Chapter 1

Ion Channels

1.1 Ion channels

The cells in living organisms are separated from their environment by membranes
which form a wall or barrier between the interior of the cell and the outside world.
These membranes are formed from molecules known as phospholipids that orient
to form thin sheets. These lipids have a long oily tail and a charged or polar
headgroup. When placed in water the hydrophyllic heads are attracted to the water
molecules whilst the hydrophobic tails try to move away from them. This causes the
phospholipds to arrange themselves into a double layer, with the head groups facing
the water molecules on each side and the tails in the middle. The lipid molecules
are not bound to each other, and so can move past each other, but the hydrophobic
forces hold the molecules in their double layer conformation, preventing individual
molecules from popping out of the sheet. These membranes may be formed from
a wide range of different phospholipids, and their dimensions will vary with their
composition, but typically their thickness lies in the range 30 — 70 A.

Cells in complex organisms must be able to interact with their environment,
and so there must be a mechanism for particles to move across the membrane.
Because the membrane is a more like a two dimensional fluid than a rigid wall,
some neutral molecules are able to do this by simply diffusing or squeezing their
way through the membrane. However, the majority of cellular signaling takes place
with the movement of ions across cell membranes, and charged particles cannot
easily squeeze through a membrane.

The reason for this is that ions try to keep away from the hydrophobic centre
of the bilayer, in the same way, but even more strongly so, than water molecules.
Bulk water, is comprised of polar molecules which present a much more favourable
environment for ions than the lipid. Indeed, an ion attracts a layer of surrounding

water molecules (known as the ‘hydration shell’) which have to be stripped away
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if the ion is to squeeze through the membrane. This requires a great amount of
energy that cannot be balanced by electrostatic interactions with the non-polar
hydrophobic lipid tails.

The amount of energy required to move an ion through the membrane can be
quantified by representing the membrane as a region of low dielectric constant,
and bulk water as a region with a high dielectric constant. A system with such
a sharp change in dielectric properties presents an enormous energy barrier to the
permeation of charged particles. The energy required to move an ion, radius r, from
bulk water, €yater = 80, into an infinitely thick bilayer, €nmemprane = 2, 1S given by
[117]:

O R S (1.1)
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For a sodium ion at room temperature this energy barrier is about 100 kT. Intro-
ducing a correction factor for the finite thickness of the membrane, only reduces the
barrier to about 96 kT for a 50 A thick membrane [45]. As the amount of energy
required to pass through the membrane is much greater than the average thermal
energy of an ion (v 3/2 kT) the membrane is effectively impermeable to small ions
or polar molecules.

Cell membranes are not homogeneous but are full of impurities: other molecules
with hydrophobic regions try to take refuge in the bilayer. Thus, membranes do
not just differentiate the inside from the outside of the cell, but also provide homes
for a large number of protein molecules. Indeed, it is these protein molecules that
enable the movement of ions across the membrane.

There are two main mechanisms by which this ion permeation through mem-
branes takes place, both of which involve protein molecules in the membrane. One
mechanism involves ‘carrier proteins’ which bind to the ions and then help them
through the membrane. The other involves ‘protein pores’ which create a small
water filled hole or channel through the membrane through which ions can pass.
Because pores transport ions passively they can move ions at a great rate, trans-
porting them at the order of 107 ions per second. Carrier proteins on the other hand
are much slower, moving only 300 or so ions per second [85].

Protein pores, or zon channels as they are better known, are simply a protein that
spans across the membrane with a hole down its centre. An artists depiction of what
they may look like is shown in figure 1.1. This diagram shows the bilayer membrane
formed from phospholipids with circular polar heads and wiggly hydrophobic tails.
Sitting in this bilayer are two ion channels, the closest shown in cross section to
display the central water filled pore that provides a path for ions from one side

of the membrane to the other. These channels enable the passive diffusion of ions
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across the membrane.

Figure 1.1: An Artist’s conception of ion channels in a lipid bilayer membrane
(taken from [85]).

Remarkably, the existence of ion channels was only postulated and verified quite
recently. It has been known since the middle of last century that large currents
flowed across biological membranes. For example, Hodgkin and Huxley [87] carried
out a study of the ionic basis of nerve impulses in 1952 in which they measured the
conductance of sections of nerve axon membrane. The conductances measured in
such experiments were quite large, in the order of 2 x 1072 Q2 'cm 2, so they knew
that there must be a mechanism for transporting ions across the largely impermeable
membrane. Furthermore, Hodgkin and Huxley deduced that this ion permeation
occurred at localised sites in the membrane. The concept of water filled pores was
first postulated to explain the large currents measured moving across synthetic lipid
bilayers [19, 86] and later through nicotinic acetylcholine-gated channels in biological
membranes [146]. That these pores were formed by proteins was only established
in the mid 1970s [85].
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The development of the patch clamp technique in 1976 [146] shed further light on
the situation. In this technique a tiny glass pipette is applied to the surface of a cell
and clamped there by providing suction. This isolates a small patch of membrane
through which currents can be measured. Indeed it was found that current did flow
through small isolated sections of membrane in identifiable quanta, giving credence
to the idea of pores. In fact, these experiments were measuring the current passing
through single ion channels. The reality of ion channels was finally demonstrated
by using electron diffraction to observe water filled protein pores, which identified
the so called ‘gap junction’ channels in 1984 [204] and nicotinic acetylcholine gated
channels in 1988 [202].

1.2 Ion channel characteristics

1.2.1 Gating

Ions are not free to move through channels at any time, but are tightly con-
trolled such that currents arise only at particular times. This process is known as
‘gating’ - channels are said to ‘open’ and ‘close’ in response to various stimuli. The
opening and closing of channels is clearly visible in single channel current recordings
which show long periods within which no current flows when the channel is closed,
interspersed with periods of quantified current when the channel is open. Different
channels respond to different stimuli, but fall into 3 main categories. Channels may
open or close in response to a change in the potential difference across the mem-
brane (voltage-gated channels), to the binding of specific chemicals to the protein

(ligand-gated channels) or to a mechanical pressure (mechano-sensitive channels).

The exact process of channel gating is not well known and in any case will vary
between the different types of channels. Voltage gated channels contain a section
of the protein known as the ‘voltage sensor’ which is highly charged and moves in
response to potential changes opening the channel [85]. In ligand gated channels,
the energy gained in binding the ligand is used to produce channel activation [94].
In at least one case (KcsA potassium channel) it is known that gating involves the
widening of the pore. But, whether or not gating involves an actual opening and
closing of the pore in all cases is not yet known. It is possible that conformational
changes that result in moving charged residues closer to or further from the pore
could also create gating without physically blocking the pore.
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1.2.2 Permeation

The primary role of ion channel is to transport ions across the membrane, or in
other words to conduct currents into or out of the cell. Differing concentrations of
ions or different potentials on either side of the membrane act to drive ions through
an open channel. These differences are created by the active processes of carrier
proteins (or ‘ion pumps’) which use metabolic energy to transport ions across the
membrane creating or maintaining ionic differences and potentials.

Typical currents of many picoamps flow through open channels. Since single
channel current measurements became possible using the patch clamp technique,
the currents passing through the channel have been measured in a host of dif-
ferent situations. The most commonly measured property is the current passing
through the channel under different membrane potentials - the I-V curve. Under
physiological potentials (|V| < 100 mV') these curves are usually linear. However,
non-linearities are often found at higher potentials and can be used to study the
energetics of ion permeation.

Another common study is the influence of ion concentration on channel current.
Measuring the current while holding the potential fixed and varying the permeant
ion concentration yields the concentration-current curve, which usually saturates at
large concentrations. Similar studies using mixtures of ions, or both concentration
and potential gradients, lead to more complex conductance properties.

The steps involved in ion transport through channels are not fully understood.
In some channels ions move through the channel individually. In others, the chan-
nel is permanently occupied by ions and permeation takes place when another ion
enters and shuffles the resident ions through the channel. The conductance ex-
periments provide experimental benchmarks against which channel models can be
tested. A good model should explain the steps involved in the dynamic process of
ion permeation as well as reproducing and elucidating the origins of the current

measurements.

1.2.3 Selectivity

The function of ions channels means that they have to control the permeability
of the cell membrane to Na™, KT, Ca2* and Cl~ ions separately. To do this, different
ion channels discriminate between the types of ions that can pass. Some channels
only allow potassium ions to pass, some sodium ions and so on. When coupled with
different gating stimuli in different channels this allows for the fine control of ion

flows.
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The discrimination between anions and cations is presumably based on their
charge. The presence of positive charges in the protein close to the pore would at-
tract anions and repel cations, and vice versa for negative partial charges. Discrim-
ination between like charged ions appears to be more complex, relying, for example,
on the differing size of Nat (r = 0.95A) and K* (r = 1.33A) ions [3,58,174].

1.3 The role of ion channels

The importance ion channels in biological processes cannot be overstated. In-
deed, the roles of channels are so varied, and essential to such a large range of
processes that I can only attempt to give a broad indication of them here.

One of the most important roles of ions channels is the conduction of electrical
signals in the brain and nerves. Ion pumps in the cell membranes work tirelessly
to set up concentration differences on either side of the membrane. These pumps
move sodium ions out of the cell at the same time as moving potassium ions in.
This means that the extracellular concentration of sodium ions is very high, and the
intracellular concentration is low; and vice versa for potassium. In the process of
creating these concentration differences, the pumps move more ions out of the cell
than in, thus creating a potential difference across the membrane, with the outside
positive with respect to the inside.

A neural signal is passed from one nerve cell to another through the release of
neurotransmitter chemicals. When these neurotransmitters bind to ligand-gated
sodium channels in the next cell they cause the channel to open and sodium ions
to rush into the cell. This causes a reduction in the potential difference across the
membrane which in turn stimulates the opening of voltage-gated sodium channels.
The depolarisation propagates along the cell as it continually stimulates more chan-
nels to open, and results in what is known as the ‘action potential’. After a time
these channels inactivate preventing further ion flow. As the sodium channels in-
activate, potassium channels open, and potassium ions flow from inside the cell to
outside, thus re-establishing the normal membrane potential so that another sig-
nal can pass shortly behind the first. Once the action potential reaches a synapse
where the signal is to be sent to a neighbouring cell, it stimulates the release of
neurotransmitters. This is done principally by opening voltage-gated calcium chan-
nels - the influx of calcium creates a chemical stimulus that opens vesicles storing
the neurotransmitter chemicals. This whole process takes place in milli-seconds so
that messages can be sent throughout the body without noticeable delay. All the

time, the ion pumps work to reset the concentration gradients so that the process
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can be continually repeated. Electrical signaling in the body is thus controlled and
propagated by ion channels.

Another important role of ion channels is in sensory transduction, the process
by which stimuli such as light, sound, taste, heat or pH in areas of the body are
converted into signals which can be sent to the brain or that initiate unconscious
responses. An interesting example is in the process of hearing. The sacculus hair
cell of frogs is a cell which detects sound vibrations in the ear. When small hairs
attached to the cell are moved by as little as 1 nm, they stretch the proteins that
form mechano-sensitive ion channels in the cell membrane. This alteration causes
the channels to open resulting in an increase of current flowing through these cation
selective channels. The rise in positive charge in the cells in turn stimulates the
release of neurotransmitter chemicals which open channels in neighbouring nerve
axons. The electric signal caused by ion flow through these channels is then fed
between nerve cells to the brain [85].

Channels are also used to translate an electrical signal into a reaction in the
body. For example, when an electrical signal reaches the muscle fibres, it opens
voltage gated calcium channels. The calcium ions then provide a chemical stimulus
that prompts the muscle fibres to contract. Other roles of ion channels include the
excitation of muscle fibres by adjacent nerve cells, the regulation of cell volumes;
egg fertilisation as well as many others [45].

Apart from their biological significance, another reason that ion channels are
particularly interesting is that most drugs, toxins and hormones act by altering ion
channel function [85]. Discovering how these drugs alter channels at a molecular
level will be important in designing targeted drugs in the future. Furthermore,
since channels exist in all excitable cells and perform a host of functions, channel
malfunction has been linked to a host of diseases. Mutations within genes coding
ion channels can lead either to channel malfunction or an over- or under-expression
of the channel proteins. Such mutations are now commonly linked to hereditary
disease [16,119]. Other diseases arise when the regulation of channel function is
altered, for instance when ligands required for channel gating are not produced
in the proper quantities. In some cases large non-selective channels are actually
secreted into cells by organisms such as bacteria, and their presence quickly results
in cell death. Understanding the detailed mechanisms of channel function will help
discover how to combat these problems.
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1.4 Ion channel structure

Knowledge of the 3 dimensional atomic structure of channels is important for
understanding the mechanisms underlying channel function. The two most impor-
tant details required are the shape and size of the water filled pore, and the location
of partial charges within the protein. Knowing which atoms line the pore, and the
location of charged groups is essential if one wants to make a detailed model of the
interactions between the ions and the channel. Unfortunately, such information has
only recently become available for only a few simple channel proteins.

For a long time, detailed physiological measurements had been made without any
direct evidence of the underlying channel structure. The first step in understanding
the details of channel structures came with the discovery of the amino acid sequences
of the channel forming proteins. This was first done for the nicotinic acetylcholine
receptor channel, and soon after for many others. Although such studies could not
say anything about the 3 dimensional geometry of the channel, they demonstrated
that channels fall into families, similar not only in their functional properties, but
also in their protein composition. The similarities in amino acid sequences has since
formed the justification for deducing the approximate structure of a large number
of channels from the few which have been experimentally determined.

The conventional method for determining protein structures has been X-ray
crystallography. In this, many copies of the channel are crystalised in a lattice, and
studied by shining X-rays from various angles at the specimen and analysing the
diffraction patterns. Unfortunately, membrane proteins, and channels in particular,
have been difficult to crystalise as they are only stable in their native conformation
when surrounded by the lipid membrane.

For this reason, the first direct pictures of the 3 dimensional structure of ion
channels came from the electron microscope. In these studies, channels were quick
frozen in their lipid bilayer surroundings and electron micrographs made at different
angles and focal planes. The first low resolution pictures were obtained of gap
junction channels [204] and the acetylcholine receptor channel from the torpedo
electric ray [202]. These indicated that the acetylcholine receptor channel consists
of two 20 - 25 A wide openings, one of which extends for about 60 A from the bilayer
membrane, whilst the other extends for about 20 A. These entrances are joined by a
thin segment that spans across the membrane. This is only about 30 A long and less
than 10 A wide. Higher resolution pictures have been obtained more recently, but
although such pictures give valuable information about the channel geometry the
resolution is not sufficient to give evidence about the location of particular amino

acid residues with this.
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As structures of biological channels were so difficult to obtain, many theoretical
efforts turned to a simpler case: the gramicidin A (GA) channel. GA is an antibiotic
that forms channels in lipid membranes. Its simplicity lies in the fact that it is
comprised of only about 500 atoms, unlike biological channels that often consist of
tens of thousands. High resolution structural data was obtained for the GA channel
using nuclear-magnetic-resonance (NMR) spectroscopy in the early 1980s [15]. Since
then GA became a focus for ion channel theorists as details of the locations of all
the atoms within the channel protein were at least approximately known. The
gramicidin channel itself is a long narrow cylindrical pore, about 25 A in length and

only 2A in radius, which turns out to be quite different from biological channels.

The breakthrough in determining biological ion channel structure was made in
1998 when first the KcsA potassium channel from Streptomyces lividans [58] and
then the Myobacterium tuberculosis MscLi mechanosensitive channel [32] structures
were obtained using X-ray crystallography. Determining the KcsA structure was
particularly important, because similar potassium channels carry out important
functions in nearly all biological organisms. Although it is significantly simpler
than most potassium channels in human cells, the KcsA channel has a very similar
physiology and is thought to contain an essentially similar pore forming structural
core. Furthermore, sodium and calcium channels are believed to have evolved from
potassium channels and to share many characteristics in the pore forming region
[128]. This channel was found to be around 45 A in length. The inner end of the
pore appears to be an 18 A long tunnel only around 6 A in diameter. The center
of the channel widens to contain a 10 A diameter cavity. The outer end of the pore
narrows again to only around 3 A in diameter, and is believed to be responsible
for the channels ability to select which cations pass through it. Both ends of the
pore contain negatively charged regions which prevent anions from entering the
channel. Furthermore, the locations of potassium ions in the channel can also be

seen, indicating possible binding sites.

One difficulty in the KcsA structure is that it appears to be in a closed confor-
mation. The intracellular end narrows to a size through which potassium ions could
not pass. Determining what structural changes take place in moving to the open

state has been an interesting puzzle in the field.

