Chapter 6

Testing Poisson - Nernst - Planck

Theory

6.1 Abstract

We test the validity of the mean field approximation in Poisson-Nernst-Planck
theory by contrasting its predictions with those of Brownian dynamics simulations
in schematic cylindrical channels as well as in a realistic potassium channel. Equiv-
alence of the two theories in bulk situations is demonstrated in a control study. In
simple cylindrical channels, considerable differences are found between the two the-
ories with regard to the concentration profiles in the channel and its conductance
properties. These differences are at a maximum in narrow channels and diminish
with increasing radius. Convergence occurs when the channel radius is over 2 Debye
lengths. These tests unequivocally demonstrate that the mean field approximation
in the Poisson-Nernst-Planck theory breaks down in narrow ion channels that have

radii smaller than the Debye length.

6.2 Introduction

In the previous chapter, I have tested the validity of the mean field approximation
in PB theory, which is commonly used in potential energy calculations in ion chan-
nels. PB theory is limited to equilibrium situations, and to describe non-equilibrium
processes such as ion transport, another continuum theory that is widely known as
the Nernst-Planck (NP) electrodiffusion equation is employed. The NP equation
combines Ohm’s law for drift of ions in a potential gradient with Fick’s law of dif-
fusion due to a concentration gradient (hence the name “drift-diffusion equation”
is used in some fields). When the potential in the NP equation is determined from

Poisson’s equation in a self-consistent manner, the combined system of equations
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108 6. Testing Poisson - Nernst - Planck Theory

form the Poisson-Nernst-Planck (PNP) theory, which provides a premium descrip-
tion of ion transport problems in many branches of physics and chemistry (e.g.,
[17,23,136,147,213]). As in the case of the PB theory, these applications usually
involve bulk conditions with system sizes much larger than the Debye length, and
the validity of the underlying mean field approximation is well established. Recent
applications of the NP and PNP theories in ion channels (see [44, 61,62, 85, 122] for
reviews and further references), in contrast, involve systems with rather few ions
and with dimensions smaller than the Debye length. Under these conditions, one
would intuitively expect that keeping the integrity of ions would be essential to
gain a realistic physical description of the system, and the validity of the continuum
approaches, where ions are represented as a continuous charge density, would be
compromised. The most direct way of checking the validity of the PNP theory is
to compare its predictions for various physical quantities (e.g., current and con-
centration) with those obtained from Brownian dynamics (BD) simulations, where
individual ions are treated explicitly. The importance of such a test of PNP theory
has been stressed in a recent series of commentaries on ion permeation by all partic-
ipants [125,137,143,150]. While molecular dynamics simulations [177] are not yet
at a stage to replace PNP theory in case of failure, BD simulations currently provide

a genuine alternative for studying ion permeation in channels ([40, 42,91, 127]).

In this chapter I test the PNP theory by comparing its predictions for conduc-
tance and concentration profiles in cylindrical channels and a potassium channel,
with those of BD simulations. We emphasize that both theories are applied to three-
dimensional (3-D) channels without any simplifying assumptions that would reduce
them to equivalent 1-D problems. Extension of both theories from effective 1-D
channels to realistic 3-D cases has been achieved very recently (see [113] for PNP,
and the BD references quoted above). The 3-D aspect of the channel structure
is very important in settling such questions as the amount of shielding of dielec-
tric forces on ions. In this respect, the earlier 1-D BD simulations of ion channels

[20, 45, 95] provide only a limited testing ground for the continuum theories.

We note that the continuum description of water in both BD and PNP is strictly
valid in bulk situations, and the channel-water interactions are expected to play a
role in ion permeation. These interactions can be directly taken into account in
molecular dynamics studies. However, the infeasibility of molecular dynamics sim-
ulation of ion permeation with the currently available supercomputers necessitates
a more phenomenological approach to the problem. One hopes that the effective
parameters used in the phenomenological approaches (such as diffusion coefficient

and dielectric constant) will all eventually be determined from molecular dynamics
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studies. This will provide a bridge between the microscopic and macroscopic ap-
proaches as well as a justification for the use of the latter theories. In the mean
time, it is important to test the validity of various approximations going into the
phenomenological theories to assess their suitability as models of membrane chan-
nels. This comparison of PNP and BD is carried out in this spirit. A comparison
between PNP and BD provides the perfect way to test the continuous treatment of
electrolyte in the mean field theory, as the two techniques are very similar except

for their treatment of the electrolyte.

6.3 Poisson-Nernst-Planck theory

The PNP approach to ion permeation in membrane channels has been used in
numerous papers in the last decade. Here I give only an outline of the theory, and
refer to the recent review articles ([61,62]) for further details and references. More
recent references can be found in [33, 34,113, 151].

As described in chapter 2 PNP theory involves solving the Nernst-Planck equa-
tion (Eq. 2.9) simultaneously with Poisson’s equation (Eq. 2.1) yielding an expres-
sion for the potential, concentration and flux of ions in the system. Note that both
the ion concentration and flux are described by continuous quantities corresponding
to macroscopic, space-time averages of microscopic motion of individual ions.

Due to their nonlinear nature, the PNP equations are notoriously difficult to
solve analytically except in some very special cases, e.g., the classic Goldman-
Hodgkin-Katz equation [85]. More recent discussions of the analytical treatment
of the PNP equations can be found in [194-196]. Here we consider the basic formal-
ism of PNP together with some special cases to indicate where and why the PNP
theory may break down. These solutions will also be used in checking the accuracy
of the numerical results.

When J, = 0in Eq. 2.9, the PNP equations trivially reduce to the PB equation
with the density given by the Boltzmann factor,

n, = ng, exp(—v,), ¥, = z,e¢/kT, (6.1)

where ng, denotes a reference density and 1), is the potential energy expressed in a
dimensionless form. Using Eq. 6.1 for n, as an integrating factor in Eq. 2.9, it can

be recast into the form

J, = —D, exp(—4,)V[n, exp(¢,)]. (6.2)
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Under steady-state conditions and assuming a uniform flux J, in the z direction,

Eq. 6.2 reduces to 1-D and can be integrated to give

J,=-D,— L — Thvo ’ (6.3)
fo exp[v, (2)]dz
where the values of n, = n, exp(¢,) at the boundary points z = 0 and L are specified
with 7,0 and 7,1, respectively. While Eq. 6.3 appears to require only the knowledge
of the potential in the range [0, L], in fact, there is still a density dependence through
Poisson’s equation (2.1). A similar expression for the density can be obtained by
integrating Eq. 6.2 from 0 to 2, and using Eq. 6.3 to eliminate J,/D,

Jy expli, (2))dz } e

Jo expli(2)]dz

Finally, substituting Eq. 6.4 in Poisson’s equation, one obtains an integro-differential

7"1,,,(2) = eXP[—lf)u(Z)] {771/0 + (771/L - 771/0)

equation for the potential in PNP

gy [ 100 - - neepl ()]

Z explb(2)dz |
f;exm(z)uz} per: (69)

This is similar in form to the PB equation, and would reduce to it if 7, = 7,9, that

{T]VO + (nuL - 771/0)

is, when the electrochemical forces balance out and the system is in equilibrium. In
general, there are no known analytical solutions of Eq. 6.5, and applications of the
1-D PNP to ion channels have to be carried out using numerical methods [61]. For
future reference, we quote here the trivial solutions of the PNP equations. When

the concentration is uniform (n, = ny everywhere), one simply has Ohm’s law

Jy, = —=(Dyzyeng/kT) (v, — duo)/L, (6.6)

while in the case of a uniform potential (i.e., no electric forces), the solutions are
J, = —D,(n,r. —nwo)/L, n,(2) =nye+ (n,r —nyo)z/L. (6.7)

