarization around an ion and
the effect of water dipoles, we believe that continuum electrostatics should not be
used to model GA. This applies to any model that relies on the solution of Pois-
son’s equation using a dielectric continuum, such as most current BD simulations
(in which the forces are calculated from Poisson’s equation) and continuum theo-
ries such as Poisson-Boltzmann and Poisson-Nernst-Planck equations. This leaves
MD as the only method for calculating the forces on ions in the GA channel. But,
unfortunately, the force fields currently employed in MD studies are too crude for
this purpose and require further refinement to be able to make contact with ex-
perimental data. We have used the inverse method to construct a potential energy
profile for potassium ions that gives an adequate description of the available phys-
iological data. It will be interesting to compare this profile with future profiles to
be determined from MD with improved force fields. In the meantime, the inverse
approach can be utilized to relate the structure of the GA channel to its function.
Studies of asymmetric and bi-ionic solutions could provide further tests of our pro-
posed potassium potential profile. Also, we expect that profiles for other monovalent
ions species can be constructed to match their conductance values by making small
changes to the potassium profile. Work in this direction is in progress.

An important question is whether the above results for the GA channel have any
bearing on biological ion channels. Because GA was the only channel with a well

defined tertiary structure for a long time, it became a model case for all ion channels.
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The hope was that insights gathered from the study of the GA channel could be used
in understanding the permeation properties of other channels. The determination
of the KcsA structure [58] and subsequent studies of the permeation mechanisms in
potassium [40,41] and calcium channels [47] reveal that GA is not likely to fulfill
this role. Both in terms of structure (single filing of water vs. presence of water
filled cavities and vestibules) and ion dynamics (single-ion vs. multi-ion permeation
mechanism), GA is very different to these biological channels. It is the long single-file
chain of water molecules that creates problems when using continuum electrostatics
to model the GA channel, as the use of uniform dielectric constants cannot mimic
their long range polarization. In contrast, the continuum electrostatics-BD approach
has been used successfully to reproduce a wide variety of experimental data when
modeling biological ion channels, including the KcsA potassium channel [40,41].
The reason for this is two-fold; first continuum electrostatics works reasonably well
in the wider cavity and vestibule regions that form the major part of these channels,
and secondly the selectivity filter regions where the single filing occurs are much
shorter, involving only a few water molecules sandwiched between ions. That is,
there are no long chains of water molecules as in the GA pore which seem to cause
the problems seen here. Thus, we believe that GA is a very special channel that
needs to be handled with extreme care. The rewards from its study are not to be
found in getting direct insights about biological ion channels but rather constructing
reliable models of permeation in a difficult test case that can later be applied to

other channels.



Conclusion

The work presented in this thesis has been carried out with two broad aims. The
first was to present, compare and test various methods used to model ion channels.
Ion channels have been modelled using a wide variety of techniques, but this work
has focussed only on models that can directly link channel structure to function.
The continuum theories of electrolytes provide one way to do this, by treating
the channel as a rigid environment and solving equations to find the average ion
distributions and flux through the channel. Such theories have been put to good
use to show, for example, the relationship between the charge distribution in the
protein and the selectivity or permeation rates of ions in the channel. However, by
a direct comparison with BD simulations I have been able to show that the mean
field treatment of ions in these theories is questionable. As ion channels contain
only a small aqueous environment surrounded by protein, in most cases only one or
at most a few ions enter the channel at a time. In such cases it is important to treat
the ions individually as discrete particles. Treating them via their time averaged
concentrations can lead to erroneous results, most notably to an overestimation of
the effects of electrolytic screening. For this reason I conclude that the continuum
theories should not be used to make quantitative studies of ion channels, and more

detailed models are required.

One possible alternative is to use molecular dynamics simulations in which the
motions of all the atoms in the system are calculated for a short period of time.
I have not focussed on this technique, however, for one main reason: the number
of calculations involved makes it currently too time consuming to be used to cal-
culate channel currents, the primary observable quantity. Instead I have presented
Brownian dynamics simulations as a middle ground between the continuum and
MD approaches. All atom simulations have not been ignored, however, as they can

provide estimates for important parameters that can be used in the BD simulations.