Very recently, crystal structures have been obtained for a CLC chloride channel
(in a closed state) [59] and for a calcium gated MthK potassium channel (in an open
state) [97]. The advances in crystallography mean that more channel structures can
be expected in the near future.

Already there are common features emerging within the known channel struc-
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tures. Ion channels have to be able to rapidly transport ions, which is most easily
achieved by a wide pore. But channels also have to be able to select between ions,
which is most easily achieved in a narrow pore. It seems that in general a com-
promise is reached between these cases by channels having a short narrow section
responsible for discriminating between ions (known as the ‘selectivity filter’) while
the rest of the pore is much wider. Also, within the narrow section of the channel
there are usually some highly charged amino acid residues which act to both attract

ions into the channel and help discriminate between them.

1.5 Why models are needed

Physiological experiments and the determination of channel structures have
given us an important insight into the operation of ion channels. But such ex-
periments provide only the first step in determining how channels actually work.
There are many aspects of ion channel function that cannot be investigated directly
through such experimental procedures, and theoretical modelling can provide an
understanding not otherwise available.

The dynamics of ions can only be inferred from experiments, whereas they can
be observed and quantified in models. Hopefully this means that the physical causes
of various physiological properties can be determined. For example, when measur-
ing currents in a channel, it is impossible to determine exactly what ions are doing
within it. One can count the number of ions crossing the channel, but this cannot
be used to determine exactly how the ions are interacting with the protein or with
other ions in the channel. Knowing the structure of a channel assists in determining
which residues line the pore and so might provide an important interaction with
passing ions. Experiments replacing particular residues can also assist in determin-
ing the importance of various amino acids to the channel function. But, in models it
is possible to determine the various forces that influence an ion’s motion, quantities
that cannot be determined experimentally. In this way, for example, the contri-
butions of particular charged residues can be quantified and compared with other
forces that act on a permeating ion. In a simulation it is possible to visualise an
ion moving through the channel, to see where it dwells, or whether other ions also
enter to assist the movement of the first.

The sudden rush of structural information from experiments has ushered in a new
era of ion channel research. Models of ion channels can now include this new level of
detail, and knowledge of molecular details allows the specific interactions between

the ions and the channel to be described in detail. The structural information can
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be used in models to determine how a permeating ion interacts with the protein
wall and the charges contained within. The role of individual amino acid residues,
or more generally how the physical components of the channel can influence its
function, can be elucidated. The new structural information makes it feasible to
use models to relate the permeation, selectivity and gating of the channel to specific
physical processes.

Obviously, a model must always be compared with experimental evidence so
that its validity can be tested. A successful model should accurately reproduce
available data. But a good model should do more than just this, it should also
concisely summarise and explain this data. Furthermore, a model should be useful
for making new testable predictions. Ultimately good models should provide a guide
to experiment, highlighting, for example, important residues that can be examined

with mutagenesis, or suggesting novel experiments.
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Chapter 2

Models of Channel Conductance

2.1 Introduction

Since the main role of ion channels is the conduction of ionic currents, people
have naturally tried to find ways to theoretically predict the magnitude of the cur-
rent that will pass through a particular channel so as to understand the mechanisms
by which channels select and transport ions. Initially these models of ion conduc-
tance aimed to give some insight to the mechanisms involved in ion permeation,
without focusing on too many physical details. But recently, since the crystal struc-
ture of some biological channels has become known, the effort has been to directly
relate these structures to the channel’s function.

Although the primary goal of this thesis is to examine the dynamic process
of ion permeation, much insight can be gained from static or equilibrium models.
Determining factors such as the forces acting on ions, or the energy landscape en-
countered by them can be just as illuminating as a direct modeling of ion dynamics.
Indeed, Poisson’s equation is used frequently throughout the thesis to determine
these quantities and to quantify the factors influencing permeation. In this chapter
I will start by discussing electrostatic calculations before focusing on models that
can be used with the aim of modeling and predicting channel currents moving from
simpler to more detailed models. Reaction rate theory is a simple model that de-
scribes the permeation of an ion as kinetic hopping between states. The theories
of electrolytes have been used to study ion channels, in simple forms such as Ohms
and Fick’s law as well as in some more complex techniques such as Poisson-Nernst-
Planck theory. The next level of complexity is to start treating the atoms in the
system individually in simulations. In some such techniques only some atoms are
described individually such as in Brownian dynamics in which the ions are treated
individually whilst the protein and water is not. In others, in particular molecular

dynamics, all the atoms are included.

17
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Although much can be gained from the simpler models, they may often overlook
or incorrectly describe some of the mechanisms involved in ion permeation. For this
reason people often seek to make more realistic models which necessarily contain
a greater level of detail. But, it is not always the case that the greater the level
of detail in the model the better. At times simplifications provide a way of deter-
mining the important physical processes without getting lost in details. At a more
practical level simplicity is also a blessing as the computations required in some
models provide great limitations on their use. For example, the number of calcu-
lations required to carry out quantum mechanical molecular dynamics simulations
are such that it is only feasible to simulate dozen or so atoms for one or two pico
seconds. This makes it impossible to simulate ion conduction through a protein
molecule containing thousands of atoms which takes in the order of a micro second.
Modeling ion conduction is therefore a delicate balance between gaining the level of
detail necessary to examine the mechanisms of interest without being swamped by

calculations and numbers that make it impossible to reach your goal.

2.2 Electrostatic calculations

The dynamic behaviour of ions in and around ion channels is ultimately deter-
mined by the forces acting on them. Thus when studying ion permeation it is of
interest to examine these forces and the energy landscape encountered by ions in
the channel to help elucidate the permeation mechanisms. These forces are also
required in dynamic permeation models such as Brownian dynamics simulations.
Calculating these forces microscopically is very difficult due to the number of atoms
in a typical system. In this thesis such microscopic calculations are not attempted,
and continuum electrostatics is used as a practical alternative. The use of contin-
uum electrostatics allows for forces to be calculated at a rate that can be used in
Brownian dynamics simulations or other permeation models used to calculate ion
currents.

In continuum electrostatics, atoms are not treated in a discrete manner, but
rather are represented as a continuous media described by a dielectric constant. An
important feature of dielectric materials is that when placed in an electric field a
polarisation is induced. This means that dipoles are formed which orient with the
electric field. These dipoles may be permanent molecular dipoles (such as those
between the hydrogen and oxygen atoms in water) or due to electronic polarisation
in the atom itself. The strength of the dipoles and their ability to orient with an

external field is characterised by the dielectric constant. If no dipoles are induced,
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as in the case of a vacuum, then the material is said to have a dielectric constant
of one. The higher the dielectric constant above this, the stronger the dipoles that
are induced. The net charges of atoms and molecular dipoles can still be included
as point charges in the model. For ion channels, the dielectric constant is typically
assumed to be uniform throughout the lipid bilayer and protein (usually with a
value of €protein = 2 — 5), with another uniform value for the bulk water (typically
€water = 80), with possibly an intermediate value inside the pore. The accuracy of
these electrostatic calculations in ion channels will be discussed in more detail in
chapter 9. A diagram indicating how a protein pore is represented using dielectric
regions is given in Fig. 2.1.

Once the dielectric regions have been determined, fixed charges can be assigned
to atoms in the protein or at any other location with charge density p(r), and the
potential in the system found by solving Poisson’s equation:

&V - [e(r)Vo(r)] = —p(r) (2.1)
with the boundary conditions
¢1 = @2, 6V -i=eVe, - (2.2)

where 11 is the unit vector normal to the dielectric boundary, and the subscripts
refer to the values on the two sides of the boundary.

Poisson’s equation can be used to find the energy landscape encountered by
ions in the channel. To do this, an ion is placed at a number of positions and the
potential energy found by solving Poisson’s equation at each position. By moving
the ion along the permeation pathway the energy profile experienced by a conducting
ion can be found. Energy wells can be related to binding sites and the crossing of
energy barriers would represent the rate limiting steps in conduction. Multi ion
channels can also be investigated by placing additional ions in the channel when
calculating the energy of the first. Techniques for gaining solutions of Poisson’s
equation are described in chapter 3. The applicability of Poisson-Boltzmann theory,
an extension of Poisson’s equation including a continuous equilibrium description

of the electrolyte, to ion channels is assessed in chapter 5.

Induced surface charges

An important consequence of the use of the dielectric representation is that an
ion near the protein induces surface charges of the same polarity on the protein-
water interface. When a cation in an electrolyte solution is placed near a slab of

protein, water molecules near the ion align themselves such that the oxygen atoms,
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Figure 2.1: Diagram of how a protein pore is represented as a dielectric
medium. (A) An atomic space filling diagram of the atoms from two of
the four subunits that form the KcsA potassium channel [58]. The missing
subunits are identical to the two shown and lie into and out of the page,
and they have been removed so that the pore can be seen lying horizontally
between the subunits. (B) A rigid dielectric picture of the KcsA pore. The
pore boundary is formed by tracing around the born radii of the pore lining
atoms. The protein and membrane are then represented as a rigid dielectric
medium indicated in blue. The pore itself, and the regions on either end
of the pore are assigned dielectric constants € pgnne;r and €p,r respectively.
The atomic detail of the protein in (A) is represented as a ribbon diagram
for reference. The partial charges of the protein atoms can be included as

charges inside the dielectric region representing the protein.
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with their partial negative charges, are positioned nearest to the ion. Because polar
or carbonyl groups on the protein wall cannot rotate as freely as the water molecules,
there will be excesses of hydrogen atoms at the water-protein interface. Viewed from
the ion, these excess hydrogen atoms at the boundary appear as surface charges,
exerting a repulsive force on it as depicted in Fig. 2.2. In general, if an ion is in a
region of dielectric constant e, then it will induce a surface charge of the same sign
on the boundary with a region with lower dielectric constant and of opposite sign
with a region of higher dielectric constant.

Macroscopically, we say that a charge ¢ located at a distance d from a protein
surface induces surface charges on the dielectric boundary. For an idealized infinite
plane, the magnitude of the repulsive force this ion experiences is the same as when
we place another charge ¢, on the other side, at a distance d from the surface,
and remove the boundary. The magnitude of this image charge ¢ is related to the
relative permittivities of the protein (¢, = 2) and water (e, = 80), given by

€w — € q
q = o Te 61’: o (2.3)
As the ion comes nearer to the boundary, the repulsive image force it experiences
grows as 1/d?. We can also consider the potential energy of an ion approaching
a dielectric interface. The potential energy created by the interaction of its own

charge with the dielectric interface (or ‘self energy’) can be expressed as [114]:

1 ew—€p ¢

U, = (2.4)

Amegey € + €p 4d

A similar self energy and repulsive force acts on an ion that is about to enter an ion

channel. However, in this case the force can be more than an order of magnitude

larger due to the dielectric boundary being wrapped around the ion, enhancing the

effect. The size of the self energy can be evaluated in an infinite cylinder, and if
€w >> €p i given by

U 1 ew—6€ q°

dmepey, € 5.8d

For comparison, if we consider a monovalent ion 4 A from the boundary then

we find U;(plane) = 0.4 kT whilst Us(cyl.) = 12 kT'. In a realistic ion channel the

self energy may be less than in an infinite cylinder as the channel is finite with wide

(2.5)

entrances. However, an ion entering a pore formed by membrane proteins encounters
a significant energy barrier due to the induced surface charges, the height of which
increases rapidly as the radius of the pore decreases. This energy barrier plays an
important role in determining permeation properties of ions across a narrow pore
as will become evident in chapters 5, 6 and 7, and any description of ion movement

near a dielectric interface must take account of the effects of induced surface charge.
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Figure 2.2: An example of the induced surface charge at the boundary of re-
gions of differing dielectric properties due to the presence of a nearby ion. An
ion in aqueous solution aligns the dipoles of the water molecules surrounding
it as in A. As these dipole charges along the dielectric boundary at the chan-
nel wall are not cancelled out by the weak dipoles induced in the protein, the

net effect is of a line of charge forming just inside the channel wall as shown
in B.
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2.3 Reaction rate theory

Reaction rate theory provides a simple way to predict currents in an ion channel.
In this theory the channel is represented very simply as a series of energy wells and
barriers. The process of ion conduction is then described as the hopping of an ion
between wells, or between states of the system. The different states of the system
represent the different distribution of ions between energy wells.

For example, a simple ion channel might be represented by two energy wells
shallow enough to hold only one ion each. The system then has four possible states:
both wells empty, both wells full or an ion in only one of the two wells. The al-
lowed transitions can be mapped out and their probabilities represented by rate
constants. In this example one transition would be forbidden, as an ion could only
move from one well to another if the second well is empty. The current passing
through the channel can then be represented by an equation involving the transi-
tion probabilities, or ‘reaction rates’, between the relevant states in the conduction
process.

Reaction rate theory was originally developed to describe the rate of chemical
reactions [66], before being applied to diffusive processes [65] and then generalised
to any rate process. Its early application to chemical reactions used statistical
mechanics to use information about the proportions of reactants and products to
estimate the transition rates. Provided the system was near equilibrium, this al-
lowed reaction rates to be determined theoretically. However, in many applications
of the theory, the reaction rates cannot be determined independently from the mea-
surements they are trying to predict. This means the theory becomes a pedagogical
tool rather than a predictive theory.

Reaction rate theory has been useful in chemistry and biochemistry, particularly
in explaining the action of enzymes, which act to reduce the energy barriers in
particular reactions. The theory has also had extensive use in ion channels where it
has been used to model conduction in single and multi-ion channels. Sophisticated
models have also been developed, for example to allow for fluctuations in the barrier
heights that may be caused by conformational changes in the protein. A good review
of these applications is given by Cooper et. al. [45].

The application of the theory to diffusive processes, however, is more dubious
than its chemical counterpart. Reaction rate theories necessarily discretise space
into specific locations corresponding to the energy wells. Describing the random
motion of a particle by sequential hopping between a finite number of states is a
bad model if the energy varies only slowly across the region. Reaction rate hopping

models are much more appropriate if there are sharp changes in energy [100]. This
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poses a problem in applying reaction rate theory to ion channels in which diffusion
is believed to be the main mechanism of transport. To model channels accurately
in this way would involve modeling the channel by many close shallow energy wells.
Unfortunately, all existing studies of channels only include a few energy minima.
Reaction rate theories are very simple, particularly when contrasted to simula-
tions. They have been surprisingly successful in elucidating the permeation mech-
anism as some channels do involve a process akin to ions hopping in and out of
binding sites. But, the main problem with such theories, particularly as far as the
aim of this project is concerned, is that there is very little relation between the
model and the channel structure. These barrier models involve a highly simplified
representation of the channel and although the energy wells are meant to represent
binding sites in the channel, no direct connection is made with the physical structure
of the channel [125,150]. These models do not tell what creates the energy wells
or barriers. Indeed, it is not even possible to relate the rate constant in the model
to the actual height of the energy barrier that the ion is crossing [11]. Rate-theory
models do not provide a way to predict currents from a given channel structure, nor

the inverse, predicting a channel structure from its conductance properties.

2.4 Continuum theories

Continuum theories provide a way to model the diffusive aspect of ion perme-
ation using the mean field theories developed for bulk electrolytes and are able to
relate this directly to the channel structure. They were introduced as an alternative

to rate models of ion channels in the 1980’s and have flourished since then.

2.4.1 Ohm, Fick and the Nernst-Planck equation

Tons in electrolytes (and channels) diffuse due to potential or concentration gra-
dients. The relationship between the current density and the potential gradient (or
the electric field) is expressed by Ohm'’s law

where g is the conductivity of the electrolyte solution whose values are determined
from experiments under various conditions. An estimate of the current passing
through a channel can be made for any given geometry using the more familiar
form of Ohm’s law I = VG, where I is the channel current, V is the membrane
potential, and G is the channel conductance. For example, in a simple cylindrical

channel of radius r and length L, the channel conductance is given by
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G = nr’g/L. (2.7)

The physical basis of Ohm’s law can be easily understood in terms of the mi-
croscopic motion of ions in water. Ions in an electrolyte solution incessantly collide
with the surrounding water molecules and as a result execute a random Brownian
motion with an average collision time 7. When an electric field E is applied, an
ion with mass m and carrying a unit charge e accelerates, on average, for time 7,
gaining a drift velocity, vq = (eE/m)7 before the next collision. Substituting this
drift velocity into the definition of current density gives Ohm’s law.