Since a self-consistent analytical solution of PNP equations is not possible, it
is natural to look for approximations that will enable such solutions. Even if the
potential could be determined in some way, there is still a problem in evaluating the
integrals involving its exponential in Eqs. 6.3, 6.4 and 6.5. In fact, the only known

indefinite integral of [ exp[f(z)]dz is for f = z, which simply gives back exp(z).
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This corresponds to the constant field approximation in the Goldman-Hodgkin-
Katz theory, and using 1, (z) = ¥,0 + (¥ur — ¥uo)z/L in Egs. 6.3 and 6.4 yields the
following solutions for the flux and density

_& (wuL - 7’/)1/0)(771/13 - 771/0)

T E T e (n) - expa) (€5)
el (s L explth ()] — exp(io)
’I’LV(Z) - p[ ,9/)1/( )] {771/0 + (nuL 771/0) eXP(iﬁyL) — eXp(l/J,,o) } . (69)

The effect of the electrochemical forces on density, which is not so easy to surmise
from Eq. 6.4, can be seen more clearly from Eq. 6.9: The density, which varies
linearly between the boundary values when there are no electric forces (Eq. 6.7),
exhibits an exponential behaviour when there is a uniform field (to be more spe-
cific, the density of one type of ions is enhanced while that of the counter ions is
suppressed relative to the linear case, see Fig. 6.2 B). Thus the local potential has
a significant effect on the cation and anion densities, as in the case of the PB the-
ory. The question is then whether one can calculate this potential correctly in ion
channels within the continuum approach using a continuous distribution of charges
and mean field approximation. If we use the BD results in chapter 5 as a guide, the
answer has to be negative for narrow channels with radius smaller than the Debye
length. We have already seen that shielding is largely overestimated in PB theory,
and leads to a gross reduction of the potential energy of an ion inside a channel. It is
expected that shielding will play a similarly dominant role in the PNP calculations,
leading to a largely distorted concentration (and hence current) values in narrow

channels when compared to those of the BD simulations.

In order to test this conjecture, I wrote a computer code to solve the PNP
equations in three dimensions for a range of channel shapes. In this code, a channel
shape is constructed on a rectangular grid, and the PNP equations are solved at
the grid points using a finite difference algorithm. The input of the program are;
the channel shape, dielectric constants in the channel and the protein wall, the
concentrations and potentials on the reservoir boundaries, the diffusion coefficients
of the ions, and the locations and strengths of fixed charges in the channel walls.
Once these parameters are specified, the program outputs the concentration and
potential throughout the system as well as the ionic currents passing through the

channel.
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6.4 Numerical solutions

The coupled PNP equations in 3-dimensions (2.9 and 2.1) are solved using finite
difference methods similar to that used for the Poisson-Boltzmann equation in chap-
ter 5. A similar algorithm was also used by Kurnikova et al. [113]. The system is
discretized by placing a rectangular grid of points with cell dimensions h, x hy X h,
over the channel and reservoirs. All the physical quantities (e.g., potential, flux and
number density of ions, etc.) are approximated by discrete values at the grid points
which represent their average over the cell volume.

Poisson’s equation (2.1) is discretized in the same way as in chapter 5 by inte-
grating it over a cell of volume V' = hghy,h, centered at a grid point r;, and using

Gauss’ theorem, which gives

6

Zeoej ¢ + hJ};]) — ¢(r:) hK — _szyenu(r’i) = Gi-
j j »

i=1

Here the j sum is over the six surfaces of the rectangular box with hy = hy = h,,
hy = hs = hy, hs = hg = h,, and j = %, §, 2 for j = 1,2,3, and —%, —y, —2
for j = 4,5,6. On the right hand side of the equation, the v sum is over the ion
species and ¢; is the total external charge contained in the cell volume. Solving for

the central potential, we can relate it to its immediate neighbours as

> €0/ R + 37, zenyifeo + g/ (€V)
Zj fj/h? ’

i = (6.10)
where the subscripts ¢ and j on ¢, €, and n, refer to the grid positions r; and r,-—l—hjj,
respectively.

Discretization of the Nernst-Planck equation is even simpler since it involves only
the first derivatives in number density and potential. Using the definition of grid
points and its neighbours introduced above, the NP equation (2.9) can be readily

converted to the following finite difference equation at the ¢th grid point

n i zel 99
o TaraMtm T

Jj=-D (6.11)
where J;, j = 1,...,6 denotes the flux through each of the six surfaces of the
rectangular box at r;, and an average of the densities in the cells ¢ and j is used in the
last term. Here we have suppressed the subscript v for ion species for convenience.
Otherwise an identical equation is obtained for each ion species. Under steady state
conditions V -J = 0, and the total flux of each ion species from any grid point must

vanish, that is, 26

j=1J; = 0. Using this condition with Eq. 6.11, and solving for
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the density at the central grid point gives

o Z?:l[l/hj + (ez/2kT)(¢; — ¢i)/hjln;
LS /hy — (e2/2KT) (65 — éi)/hy]

(6.12)

which relates the density at a grid point to its immediate neighbours. Clearly, the
sum over all 6 surfaces applies when all the neighbouring grid points are in the
electrolyte. Since there can be no flux through the channel boundary, grid points

that lie outside the electrolyte are excluded from the sums in Eq. 6.12.

Equations 6.10 and 6.12 are solved simultaneously using an iterative scheme —
starting with some initial guesses for the concentration and potential values at all
the grid points and successively updating them until they converge to stable values.
The convergence criteria used is that the maximum change in both concentration
and potential between successive iterations at any grid point is smaller than the
tolerance value, which is typically set to 10=7 V for potential and 10~" M for con-
centration. To speed up convergence, we use the Gauss-Seidal method with over-
or under-relaxation (see chapter 5). Over-relaxation is used in most cases for faster
convergence. Exceptions occur in the presence of large fixed charges in the channel
(e.g., potassium channel), which lead to instabilities in the iterative procedure, and

require the use of under-relaxation in order to achieve convergence.

The algorithm requires the concentration and potential values along the bound-
ary of the computational box to be specified. For this purpose, we assign the
constant concentration values of ¢, and cg to the boundaries on the left and right
reservoirs, and a zero value for the protein. The potential along the boundary is
determined similarly; the top and bottom of the computational box are assigned
values according to the desired potential drop across the system, and the poten-
tial is varied linearly between these values along the side boundaries. While these
simple choices lead to some inaccuracies near the sides of the reservoirs, they have
no discernible effect on the channel results if the radius of the reservoir is suffi-
ciently large. An accurate implementation of the boundary conditions on the sides
can be achieved by extending the grid system in the radial direction beyond the
reservoir. Naturally this comes at an increased computational cost, and since it is
unwarranted, we have not employed it in this study.

The PNP program is executed on an alpha cluster, where a typical run with
49 grid points takes 5-10 minutes. Inclusion of fixed charges in the channel wall
roughly doubles the above computation time. When a finer mesh with 99 grid

points is used, the computation time increases by more than an order of magnitude.
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6.4.1 Tests of accuracy

As in the case of PB calculations in chapter 5, the grid size has to be optimized
for an efficient running of the PNP program. A smaller grid size improves accuracy
of the results but requires a much longer run-time. To give an example, halving
the grid size increases the computation time by a factor of 20. In most of the PNP
calculations, we have used 493 grid points which corresponds to grid sizes of 1-2 A.
An exception is the very narrow potassium channel where a 99% grid is employed.
Smaller grid sizes would lead to slightly larger values of flux than presented in this
study. Because we deal with potential and its integrals in PNP, rather than its
derivative (i.e. force) as in PB, the results are found to be less sensitive to the grid
size.

A number of tests are carried out to check the validity and accuracy of the
numerical solutions of the PNP equations in cylindrical channels. Since the only
known analytical solutions of PNP are in 1-D, and our program is written for 3-D
channels, we simulate this condition by varying the cylinder radius and making sure
that the results are independent of the radius. The length of the channel is 25 A
and the same dielectric constant (e = 80) is used inside and outside the channel in
testing to avoid 3-D effects arising from the induced boundary charges.