Brownian dynamics simulations provide a practical tool for studying the conduc-
tance of ion channels. In such simulations the integrity of ions is maintained, but
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the protein and water are treated as continuous media, reducing the computational
power required to simulate the passage of ions through the channel. In this thesis,
the technique is developed and its boundary conditions tested, before it is applied to
test the continuum theories and then to study real ion channels. These simulations
have been shown to reproduce the bulk properties of electrolyte solutions, and can
be used to gain many important insights into the mechanics of ion channels. One
must always, however, keep in mind the limitations of a theory. For example, the
treatment of water as a continuous medium means that the energy associated with
rearranging the water molecules around an ion so as to fit inside the narrow channel
is ignored. This makes it difficult to differentiate between like charged ions in BD
simulations. It can also be difficult to know how best to calculate the forces acting
on ions. In most cases in this thesis, electrostatic forces are calculated by solving
Poisson’s equation. This seems like a reasonable approach, but may suffer from two
main problems. One is that the channel is taken to be rigid when calculating forces,
whereas in practice the shape may alter as an ion passes. Using a different channel
shape for every position of the ion in the channel could potentially combat this. The
other problem, demonstrated here by conducting simulations in the Gramicidin A
channel, arises from the description of the water and protein as dielectric media.
This picture is meant to describe the average properties of the underlying atoms,
but may also be too crude to describe all ion channels accurately. In the narrow
GA pore, the dipoles from the water molecules tend to align themselves along the

channel, a property that cannot be easily captured in a simple dielectric picture.

The second aim of this thesis has been to apply the appropriate models to try
to understand the mechanisms of real biological ion channels. The L-type calcium
channel, a channel remarkable for having both a high degree of selectivity and enor-
mous conduction rates, was the main channel studied. As we do not have a crystal
structure of this channel, a model was constructed using information from physi-
ological and mutagenesis experiments and molecular models. The most important
aspect of the model is a narrow ‘selectivity filter’ region that creates single filling
of ions, surrounded by highly charged glutamate residues whose interaction with
ions creates charge selectivity. Using potential energy profiles obtained from the
solution of Poisson’s equation and Brownian dynamics simulations we were able to
explain how this channel can differentiate between sodium and calcium ions whilst
retaining high conduction rates. The model can neatly explain and reproduce many
physiological experiments yielding confidence in its validity, and demonstrating the
explanatory power of these modelling techniques. A similar BD investigation of the

KcsA potassium channel (whose crystal structure is known) was carried out by my
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colleagues concurrently with those described here, and has also had much success

in elucidating the permeation mechanisms of potassium ions in that channel.

There are many interesting directions in which this work could lead. Firstly,
given the success of the BD / Poisson’s equation modelling technique, an obvious
direction for future research is to apply it to different ion channels. The recent
determination of the structure of the CLC chloride channel makes it an ideal target.
Knowledge of the channel shape and the positions of the partial charges on the
protein atoms will take the guesswork out of constructing a channel model. One
practical difficulty with this channel, however, is that the shape of the pore does not
follow a straight line and is not axially symmetric, unlike those studied previously.
The system of storing the solutions of Poisson’s equation described in this thesis
assumes axial symmetry, and so needs to be extended to deal with this new channel.
Work in this direction is currently in progress. Other families of channels can also be
modelled. For example, the homology between the voltage gated sodium, potassium
and calcium channels means that a model of the former could be determined from

the structure and models of the latter two.

Having noted some of the limitations of the models being used, it will be impor-
tant to refine and improve them accordingly. Extending the solutions of Poisson’s
equation to deal with three dimensional, non-symmetric structures, as noted above,
provides one example. But probably a more important long-term goal is to use
more information from all-atom simulations in the BD routine. The current sim-
ulations utilise estimates of the ion diffusion coefficients and dielectric constants
from MD simulations, but there is no reason to stop there. A more complete ap-
proach would be to eradicate the use of Poisson’s equation altogether, and instead
to calculate forces from the free energy profiles of permeating ions found from MD
simulations. This would overcome many of the difficulties and limitations of the
current approach. The forces on ions would be determined from MD in which all
the atoms and dipoles are modelled, the channel is flexible, no dielectric constants
are required and hydration effects can be included. BD would then provide a path-
way to determine currents from this data, avoiding the computations required to
run MD itself for long enough to do so. Unfortunately, this may not be quite as
simple as it sounds. Although free energy profiles have already been determined
from MD in the GA channel, as mentioned in chapter 9 they yielded unrealistic
energy barriers. It is likely that the classical MD simulations that were designed
for use in bulk solutions will have to be improved or reparameterised for use in ion
channels before reliable energy profiles can be determined. Alternatively, ab initio

techniques in which direct electronic structure calculations are included in the MD
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simulations may soon become fast enough to be used to determine MD force fields.
As computer power increases, MD is bound to become one of the primary tools in
channel modelling. But perhaps a hierarchical approach utilising quantum, MD and
BD techniques may provide the most accurate and practical path forward.

Finally, ion channels are fundamental building blocks of living creatures, and
although understanding them is of intrinsic interest, the real challenge lies in putting
this knowledge to practical use. Hopefully, the insights gained from theoretical
models of ion channels can guide experiments that themselves aim to find ways of
designing drugs and combatting disease.
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