Ohm'’s law, simple as it may be, can provide us with useful insights about the
permeation mechanisms across a transmembrane pore. As an example, we consider
the GA channel, a cylindrical pore whose radius r and length L are approximately
2 A and 25 A, respectively. The experimentally determined conductivity of 150 mM
K" ions is ¢ = 8.4 x 107® S/cm. Substituting these values in Eq. 2.7, we obtain
G = 42 pS. For an applied potential of 200 mV, the current across the pore is
then expected to be 8.4 pA. This is about 3 times larger than the current measured
experimentally in gramicidin A [9]. This example illustrates that ion permeation
across channels is not just a passive process as envisioned in Ohm’s law—ions moving
from one side of the membrane to the other under a uniform driving field, confined
by the channel walls but not interacting with them. In fact, ions do interact with
the fixed and induced surface charges on the channel walls, which creates energy
wells and barriers along the permeation path, the net effect of which is to reduce
the current from that of a purely passive pore. Thus a correct calculation of the
ion-channel interactions is of utmost importance in order to obtain reliable results
from a permeation model.

The relationship between the current of ions and the concentration gradient
across a channel is given by Fick’s Law:

J = —ezDVn, (2.8)

where D is the diffusion coefficient of ions and n is the ion number density. As
shown by Einstein in 1905, the underlying physics is the same as in Ohm’s law,
namely, the Brownian motion of ions. In the case of ion channels, when one side of
the membrane has a higher concentration than the other (n; > ns), ions will flow
to the other side with a flux, J = ezD(n; — ny)/L.

In general, there could be both a potential and a concentration gradient driving

the ions across an ion channel. This situation is described by the Nernst-Planck
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equation that combines Ohm’s and Fick’s laws

J, = —e2,D,Vn, — g,V = —ez,D, (vny i z”ke#w) , (2.9)

in which the Einstein relation, g = nz2e?D/kT, is used to rewrite the expression
and the subscript, v refers to the ion species. Because the potential in an ion
channel depends on the ion concentrations there, use of the Nernst-Planck equation
with a predetermined or assumed potential is problematic. To avoid the question of
self-consistency, one has to include contribution of the ions to the potential, which
we discuss below. While the Nernst-Planck equation is primarily used to describe
current flow, in the special case of a vanishing current, it makes an important
statement about the electrochemical equilibrium in cells. Using J = 0 in Eq. 2.9
and integrating once, we obtain the celebrated Nernst equation

01— P2 = —k?T In(n; — ng) = —59 logZ—: (mV), (2.10)
that gives the potential difference required to maintain the equilibrium when the
concentrations are different on the two faces of the membrane. The numerical factor
in Eq. 2.10 is obtained using 7' = 298 K. In practice, the Nernst equation is often

used to estimate the membrane potential generated by asymmetric solutions in cells.

2.4.2 Poisson-Nernst-Planck theory

The Nernst-Planck equation describes how potential and concentration gradi-
ents lead to currents. However, they do not include information about how the
potential is created, nor the effect that the concentrations of ions itself has on the
potential. Combining all these features within one framework leads to the so called
Poisson-Nernst-Planck (PNP) theory. In this theory, the potential in equation 2.9 is
determined by solving Poisson’s equation (Eq. 2.1). The two equations are solved
simultaneously to yield consistent solutions for the potential, concentration and flux
of ions moving through the channel.

Analytic solutions of the PNP equations are very difficult except in some special
cases [195,196], but the equations can be tackled numerically. When applying PNP
theory to calculate currents through ion channels the shape of the channel, the
partial charges of the protein atoms, an applied field and the concentrations of ions
either side of the channel can all be included. This means that PNP is probably
the simplest non-equilibrium theory that can relate the current passing through
a channel to its structure. For this reason it provides a very promising start to

modeling the structure function relationship inside ion channels.
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During the last decades continuum theories of electrolytes have found a new
niche in the description of physical processes in the salty waters of cells [64,213].
Continuum theories were originally developed for bulk electrolytes early in the cen-
tury, and their validity has been firmly established since then [23]. The more recent
applications in biology usually involve mesoscopic systems, and it is not clear from
the outset that the assumptions made for bulk solutions are justified for solutions
confined to small volumes. Of these, the mean field approximation which assumes
that the potential can be determined from a continuous distribution of the mobile
charges in an electrolyte is most suspect. The basic question is whether the pre-
dicted concentrations in continuum theories, which represent the space average of
ion densities, are in accordance with the average motions of individual ions, and
whether the potentials found using an average ion distribution reflect those expe-
rienced by discrete ions. In this respect, the Debye length provides a useful guide.
If the system size is much larger than the Debye length, as in the case of large
proteins and membrane surfaces, the mean field approximation inherent in the con-
tinuum theories should be relatively safe. On the other hand, membrane pores that
transport ions across a cell usually have radii smaller than the Debye length [85],
and the use of continuum theories in such systems is questionable. Applications
of continuum theories to membrane channels have nevertheless flourished in recent
years (for reviews see, for example, [45,61,62,122]).

In chapter 6 I discuss PNP theory in more detail. Unfortunately I also demon-
strate that it is not appropriate to use in narrow ion channels due to problems with
the mean field treatment of ions. Treating the ions via their average concentrations,
as is done in PNP theory, is not valid in narrow ion channels where only one or
two ions enter at a time. The forces felt by individual ions cannot be accurately
represented using time averaged concentrations. In particular, the surface charges
induced by ions become important, but cannot be treated accurately in this mean

field approach.

2.5 Brownian dynamics simulation

Brownian dynamics (BD) simulation is a technique in which the motions of
individual ions are followed for some short period of time. Thus BD simulations
differ from the continuum models in that charge is localised rather than being
dispersed in a continuous manner and time is reintroduced. The ions, however,
are assumed to be moving in a continuous solution as in PNP, rather than in the

presence of discrete water molecules. The effects of this water is taken into account
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by including frictional and random forces on the ion caused by their interactions
with water molecules thus leading to random Brownian motion of the ions. BD is
the primary conduction model used in this study. I will introduce it briefly here,

but a full description of the method is given in chapter 3.

Brownian motion has been well described and quantified as a stochastic process
but has only recently been used to model ion channels. The first applications were
carried out in one-dimension [38], and the technique has only been extended to three
dimensions very recently - firstly by our research group to study ion movement in
model acetylcholine receptor channels and the KcsA potassium channel [42,127]

and more recently by others to study Porin channels [93,157,185].

To carry out a BD simulation of an ion channel, a model channel shape and
dielectric structure must first be devised. Ions are then assigned an initial position
and thermal velocity. Then, the forces on each ion are calculated and related to
the position and velocity of the ions using the Langevin equation (Eq. 3.1). In
the Langevin equation the forces acting on an ion are broken into 3 components:
random, frictional and systematic forces. The random force represents the incessant
collisions of the ion with its surrounding water molecules, and rapidly fluctuates
about a zero mean. The frictional force, on the other hand, is the drag created
by passing through the water molecules. The systematic force is all the remaining
forces, not created by the surrounding water. This includes the electrostatic force
created by other ions, fixed charges in the protein, the applied potential, and from
induced surface charges at the dielectric (water/protein) boundary. The system
is evolved forward for a short time step, each ion being moved to a new position
calculated from the Langevin equation. This process is repeated for many time

steps to model the movement of ions over a short time.

The advantage of BD compared to other simulation techniques is that the simpli-
fications involved make it feasible to simulate long time periods. This means that
currents passing through the channel can be directly computed, unlike in molec-
ular dynamics (discussed below). This means that current-voltage and current-
concentration relationships can be calculated and compared directly with experi-
mental results. Simulations can also be carried out with mixtures of ions to de-
termine the selectivity ratios of the channel. Unfortunately, however, ions of the
same valence are treated in a similar manner in these simulations (apart from their
different radii) which makes it difficult to determine the selectivity between different
ions of the same valence. In this case the selection of ions is most likely related to
more subtle properties such as the strength of binding to the neighbouring water

molecules which can only be dealt with in a more detailed theory such as molecular
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dynamics.

BD simulations can also be used to study permeation kinetics. Ion trajectories
can be analysed to determine the average concentrations throughout the channel.
This is useful in finding binding sites and determining the average number of ions
involved in conduction. Also, the important rate limiting steps in conduction can be
determined from the ion trajectories. The trajectories themselves can be animated
to view the motions of ions through the channel which can be an invaluable tool in

understanding the mechanisms of conduction.

BD is a phenomenological theory with a number of simplifications and param-
eters that need to be validated or derived from a more fundamental theory. For
example, although the ions are treated as discrete particles, the water molecules are
still modeled as a continuum, greatly reducing the number of computations required
to carry out the simulation. Far from any boundary, where the water molecules are
free to move and align as they wish, this is a reasonable assumption. However, in
small confined regions, such as inside a very small radius channel, when the size of
the region is of the same order of size as the size of the ions and water molecules
this assumption may break down. The water molecules will be constrained and so
no longer be able to align as they wish, and the hydration shells of the ions will be
forced to interact with the channel walls. Also the protein is taken to be a rigid
structure which does not move as ions pass through the channel. This seems to be
a reasonable approximation for the narrow gramicidin A channel as recent NMR
experiments have shown that any conformational changes in the channel protein are
very small [199,200]. The amount of flexibility in other protein channels is yet to
be determined.

In BD simulations the systematic (electrostatic) forces are typically found by
solving Poisson’s equation. This means that the protein and water are treated as
uniform dielectric environments. Determining what value of the dielectric constant
to use is important, but probably even more important is whether or not the di-
electric continuum description is valid at all. I examine the possibility that this
description breaks down in chapter 9. BD itself, however, only deals with the dy-
namic behaviour of ions and does not specify how the forces are determined. If the
continuum electrostatics is shown to be invalid in particular cases, then BD may
still be useful if the forces can be determined in another way. The other param-
eter required in BD simulations is the diffusion coefficient of ions. These can be

determined from MD simulations.

BD simulations provide a good compromise between detailed all atom simula-

tions and the continuum theories. They can be used to calculate experimentally
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measurable properties of channels (namely the currents passing through them) and
relate this to the channel structure. But, unlike in continuum theories, the ions are
treated as discrete entities rather than through their average concentrations. This
avoids many potential problems that can arise in the continuum models which are
highlighted in chapters 5 and 6. These simulations also escape many of the difficul-
ties encountered in more complex simulations, however ultimately the assumptions
used in BD must be validated from a more fundamental theory.

2.6 Molecular dynamics simulation

Molecular dynamics (MD) is a simulation technique in which all the atoms in
the system are treated explicitly. For ion channels, this involves simulating the
motion of all the protein and lipid atoms, the water molecules and ions. In a similar
manner to BD, the simulation is broken into small timesteps. The forces acting on
all the atoms are calculated at a given time, before the atoms are moved a short
distance corresponding to their motion in one timestep. During a simulation the
computer keeps track of the positions of all the atoms, but making sense of this
vast amount of data can be challenging. Also, the number of calculations required
during the simulation is enormous due to the huge number of atoms being simulated.
The computational power required places severe limits the types of problems that
can be tackled with MD. But, despite the complexity, the availability of several
user-friendly MD packages such as AMBER [212], CHARMM [25] and GROMOS [81]
have made the MD method accessible to any researcher with a modest workstation.
As computer power increases, hopes have been raised that biological processes will
soon be able to be studied at a microscopic level. MD, however, has to be used
with some caution, as its accuracy is yet to be demonstrated in many biological
situations [207]. Below I will present the basics formalism of MD and discuss some

of the complexities, before examining its application to ion channels

2.6.1 Basic formalism

In MD simulations, one follows the trajectories of NV particles interacting via a

many-body potential U(ry, rs, ..., ry) using Newton’s equation of motion:
d?r;
miﬁ; =F,, (2.11)

where m; and r; denote the mass and position of the i’th particle, and the force

on it (F) is given by the gradient of the potential U. Because all the atoms in the
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system (including water molecules) are represented explicitly in MD, there are no
frictional or random forces to deal with as in BD. This makes the integration of
Eq. 2.11 rather trivial. Most commonly, if the positions are known at a time ¢ and
a short time before this ¢ — At, they are calculated at a later time using the Verlet

algorithm:

ri(t + At) = 2r,(t) — r;(t — At) + Fil) \e (2.12)

ml
At every time step, the potential function is recalculated using the new positions
of the particles before moving them again. This process is iterated for a number
steps until a statistically satisfactory data set is generated. The trajectory data
thus generated is stored at certain intervals, which are analyzed later to determine
the structural and dynamical properties of a system. Quantities such as free energy,
mean square displacement, radial distribution and other correlation functions are
calculated from an ensemble average of several simulations.

Despite being conceptually simple, MD is in practice very complex. Determining
the forces, finding suitable boundary conditions and analysing and interpreting the
results can all be quite difficult. A full discussion of these issues can be found in
one of the many textbooks on the subject [2,67,165].

2.6.2 Force fields

Since the force fields (or potential functions) are the crucial inputs in MD simu-
lations it is essential that they are chosen correctly when simulating a biomolecular
system (see [210] for a recent review).

The forces acting on atoms are typically broken into two components: ‘bonded’
interactions representing covalent bonds existing between atoms, and all the re-
maining ‘non-bonded’ interactions. In classical MD the non-bonded interactions
are determined by empirically fitting parameters to make the simulations reproduce
experimentally measured properties (usually things such as radial distribution func-
tions in bulk electrolyte solutions). In ab-initio MD these forces are determined at

each timestep from electronic structure calculations.

Bonded interactions

The atoms in proteins and lipids are not free but bonded to their nearest neigh-
bors by covalent interactions. In MD these bonds are represented by three types
of bond interactions: stretching of a bond length between two atoms, bending of

a bond angle formed by three atoms and torsion of a dihedral angle between the
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planes of four atoms. The first two are normally represented by harmonic poten-
tials, whilst the torsion potential is written in terms of periodic functions. The bond
interactions allow a certain degree of flexibility to the protein atoms forming an ion
channel, which may change their configuration in response to a permeating ion.
Unfortunately, with the currently available run times it is difficult to quantify the
amount of flexibility in ion channel proteins using MD. It remains an open question
whether protein flexibility plays an important role in ion permeation.

Non-bonded interactions

If the atoms in a system could be represented as charged balls, they would simply
interact via the Coulomb potential. Unfortunately the electrons around atoms are
not inert but move according to quantum mechanical laws, which modify this simple
classical picture in subtle ways. Incorporation of the effects of electrons in classical
MD simulations has been an ongoing concern since the inception of the method in
the 1960s. Electronic contributions to the intermolecular interaction can be divided
into three groups: polarization, attractive (or van der Waals) dispersion and short-
range repulsion.

Polarisation refers to the shift in the position of the electron cloud with respect
to the nucleus when an atom is placed in an electric field. An exact description
of polarization requires the solution of the Schrodinger equation. In classical MD,
however, the polarisation is usually ignored or approximated using a simple clas-
sical picture where electrons move in a harmonic potential. This induced dipole,
in turn, creates an electric field of its own which further polarizes the surrounding
atoms. Thus polarization is a many-body effect that needs to be taken into account
self-consistently via iteration of the polarization and dipole field equations. Because
this procedure is quite costly computationally, in most force field parameterizations
polarization effects are incorporated implicitly by invoking a mean field approxima-
tion. That is, an average induced dipole term is added on top of the monomer value
so as to reproduce the bulk properties of a system.

The dispersion forces arise from quantum fluctuations that leads to correlations
between the electrons of two atoms. Virtual excitations of electrons in one atom
generate a spontaneous dipole moment that polarizes the neighboring atoms yielding
an induced dipole-induced dipole interaction. Unlike polarization, the dispersion
force is a purely quantum phenomenon with no classical analogue. Although there
are no polarization forces between neutral atoms, they are still attracted by the
dispersion forces.

The repulsion term has its origins in the Pauli exclusion principle that forbids two
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electrons occupying the same quantum state. When two atoms come into contact,
the orbitals of electrons starts overlapping, which leads to a sharply rising repulsive
potential. The dispersion and repulsive potentials are often combined in a so-called
Lennard-Jones (LJ) 12-6 interaction that has become almost an industry standard
in MD force fields. Compared to the Coulomb and polarization interactions, the LJ
potential is weaker and has a much shorter range.

In most MD force fields the polarization interaction is neglected, and the pa-
rameters in the Coulomb (partial charges on atom centers) and the LJ interactions
are determined from fits to the bulk properties (e.g., enthalpy of vaporization and
density for water). The pair potentials determined in this way incorporate many
other effects in their parameterizations, and therefore do not have much in com-
mon with the actual dimer interaction in vacuum. The justification for such a
simplified phenomenological approach is ultimately its success in reproducing ex-
perimental observations. In this regard, more fundamental approaches based on
accurate many-body interactions have been much less successful [209].