The simplest checks are provided by either uniform concentration or uniform
potential. The first case corresponds to Ohm’s law, and as shown in Fig. 6.1 A, the
numerical PNP results for the I-V curve (filled circles) closely follow the line pre-
dicted by Eq. 6.6. Here a radius of 4 A is used but similar agreements are obtained
in channels with larger radius. Similarly, in the second case with a concentration
gradient but no electric forces, the concentrations obtained from the PNP code (di-
amonds in Fig. 6.1 B) reproduce the linear change predicted by Eq. 6.7 (straight
dashed line in Fig. 6.1 B). Again this result is completely independent of the channel
radius.

As a final test, we consider the situation when there is both a potential gradient
(¢o — ¢ = 100 mV) and a concentration gradient (cy — ¢y = 400 mM). As noted
above, an analytical solution exists only for a linearly varying applied potential, and
therefore, the PNP code is modified to include this as an option in the program. The
anion and cation concentrations obtained from the PNP code, when the constant
field condition is enforced, are compared to the analytical solutions from Eq. 6.9 in
Fig. 6.1 B. As before, the agreement between the numerical and analytical solutions
is very good regardless of the channel radius used. Naturally, one can also calculate
the exact results from the PNP code with self-consistent potentials. In this case

the 1-D character of the solutions is lost and a convergence study of the results
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Figure 6.1: Tests of the accuracy of the PNP code in a cylindrical channel with
the same dielectric constant everywhere (e = 80). The length of the channel
is 25 A and results are independent of the radius unless otherwise stated. (A)
A comparison of the current flowing through a cylindrical channel of radius
4 A as found from the PNP code (circles) and from Eq. 6.6 (solid line). The
concentration is set to 300 mM throughout and the potential between the ends
of the channel is varied. (B) The concentration profiles of cations and anions
in a cylindrical channel when a concentration difference is maintained between
the ends (¢ = 100 mM and cg = 500 mM). In the absence of an applied
potential, the numerical results (diamonds) compare well with the analytical
solution from Eq. 6.7 (dashed line). When a constant field is enforced, the
numerical cation (filled circles) and anion (open circles) concentrations again
follow closely the analytical results from Eq. 6.9 (solid lines). The exact PNP
concentrations with self-consistent potentials are indicated by the triangles.
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with respect to the radius is required. Convergence is obtained when the channel
diameter is comparable to its length. The exact results (after they converged) for
the anion and cation concentrations are shown with the triangles in Fig. 6.1 B. It
is seen that there are substantial differences between the exact concentrations and
those obtained with the constant field approximation. This discrepancy is dependent
on the applied potential and gets smaller with increasing voltage difference. The
inadequacy of the constant field assumption in ion channels seen here has been

stressed in earlier studies [33,196].

6.5 Results

Comparisons of PNP theory with BD simulations are carried out in cylindrical
channels with varying radius, and in a more realistic but complicated model of the
potassium channel. Cylindrical channels are the most common geometry used in
applications of the PNP approach. Therefore, we use them in the majority of the
tests described here. Further comparisons are carried out in a model potassium
channel that is constructed from its recently revealed structure [58|. Unless oth-
erwise stated, the average concentration in the system is kept at 300 mM in both
PNP and BD. We note that the Debye length for a 300 mM solution is 5.6 A.

6.5.1 Cylindrical channels

The cylindrical channel and reservoir system used in both the PNP calculations
and the BD simulations is identical to that used in the last chapter and is shown
in Fig. 5.4. The channel radius r is systematically increased from 3 A to 14 A, or
from 0.5 to 2.5 times the Debye length. The dielectric constants are normally set
to 80 in the electrolyte and 2 in the protein wall, except in a control study where
€protein = 80 1s used to simulate bulk conditions. We use the term “passive channel”
to distinguish this non-interacting case from a real channel with eyrotein = 2. In these
comparisons, bare channels (i.e., no fixed charges) are considered first, followed by
channels with fixed charges in the protein wall.

In order to ensure that comparisons are carried out in nearly identical situations,
we need to match the boundary conditions in PNP with those in BD. Due to the
dynamic nature of simulations in BD, there are no unique procedures to implement
these conditions. We use a relatively simple strategy here, which will be justified
in the control studies below. The applied potential in BD is represented with a
uniform electric field (usually E = 107 V/m). The potential difference between

the top and bottom boundaries is determined from the potential energy profile
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Figure 6.2: The potential energy profiles in a cylindrical channel of radius
r = 4 A when an electric field of 107 V/m is applied in the 2 direction.
The dashed and solid lines correspond to the channels with and without
fixed charges, respectively. The profile of a passive channel (€eprotein = 80) is
indicated by the dotted line.
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of a single ion in the presence of this electric field (see Fig. 6.2), which should
yield a reasonable average value when the other ions are present. This potential
difference is then used in the PNP calculations. Similarly, the average concentrations
in the reservoirs, determined from the number of ions in BD, are implemented in
the PNP calculations. There is a slight complication here arising from the fact
that concentrations in PNP are specified along the reservoir boundary, which, in
general, will not match their average values in the reservoir. This happens because
any potential drop across the system produces a charge separation. Thus, one
needs to find the correct boundary value that will reproduce the desired average
concentration in the reservoir. To this end, we first run the PNP program in the
absence of any electrolyte to find the potential drop V' across the reservoir due to
the applied voltage and channel shape. Away from the channel mouth, the charge
separation would be expected to balance this potential drop according to the Nernst
equation. Thus the ratio of concentrations at the two ends of the reservoir is given
by

c1/co = exp(—eV/kT), (6.13)

which, together with the average concentration, c,, = (c; + ¢2)/2, determines the
appropriate boundary value for concentration. This procedure works well in most
cases except when there are fixed charges in the channel or asymmetric solutions
are used. These cause further distortions in concentration values that are not taken
into account in the above method with the result that the average concentration
in the reservoir does not coincide with the desired value of ¢,,. In such cases, the
PNP runs are iterated until we find the values of ¢; and ¢y that satisfy the Nernst
equation (Eq. 12) and the average concentration in the reservoir is equal to the

desired value of cgy.

6.5.2 Potential profiles

To motivate the comparison of PNP and BD, we first show the potential energy
profiles for a cation moving along the central axis of a 4 A radius channel under
an applied electric field of 107 V/m (Fig. 6.2). These profiles are constructed from
an electrostatic calculation with only one cation in the system using the boundary
element method ( see section 3.3.1). For a passive channel (€protein = 80), this profile
is linear as indicated by the dotted line. In the case of a real channel with a dielectric
boundary (€protein = 2), the profile (solid line) exhibits a large barrier due to the
repulsive forces emanating from the surface charges induced by the ion. When other
ions are present in the system, shielding effects might have a role in lowering this

barrier and making it easier for ions to traverse the channel. The importance of this
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shielding in ion permeation has always been emphasized in applications of PNP [61].
On the other hand, we have demonstrated in the previous chapter that shielding
effects predicted by the sister Poisson-Boltzmann theory are overestimated in ion
channels. Whether this conclusion, derived under equilibrium conditions, changes
when the system is in a state of flux can be addressed by performing BD simulations
of the system and comparing the concentration and flux results with those obtained
from PNP. Thus in the following comparisons, we specifically aim to address the
issue of shielding and its impact on physically observable quantities.

The energy barrier due the induced surface charges can be lowered if one places
negative charges on the protein walls. The potential energy profile of a cation, when
eight monopoles with charges —(0.09e are spread evenly around at the pore mouths
(z =125 A and z = —12.5 A), is shown by the dashed line in Fig. 6.2 B. Here,
the strength of the fixed charges is chosen so that the potential barrier created by
the induced charges is cancelled out. Such fixed counter charges will be seen to be

essential for ion permeation in narrow channels.