Ab-initio calculations provide a way to avoid approximate parameterizations
of the atom interactions. The inter-atomic forces can be found by solving the
Schrédinger equation using either Hartree-Fock theory [159] or density functional
theory (DFT) [108]. Both of these techniques can only be used to study small
systems, especially the former in which the basis set expansion of the electron wave
function limits its applicability. Car and Parrinello [30] made a breakthrough when
they developed an algorithm for combining DFT with MD. The motions of atoms are
still simulated by classical mechanics but the forces between them are calculated
quantum mechanically. The main difficulty with these techniques is the number
of calculations required is much greater than in classical MD. This means a huge
amount of computer time is required, and so presents limits to the system sizes that
can be studied. Such ab-inito methods have been applied to crystals [26] and an
ion in bulk water [135]. A first application of DFT to ion channels has also been
recently reported [73] although it could only conclude that polarization is likely
to be important in ion permeation. The application of ab-initio techniques to ion

channels promises to be exciting new frontier.

2.6.3 Boundaries

A major problem in MD simulations is how to achieve a bulk-like environment
when using a relatively small system. Indeed in a simulation of 1000 atoms in a
box, about half of the atoms are in direct contact with the surfaces. The traditional

way to avoid the surface effects is to impose periodic boundary conditions. That
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is, the simulation system is replicated in all directions, filling all space. Such a
boundary condition seems to be a reasonable choice for bulk solutions, but for a
grossly inhomogeneous system such as an ion channel, periodicity introduces its own
artifacts. These artifacts can be monitored by checking the dependence of results on
the system size, though such precautions are rarely exercised in practice because of
the time required. It is expected that the errors introduced by periodicity are much
less severe than those that would result from the use of vacuum as a boundary. As
a result, the periodic boundary conditions are adapted almost universally in current
MD simulations of biomolecules. A better justification of its use in simulations of
ion channels is needed to substantiate accuracy of the current MD results.

Using periodic boundary conditions raises the question of how to handle the
long-range Coulomb forces in the resulting infinite system. In early simulation work,
cutoffs were often employed to truncate the Coulomb forces. Now, more elaborate
techniques such as Ewald summation in which the Coulomb interaction is split into
a long and a short-range part to reduce the computational costs are most commonly

used.

2.6.4 Application to ion channels

The application of MD to ion channels is severely hampered by the computa-
tional cost involved. The MD algorithm assumes that the forces acting on atoms
are constant over a timestep. Thus, very short timesteps are required to keep this
assumption at least approximately correct. The rotational motion of water, in par-
ticular, is very fast, and so time steps of at most 2 fs have to be used. An ion takes
more than 10 ns to pass through an ion channel under physiological conditions,
and to gain statistically reliable measurements of current would require simulations
of the order of 1 us. Even for a very small ion channel system, about 1,000,000
calculations are required per timestep, and gaining an estimate of current would
take close to a year of CPU time on a modern supercomputer (and this would only
yield one data point on an I-V or current-concentration plot!). This is obviously
more than most researchers can afford. In a recent 100 ns MD simulation, Crozier
et al. [50] calculated the conductance of a simplified artificial channel in somewhat
extreme conditions (1 M solution with a 1.1 V applied potential). This gives hope
that it may be possible to determine conductance of biological channels from MD
studies under physiological conditions in not too distant future. But, given that
I-V curves are generally non-linear at large potential and the simplicity of the arti-
ficial channel, it is not clear what this result has to say about biological channels in

physiological conditions. Typical MD simulations of biological channels can be run
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for about 10 ns, which is too short to estimate the channel conductance, or even to
explore the dynamics of a single conduction event. Currently, MD cannot be used

to determine biological channel currents.

This does not mean that MD has no use in studying ion channels. There is
important information that can be gained from simulations other than currents.
Perhaps most useful is the potential of mean force (PMF) of an ion moving along
the permeation path. This can be calculated from the average force acting on or
the average distribution function of an ion at a given position. The PMF represents
the energy landscape experienced by the ion, and describes the work required to
push an ion through the channel. This energy profile can tell one much about the
permeation process. Wells in the profile would represent binding sites where ions
are delayed, and the number and size of the energy barriers would imply information
about the rate limiting steps in conduction, and could be used to gain an indication
of the transit rate. Furthermore, the PMF can be fed into a coarser grained model,
such as BD, to model currents and remove some of the uncertainties in the forces
acting on ions. PMFs have recently been calculated for permeating ions in the GA
channel [102, 176, 215].

The calculation of the PMF in the GA channel has, however, highlighted some
potential problems in the use of MD in ion channels. Although the profiles obtained
predict energy wells at appropriate positions, they also predict huge energy barriers
(~ 15 - 40 kT) that would prevent ion permeation. These results are in obvious
contradiction with experiments in which ions pass readily through the GA channel.
Most likely, the problem arises from using invalid force fields, particularly from the

neglect of polarization.

MD simulations can also be used to gain an indication of channel selectivity by
using free-energy perturbation calculations. In this technique, an ion at a position
in the channel is slowly transformed into an ion of another type and the energy
difference between the two end states calculated [141]. The ion species with the
lower free energy is more likely to enter the channel and the selectivity ratio can be
estimated from the free energy difference via a Boltzmann factor. This technique has
been used to determine the correct selectivity sequence in the GA channel [172,179]
as well as predicting the selectivity of the KcsA channel for potassium over sodium
[3]. Because these calculations involve the energy difference for the transformation
of an ion of one type into another at the same location, inaccuracies in force fields
are likely to cancel out, making such predictions more robust compared to the PMF
of an ion along the permeation path. Moreover, ions with the same valence cannot
readily be distinguished in BD; hence, MD offers the only method for understanding
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their selectivity sequences.

Macroscopic parameters such as diffusion coefficients of ions and the dielectric
constant of water in the channel are two other local properties that can be estimated
from MD. These quantities are required as input parameters in BD simulations that
would otherwise have to be determined from fits to experimental data. Studies have
suggested that both the dielectric constant [183,217] and diffusion coefficients of ions
[6-7,131,175,190, 191] will be substantially lower inside a narrow pore than in bulk
solution.

Considering the simplicity of the force fields in current use, MD techniques
have been remarkably successful in studies of lipid-protein systems. The average
treatment of polarization appears to work well as long as one retains the bulk-
like environment for the molecules in question [201,209]. In applications of MD to
ion channels, however, there is likely to be problems in this regard because ions
move from bulk water into a narrow pore formed by protein molecules with very
different polarization characteristics. This problem is probably responsible for the
overly large energy barriers predicted in the GA channel. Thus the force fields
currently employed in most MD programs appear not to be sufficiently accurate
for the purpose of PMF calculations in channels, and the construction of new,
polarizable force fields is desirable. A longer term goal is to use ab-initio MD
methods to derive the force field parameters directly from the electronic structure
calculations rather than determining them empirically from fits to data [114].

As MD simulations involve the interactions of all the atoms in the channel pro-
tein, it is only reliable if the relative positions of all the atoms, that is the molecular
structure, is known. For this reason most early MD studies were made on the GA
channel, which for a long time was the only channel with a known atomic struc-
ture. Since the crystal structure of the KcsA channel was determined in 1998, it
has become the main target of simulations [3,6,13,21,74, 75,130,174, 188]. These
studies have provided valuable information on the selectivity mechanism and the
energetics of ion permeation in the channel, but do not make predictions about the
conductance.

Although MD cannot be used to determine currents in biological channels at
the current time, it can play a complementary role to BD in many respects. By
making estimates of diffusion coeflicients, dielectric constants, and possibly the
PMF and using these in BD, one can reduce the arbitrariness in the choice of free
parameters that so often plagues the application of phenomenological models to
realistic systems.
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2.7 Conclusions

In this chapter I have introduced many theories used to model permeation
through biological ion channels. I discussed the dielectric representation involved in
continuum electrostatics and how Poisson’s equation can be applied to the channel.
Solutions to Poisson’s will be an important focus of this project and I will return
to these in the following chapter. Reaction rate theories have been used to explain
the basic steps involved in conduction, but unfortunately the parameters in these
models cannot be related to the physical structure of the channel. The simplest
way to examine the structure function relationships is to use a continuum theory
such as PNP. Continuum theories provided a major advance over rate models, but
as I will discuss in chapter 6 they cannot be used to accurately model the processes
involved in ion permeation. Simulation techniques provide a further step forward
in accurately modeling channels. Molecular dynamics simulations in which all the
atoms in the system are modeled will provide the most accurate descriptions of
permeation in the future. But currently they are too slow to be used to describe
permeation, and the accuracy of the approximations currently used in the classical
MD force fields is not clear. Brownian dynamics, in which only the ions are treated
discretely, provides a more practical approach. It is both fast enough to model cur-
rents, avoids many of the problems of the continuum theories, and has potential to
explain much, but not all, the mechanics of channels. BD will be the principal tool
used in this study as it is currently the only model that can relate ionic currents to

channel structure in a realistic way.
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Chapter 3

Brownian Dynamics Simulations

The most important methodology used in this study is Brownian dynamics (BD)
simulations. Such simulations are used in all the following studies, and so it is worth-
while to explain the technique and the practical issues involved in its implementation

carefully before proceeding.

3.1 Basic formalism

In BD, the channel walls are taken to be rigid and the protein and membrane
atoms are assumed to form a continuous medium as with the electrostatic calcula-
tions described in chapter 2. The water molecules in the electrolyte are described
as a continuous dielectric medium. The motion of individual ions, however, are
simulated explicitly using the Langevin equation:

dv;

My = MYV + Fr(t) + ¢;E; + Fg, (3.1)

where m;, ¢; and v; are the mass, charge and velocity of the ¢th ion. In Eq. 3.1,
the effect of the surrounding water molecules is represented by an average frictional
force with a friction coefficient m;7y;, and a stochastic force F g arising from random
collisions. The frictional and random forces are related through the fluctuation—

dissipation theorem [218]:

meri = g | (FrlOFe(®)dt, (3.2)

in which the angled bracket notation denotes ensemble averages.

The third term on the RHS of Eq. 3.1 is the total electric force (where E is the
electric field) acting on the ion due to other ions, fixed and induced surface charges
at the channel boundary, and the applied membrane potential. The last term, Fg
represents additional short range forces used to more accurately mimic the ion—ion

and ion-protein interactions at short distances as described below.
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The Langevin equation can be solved to relate the position and velocities of ions
at one time to that a short time later in a process described by van Gunsteren and
Berendsen [206]. The Langevin equation is integrated from an initial time ¢ to a

later time t,, to give

z(t) exp(yt) — z(t,) exp(yt,) = %/t [Fr(t') + F(t')] exp(yt')dt’, (3.3)

in which F is the total systematic force acting on the ion (the sum of the electrical
and short range components) and the ion subscripts ¢ have been dropped for simplic-
ity. If this systematic force is expanded to third order as F(t) = F(tn)+F(tn)(t—t,)
then equation 3.3 can be partly integrated giving

Fﬂi{;z)(l — exp(=y(t — t,)))

(t) = &(tn) exp(—7(t — tn)) +

F (tn)

+ -~ (y(t —tn) — L+ exp(—y(t — tn)))
+w /t Fgr(t") exp(yt')dt'. (3.4)

The position of the particle after a short time At can be found by integrating
equation 3.4 from t, to t, + At. The last term is integrated by parts and the result

defined as a new variable, X related to the random force:

Xa(a8) = o) [ O expln(t, + At O Fa()dt. (35)

The final result of the integration is then:

z(t, + At) = z(t,) + &(tn) (1 — exp(—7At))
+}:r§3;) (yAt — 1 + exp(—vAt))
+};§:;) (1 — yAt + (1 — yAt)?/2 — 1 — exp(—7yAt))
+Xn(At). (3.6)

The velocities can then be eliminated from equation 3.6 by adding exp(—~y At)z(t,+ At)
[206] to give the final expression:

z(t, + At) = z(t,)[1 + exp(—yAt)] — z(t, — At) exp(—yAt)
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+m " F (t,) (At)? (vAt) 11 — exp(—vAt)]
+m1F(tn)(At)3(7At)2[%7At[1 + exp(—yAt)]
11— exp(—yAD)]] + Xa(Af) + exp(—1 AN Xn(~A1),

(3.7)
where
Xn(—At) = Xn1(At)G(yAL)/C(7AL) +Y, (3.8)
in which Y are sampled from a Gaussian with zero mean and
G(yAt) = exp(yAt) — 2yAt — exp(—yAt) (3.9)
C(vAt) = 2yAt — 3+ 4exp(—yAt) — exp(—27At), (3.10)

The computational steps in implementing this algorithm are then as follows:

1. Assume that the locations, and forces acting on each ion in the previous time
steps, x(tn),x(tn_1), Xn_1(At) and F(t,_1) are known

2. Evaluate the total systematic forces F(t,).

3. Compute the derivative of the systematic force

F(ty) = [F(t) — Fta_1)]/At (3.11)

4. Calculate the random terms X,(At) and X, (—At)

5. Calculate the new ion positions from equation 3.7.

In practice, ions are randomly assigned an initial position and thermal velocity
from the Boltzmann distribution. The forces on the ions are then calculated before
the system is evolved forward for a short time step, using the above procedure.
The forces on the ions are then recalculated at their new locations and the system
evolved forward once more. This process is repeated to simulate the motion of the
ions over the desired time interval.

Figure 3.1 shows a typical BD system. The shape of the channel boundary is
first traced out as desired and inserted into a protein / membrane region represented
in brown. This protein region is typically assigned a dielectric constant €ppotein = 2.
The inside of the pore and the regions at either end are given higher values, €.panner
and €p,. lons are then placed in reservoirs at each end of the pore. These ions
are contained by reservoir boundaries which form a hard barrier to the ions (but

do not represent dielectric boundaries). The motions of the ions in the system are
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Figure 3.1: Diagram of the BD system used to study the calcium channel in

chapter 8. Calcium (red) and chloride (green) ions are placed in the water
solution (purple) in reservoirs on either side of the protein (brown). The
intracellular space is on the lefthand side of the channel, and the extracellular
space on the right. The reservoir walls which are used to contain the ions
are indicated by the yellow lines. The calcium channel pore passes through
the center of the protein. In this case a membrane field is applied to drive
ions through the channel and the motions of the ions are simulated using the

Langevin equation.
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then followed as described above. The situation in this figure actually represents
a model of the L-type calcium channel discussed in chapter 8. The baths contain

calcium (red) and chloride ions (green).

Note that the friction coefficient, v, is related to the diffusion coefficient via
the Einstein relation D = kT /my. The friction coefficient is also related to the
‘relaxation time constant’, y~!, which corresponds to the time required for a par-
ticle that is suddenly displaced to relax back to its equilibrium position. Unlike
earlier BD algorithms, this one is not limited by the condition At << 1/7, which
would require At << 10 fs for typical ions and make the simulation of conductance

computationally expensive.

The two remaining requirements that limit the size of the time steps are that the
average distances traveled by ions in each time step must be much smaller than the
dimensions of the system, and that the time derivative of the electric forces must
also be small compared to the magnitude of the force. In previous simulations using
this algorithm, the time step was systematically increased to see its affect on ion
trajectories [91,127]. It was found that when the time step was greater than 100 fs
the trajectory of the test particle deviated from that found with shorter time steps.
Thus in these studies a maximum time step of 100 fs is employed. To simulate the
short range forces more accurately we use a multiple time step algorithm in the
simulations described in chapters 8 and 9. In these cases, a shorter time step of 2 fs
is used across the channel where short range ion-ion and ion-protein forces have the
most impact on ion trajectories. Elsewhere a longer time step of 100 fs is used. If
an ion is inside the short timestep region at the beginning of a 100 fs period then
that ion is simulated by 50 short steps while the other ions in the long-time regions

are frozen to maintain synchronicity.

Results are obtained by running numerous simulations, each typically simulating
0.1us of real time. For successive simulations, the final positions and velocities of
the ions in the previous simulation are used as initial positions and velocities in the
next trial. The current passing through the channel is calculated by counting the
number of ions that cross the channel, and averaging the values obtained in repeated
simulations. Concentration distributions can also be constructed by averaging the

number of ions in a given region of the channel during a simulation.

To maintain the specified concentrations in the reservoirs, a stochastic boundary
is applied: when an ion crosses the channel, say from left to right, an ion of the
same species is transplanted from the right reservoir to the left. For this purpose,
the ion on the furthermost right-hand side is chosen, and it is placed far left-hand

side of the left reservoir, making sure that it does not overlap with another ion.
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The stochastic boundary trigger points, located at either pore entrance, are checked
at each time step of the simulation. The membrane potential is created by adding
a constant electric field throughout the system. (Note that this does not result
in a linear potential drop across the system due to the presence of the dielectric
boundaries). These boundary conditions are described in more detail and tested in
chapter 4

The BD program is written in FORTRAN, vectorized and executed on a supercom-
puter (Fujitsu VPP-300 or Compaq SC). The basic BD program was written by Toby
Allen, Matthew Hoyles, and Siu Cheun Li at the Protein Dynamics Unit at the ANU.
I have contributed to the development of the program and have made significant
improvements and modifications. These have included improving the short range
forces, implementing the geometries discussed later and allowing for non-symmetric
boundaries, implementing the Grand Canonical Monte Carlo boundaries, allowing
the use of finite difference solutions to Poisson’s equation, adding numerous data

analysis modules for calculating conductances and concentrations and much more.

3.2 Calculation of forces

3.2.1 Electric forces

In most cases the electric forces acting on the ions are found by solving Pois-
son’s equation for the given channel boundary and ion locations using one of the
numerical techniques described below. Rather than solving Poisson’s equation at
each time step, which would be computationally prohibitive, a system of lookup
tables is used [91]. The electric field and potential due to one- and two-ion config-
urations are pre-calculated at a number of grid points and stored in a set of tables.
During simulations, the potential and field at desired points are reconstructed by
interpolating between the table entries and using the superposition principle. For
this purpose, the total electric potential ¢; experienced by an ion ¢ is broken into

four components

i = Ox,i + Ps,i + Z(¢I,ij + ¢c,ij), (3.12)

J#
where the sum over j runs over all the other ions in the system. In Eq. 3.12, ¢x ; is
the external potential due to the applied field, fixed charges in the protein wall, and
charges induced by these; ¢s ; is the self potential due to the surface charges induced
by the ion 7 on the channel boundary; ¢1;; is the image potential due to the charges
induced by the ion j; and ¢¢; is the Coulomb potential due to the ion j. All the
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channel models described in this thesis are symmetric about the channel axis. This
means that the first 3 potential terms in Eq. 3.12 can be stored in, respectively,
3, 2 and 5 dimensional tables (dimension is reduced by one in the latter two cases
by exploiting the azimuthal symmetry of the system’s geometry). Similar tables
are constructed for each component of the electric field which are calculated from
the gradient of the potential at the grid points. The electric forces required in the
simulations are then obtained at each time step by interpolating between values in
the lookup tables. The accuracy in interpolating potential values from precalculated
tables depends on the number and distribution of storage points in the tables. Values
are stored using a set of generalised coordinates which allow for variations of grid

spacing, and the forces on ions can be very accurately determined [91].

3.2.2 Short range forces

The Coulomb interaction between two ions is modified by the addition of a re-
pulsive 1/79 potential, which arises from the overlap of their electron clouds [156].
The hydration forces between two ions add further structure to the ion pair po-
tential in the form of damped oscillations [71,72]. Together these effects can be

approximately represented by

Use(r) = Uy {(RC/’I')Q —exp[(R — 1) /ae] cos[2m(R — 1) /ay] } - (3.13)
Here the oscillation length a,, = 2.76 A is given by the water diameter and the

other parameters are determined by fitting Eq. 3.13 to the potentials of mean force
obtained from MD given by Guardia et al. [71,72]. For anion-cation pairs, R, =
1475 but for like ions the contact distance is pushed further to Ry = r{+75+1.6 A.
The origin of the hydration force R is slightly shifted from R.; by +0.2 A for like
ions and by —0.2 A otherwise. The exponential drop parameter is determined as
ae = 1 A for all ion pairs. A full list of parameters used for the various ion types
considered is given in table 3.1.

Fig. 3.2 A shows a plot of this short range potential for the NaCl solution used in
our Brownian dynamics simulations. This potential agrees well with the potential
of mean force derived by Guardia et al. ([71,72]). The short range force in Eq. 3.1
is determined from the derivatives of the potential in Egs. 3.13.

BD simulations using this combination of Coulomb and short range forces accu-
rately mimic the results of molecular dynamics simulations. In Fig. 3.2 B, we show
the radial distribution functions for Na-Na, Na-Cl and CI1-Cl pairs obtained from 2.5
ns BD simulation of a 1.79 M NaCl solution (22 Na* and 22 Cl~ ions) confined in
a large cylinder with a diameter and height of 30 A. To avoid the edge effects, ions
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Table 3.1: Parameters used for short range ion—ion forces.

Tons | Uy (kT) | R, (A) | R (&)

Na—Na 2.5 3.50 3.70
K-K 2.5 4.26 4.46
Ca—Ca 0.8 3.58 3.78
Na-Cl 8.5 2.76 2.56
K-Cl 5.2 3.14 2.94
Ca—-Cl 16.8 2.80 2.60
Cl-Cl 14 5.22 5.42

within 8 A of the boundary at any timestep are excluded from the sampling. As
expected, the resulting peaks in the distribution function are located at the minima
of the potential of mean force and also match closely those locations found in the
radial distribution functions from molecular dynamics simulations [132] (indicated
by the arrows). We have found that simpler ion-ion interactions that ignore hy-
dration effects employed previously in BD studies of other channels (e.g., [40,42])
are not suitable in many cases. In the calcium channel, for example, the simpler
interactions allow cations to pass each other in the selectivity filter, unlike when the

realistic interaction described above is used.

The short range forces are also used to keep the ions in the system and to mimic
other interactions between ions and the protein. In order to prevent ions from
leaving the system, a hard-wall potential is activated when the ions are within one
ionic radius of the reservoir boundaries, which elastically scatters them. For the

ion-protein interaction Urw, we use the usual 1/r° repulsive potential

Fy (Ri+Ry)"

Uw(r) =5 (R) + Ry — )

(3.14)

where R; is the ion radius, R, is the radius of the atoms making up the channel
wall, R.(z) is the channels radius as a function of the z coordinate, and a is the
ion’s distance from the z axis. We use R,, = 1.4 A and Fy = 2x 10 % N in Eq. 3.14,

which is estimated from the ST2 water model used in molecular dynamics [192].
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Potential of mean force (kT )

Radial distribution function

lon separation (A)

Figure 3.2: Ton-ion forces used in BD simulations. (A) The inter ion potentials
for Na™ - Na™ (solid line), Na* - Cl~ (dashed line) and C1~ - C1~ (dotted
line) ion pairs are plotted against the ion separation as given by Eq. 3.13.
(B) The radial distribution functions for 1.79 M NaCl solution derived from
BD simulations (the same line styles as in A are used). The locations of
the maxima found in the molecular dynamics simulations of Lyubartsev and

Laaksonen [132] are indicated by the arrows at the top of the graph.
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3.2.3 Other force calculations

It is worth noting that the BD algorithm only describes the dynamic behaviour
of ions in terms of the forces acting on it and does not specify what those forces
are. The forces acting on the ions in BD can be calculated in any way, and need
not rely on the solutions of Poisson’s equation. Indeed, in chapter 9 I discuss the
possibility that the continuum picture used in Poisson’s equation fails in the narrow
GA channel due to problems with assigning a uniform dielectric constant. In this
case we employ an ‘inverse method’ in which we guess the potential energy profile in
the channel and thus the forces acting on an ion in the channel. This potential profile
replaces the electric forces in the Langevin equation 3.1. Although we calculate the
electric forces using Poisson’s equation in all cases other than those mentioned in
chapter 9, this need not be so. A different method for calculating the forces such
as using a PMF derived from MD or an ‘inverse method’ can easily be used within
the BD formalism.

3.3 Solutions of Poisson’s equation

As mentioned above, the electric forces in the BD simulations are usually found
by solving Poisson’s equation. These solutions are also informative in their own
right, as they can be used to find the energy landscape encountered by ions in the
channel. Analytic solutions to Poisson’s equation exist for some special shapes of
the dielectric boundary, however, none of these, with the exception of a toroidal
boundary, resemble the shape of biological ion channels [115]. Thus one generally
has to resort to numerical solutions. The two methods of numerical solution used

in this study are described briefly below.

3.3.1 Boundary element method

In the boundary element method, introduced by Levitt [120] the dielectric bound-
ary is represented by small segments of area s;. The change in the electric field across
the boundary is represented by a polarisation charge density, o; induced in each seg-
ment. By placing an infinitesimal Gaussian pillbox about the segments, the induced
charge density can be related to the electric field:

(B; —E,)-f= (3.15)

o
60.

The induced charge density can thus be calculated to be
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E.. - f, (3.16)

where E., is the field created by all sources other than the charge on the segment of
interest. This external field is calculated from the normal derivative of the external

potential at r; due to polarisation charges on other segments and other charges ¢x:

1 0S8 dk
ex\li) = | 3.17
Des (i) 4ﬂ60[§\r,~—r]~\+;ek\ri—rk\ ( )

in which j is summed over all the segments and k over all the charges.

The solution to Poisson’s equation can be found by starting with an initial polar-
isation charge density ¢ = 0 and iterating equations 3.16 and 3.17 until the results
converge. As Poisson’s equation has a unique solution inside a closed boundary, the
converged potential must be the solution we are after.

This method has been further improved to account for the curvature of the
segments by including a self interaction which arises from other points within the
segment and is dependent on the geometry of the segment [92]. This procedure
provides fast accurate solutions provided enough boundary sectors are employed.
In this thesis I use a program developed by Matthew Hoyles for solving Poisson’s
equation using the boundary element approach. The main downsides to using this
package is that it has been developed assuming cylindrical symmetry in the system
which reduces the problem to 2 dimensions but limits its applicability to axially
symmetric channel shapes. Also, the potential energy and forces acting on an ion
approach infinity as it is brought close to a dielectric boundary. This makes it
difficult to assign different dielectric constants inside the channel to the bulk water,

which creates a dielectric interface through which ions will pass.

3.3.2 Finite difference method

An alternative way to find numerical solutions to Poisson’s equation is to use a
finite difference approach. In this technique a grid is placed over the system, and
the continuous variables, ¢ and € are approximated by discrete values at the grid
points in the case of the potential, and at the mid point between grid points in the
case of the dielectric constant.

Poisson’s equation can then be discretised using a similar method to that used
to commonly discretise the Poisson-Boltzmann equation [106]. (A description of the
discretisation of the Poisson-Boltzmann equation can be found in chapter 5.)

Poisson’s equation is integrated over the volume of a grid element v, of side

lengths h,, hy, and h, centered on a grid point giving:
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/V V- [e(r) V()| dV = — / (Pex/€0)dV. (3.18)

Using Gauss’ theorem, the left hand side of Eq. 3.18 is converted to a surface
integral, and then the derivatives of ¢ are written as finite differences

6 3
i+ hi)) —o(r;) V

/ V- [e(r)Vo(r)] dV = / (r)Ve(r)-dS =Y ¢ Ori+hyi) = () V. a1
v s = h; h;

Here the sum is over the six surfaces of the rectangular box with hy = hy = hy,

hy = hs = hy, hs = hg = h,, and j = %, §, # for j = 1,2,3, and —%, —y, —2 for

j = 4,5,6. The term on the right hand side of Eq. 3.18 is evaluated similarly by

replacing the integrands with their average values at the grid point

/V(pex/fo)dV = Vpex(ri)/€0 = q(1;)/€o. (3.20)

Substituting Eqgs. 3.19 and 3.20 back into Eq. 3.18, we obtain an expression for the
potential at the ¢’th grid point in terms of the values of the potential, charge and

dielectric constant at this grid point and its immediate neighbours

> €i0i/h: + ai/ (V)
Zj fj/h? .

Equation 3.21 is solved using an iterative relaxation scheme. The potential values

b =

(3.21)

at the edge of the grid are set using appropriate boundary conditions. Both Jacobian
and Gauss-Seidal relaxation techniques are considered [160]. In Jacobian relaxation,
an initial guess is made for the potential at all grid points, which are then used in
Eq. 3.21 to recalculate the potential at each grid point. This process is iterated
until the potential values at all grid points converge to a stable solution. In Gauss-
Seidal relaxation, when available, updated values of the potential in neighbouring
points are used in evaluating Eq. 3.21. This speeds up the convergence, hence it
is the preferred method in scalar machines. In Jacobian relaxation, the number of
iterations required for convergence is larger. However, because the program can be
vectorized readily with this method, it may be more suitable for use in a vector
machine.

For faster convergence, we also employ an over- or under-relaxation method [160].
After each iteration, the value of the potential at a grid point is updated according
to @ = (1 — W)Polq + WPnew, Where w is the relaxation parameter that varies in the
range [0,2]. The case of w = 1 obviously corresponds to no relaxation, w < 1 is

called under-relaxation and w > 1 over-relaxation. Under-relaxation is useful in
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situations where the potential diverges or oscillates around the actual value after
each iteration. Barring these occurrences, over-relaxation is preferred as it leads to
a faster convergence.

I devised and wrote a program in FORTRAN9O for finding these finite difference
solutions. A simple extension of the program also allows it to solve the Poisson-
Boltzmann equation as discussed in chapter 5 as the Poisson-Boltzmann equation
reduces to Poisson’s equation when the electrolyte concentration is set to zero.

We have subjected this finite difference code to several tests to check its con-
vergence properties and accuracy. Here I describe one test of the program in the
GA channel presented in chapter 9. In these tests the dielectric constant in the
channel, e. = 80 is employed for ease of comparison with the boundary element
method. Figure. 3.3 A shows the grid size dependence of the potential energy pro-
file of a monovalent cation as it is moved along the central axis. As the grid size in
the finite difference method is reduced from 0.8 A to 0.4 A, the results are seen to
converge rapidly. In Fig. 3.3 B, we compare the potential energy profile obtained
from the finite difference solutions (dashed line) with that obtained from the bound-
ary element method (solid line). A general agreement is obtained between the two
methods (differences are much smaller compared to the thermal energy of an ion),
which establishes the validity of the finite difference solutions.

Further tests of this program and the accuracy of its solutions are discussed in
section 5.4.1.

3.4 Parameters used in simulations

A list of parameters required for the BD simulations is given in table 3.2. A

temperature of 298 K is used throughout.

Table 3.2: Parameters used for BD simulations.

Ca | Na K Cl

Mass (x107% kg) 6.6 | 3.8 | 65 | 5.9
Diffusion coefficient (x10 *m?s™*) || 0.79 | 1.33 | 1.96 | 2.03
Tonic radii (A) 0.99 | 0.95 | 1.33 | 1.81
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Figure 3.3: (A) Convergence of the potential energy profile with the grid size
used in the finite difference solution of Poisson’s equation. (B) Comparison
of the energy profile obtained from the finite difference solution (dashed line)
with that obtained from the boundary element method (solid line) for the

axially symmetric boundary. €. = 80, and €, = 2 are used in both cases.
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3.5 Testing the dynamic behaviour of ions

It is important to check that the dynamic behaviour of ions in the BD simulations
faithfully reproduce what should be expected in reality. Such tests were carried out
on this BD program by Siu Cheung Li and his colleagues [127]. They checked that
the mean-square displacement, velocity distribution and the velocity autocorrelation
function found from simulations were in accord with theoretical expectation, in
simulations carried out without any dielectric boundaries.

An expression for the mean square displacement of ions can be obtained by
integrating the Langevin equation 3.1 twice when there are no electric or short

range forces to give:

_%T
-

(x?) [t — 77" (1 —exp(—t)] . (3.22)
in which y~! is the relaxation time constant, which corresponds to the time required
for a particle that is suddenly displaced to relax back to the original equilibrium
position. For K* and Cl~, y~! is about 30 fs. At times much greater than this

relaxation time, the mean-square displacement should obey the relation

2kT
t, for  t>>~7h (3.23)
mi%i

(a%) =

The velocity distribution should be Maxwellian with the form [166]

277:ZT]1/2 exp(—mv?/2kT)v2dv (3.24)

F(v)dv = 47n|

In which F'(v)dv is the mean number of ions per unit volume with a velocity between
v and v + dv, and n is the number density of ions.

The velocity autocorrelation function is of the form [166]

(v(O)o(s)) = 1 exp(=uls), (3:29
showing that regardless of the initial velocity the following velocities of the particle
will be correlated over a time interval of order 1/+;, the relaxation time constant of
the system.