6.5.3 Control studies

For the comparisons of the PNP and BD results to be meaningful, we need
to demonstrate first that they agree under bulk conditions. For this purpose, we
perform a control study using a passive channel (eprotein = 80) with a fairly large
radius of » = 14 A. Since there are no induced surface charges in a passive channel,
it does not interact with ions. This situation is similar to the bulk conditions, and
concentrations obtained from BD via time averaging should agree with the PNP
results.

Concentration profiles are constructed from the BD simulations by dividing the
channel into 16 layers, each with a width of 2.2 A as shown at the top of Fig. 6.3. The
number of ions in each layer is counted at each time step, and then averaged over the
entire simulation period. The average number of ions is then converted to an average
concentration in each layer. To give an idea of the amount of charge separation,
reservoirs are represented with 2 layers. Concentration profiles are similarly found
in PNP by averaging over all the grid points in a given layer.

The concentration profiles for the sodium ions with a symmetric solution of
300 mM in each reservoir and under an applied field of 107 V/m are shown in
Fig. 6.3 A. The corresponding concentration profiles for the chloride ions are not
shown because they exhibit an almost identical picture once inverted about the
centre of the channel. The BD results are represented by the histogram and the
PNP results by the filled circles joined by a line. There is a general agreement
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Figure 6.3: Comparison of PNP with BD in a passive channel with a radius
14 A and a symmetric solution of 300 mM in the reservoirs. The ions are
driven across the channel with an applied field of E = 107 V /m as indicated
in the inset. (A) Concentration profiles of sodium ions (chloride ions exhibit
a similar profile, hence not shown here). The channel is divided into 16 layers
as shown by the dotted lines in the inset, and each reservoir into 2 layers.
The average concentration values in layers are represented by the histograms
in BD (reservoir values are shaded) and by the filled circles in PNP. (B)
Conductance of Na™ and CI~ ions in channels of different radii normalised
by the cross sectional area. The conductance found from the BD simulations
are indicated by the filled (Na) and open (Cl) circles, while those from the
PNP theory are shown by the solid lines.
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between the PNP and BD results across the channel, with the average concentration
remaining around 300 mM. A slight increase in the BD values at the mouth region
[the left hand side of (A) for Na™ ions] is due to the channel entrance effects. Ions
hitting the rounded corners are bounced back most of the time, and as a result spend
a slightly greater amount of time near the entrance. An opposite effect occurs for
ions exiting the channel. As expected, these entrance and exit effects are enhanced
in channels with smaller radius, resulting in larger asymmetries between the left
and right sides of the channel in BD simulations. A similar asymmetry occurs in
PNP due to charge build up but to a smaller extent. Thus the small discrepancy
between the PNP and BD concentrations slightly increases at smaller radii. We
note that there are also small differences between the reservoir values, especially in
the layers next to the channel. This is mainly due to the different ways of handling
the boundary conditions in the two methods. In BD, the average concentration in
each reservoir is strictly maintained at 300 mM, and as a result, charge separation
occurs only across the reservoirs despite the relatively large radius. In PNP, the
approximate handling of the boundary conditions along the reservoir circumference,
combined with the large radius of the channel leads to charge separation across the
channel. These differences in reservoir concentrations become smaller in realistic
channels and seem to have little impact on channel flux, and therefore they are

ignored in the present study.

As a second control study we consider the flux through the channel, which
should reveal a similar level of conformity as the concentrations. To investigate
possible channel size effects and as a reference for future comparisons, we present
in Fig. 6.3 B the conductance results obtained in PNP and BD as a function of the
channel radius as it is varied from r = 3 A to 14 A. In these plots, the conductance
has been normalized by the cross-sectional area of the channel to factor out the
trivial increase in flux with the area. In PNP, this area is simply nr2. In the
case of BD, an effective radius of 7 — 1 A is used to take into account the hard-wall
interaction that elastically scatters ions when they are within 1 A of the channel wall
(ie. the finite size of the ions). Both calculations are carried out with a symmetric
solution of 300 mM and an applied field of 107 V/m. Note that with increasing
radius, the reservoir height is reduced from 25 A, which leads to slightly smaller
applied potentials than 85 mV. There is a general agreement between the PNP
calculations of the conductance (solid lines) and the BD results (circles) within
the accuracy of computations. We emphasize that the use of an effective radius
in BD results is essential in getting this agreement, which forms a reference point

for future comparisons. Otherwise there would be a large discrepancy between the



122 6. Testing Poisson - Nernst - Planck Theory

PNP and BD results in Fig. 6.3 B. The anion conductance is greater than the cation
conductance because the anions have a larger diffusion coefficient. The downward
trend seen in both models follows a roughly 1/r relationship, which is due to the
access resistance of the channel. The resistance of a cylinder with length L and
radius 7 is given by L/mr?g, whereas its access resistance is 1/4rg [77]. Here g
denotes the conductivity of ions. Combining the two resistances, one obtains a
normalized conductance given by g/(L + nr/4). Due to the rounded corners, the
conductance shown in Fig. 6.3 B slightly deviates from this expression.

These control studies confirm that the two theories are properly calibrated in
bulk situations. Thus, any discrepancies found in comparisons of PNP and BD in
narrow channels with dielectric boundaries have to arise from differences in their

treatment of the ion-channel and ion-ion interactions.

6.5.4 Bare channels

We first consider bare channels (i.e., €ppotein = 2 With no fixed charges), which
illustrate with most clarity why and when the continuum assumptions in the PNP
theory fail in ion channels. The effects of fixed charges in the protein wall will be dis-
cussed in the next subsection. Unless otherwise stated, in the following comparisons
we use a symmetric solution of 300 mM and an applied field of 107 V/m, correspond-
ing to a potential difference of 105 mV in a r = 4 A channel. In Figure 6.4, we
compare the concentration profiles found from PNP calculations (filled circles) with
those constructed from the BD simulations (histograms) similar to Fig. 6.3 A but
for a channel with a radius of r = 4 A. Apart from a slight asymmetry caused by
the applied potential, both sodium (A) and chloride (B) concentrations in PNP are
seen to stay around the reservoir value of 300 mM throughout the channel. That is,
PNP predicts that the sodium and chloride concentrations across the channel are
nearly equal, leading to almost perfect shielding of ionic charges inside the channel.
With equal amounts of positive and negative charge in the channel, surface charges
induced by each are cancelled by the other, and so there is no net induced surface
charge. The ion-channel interaction is completely ignored in PNP and charge is
transported across the channel as if the dielectric boundary did not exist (i.e., as
if €protein = 80). The BD results in Fig. 6.4 paint a completely different picture.
Here the ion concentration drops exponentially as one moves into the channel, and
it is more than an order of magnitude smaller than the reservoir values at the mid-
dle of the channel. This result simply follows from the fact that ions enter the
channel singly most of the time, and meet a sharply rising potential energy bar-

rier due to the induced boundary charges (see Fig. 6.2). This barrier reduces the
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probability of ions’ access to the channel interior. Due to fluctuations in ions’ en-
ergy, they have sufficient energy at times to cross the channel, which is why the
concentrations do not completely vanish in the middle. Indeed, when the poten-
tial gradient in Fig. 6.4 is replaced with a relatively weaker concentration gradient
(¢ = 100 mM and cg = 500 mM), as shown in Fig. 6.5, the BD results drop even
faster and the concentrations for both sodium and chloride vanish in most of the
channel interior. The single ion barriers appear to remain mostly intact in the BD
simulations, preventing ions from entering the channel interior, and thus they give
no hint of shielding in narrow channels. The PNP concentrations in Fig. 6.5, on
the other hand, increase almost linearly from left to right, following the prediction
of Eq. 6.7 for a bulk electrolyte. The sodium and chloride concentrations are equal
everywhere in the channel, and perfect shielding in PNP is again seen to lead to a
radically different result compared to BD.