In all cases the results of the BD simulations agreed very closely with these
theoretical measures [127], yielding confidence that the simulations accurately char-

acterise the motion of particles undergoing Brownian motion in a fluid.
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3.6 Conclusions

In this chapter I have presented the details of the BD technique that is used
to study ion permeation in biological channels in the remainder of this thesis. BD
simulations are introduced as a means to examine the dynamic behaviour of ions,
and efficient algorithms for carrying out such simulations have been presented and
tested. These simulations provide a practical method for the calculation of ion
channel conductance from a given structure. The solutions of Poisson’s equation
are used to calculate electrostatic forces acting on ions in the BD simulations and
are also useful for determining the energy landscape encountered by an ion in the
channel. Two methods for solving Poisson’s equation in arbitrary geometries were

presented: the boundary element technique and the finite difference technique.



Chapter 4

Boundary Conditions in Brownian

Dynamics Simulations

4.1 Abstract

The boundary conditions used in our BD simulations are checked for validity.
The simple stochastic boundary that we have been employing to maintain ion con-
centrations in our BD simulations is compared with the recently proposed grand
canonical Monte Carlo method. Different methods of creating transmembrane po-
tentials are also compared. The results confirm that the treatment of the reservoir
boundaries is mostly irrelevant to the conductance properties of an ion channel as
long as the reservoirs are large enough.

4.2 Introduction

In our BD simulations, we have concentrated on representing the forces acting
on ions accurately because ultimately they are responsible for driving the ions across
the channel. The calculated conductance values could be very sensitive to errors in
electric fields and potentials. For example, conductance has an exponential depen-
dence on the size of energy barriers in channels. In contrast we regard the reservoir
boundaries conditions, required to maintain ion concentrations and create driving
potentials, as a secondary issue. However, recently questions have arisen about the
methods of implementing the boundaries in BD simulations of ion channels. The
purpose of the reservoirs is to move the necessarily unphysical system boundaries
away from the critical part of the simulation - the channel. Provided the reservoirs
are large enough, a simple implementation of the boundaries should then suffice.
We implement the boundaries by applying a uniform electric field across the chan-

nel and keeping a fixed number of ions in the reservoirs. In our simulations the
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chosen concentration values in the reservoirs are maintained by recycling ions from
one side to the other whenever there is an imbalance due to a conduction event.
This process mimics the current flow through a closed circuit. There has, however,
been a great deal of debate in the field about the appropriateness of such a simple
stochastic boundary. Most recently, Im et al. [93] have proposed a more elaborate
treatment of boundaries using a grand canonical Monte Carlo (GCMC) method. In
this paper, they also question the validity of the simple method, but unfortunately
do not support this criticism with any hard evidence, such as a comparison of the
two methods.

The source of this preoccupation with boundaries in BD appears to arise from
the association with MD simulations where the correct treatment is known to be
crucial [180]. However, the nature of the electrostatic forces in BD is very different
from those in MD - firstly an ion’s electric field (or potential) in water is reduced
by a factor of 80 due to the dielectric shielding, and secondly, shielding due to the
counter ions completely annuls the remaining field strength beyond 4 Debye lengths.
For physiological concentrations (150 mM) this length scale is about 30 A. With this
provision on the reservoir dimensions, we believe that a simple boundary method
should be adequate for the purpose of calculating the conductance of a channel from
BD.

In view of the debate outlined above, however, it seems prudent to perform
additional tests on the validity of our simple stochastic boundaries. The work
of Im et al. [93] provides us with an opportunity to do so. We have modified
our computer programs to deal with the more sophisticated boundaries, and have
carried out BD simulations of model channels using the two different methods. We
have also experimented with different methods of representing the transmembrane
potential. The purpose of these tests is to determine whether or not the alternative
ways of maintaining ion concentrations or applying a membrane potential make any
difference to the conductance of the model channel, or to the concentrations of ions
near the mouths of the channel. If not, we feel safe in concluding that the reservoirs
are adequately insulating the channel from the boundary conditions, and that our

simulations accurately reflect the physical processes taking place in ion channels.
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4.3 Ion concentrations

We apply stochastic boundaries to maintain the specified concentrations in the
reservoirs. Here, we compare the use of a simple boundary that maintains a fixed
number of ions in the system with a more sophisticated GCMC boundary that

allows fluctuations in the number of ions.

4.3.1 Simple stochastic boundary

The simple stochastic boundary is designed to maintain the desired ion concen-
trations in the reservoirs by keeping the number of each ion species in the system
fixed. When an ion crosses the channel, say from left to right, an ion of the same
species is transplanted from the right reservoir to the left. For this purpose, the
furthermost ion on the right-hand side is chosen, and it is placed at the far left-hand
side of the left reservoir, making sure that it does not overlap with another ion. The
stochastic boundary trigger points, located at either pore entrance, are checked at
each time step of the simulation. In this way the total number of each type of ion
in each reservoir remains constant throughout the simulation. We emphasize that
the exact placement of the trigger points is not crucial as the change in potential
inside the channel due to moving an ion from one reservoir to another is only a few
mV (as found by explicitly measuring the potential in the channel just before and
just after the ion is moved). This is much smaller than the potentials from most
other sources e.g., other ions, induced charges on the boundary, applied potential
and fixed charges. The current is identical (within statistical errors) wherever the

trigger point is placed in the channel.

4.3.2 Grand Canonical Monte Carlo

In an electrolyte solution, the total number of ions within a given region varies
with time as ions wander in and out. To allow such fluctuations in the number of
ions in the reservoirs, we implement as an alternative a grand canonical Monte Carlo
(GCMC) stochastic boundary as developed by Im et al. [93]. We use essentially the
same procedure but include a brief description of the method for completeness.

Fluctuations in the number of particles in an open system are described using

the grand canonical ensemble with the grand partition function

Z2=11 % %exp[naﬂa/kT] / 4V exp[—W ({na}) /KT, (4.1)

a ng>0
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where n, and [i, refer to the expected number and chemical potential of ions of
species a, W ({ny}) is the free energy of the configuration {n,}, and the volume
integral is carried over all the ion coordinates in the system. The probability for a
particular configuration P({n,}) can be read off from Eq. 4.1 by removing the sum
and integral, and dividing by Z. To achieve a variable number of ions in a finite BD
simulation, ions must be created or destroyed from within the reservoirs. Using the
principle of detailed balance and P({n,}), one can derive the following expressions
for the transition probabilities corresponding to the creation and destruction of ions
of species a [93]

(fia /Mo + 1) exp[— (AW — [ia) /KT
1+ (ﬁa/na + 1) eXp[—(AW - p’a)/kT],
1

Paesna = na = 1) = §o a7 AW + i) KT (43)

Pere(Na = na +1) (4.2)

Here AW is the free energy difference between the final and initial configurations.

The probabilities in Eqgs. 4.2—-4.3 are employed in Monte Carlo steps to create
or destroy ions in the reservoirs as follows. First a random number between 0 and
1 is picked and a creation is attempted if it is less than 0.5 and a destruction if
it is greater (equal probability is required to preserve microscopic reversibility).
In case of creation, an ion of species « is introduced in a random location and
the probability in Eq. 4.2 is calculated. If it is greater than a newly picked random
number, the creation is accepted, otherwise the ion is removed. Similarly in the case
of destruction, one of the ions of species « is randomly chosen and the probability
of its removal from the system is calculated using Eq. 4.3. If a random number is
below this value then the ion is removed from the system, otherwise it remains.

Such particle creation and destruction is unphysical and is meant to represent the
movement of ions into and out of the reservoirs. So, we must make sure that this does
not affect the dynamics of ions near the ion channel by limiting such events to ‘buffer
regions’, sufficiently distant from the channel. Fig. 4.1 depicts the BD system used
with the GCMC boundary conditions. An ion channel (cylindrical in this case, but
any shape is possible) is connected to reservoirs at each end. Cylindrical reservoirs
are used here to be consistent with our previous BD simulations, although again any
geometry is possible. Tons move throughout this channel - reservoir system according
to the BD algorithm described previously. The outside edge of the reservoirs form
the buffer zones in which the GCMC creation/destruction routine takes place. In
our studies we used a buffer thickness of 10 A.

The chemical potential is calculated from the excess solvation energy, Ap,, of

each ion type for the specified average concentration in the relevant buffer. In a
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Figure 4.1: Diagram of the channel and reservoir system used in BD/GCMC
simulations. The protein and membrane (shaded region) forms a 3 dimen-
sional channel when rotated about the central axis by 180 degrees. In this case
the channel is cylindrical although it may have any shape. Attached to each
end of the channel are cylindrical reservoirs. During BD simulations, ions
move within this channel and reservoir system. When the GCMC procedure
is used to maintain ion concentrations in the reservoirs, ions are created and
destroyed in the buffer zones around the outside edge of the reservoir indi-
cated by the dashed lines. The dimensions shown are those for the cylindrical

channel discussed in the text.
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similar fashion to Im et al., we employ the hypernetted chain (HNC) approximation
[78]. The method used follows closely that of Rossky and Friedman [170] and incor-
porates the short-range and hydration interactions described in chapter 3, instead
of the Lennard-Jones potential used by Im et al. that ignores the contributions of
solvent molecules. (Note that the solvation energies could be calculated in other
potentially more accurate ways, such as direct Grand Canonical simulation.) Once
the excess solvation energies are determined, they are adjusted to account for any

driving potentials in the system as follows:

ﬂaﬂ = A:ua + QQVBa (44)

where g, is the charge on ion type a and Vj is the potential in buffer 3.

To allow the GCMC boundary procedure to accurately enforce the boundary
conditions, many GCMC steps (a creation or destruction of each type of ion in each
reservoir) should be performed for every BD timestep. In this study, 10 GCMC
steps are performed for every BD step. The concentration in the reservoirs varies
during a GCMC-BD simulation as ions are created and destroyed. The average
concentration, though, is found to be always slightly lower than the specified input

value.

4.3.3 Comparing the techniques

Below we describe a number of tests carried out to compare the simple and
GCMC stochastic boundaries.

Equilibrium ion distribution

We first demonstrate that the BD simulations with either the simple or GCMC
procedure maintains the desired equilibrium conditions by examining the relative
distribution of ions in bulk solution. For this purpose, we set all dielectric constants
in the system equal to 80 so that there are no dielectric boundaries in the system,
and ignore ions that are within 8 A of the reservoir boundaries to avoid edge effects
in sampling. In Fig. 4.2, we show the radial distribution functions for K-Cl (A) and
K-K (B) ion pairs, obtained from BD simulations of a 500 mM KCl solution for
108 timesteps (0.1 us), in one case with the GCMC routine in place (triangles) and
in another without (filled circles). When testing the GCMC procedure, the buffer
regions are enlarged to occupy the entire reservoirs (so that ions can be created or
destroyed anywhere) as the test is for a bulk solution. The curves agree closely and

depict the peaks due to the contact and solvent separated minima in the potential
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of mean force. They also closely follow the results obtained from the HNC equations
indicated by the solid line. This agreement indicates that the equilibrium structure
of the electrolyte is accurately reproduced in BD simulations with or without the
GCMC routine.

Cylindrical channels

As we are interested in comparing different treatments of the boundary in BD
simulations, it matters little which channel model we use. Thus, for simplicity, we
first make our comparisons in a simple cylindrical channel, before demonstrating
the robustness of these results in a more complex potassium channel model.

The cylindrical channel model is formed by rotating the curve shown in Fig. 4.1
about the central axis. The channel radius is set to 3 A and its entire length to
35 A. Firstly we set the dielectric constant of the protein to 80, equal to that of
the electrolyte in the channel and reservoirs. In this case, as there is no dielectric
boundary, no reaction field can be induced. Although not realistic, this provides the
simplest case in which to test the stochastic boundary methods, and it also helps
in showing the importance of the reaction field when these results are compared
to those with a realistic choice of dielectric constant. The overall concentration in
the simple boundary simulations is set to be the same as the average concentration
during the GCMC simulations. For compatibility with later simulations, all studies

in the cylindrical channels are carried out using NaCl solution.

Ion distributions and fluctuations

Im et al. [93] show that when the GCMC method is used, the number of ions in
the reservoirs fluctuates considerably during a BD simulation, and therefore, they
claim “BD with a fixed number ions cannot describe the permeation process in a
satisfactory manner”. Such a connection between channel current and variations
in the ion numbers is far from being obvious. For one thing, fluctuations in con-
centration in any volume in the vicinity of the channel occur at a much faster rate
than conduction of ions, and hence a direct correlation between the two quantities
is unlikely. Secondly, even if such fluctuations did have an effect on channel current,
these will be at the level of noise in the stochastic BD simulations, and will be lost
when the average current is determined (which should depend only on the average
concentration). Finally, fixing the total number of ions in the reservoirs does not
mean that the number of ions near the channel mouth does not fluctuate where

such effects, if important, should be modeled correctly.
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Figure 4.2: Radial distribution function for (A) K™ - Cl~ and (B) Kt - K+
ion pairs moving in the reservoirs as found from BD with the GCMC routine
in place throughout the reservoirs (triangles), BD simulations without the
GCMC routine (filled circles), and the HNC equations (solid line). The BD
plots were calculated by sampling from simulations using a cylindrical channel
with no dielectric boundaries and ignoring ions within 8 A of the reservoir

boundaries.
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In Figs. 4.3 and 4.4, we demonstrate this third point by comparing the predic-
tions of the simple boundary (A) with the GCMC method (B) for the distribution
of ions near the channel. In each figure, the probability of finding a given number
of ions in a fraction of the reservoir volume around the channel mouth (denoted
by z) is plotted. In Fig. 4.3, = 0.5 corresponding to all the volume outside the
buffer zone in the GCMC method as indicated by the dashed line in Fig. 4.1. In
Fig. 4.4, x = 0.25, that is, half of the volume used in Fig. 4.3 (around the mouth
of the channel). Given N particles in a box, the probability of finding n of them
occupying fraction x of the volume is given by the binomial distribution

|

P(n,z) = ﬁ (1 —2)N ™, (4.5)
which is indicated by the dashed line in Figs. 4.3 and 4.4. As expected, the proba-
bility distributions when using the simple boundary method show that the number
of ions in these regions varies significantly during a simulation, the distributions
closely following the binomial one in both Figs. 4.3 A and 4.4 A. Even though the
total number of ions in the reservoir is constant during the simulation, the number
of ions near the channel is not fixed. The GCMC distribution is slightly more spread
out in Fig. 4.3 B, where the effect of the number fluctuations in the buffer zone is
maximal. But, as shown in Fig. 4.4 B, as soon as one moves away from the buffer
boundary, the GCMC distribution also reverts to the binomial distribution. Thus,
away from the boundary regions, ion numbers fluctuate according to the binomial
distribution regardless of whether one fixes the total number of ions in the system
or allows it to fluctuate according the GCMC method.

We emphasize that the boundary conditions imposed in either method contains
unphysical elements and one has to make sure that these regions are well separated
from the channel. The rule of thumb is to put the boundaries at about 4 Debye
lengths away from the channel mouths to allow for near complete ionic screening.
Once the boundaries are at such distances, their effects are totally washed out in
the vicinity of the channel so that all methods should lead to similar fluctuations

in ion numbers there.

Channel currents

Since the distribution of ions and the fluctuations in ion numbers are very similar
near the channel mouth with both the simple and GCMC methods, they should also
lead to similar conductance properties. To demonstrate that the choice of stochastic

boundary makes no difference on the channel conductance, we next compare the
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Figure 4.3: Fluctuations in cation numbers in a region around the channel
mouth comprising 50% of the volume of one reservoir when (A) the simple
stochastic boundary is used and (B) when the GCMC procedure is used. A
dielectric constant of 80 is used everywhere. The number of ions in the region
is sampled every 100 BD steps and the relative frequency is calculated during
a 0.2 ps simulation period. The average concentration in the simulation
is &~ 280 mM corresponding to 15 ions of each type in each reservoir. The
average number of ions in the region and the standard deviations are indicated
by n and o respectively. The dashed line shows the corresponding binomial
distribution from Eq. 4.5 with N =15 and x = 0.5.
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using (A) the simple boundary and (B) the GCMC boundary.
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current passing through the cylindrical channel during BD simulations with the
simple and GCMC boundaries.

In Fig. 4.5 we plot the current-voltage curve in a 3 A radius cylindrical channel
found from BD simulations employing either the simple stochastic boundary (filled
circles) or the GCMC boundary (triangles). For this plot ¢ = 80 is used everywhere
so that there are no dielectric boundaries and thus no ion self energies or image
charges. This situation is the same as that used in the control study of chapter 6
and is similar to the simulations of Im et al. [93], in which reaction fields are ignored.
As there are no fixed charges or other sources which can bias the potential, both
cations and anions pass through the channel in opposite directions. The current
carried by the cations and anions are plotted separately in the figure, and there
is a greater anion current due to chloride having a larger diffusion coefficient than
sodium. Rather than being Ohmic, the current-voltage relationship is notably non-
linear. This is most likely a consequence of the fact that at larger voltages the ion
transit time through the channel is shorter. As the channel is too narrow for ions to
pass each other, yet cations and anions are trying to permeate through the channel
in opposite directions, the shorter transit time would aid conduction by clearing
the channel ahead of the next conduction event. It is clear from this plot that the
currents calculated using either the simple or the GCMC boundaries are essentially
the same, the two agree to within the statistical uncertainty of the data. Thus, the

channel current does not depend on which boundary technique is used.

If we change the dielectric constant of the protein to the realistic value of 2, then
a dielectric boundary is formed and reaction field effects come into play. When an
ion approaches a protein boundary with a lower dielectric constant it induces surface
charges which repel the ion away from this interface. Indeed as discussed in chapter 5
and 6, these reaction fields can be the dominant electrostatic effect in ion channels
and should not be ignored. In this case, the repulsive forces prevent ions from
entering the channel, and so the current is reduced to zero. Not surprisingly, the
choice of stochastic reservoir boundary has no effect — no ions cross the channel with
either technique. The most important physical effects for simulating the channel
are those between the ion and the channel itself, not those due to the reservoir
boundaries or ions far from the channel.

Next we create a conducting cylindrical channel with dielectric boundaries by
including fixed charges in the channel walls. A ring of 8 monopoles are placed
at each end of the channel (at z = £12.5 A), each carrying a charge of —0.09e.
These charges help cations overcome the image forces and enter the channel, while

preventing anions from entering, creating a cation selective channel. The cation
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Figure 4.5: Comparison of the current-voltage curves in a cylindrical channel
using the simple stochastic boundary (filled circles) or the GCMC boundary
(triangles). A 3 A radius channel is used with ¢ = 80 everywhere and 265
mM NaCl solution. Ions are driven across the channel by an electric field
of 2 x 107 V/m corresponding to a potential drop of approximately 200 mV
across the system. Sodium and chloride currents are plotted separately and
each set of results is fitted by the solid line.
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current passing through the channel is plotted against the driving potential using
both the simple and GCMC boundaries in Fig. 4.6. As in the case of Fig. 4.5,
the currents found from simulations employing the GCMC boundary are almost
identical to those found using the simple boundary. Note that the non-linearity in

this case results from the residual barriers in the potential energy profile.
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Figure 4.6: Comparison of the current-voltage curves in a cylindrical channel
with fixed charges using the simple stochastic boundary (filled circles) or the
GCMC boundary (triangles). A 3 A radius channel is used with 8 monopoles
placed at each end as described in the text. A dielectric constant of 2 is

assigned to the protein and 80 everywhere else.

More complex channels

We have seen that the choice of stochastic boundary used to maintain concen-
trations in the simulation reservoirs has no effect on the currents flowing through
simplified cylindrical channels. As a final test, we check to make sure that this
conclusion is valid in a more complex and realistic multi-ion channel that we have

modeled previously, as well as checking it at a range of concentrations. To do this we
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use the KcsA potassium channel model that has been described in an earlier paper
[4]. An open state KcsA channel shape has been constructed using MD from the
known closed state crystal structure [3]. A dielectric interface is then constructed
by tracing out a boundary using a water molecule and assigning the dielectric con-
stant a value of 2 in the protein and 60 in the channel. The final shape, and the
pore forming peptide helices are shown at the top of Fig. 4.7. Charges are assigned
at positions corresponding to the protein atoms using the extended CHARMM-19
parameter set. More details can be found in the above references.

In Fig. 4.7 we plot the current-concentration curve in the KcsA potassium chan-
nel surrounded by KCl solution under a driving potential of 200 mV. The results of
our simulations show a saturation of channel current with increasing conductance,
and are fitted by a Michaelis — Menton curve to indicate this. The data from sim-
ulations carried out using the simple stochastic boundary, indicated by the filled
circles, are those published elsewhere [4]. When the GCMC boundary is employed,
the new data shown by the triangles reproduces this curve well at all concentrations
studied. Thus, once again the choice of stochastic boundary has little effect on

channel currents, even over a large range of concentrations.

4.4 Potentials

A second issue to do with reservoir boundaries is how to apply a potential
difference that drives ions through the channel. There are at least three possibilities
that have been considered in the past, and there has been debate as to which is

most appropriate.

4.4.1 Techniques for applying a membrane potential

In all our recent BD simulations and those in the remainder of this thesis, we cre-
ate a transmembrane potential by simply applying a uniform electric field through
the system. This applied field is included in the solution of Poisson’s equation with
the dielectric boundaries so that it induces surface charges of its own. The resulting
potential is far from being linear across the system — it drops much more rapidly
through the channel than in the reservoirs.

Another approach is to fix the potential at the desired values along the far ends
of the reservoirs. This creates an equipotential surface at each end, which can be
set independently to create a potential drop across the channel. This is similar to
placing electrodes at the far end of each reservoir, though in an actual experiment,

the electrodes would be much farther from the channel than in a typical simulation.
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Figure 4.7: Conductance concentration curve in a model KcsA potassium
channel found from BD simulations employing the simple stochastic boundary
(filled circles) and GCMC boundary (triangles). An electric field of 2 x 107
V/m is used to drive the ions across the channel. The results represent the
averages of a 1.5—2.0 us simulations. The inset shows the shape of the channel

and indicates the major peptide helices.
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To use such a scheme, we solve Poisson’s equation with the specified boundary
potentials using the finite difference method. The results due to the transmembrane
potential, fixed charges in the protein wall, and charges induced by these are stored
in the three dimensional lookup table.

A final method, which has been introduced by Im et al. [93], is to make the
fixed potential more realistic by moving the fixed potential surfaces far away from
the simulation system. The electrolyte solution in between the reservoir and the
fixed potential surface is treated as a continuum by solving the PB equation in this
region. The potential in the system is thus calculated using a modified Poisson-
Boltzmann equation, which reduces to Poisson’s equation in the BD simulation
system where ions are treated explicitly. We implement this procedure by using the
finite difference method to solve the modified Poisson-Boltzmann equation when

constructing the three dimensional lookup table.

4.4.2 Comparing the techniques

The membrane potential which drives ions through an ion channel arises from
ion clouds on each side of the membrane or a distant electrode. Thus setting the
potential at the back edges of the reservoirs in our simulations is not entirely realistic
as it fails to allow for variations at these positions caused by the movement of
mobile ions. The use of the modified Poisson-Boltzmann equation avoids some of
these difficulties by taking into account the effects of mobile ions when determining
the potentials at each end of the BD simulation. The uniform field approach does
not include the cause of the transmembrane potential, rather just takes it as given,
a bias which could be created by ionic clouds or polarisation external to the BD
system.

But, rather than entering a debate as to which is the most realistic way to create
the transmembrane potential, we simply demonstrate here that it again makes no
difference which method is used, by directly comparing the three. In Fig. 4.8 we plot
the average potential along the central axis of the channel during a BD simulation
using the constant field, fixed potential, and modified-PB approaches. In all cases,
the majority of the potential drop occurs in the channel with the potential remaining
relatively flat in the reservoirs. When the fixed potential or modified PB methods
are used, a slightly greater charge separation occurs in the reservoirs due to ions
being attracted to the potential generating electrodes. This is especially true near
the outside edge of the reservoir, and leads to the drop in the magnitude of the
potential there. The boundary effects created in these techniques are, however,

quickly screened out by the mobile ions in the system. It is worth noting that in the
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modified PB method we solve the modified PB equation only once before doing the
BD simulation. Thus, the electrolyte outside of the reservoirs does not react to the
presence of the explicit ions in the BD simulation. If the modified PB equation was
solved at each BD timestep, it is possible that the electrolyte would act on average
to cancel some of the charge separation seen in the BD simulation. This, of course,
would only act to bring the potential closer to the constant field case, and would
not alter our conclusion. Inside the channel, the potentials are almost identical in
all cases, and good agreement is maintained until around 20 A from the channel
mouth. Thus, no matter which technique is used to create the transmembrane
potential, the average potential seen by ions in or near the channel is the same. As
it is the potentials in and around the channel which drive ions through it, the choice
of technique for creating a transmembrane potential is, therefore, irrelevant when it

comes to calculating the current passing through the channel in a BD simulation.
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Figure 4.8: Average potential profiles along the channel axis during a BD sim-
ulation when the transmembrane potential is set via the uniform field (solid
line), fixed potential (dashed line) and modified PB (dotted line) methods.
The cylindrical channel model is used, with a dielectric boundary but no fixed
charges. The potential is plotted between the two ends of the reservoirs. In

all cases the potential at each point is averaged over a 0.1 us BD simulation.
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4.5 Conclusions

We have presented a number of results which demonstrate that it does not
matter whether the simple stochastic or the GCMC stochastic boundary is used
to maintain ion concentrations in the reservoirs during BD simulations. In both
cases, the edge of the reservoirs or the GCMC buffer zones must be at a reasonable
distance from the channel, ideally 3-4 Debye lengths, such that any unphysical edge
effects or particle creation/destruction are screened from the channel. When these
precautions are followed, the number of ions near the channel fluctuates according
to the binomial distribution and the current passing through the channel is the same
with either method. Similarly it does not matter how the transmembrane potential
is set. Provided the reservoirs are large enough, mobile ions redistribute themselves,
causing the potential drop across the channel to be the same in all cases.

The simple boundary method is conceptually simpler, involves less calculations,
and is considerably faster. For a typical simulation presented here with a 300 mM
solution, a 1 us simulation takes around 45 hours of CPU time to complete using
the simple boundary and 115 hours with the GCMC boundary method. The greater
time is due to the potential energy of the system having to be recalculated for each
GCMC creation or destruction step. The simple boundary also allows one to specify
beforehand the exact concentration that will be used in a given simulation. Thus
for BD simulations of solutions at the usual physiological concentrations, the added
complexity of the GCMC method provides no perceptible advantages compared to
the simple boundary method.

One situation where the GCMC boundary does have an advantage over the
simple boundary method is the simulation of solutions at very low concentrations.
For example, to simulate an ion species in the uM range using the simple boundaries
would require reservoirs thousands of times larger than those described here in order
to contain at least one ion of this type. This is not only cumbersome, but also
makes including a second ion species at a higher concentration (say in the mM
range) problematic — the reservoir would have to contain thousands of ions of the
second type, making it too slow to simulate. The GCMC boundary can reach such
low concentrations using a small reservoir as there need not always be an ion of
each type in the simulation — the low concentration species is simply created in the
buffer regions at a proportionally lower rate. Of course, the simulation may still
take a long time if one waits for the low concentration ion to enter the channel.
Also, the GCMC method may be useful if the channel protein carries a net charge.
The GCMC technique allows for the electrolyte to be in equilibrium without having

the same number of cations and anions in the system.
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Of course, it is possible to treat the boundaries in other ways not discussed here.
For example, a periodic boundary could be used to maintain ion concentrations
and potentials, such as that typically used in Non Equilibrium Molecular Dynamics
simulations [50, 198]. These techniques have their own advantages, such as avoiding
any explicit potential boundary, and disadvantages such as only being able to model
symmetric solutions at each end of the channel. But, from what we have seen here,
it should be apparent that the choice of boundary does not matter, provided some
common sense precautions are observed.

Although the GCMC boundary opens up some new avenues for simulation at low
concentrations, it is no more accurate method than the simple stochastic boundary
that we have been employing in our BD simulations. The results presented here
support the expectation that as long as the reservoirs are large enough so that the
edge effects are completely screened out near the channel, one need not worry about
the exact implementation of the system boundaries. Instead, it is more important
to describe the ion dynamics in and near the the channel accurately, including the
effects of image forces.



Chapter 5

Testing Poisson - Boltzmann

Theory

5.1 Abstract

We test the validity of the mean field approximation in Poisson-Boltzmann the-
ory by comparing its predictions with those of Brownian dynamics simulations. For
this purpose we use spherical and cylindrical boundaries as well as a catenary shape
similar to that of the acetylcholine receptor channel. The interior region filled with
electrolyte is assumed to have a high dielectric constant and the exterior region
representing protein a low one. Comparisons of the force on a test ion obtained
with the two methods show that the shielding effect due to counter ions is overes-
timated in Poisson-Boltzmann theory when the ion is within a Debye length of the
boundary. As the ion gets closer to the boundary, the discrepancy in force grows
rapidly. The implication for membrane channels, whose radii are typically smaller
than the Debye length, is that Poisson-Boltzmann theory cannot be used to obtain
reliable estimates of the electrostatic potential energy and force on an ion in the

channel environment.

5.2 Introduction

The use of continuum theories of electrolytes to model biological processes has
flourished in recent years. But, as noted in section 2.4.2, the use of continuum
theories inside the confined regions of ion channels is questionable. One reason
for the popularity of the continuum theories that deal with concentrations of ions
rather than individual ions, used to be that the alternative methods were compu-
tationally intractable. As noted earlier, this is still true for molecular dynamics

simulations. To study ion permeation across a membrane channel using molecular
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dynamics, one needs supercomputers that are several orders of magnitude faster
than currently available. In comparison, the situation with Brownian dynamics,
where only the motion of ions are traced, is much better. As stressed in a recent
series of commentaries on ion permeation [125,137,143,150], the time is ripe for a
realistic assessment of continuum theories as models of ion channels, and if they fail

the tests, to move on to more accurate theories.

In this and the following chapter, I aim to provide such a test for two promi-
nent continuum theories; Poisson-Boltzmann (PB) in the present chapter and the
Poisson-Nernst-Planck in the next one. PB theory has become an important tool in
studies of proteins and membranes, leading to many insights on the key role played
by electrostatic interactions [90]. The availability of efficient computer programs
for solving the PB equation [52,187] has increased its use tremendously during the
last decade. In ion channels, the PB equation was initially used to include the
effects of ionic atmosphere on the potential energy profile of an ion in schematic
channel models [29,101,121]. More recently, the PB calculation of potential en-
ergy profiles has been extended to realistic channel structures in numerous articles
[1,37,54,163,171,181,182,189,211|. In PB calculations, ionic shielding greatly re-
duces the potential energy of an ion in a channel compared to that of a single ion
calculated from Poisson’s equation. The PB equation is a mean field theory. That
is, it assumes that the properties of the system can be accurately described by time
averaged rather than time dependent quantities. To assess the reliability of the PB
calculations, it is important to check that this shielding effect is not an artifact of

the mean field assumption.

The total electrostatic force acting on an ion inside and near the vicinity of
a channel determines its dynamic behaviour. Therefore, it is the most important
quantity to check in judging the accuracy of the PB theory. Here we test the validity
of the mean field approximation in the PB theory by comparing its predictions
for the force on a test ion as well as potential energy and concentration profiles
with those obtained from BD simulations. BD is eminently suitable for this task
because the motion of all the ions in the system are traced individually according
to the Langevin equation. As both the BD and PB approaches treat the protein as
and water as rigid dielectric environments, differences between their results can be
isolated to the treatment of the electrolyte. Furthermore, the long-time average of
physical quantities in BD should reflect the actual physical behaviour of the system
more accurately than the continuum methods. The main point of this article is
demonstrated using a spherical geometry which serves as a generic example of an

electrolyte confined in a small volume. Cylindrical channels with varying radius
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provide testing grounds for schematic channel models, while a catenary shape similar
to that of the acetylcholine receptor channel is used for tests in a more realistic

geometry.