The lack of shielding near a dielectric boundary in BD has also some effect on the
reservoir concentrations. We see that the asymmetry caused by charge separation
in the reservoirs in Fig. 6.3 A is cancelled on the left hand side of Fig. 6.4 A but
enhanced on the right hand side. A similar but opposite effect is observed for Cl~
ions in Fig. 6.4 B. This simply results from ions being repelled from the protein
boundary, leading to a zone of exclusion, and hence a smaller effective volume in
the reservoir layers next to the channel. Due to shielding, such an effect does not
occur in PNP.

The above examples clearly show that the concentrations predicted by PNP in
narrow channels are not at all similar to the time-averaged concentrations obtained
from the BD simulations. This is in conformity with the observed break down of the
continuum assumptions in the Poisson-Boltzmann theory when the channel radius
is smaller than the Debye length (cf. chapter 5). With increasing channel radius,
the discrepancies between the two theories should get smaller as one approaches to
bulk conditions. To see where this happens, we show in Fig. 6.6 how the average
concentrations in the two theories change with increasing radius. The PNP results
for sodium (A) and chloride (B) are indicated by a single solid line because there is
no visible dependence on the channel radius. Naturally, size doesn’t matter when
there is no interaction between the channel and ions. In contrast, the concentrations
in BD gradually increase with the channel size, and are expected to converge to the
PNP results at around » = 16 A, i.e., about 3 Debye lengths. In large radius
channels, ions can remain further away from the channel walls where the boundary
forces are quite small. Also the channel is often occupied by counter ions leading to

appreciable shielding (see below). Thus, the channel does not play a significant role
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Figure 6.4: Comparison of concentration profiles in PNP and BD as in
Fig. 6.3 A but for a real channel (eprotein = 2) with a radius r = 4 A.
PNP concentrations are shown with filled circles and BD results with the
histograms for sodium (A) and chloride (B) ions. A symmetric solution of

300 mM is used and 105 mV is applied between the boundaries.
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Figure 6.5: Comparison of concentrations in a r = 4 A channel as in Fig. 6.4

but with asymmetric solutions (¢;, = 100 mM and c¢g = 500 mM) and no
applied field.
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in ion permeation any more, and the situation is more like in a bulk electrolyte.
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Figure 6.6: Similar to Fig. 6.4 but shows the changes in the concentration
profiles in PNP (solid lines) and BD (dotted lines) as the channel radius is
increased progressively from r = 4 to 6, 8 and 12 A. The concentration of

sodium ions is shown in (A) and of chloride ions in (B).

Though they are much suppressed in narrow channels, the sodium and chloride
concentrations in BD are quite similar in magnitude. This raises the question of
whether ions enter the channel in pairs or singly at different times. In the latter
case, similar average concentrations follow simply from the fact that both anions
and cations see identical potential barriers as they enter the channel. To answer
this question, we have carried out conditional probability studies in BD simulations
by counting the number of anions in channel layers when a cation is in a specified

layer. For example, when a Na™ ion is at the pore entrance (the second layer of
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the channel from the left in Fig. 6.4 A), the probability of finding a Cl~ ion in the
channel is found to be 27%, that is, 3 out of 4 times ions enter the channel singly.
This supports our assertion that counter ions are not usually present to shield the
electrostatic barriers to ion permeation in narrow channels. It is worthwhile to
emphasize that even when there is a counter ion in the channel so that it is neutral,
one only gains a small shielding effect from its presence (see Fig. 5.5). Complete
screening of an ion’s charge occurs only when counter ions have space to move
around the ion freely in all directions, which is obviously not possible in a narrow
channel. When the radius of the channel is increased to 12 A, the probability of
finding a counter ion in the channel rises to 100%. Thus shielding can play a more
appreciable role in a wide channel both in terms of presence of counter ions and
available space.

The source of the discrepancies between the PNP and BD results is illustrated
schematically in Fig. 6.7. If ions are treated discretely and enter the channel in-
dividually as in (A), each will induce a large amount of repulsive surface charge.
When dealing with the continuum picture, however, on average there is some pos-
itive charge and some negative charge in the channel as indicated in (B). In this
case the charge induced by one species is perfectly cancelled out by that induced
by the other. In wide channels, the pictures look much more alike. Even if ions are
treated discretely as in (C), both positive and negative charge can enter the channel
and the surface charges will at least partly cancel out. Also, the magnitude of the
surface charges will be less as ions can move near the axis and remain far from the

dielectric boundary.

Since the potential and concentration are determined self-consistently in PNP,
the errors committed in concentrations are expected to affect the potential results,
and these in turn will lead to inaccuracies in the flux results. To illustrate the
magnitude of these errors and how they change with the increasing channel size,
we compare in Fig. 6.8 the normalized conductances in PNP and BD as a function
of the radius (cf. Fig. 6.3 B). The PNP results for both the Na® (A) and Cl~ (B)
ions are almost the same as in Fig. 6.3 B for a passive channel, regardless of the
channel size. This is a natural consequence of perfect shielding that prevents any
ion-channel interaction. Thus whether the dielectric constant of the protein is 2
or 80 makes almost no difference in PNP. The BD simulations show a dramatically
different result: the conductance vanishes in a 7 = 3 A channel and is suppressed by
an order of magnitude in other narrow channels. As the channel radius is increased
further, the conductance obtained from BD rises rapidly, converging towards the

predictions of PNP (and the passive channel results) at around 14 A. The small
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Figure 6.7: A schematic illustration of the the surface charges induce along
the channel walls using a discrete (A) and continuous (B) treatment of ions.
In the later case, all surface charges are cancelled out. In a wide channel (C)
the discrete picture shown looks more like the continuous one and at least

partial shielding of image forces results.
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discrepancy between the PNP and BD results at large radii is presumably due to
the fact that the area used in the normalization of the conductance in BD would
actually be smaller if the effect of the repulsive boundary is taken into account.
Figure 6.8 nicely summarizes the results in bare channels, depicting how shielding
in PNP leads to an overestimate of current in narrow channels and where one could

expect it to work again.
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Figure 6.8: Normalized conductance of Nat (A) and Cl~ (B) ions in a bare
channel are plotted against the channel radius as in Fig. 6.3 B. A symmetric
solution of 300 mM and an applied potential of 105 mV are used. The BD
results (circles) are fitted by the dotted line and the PNP results (diamonds)
by the solid line. Each BD data point is obtained from a 3.6 us simulation
period.
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Charged channels

Ion channels usually have excess charges in the protein wall that help the per-
meation of one type of ions while discouraging the counter ions from entering the
channel. Here we consider the case of a cation selective channel by placing a set
of negative charges in the walls near each end of the channel. Eight monopoles
with charges —0.09e are spread evenly around at z = 12.5 A and another set at
z = —12.5 A. The effect of these charges on the potential profile of a cation, as shown
in Fig. 6.2 B, is to cancel the barrier due to a bare channel with radius » = 4 A. For
anions, the opposite happens and the barrier is roughly doubled. In PNP, the bias
introduced by the fixed charges spoils the coexistence of cations and anions in the
channel, and hence reduces the perfect shielding conditions that has been the source
of problems in bare channels. As a result we expect the discrepancies between the
PNP and BD results to get smaller.

The PNP and BD concentration profiles for a7 = 4 A channel with fixed negative
charges are compared in Fig. 6.9. This figure is obtained under identical conditions
as in Fig. 6.4 except for the inclusion of the fixed charges. It is seen from Fig. 6.9 A
that the sodium concentration has two sharp peaks adjacent to where the negative
charges are located, and the agreement between PNP and BD in this region is quite
reasonable. There is a sharp drop in the cation concentration between these peaks,
and here the PNP results are a factor of 3-4 larger than those of BD. The BD
concentration is less than the average concentration of 300 mM, demonstrating that
ions are still largely excluded from the central section of the channel because of the
remnant energy barrier there (see Fig 6.2 B). This also explains why the left hand
peak is higher than the right hand one in BD, in contrast to PNP results which
correlate with the intuitive expectation that having a deeper potential well on the
right hand side compared to the left should yield a larger concentration there (see
Fig 6.2 B). In fact, in BD simulations, cations have difficulty in crossing the central
barrier from left to right, and therefore build up in the left hand well.

The chloride concentration in BD (Fig. 6.9 B) has a similar appearance as in
Fig. 6.4 B without fixed charges except that the larger barrier leads to an even
stronger suppression of the concentration in the channel interior. The fixed charges
also reduce the chloride concentration in PNP, but this effect is nowhere near as
great as in BD. In the middle of the channel, the chloride concentration rises to
200 mM, which is an order of magnitude larger than in BD. Thus we see that
shielding in channels with fixed charges, though much reduced compared to the
bare channels, is still quite effective in PNP. A study similar to Fig. 6.5, where the

potential gradient is replaced by a concentration gradient is not shown here because
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Figure 6.9: Comparison of concentrations in a = 4 A channel as in Fig. 6.4
but with fixed charges in the protein wall. Eight monopoles, each with charge
-0.09¢, are distributed around each end of the channel. A symmetric solution
of 300 mM and an applied potential of 105 mV are used. Again, bars and
solid lines represent the BD and PNP results respectively.
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it gives much the same message as Fig. 6.9, once the asymmetry in the reservoir

values is taken into account.

To see when congruence of the two theories can be expected, we present in
Fig. 6.10 a study of the average concentrations in PNP and BD as the channel
radius is progressively increased from r = 4 to 12 A, similar to Fig. 6.6. One
welcome change here compared to the bare channel is that the PNP results now
depend on the channel radius. Fixed charges introduce back a size-dependent ion-
channel interaction in PNP by destroying the perfect shielding conditions and also
via the direct Coulomb interaction. While this improves the concentration profiles
in PNP compared to BD, there are still sizable discrepancies at all radii shown, and
a full convergence between the two theories occurs around 16 A as in the case of
the bare channels (cf. Fig. 6.6).

For a narrow channel, the presence of negative fixed charges greatly assists
cations to cross the channel while hindering the anions further. Consequently,
compared to the bare channels, we expect the cation conductance to increase sig-
nificantly and the anion conductance to diminish. These effects are seen in both
theories, however, as shown in Fig. 6.11, the extent to which conductance are en-
hanced or impeded and how this changes with the channel radius differ markedly
between the two. In BD simulations, the induced surface charge effects still domi-
nate the dynamics in narrow channels, and the cation current remains quite small
despite the presence of fixed charges (Fig. 6.11 A). In contrast, the fixed charges
greatly enhance the cation current in PNP, and as a result, there is an order of mag-
nitude discrepancy between PNP and BD in the » = 3 A channel. This discrepancy
in the cation conductance drops to a factor of 2 at » = 4 A, and the PNP and BD
results quickly converge after that as the channel gets wider. This relatively happy
state of affairs, unfortunately, does not extend to the anion conductance, which
still suffers from shielding effects in PNP. The anion current in PNP is an order
of magnitude larger compared to BD in narrow channels, and remains significantly
higher as the radius is increased (Fig. 6.11 B). The fixed charges are less successful
in excluding anions in PNP compared to BD because they are largely shielded out.
The conductance of both cations and anions in PNP and BD converge toward each
other and to that expected without fixed charges when the channel radius becomes
large. The differences in the limiting values is again presumably due to over and
under estimation of the cross sectional area used in normalization of the current in
BD. With fixed negative charges, a larger effective area than employed is expected
for cations and vice versa for anions, which will lead to a reduction in conductance

for sodium ions and an increase for chloride ions.
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Figure 6.10: Concentration profiles in PNP (solid lines) and BD (dotted lines)

in cylindrical channels of differing radii as in Fig. 6.6 but with fixed charges.
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Figure 6.11: Normalized conductance of Nat (A) and C1~ (B) ions are plotted
against the channel radius as in Fig. 6.8 but for a channel with fixed charges.
The BD results (circles), representing a 3.6 us simulation period, are fitted
by the dotted line and the PNP results (diamonds) by the solid line.
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So far we have mainly considered channels with symmetric solutions and a fixed
applied potential. Since most applications of PNP involve the prediction of I-
V curves in narrow channels with fixed charges and asymmetric solutions, it is
worthwhile to compare PNP and BD in such a situation. For this purpose, we use a
r =4 A channel with the fixed charges placed as above and with the concentrations
in the left and right reservoirs as ¢, = 100 mM and cg = 500 mM, respectively.
In Fig. 6.12, the I-V curves obtained from the PNP calculations (diamonds fitted
with solid lines) are compared with the BD results (circles fitted with dotted lines).
The sodium current in PNP (Fig. 6.12 A) is similar (though not identical) to the
prediction of the Goldman-Hodgkin-Katz equation. The zero point is shifted by
the Nernst potential and the slopes for the negative and positive current ranges
are different. Though much reduced compared to PNP, the sodium current in
BD broadly exhibits the same features at low voltages. An upswing in current
observed near 150 mV is due to the central barrier becoming less of an impediment
to permeation of Na™ ions with increasing driving force. The chloride current in
PNP (Fig. 6.12 B), apart from a reduction in magnitude and inversion of the curve,
is similar to the sodium current. In complete contrast, the chloride current in
BD essentially vanishes at all applied voltages. As already noted above, shielding
of fixed negative charges is responsible for the large anion currents in PNP, and
lack of it in BD keeps the large potential barrier intact and prevents anions from
crossing the channel. Anion-cation selectivity, which is simply achieved with the
introduction of fixed charges in BD, is one of the problems in applications of PNP.
There is no natural mechanism to implement it in PNP, and therefore, artificially
low values of diffusion coefficients have often been employed in order to suppress
the anion current. The range of ion diffusion coefficients that are appropriate for

model channels employed here are estimated from molecular dynamics studies [7].

Another experimental quantity which is expected to exhibit large discrepancies
between PNP and BD is the conductance-concentration curves. Since there is no
limit to ion concentrations inside a channel, and no barriers to impede ions from
crossing a channel, one intuitively expects that the observed saturation property of
channels cannot be explained in PNP. In Fig. 6.13, we compare the conductance-
concentration curves obtained from PNP and BD in a r = 4 A channel with fixed
charges. Symmetric solutions and an applied potential of 105 mV are employed in
this study. In PNP both the sodium (A) and chloride (B) conductance monotoni-
cally increase with concentration. Fixed negative charges are seen to suppress the
anion conductance quite successfully at small concentrations. But this situation is

quickly rectified with increasing concentration and both anion and cation conduc-
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Figure 6.12: Comparison of I-V curves in PNP (diamonds fitted with solid
lines) and BD (circles fitted with dotted lines) in a » = 4 A channel with
fixed charges. An asymmetric solution with ¢z, = 100 mM and cg = 500 mM

is employed. Each BD point represents a 1 us simulation period.
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tance reach a linear regime with similar slopes. Thus no saturation of conductance
is seen in PNP. To explain the observed saturation, non-electrostatic mechanisms
have been incorporated in the PNP formalism, such as, suppressing the diffusion
coefficient in a localized region near the fixed charges [123,124], or introducing dif-
ferent chemical potentials for each ion type [151]. The connection of these ad hoc
measures to the underlying electrostatic ion-channel interaction, however, is not
clear. In BD, the sodium conductance exhibits the expected saturation property
(A), while that of chloride vanishes as in the case of the I-V curve (B). The latter is
simply due to the large potential barrier seen by anions as before. Saturation of the
sodium conductance, on the other hand, arises from the processing time required
for the transit of a Na™ ion across the channel. If the time taken to climb over the
central energy barrier in the channel is not dependent on the concentration in the
baths, then at high concentrations this becomes the rate limiting step in conduc-
tion. If there were no barriers in the channel, this time would be very small and
no saturation would have been observed within the range of concentrations used in
Fig. 6.13. However, when ions enter the channel singly, there are residual potential
barriers in the channel as seen in Fig. 6.2 B, which provide the rate-limiting step

necessary for saturation.

The dielectric constant inside a channel, €., is not a well determined quantity,
and in narrow channels, it may well be much lower than 80. In the tests of Poisson-
Boltzmann theory in chapter 5, the use of a smaller dielectric constant has been
shown to lead to a reduction in shielding, though this was not sufficient to procure an
agreement with BD. We carry out a similar study here to see whether a reduction
in €, could lead to an improvement in PNP predictions. How this reduction is
implemented inside a channel in the two theories has been described in the previous
chapter. The comparisons are done in a 7 = 3 A channel with a symmetric solution
of 300 mM and an applied field of 10” V/m. The results for a bare channel are
shown in Fig. 6.14 A and those for a channel with fixed charges in Fig. 6.14 B.
Considering the significant increases in potential energy profiles when ¢, is reduced
(see Fig. 5.10), the current in PNP is hardly perturbed. It may seem perplexing
that the rapid increase in the potential barrier height in PB theory does not lead to
an even stronger suppression of the current in PNP. This is because the potential
energy profiles in PB are obtained for a test ion with a full charge e, whereas ionic
charge is distributed throughout the system in PNP and its value on a grid point
is typically less than e/1000. Recalling that the Born energy is proportional to the
charge squared, it is easy to see why a reduction in ¢, makes almost no difference

in PNP. In the same vein, the fixed charges increase the cation concentration by
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Figure 6.13: Conductance-concentration curves in PNP (diamonds fitted with
solid lines) and BD (circles fitted with dotted lines) in a 7 = 4 A channel with
fixed charges. Symmetric solutions and an applied potential of 105 mV are

used. Each BD data point is derived from a 1 us simulation period.
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four-fold in PNP, and hence cause a little more reduction in the sodium current
in Fig. 6.14 B compared to Fig. 6.14 A. In BD, the energy barriers increase with
decreasing € in the channel, causing ionic currents to vanish quickly even if they
have not been already zero at ¢, = 80. Thus a possible reduction in the dielectric
constant in the channel will lead to larger discrepancies between PNP and BD due

to the complete neglect of the Born energy in PNP.
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Figure 6.14: Effect of changing the dielectric constant inside a r = 3 A
channel on sodium and chloride currents. The dielectric constant is kept at
2 in the protein. Both channels without (A) and with (B) fixed charges are
considered. A symmetric solution of 300 mM and an applied field of 107 V/m
are used. The PNP results are indicated by diamonds fitted with the solid

lines. The BD results are shown with circles and are mostly zero.

The fixed negative charges in the above study have been chosen so as to cancel
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the barrier seen by a cation in a bare channel. In applications of PNP, similar
amounts of fixed charges are employed. The presence of negative charges in the
channel creates conditions conducive for cation conductance in BD and decreases
shielding in PNP, thereby reducing the large discrepancies between the two theories
observed in bare channels. An interesting question here is whether further improve-
ments in PNP theory can be achieved by increasing the amount of fixed charges in
the protein wall. This question will be addressed in the next section in the realm

of the potassium channel which has a highly charged protein wall.

6.5.5 Potassium channel

The cylindrical channels employed in the last section provide only a schematic
model for channels. It is of interest to repeat the tests of PNP and BD using a
more realistic channel model. For this purpose we use the KcsA potassium channel
whose crystal structure has been revealed in a recent x-ray study [58]. A thorough
investigation of this channel using BD is given in Chung et al. [40]. Here we give
a minimal description of the model channel necessary for the ensuing discussions.
The shape of the channel is shown in Fig. 6.15 A. A cylindrical reservoir with radius
30 A and variable length is connected to each end of the channel. The dielectric
constants are €yater = 80, €protein = 2 as in the cylindrical channels. As shown below,
for this narrow channel to conduct, it must have fixed charges in the protein wall.
These charge groups are modeled as sets of dipoles with four-fold symmetry about
the z axis as follows: 1) 4 rings of 4 carbonyl groups are placed along the selectivity
filter, located at z = 10, 13.33, 16.67 and 20 A. The negative pole of each carbonyl
group (filled circles in Fig. 6.15 A) is placed 1 A from the boundary, the positive
pole 1.2 A away from the negative pole, with their orientation perpendicular to the
z axis; ii) 4 helix macro-dipoles (open circles), with their N-terminals pointing at
the oval chamber near the middle of the channel are placed 90° apart. The positions
of the N-terminals of the helix dipoles are z = 10.66 A and r = 5.66 A, and those
of the C-terminals are z = 22 A and r = 17 A. The length of the dipole is 16 A; iii)
4 “mouth” dipoles (filled diamonds), 5 A in length are placed at each entrance of
the channel. These are located at z = 22.83 A and z = —20 A. The absolute value
of the charge on each end of each of the dipoles is estimated to be 0.6 x 107! C,
which yields an optimal current in BD [40]. In one study, the charges on dipoles are
varied simultaneously from 0 to 1.2 x 107! C to see their effect on the conductance
properties of the channel.

To clarify the role of fixed charges, and provide an intuitive understanding of
the BD results, we first study the potential energy of an ion with varying fixed



6.5. Results 141

Radial distance (A)

Potential energy (x102'J)

-150

L | 1 | |
-40 -20 0 20 40

Axial distance (A)

Figure 6.15: (A) Cross section of the potassium channel model. The posi-
tions of various dipole groups in the channel walls are indicated in the figure:
filled circles show the oxygen atoms of carbonyl groups; open circles, the N-
terminals of the helix dipoles; and filled diamonds, the mouth dipoles. Dipoles
are spread with a four fold symmetry about the z axis. (B) Changes in the
potential profiles of a cation traversing the channel when the charge on the
dipoles is 0 (a), 0.3 (b), 0.6 (c) and 0.9 (d) x10~1° C.
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charges in the channel. Potential energy profiles of a single cation traversing the
channel with an applied potential of 105 mV between the ends of the reservoirs are
shown in Fig. 6.15 B. These profiles are constructed from numerical solutions of
Poisson’s equation as explained for Fig. 6.2. The top plot (a) shows the potential
energy in the channel when no dipoles are in place. Because the channel contains
a very narrow selectivity filter with a radius of 1.5 A, the potential barrier due to
the induced boundary charges is too large (17 kT) for ions to surmount. When all
the dipoles discussed above are included, this barrier can be turned into a potential
well. Plots (b), (c) and (d) show the potential energy profiles when the charges on
each end of each of the dipoles are 0.3, 0.6 and 0.9 x 10~!° C, respectively. The
potential wells in (c) and (d) are very deep (-24 and -45 kT, respectively), so that
ions would have difficulty in climbing out of them on their own. Thus it is expected

that the selectivity filter is permanently occupied by one or more ions in these cases.

Both the PNP calculations and the BD simulations are carried out with an
applied potential of 105 mV between the reservoir ends and an average concentration
of 300 mM KCI in each reservoir, which is represented by 16 ions of each species
in BD. In Fig. 6.16 A, we show how the conductance of the channel changes as the
strength of the mouth dipoles is increased. Without charges, both the potassium
and chloride conductances vanish in BD. With increasing dipole charges, the barrier
on Cl~ ions increases further, and its conductance remains zero, therefore it is not
shown in this figure. The potassium conductance in BD (filled circles joined with
the dotted curve) exhibits an interesting behaviour. It increases at first with the
charge, reaching a maximum value at 0.6 x 1071° C, and then decreases again. An
explanation of this behaviour requires analysis of multiple ion-channel interactions
to find the residual barriers in the channel (see [40]). We do not enter such a
discussion here but simply note that the channel is occupied by two K* ions on

average in the optimal charge configuration.

In the absence of charges, PNP predicts a nearly equal conductance for potas-
sium (filled diamonds in Fig. 6.16 A) and chloride (open diamonds), which is the
result of the perfect shielding conditions as discussed earlier for bare cylindrical
channels. With increasing dipole strength, the chloride conductance in PNP is
quickly suppressed, vanishing at 0.3 x 107° C. Thus the cation-anion selectivity
in PNP can be achieved when the protein wall is highly charged. The potassium
conductance in Fig. 6.16 A exhibits a parabolic behaviour with a maximum at
0.7 x 107*° C, which may appear to mimic the conductance in BD, albeit at a much
higher value. However, there are no barriers in PNP, and the reason for the drop

in the conductance is actually due to the saturation and decrease of the potassium



6.5. Results 143

250 -
200
150

100

Conductance (pS)

50 -

00 02 04 06 08 10 12
Charge on dipoles (x107"°C)

500 - -

400

300

200

Conductance (pS)

100

0 200 400 600 800 1000
Concentration (mM)

Figure 6.16: Conductance in a potassium channel. An applied voltage of 105
mV is maintained between the reservoir ends. (A) Variation of the conduc-
tance in a potassium channel as the absolute value of charge on each end of
the 28 dipoles surrounding the channel is increased from 0 to 1.2 x 1071° C. A
symmetric, 300 mM solution is used in the calculations. The conductance of
potassium (filled diamonds) and chloride (open diamonds) in PNP are fitted
with the solid lines. The BD results for potassium are shown with the filled
circles joined with the dotted line. The chloride conductance vanishes, and
therefore not shown. (B) Conductance-concentration study of the potassium
channel when the charge on the dipoles is held at 0.6 x 107!% C. The results
of PNP theory are shown by the diamonds and are fitted by the solid line
while those of BD simulations are shown by the filled circles and are fitted
using the Michaelis-Menton equation (dotted line). The chloride conductance
vanishes in both theories and hence is not shown. BD data points in A and

B are obtained from a 2 us simulation period.
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concentration in the centre of the channel where there are no dipoles. Note that the
dielectric constant in the channel is likely to be lower than 80, in which case, the
difference between the two theories will be amplified. For example, the conductance
in BD drops by half when €, = 60 is used in the potassium channel instead of 80 (see
[40]), whereas the PNP results are hardly affected by such a change (see Fig. 6.14)

With the optimal choice of the dipole charges (0.6 x 107*® C), the agreement
between PNP and BD appears reasonable given that it is such a narrow channel; the
chloride conductance vanishes and the discrepancy in the potassium conductance
is only a factor of 2. Though we have not presented a study of concentration here,
because it exhibits wild changes, a look at the total ionic charges in the channel will
throw some light on this relatively successful outcome. The total cation and anion
charges in the channel are, respectively, 2.7 and -0.27 e in PNP and 2.1 and 0 e in
BD. The reason why the anion conductance is zero in PNP despite the presence of
chloride ions in the channel is that its concentration vanishes in the highly charged
regions of the channel, e.g., the selectivity filter. The dipoles are seen to lead to an
order of magnitude difference between the cation and anion charges in PNP, which
is sufficiently high to protect it from the undesired influences of shielding.

To see whether PNP can maintain the above success at higher concentrations, we
subject it to a final hurdle with a study of conductance-concentration relationship.
With increasing average concentration in the reservoirs, the number of cations and
anions stay more or less the same in BD, but monotonically increase in PNP. Worse,
this increase is much faster for anions so that the anion/cation ratio rapidly grows
with concentration, bringing the unwanted shielding back into the folds of PNP. The
end result, as shown in Fig. 6.16 B, is that the potassium conductance in PNP does
not saturate but keeps growing with concentration. The BD simulations, on the
other hand, reproduce the well known saturation property of the potassium channel
(see, e.g., [162]). The BD results in Fig. 6.16 B are fitted by the Michaelis-Menten
equation (dotted lines)

Imax
= R (6.14)

where .., the saturation current, and K, are fit parameters. As in the case of
the cylindrical channel (Fig. 6.13), saturation of the conductance in the potassium
channel arises from the residual barriers that ions have to surmount (see [40] for a
detailed discussion). On the positive side, the chloride conductance in PNP remains
vanishingly small at all concentrations in agreement with BD. Despite the rapid
growth in anions in the channel with concentration, they are still excluded from the
highly charged regions. Preservation of the cation-anion selectivity in the potassium

channel is quite remarkable for PNP, especially when compared to Fig. 6.13 B. This
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is due to the large amount of fixed charge in the protein wall, which dominates the
electrostatic forces and diminishes the role of boundary forces. While being helpful
in suppressing the anion current in a natural way, this situation is, in fact, a mixed
blessing for a continuum theory, since it creates a multi-ion environment where the
ion-ion interactions seem to be playing a crucial role in ion permeation [40]. Because
the ion-ion interactions are washed out in the mean field approximation, such an
intricate behaviour of ions cannot be modeled within the PNP approach.

6.6 Conclusions

We have presented extensive comparisons of PNP theory with BD simulations
employing a variety of channel shapes and conditions. Our main conclusion, as in
the previous chapter, is that shielding does not play any role in ion permeation in
narrow channels, and that the shielding seen in PNP theory is largely a chimera of its
continuum assumptions rather than a real feature of the underlying physics. This is
mostly clearly shown in bare cylindrical channels, where the uniform occupation of
the channel by cations and anions in PNP leads to perfect shielding and thus no ion-
channel interaction. However, in BD simulations, where ions are treated as discrete
entities, it is found that counter ions cannot provide any shielding and so ions hardly
ever enter the channel due to the repulsive ion-channel interaction. Consequently,
PNP theory fails in its predictions of physically observable quantities. In more
formal terms, the time averages of concentration and potential profiles obtained
from the BD simulations are in complete disagreement with the PNP predictions,
and hence the mean field approximation in PNP breaks down in narrow channels. A
convergence between the two theories occurs only in wide channels with radius 2-3
Debye lengths (11-17 A for a 300 mM solution). Agreement arises in wide channels
simply because bulk conditions prevail.

Besides the channel radius, a second parameter that has a significant influence
on ion permeation is the amount of fixed charge in the protein wall. In PNP, fixed
charges spoil the coexistence of cations and anions in the channel, and thereby re-
duce the false shielding effects. When moderate amounts of fixed charge are present,
as in most applications of PNP, there is some improvement in the PNP results (e.g.,
the I-V curve in Fig. 6.12 A), but in most aspects it still fails the tests (e.g., anion
conductance in Fig. 6.12 B and saturation of conductance in Fig. 6.13). Compar-
isons in the potassium channel provide a test of PNP in the high-charge limit. Here
finally, the problem with the anion conductance is resolved, and the discrepancies

between PNP and BD are quite small considering the fact that it is a rather narrow
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channel. Nevertheless, PNP still cannot reproduce the saturation of conductance,
due to shielding becoming significant again with increasing concentration. Another
problem in the application of PNP to the potassium channel is that it is occupied
with multiple ions, whose interactions are ignored in PNP.

Our results demonstrate clearly that ions in a narrow pore formed by the protein
wall must be treated as individual particles carrying an elementary charge ze. Their
representation as a continuous charge density, as in the PNP theory, leads to erro-
neous results. The physical interpretation of the process of ion permeation across a
narrow channel given by the PNP theory does not reflect reality. In this respect, a
match between experimentally determined current-voltage relationships and those
calculated from the PNP theory by adjusting several free parameters is fortuitous.
Some of the parameters used in many applications of PNP, such as the diffusion
coefficients of different ionic species, are not in a physically realistic range (for ex-
ample, [33,34,151]). Thus, the error committed by an inappropriate application of
the PNP theory outside its domain of validity is remedied by adopting physically
unrealistic values of the diffusion coefficients of ions. This point is discussed in
more detail in an article by my colleagues where diffusion coefficients of a variety of
biologically important ions are estimated from molecular dynamics simulations in
both schematic cylindrical channels and in a realistic potassium channel [7].

As the problems with both the PB and PNP theories stem from an underesti-
mation of self energy due to dielectric screening, in the next chapter I look at the

possibility of salvaging these theories by reintroducing this self energy explicitly.