5.3 Poisson-Boltzmann theory

Poisson-Boltzmann theory provides a classical electrostatic description of a sys-
tem in which fixed external charges, represented by a density pex, are surrounded
by mobile ions in a dielectric medium. The main assumption of the theory is that
at equilibrium, the distribution of mobile ions in the system can be approximated

by a continuous charge density, pe, given by the Boltzmann factor
pa(r) = Z zyeng, exp [—z,e¢(r) /KT, (5.1)

where ng, is the bulk (or reference) number density of ions of species v and z,e is
their charge. Here mgy (in SI units) is related to concentration ¢y (in moles/liter)
by ng = 1000N 4cy where N4 is Avogadro’s number. The average electric potential
#(r) in Eq. 5.1 is obtained from the solution of Poisson’s equation where the charge
density is broken into components from fixed charges, p., and from the electrolyte,
Pel-

&V - [e(r)Ve(r)] = —pa — pex- (5.2)
Combining Egs. 5.1 and 5.2 for a 1:1 electrolyte, which is our main interest here,

we obtain the following PB equation
eV - [e(r)Vo(r)] = 2eng sinh [ed(r) /kT| — pex. (5.3)

Apart from a few special cases this equation cannot be solved analytically. There-
fore, a linearized form proposed by Debye and Hiickel [53] has been commonly used
in practical applications. Expanding the sinh term in Eq. 5.3 and keeping only the
leading term in ¢ yields the linear PB equation for a bulk electrolyte with no fixed
charges (pex = 0)

V3¢ = K¢, (5.4)

where 1/k is the Debye screening length given by

1 €oekT
- = . 5.5
K\ 2e2ng (5.5)

At room temperature (T = 298 K) in water (e = 80), the Debye length is related
to concentration as k™' = 3.07/,/co A. While the approximation in Eq. 5.4 is no
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longer necessary with the availability of high-speed computers, the intuitive picture
of shielding provided by the Debye-Hiickel theory still plays a useful role. Here we
use it to indicate where and why the PB theory may break down. The solution of
Eq. 5.4 in bulk is well known (e.g., [140]), and yields the following screened Coulomb

potential around a central ion of radius a/2

_¢€ exp|—k(r — a)]

. 5.6
drepe(1 + ka)r (5.6)

The radial density of the screening charge p(r) is proportional to this potential

—ek?

1+ ka

p(r) = 4nr?py = —Anrieger’d = rexp|—k(r — a)], (5.7)

which is seen to peak at r = 1/k and then decay exponentially. The volume integral

of this shielding charge is of interest, and for a sphere of radius r, it is given by

14+ kr
1+ &a

qg(r)=—e |l - exp[—k(r — a)l|, (5.8)
Equation 5.8 shows that —g(r)/e increases monotonically with r, leading to a 25%
screening of the central charge at about r = 1/k, rising to 80% at r = 3/k. Thus for
a co = 150 mM electrolyte under bulk conditions, length scales of around 25-30 A
are required for near complete screening of an ionic charge. When a boundary is
imposed at a smaller distance, the system tries to maintain equilibrium by increasing
the counter-ion concentration in the volume between the ion and the boundary.
However, because of the physical size of ions and electrostatic repulsion effects,
there is a limit to this increase, and one anticipates that as the ion gets closer to the
boundary, the counter ion density will eventually become much smaller, producing
less shielding than expected from bulk PB theory. This prediction can be tested
directly by comparing the PB results with those obtained from BD simulations
where all ions are treated on an equal footing as particles with a finite size and
charge, rather than as a continuous charge density.

For this purpose, we have solved the PB equation (5.3) numerically using a finite
difference algorithm for various boundaries as described below. From the numerical
solution of the PB equation, one obtains the potential at discrete grid points. These
potential values are then fed into the Boltzmann factor (Eq. 5.1) to determine the
concentration of ions. The components of the force on a test ion at a particular grid
point is calculated by numerical differentiation, from the difference of the potential

at two opposing neighbouring points in the z, y and z directions.



5.4. Numerical solutions 79

5.4 Numerical solutions

We employ a finite difference method to solve the PB equation similar to that
discussed for solving Poisson’s equation in section 3.3.2. The problem is discretized
by placing a rectangular grid of points with cell dimensions h, X h, X h, over the
region of interest. The value of the potential at each grid point represents the
average value of ¢ in the rectangular box centered at the grid point. Each surface
element between neighbouring grid points is assigned a dielectric constant according
to the position of the mid-point, that is, e = 80 if it is in the electrolyte and € = 2 if
it is outside. Similarly, a value of py = 2eng /ey (see Eq. 5.3) is assigned to grid points
that are in the electrolyte, and py = 0 to points that are outside. To correspond
with the BD simulations, ions around the test ion are excluded from a spherical
zone with radius r; + r;, where r; is the radius of the test ion and r; is that of the
anions or cations. Thus, unlike the primitive model, a different exclusion zone can
be employed for anion and cation concentrations if they have different radii.

To obtain the finite difference form of the PB equation, we integrate Eq. 5.3
over a rectangular box of volume V = h hyh, around each grid point 7 at position
r; [106]

/V V- [e(n)Vo(r)] dV = /V po(r) sinh [e(r) /KT dV — /V (po/e)dV.  (5.9)

Using Gauss’ theorem, the left hand side of Eq. 5.9 is converted to a surface integral
as described in section 3.3.2.The terms on the right hand side of Eq. 5.9 are evaluated

similarly by replacing the integrands with their average values at the grid point
/po(r) sinh [e¢(r)/kT]dV = V po(r;)sinh [ep(r;)/kT],
v

/V(pex/eo)dV = Vpex(ri)/eo = q(r;)/€o. (5.10)

Substituting Egs. 3.19 and 5.10 back into Eq. 5.9, we obtain an expression for the
potential at the ¢'th grid point in terms of the values of the potential, charge and

dielectric constant at this grid point and its immediate neighbours

>, €i0i/h; + ¢/ (€V)
>, €i/h} + poi sinh(eg;/kT)/di’

where the subscripts ¢ and j on ¢, ¢, and py refer to the grid positions r; and

¢i = (5.11)

r; + h]‘j, respectively. Note that a similar expression for the linear PB equation can
be obtained from Eq. 5.11 by substituting sinh(e¢;/kT)/¢; — e/kT leading to

>, €i0i/h; + aif (€V)
Zj Ej/h? + ,OOze/kT .

b = (5.12)
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Equation 5.11 is solved using an iterative relaxation scheme as for Poisson’s equation
in section 3.3.2. In the present PB calculations, Gauss-Seidal relaxation has been
employed throughout.

It is well known that the algorithm for the linear PB equation (5.12) converges to
a stable solution [148]. In the non-linear case, this algorithm was shown to converge
in most cases if under-relaxation is employed [96]. In practice, we have found
that the algorithm converges to stable solutions for all the situations we consider
with both over-relaxation (typically, w = 1.6) and under-relaxation (w = 0.6).
The convergence criteria used is that the maximum change in potential between
successive iterations at any grid point is smaller than the tolerance value, which is
typically set to 10 6 V.

The PB program is executed on an alpha cluster, where a typical run with 1 A

grid size takes 5-20 minutes, depending on the boundary conditions employed.

5.4.1 Tests of accuracy

In all the situations considered, convergence to a stable solution is achieved
using a tolerance of 107® V, which is sufficiently accurate for our purposes. The
input parameter that influences the accuracy of results most is the grid size used
in discretizing the system. Errors decrease with the grid size while computation
time increases with it. Therefore a compromise has to be made for efficient running
of the program with an acceptable range of errors. Since the force on an ion is
the most sensitive quantity to the grid size, it is used in choosing the optimal size.
A range of grid sizes are considered for the various geometries and configurations
investigated. In the absence of fixed charges in a cylindrical channel, a uniform grid
spacing of 1 A is found to be adequate. Larger grid sizes lead to unacceptably large
errors in force (e.g., for 2 A, the relative error could be as high as 100%), while
not much is gained by using a smaller grid (going to 0.5 A reduces the error by a
few percent). Since fixed charges in the channel lead to a more rapid variation in
the potential, a smaller grid size (= 0.5 A) needs to be employed in such cases to
obtain a similar level of accuracy. With decreasing grid size, the force gets smaller,
i.e., it converges to its actual value from above. Therefore, as a consequence of
these optimal choices, we anticipate that the presented PB results for forces and
potentials are slightly larger than their actual values.

We have performed a number of tests to ascertain the validity and accuracy
of the numerical solutions of the PB equation. The simplest test cases are those
involving a single ion (zero concentration) where the PB results can be compared

with those obtained from the solution of Poisson’s equation found either analyti-
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cally or using complimentary numerical methods (e.g., boundary element method,
see 3.3.1). While these do not provide a complete test for the PB solutions, they
nevertheless serve to check the Poisson part of the program, an important con-
sideration especially in cases with dielectric boundaries. For an ion in a uniform
dielectric medium, the numerical solution is found to converge to the analytic result,
¢ = e/4meger, within a few percent when a 1 A grid is used. The accuracy improves
when the grid size is made smaller as noted above. Other tests are carried out for
a single ion in spherical and cylindrical boundaries, which are employed in the rest
of the article. Numerical solutions of the PB equation in these cases are compared
to the solutions of Poisson’s equation obtained with the boundary element method.
In all cases, the potential obtained from solution of the PB algorithm is found to
agree with the alternative solution to within a few percent. A similar agreement is
found for the force on a test ion.

Tests of the PB solutions in the case of an ion in electrolyte are not easy to
perform as there are no suitable analytical solutions. We use instead the linear PB
equation for this purpose, for which the solution for a test ion in bulk is quoted in
Eq. 5.6. In the PB algorithm, linearizing involves simply switching from Eq. 5.11
to 5.12 in the calculation of the potential, hence such a test should be sufficient in
checking the overall integrity of the program. Both the potential and concentration
obtained from the numerical solution of the PB equation agree with the analytic
results to within a few percent. An analytic solution can also be obtained for a
fixed ion located at the centre of a sphere filled with electrolyte. A similar level of

agreement is also found in this case.

5.5 Brownian dynamics

In most cases in this chapter, forces are calculated on a fixed ion during BD
simulations. In these cases the ions are initially assigned random positions in the
reservoirs, except for the test ion which is held in a fixed position. This ion is held in
place for a period of 20,000 time steps, while the system reaches equilibrium. After
this, the system is allowed to evolve for a further 200,000 or 1,000,000 time steps.
At each time step, the force acting on the fixed ion (and other ions) is calculated,
and from the time average of these a value for the force is computed for the entire
simulation. Each simulation is repeated from between 5 to 16 times to obtain a
value for the average force on an ion at each position along the central axis of the
system. The duration of simulations are varied from 150 to 300 ns according to the

statistical accuracy of the results. The potential profile of an ion is constructed by
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integrating the force curve along a given path.

5.6 Results

Comparisons of the PB theory with BD simulations are carried out for three
different geometries: a sphere, cylindrical channels of varying radius and a catenary
shaped channel. The cylindrical channels are used in the majority of comparisons
since they provide a prototype channel model that has been employed in numerous
applications of the continuum theories to ion channels. The sphere is included
for control studies and pedagogical reasons, and the catenary channel to show the
robustness of the results for a more realistic channel shape. Each case is discussed in
a separate subsection in the following. We note for future reference that the Debye
lengths for 150, 300, and 500 mM solutions are, respectively, 7.9, 5.6, and 4.3 A.

5.6.1 Electrolyte in a sphere

While our main concern is cylindrical pores, the spherical geometry is useful for
purposes of control studies in a bulk-like environment, as well as in illustrating the
effect of a confining dielectric boundary on the shielding of ions in a simple situation.
In the following comparisons, a sphere of radius 20 A containing an electrolyte of
concentration ¢y = 500 mM is employed. In BD simulations, this concentration is
represented by 10 anions and 10 cations, including the test ion. (The systems used
here and in the following channel models are always chosen to be electroneutral.)
The above choice for concentration is dictated by the BD considerations of having
a sufficient number of ions in the system to obtain good statistics but not too many
so as to encumber the simulations. Since the main variable is the distance of the
test ion from the boundary, the choice of radius does not have much influence on the
results. In order to compare the results with the analytic solutions of the linear PB
equation (Eq. 5.4), both the cation and anion radii are taken as 1 A in the sphere
studies. A dielectric constant of ¢ = 80 is used everywhere in bulk simulations.
When emulating a protein boundary, € = 2 is used outside the sphere.

In solving the PB equation, we use a sharp spherical boundary around the test
ion, which emulates a hard wall potential that prevents its overlap with other ions.
Such an infinite potential is not practical to implement in BD simulations. Therefore
a 1/r9 potential is used instead, which is both easier to handle and more physical.
As seen in Fig. 5.1 A, the two potentials differ near the contact region and overlap
once the ions are slightly separated. As a result of the softer potential used in BD,

the ions (especially counter ions) are expected to be more broadly distributed near
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the contact region with the test ion. This is exemplified in Fig. 5.1 B where we
compare the radial distribution functions g(r) in PB and BD for a bulk electrolyte.
Here the PB results are obtained by fixing a test cation at the origin and those
of BD by averaging over the ion-ion distributions. To avoid the finite size effects
in the BD simulations, ion pairs are included in the average only when at least
one of them is inside an imaginary r = 10 A sphere. The linear PB results (not
shown) for anion-cation distribution is somewhat higher than the non-linear one
at the maximum but this appears to be mostly due to the finite mesh size used in
numerical solutions of the PB equation. Otherwise, there is little difference between
the linear and nonlinear PB results, especially at larger radii. The broadening of
the sharp peak at contact in BD simulations is expected to influence the results
at distances less than 3 A. The shifting of counter charge density to smaller radii
means that the BD simulations should provide a better shielding at short distances
compared to the PB theory. At larger distances, the radial distribution functions
overlap, and as far as the force on the test ion is concerned, one should obtain
similar results within the two approaches. We note that using a hard-wall potential
in BD would have led to larger forces on the test ion at short distances due to less
shielding. However, as will be seen in the comparisons below, this issue is mostly
irrelevant because the force results in BD follow closely that of a single ion. That is,
there is little shielding due to counter ions, and therefore details of their interaction

with the test ion at short range cannot have much influence on the results.

The shortcomings of the continuum theories of electrolytes in confined volumes
are most succinctly illustrated in a spherical geometry because it involves a single
parameter — the distance of a test ion from the boundary. In Fig. 5.2 A, the force
on a test cation held fixed at a given position is plotted as a function of the radial
distance. A single ion (no electrolyte) experiences a repulsive force due to induced
surface charges at the sphere boundary. This force is shown by the dashed line
for reference purposes. As the ion moves from the center of the sphere towards
the dielectric wall, the repulsive force acting on it is seen to increase steeply. The
PB calculations (solid line) exhibit the expected results from ionic shielding: the
force on the test ion due to the boundary charges is significantly reduced compared
to that of a single ion. In contrast, little shielding is observed in BD calculations
of the force (filled circles with error bars), which follows quite closely the dashed
line for the force on a single ion. The discrepancy between the PB and BD results
become appreciable at 8 A from the boundary, which corresponds to about 2 Debye
lengths. As the ion gets closer to the boundary, this discrepancy grows, and at the

closest BD simulation point (4 A), it becomes a factor of 3. We note that even
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Figure 5.1: (A) Comparison of the hard-wall (solid line) and 1/r° (dotted line)
ion-ion potentials for a positive (U;4) and negative (Uy_) test ion around
a fixed positive ion in a 500 mM bulk electrolyte, (B) the resulting radial
distribution functions in PB (solid lines) and BD (dotted lines) for anions
(94+-) and cations (g4 ) around the fixed ion.
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when e = 80 is used outside the sphere, there is a net force on the ion because the
presence of a boundary results in an asymmetric distribution of counter ions in the
radial direction. In both PB and BD, this force is much smaller than the ¢ = 2 case.
For example, the force acting on an ion located at 4 A from the boundary when
€ = 2 is determined to be 2.5 pN from the PB calculations and 6.8 pN from the BD
calculations. The corresponding values when € = 80 are 0.5 and 1.6 pN. Thus the
force on the ion is mostly due to the reaction field from the dielectric boundary.

The source of the discrepancy is to be sought in the inability of the counter ions
in the BD simulations to provide the level of shielding observed in the PB theory.
To see this more clearly, we compare in Fig. 5.2 B the anion and cation concen-
trations in the two theories. The average concentrations in the region between the
fixed ion and the boundary are plotted against the radial position of the ion. This
region is defined by the conical section between the ion and the boundary with the
ion radius as its central axis and subtends a constant solid angle of 30°. Thus as
the ion gets closer to the boundary, this volume gets smaller. Concentrations in PB
are obtained from the space average of charges in the defined region, whereas in BD
they are obtained from the time average of ions in the region. The PB results are
shown with the solid lines, and the BD results are indicated by the open (anions)
and filled circles (cations) that are fitted with the dotted lines. As the test ion
approaches the boundary, the PB theory predicts a rapid rise in the anion concen-
tration, which is necessitated by the decreasing available volume between the ion
and the boundary. The opposite behaviour is observed in the BD simulations, that
is, the anion concentration actually decreases as the ion gets closer to the bound-
ary. The discrepancy between the predictions of the two theories again becomes
appreciable when the ion is about 2 Debye lengths from the boundary. Thus this
example explicitly demonstrates when the concentrations in the PB theory starts to
disagree with the average ion densities obtained from the BD simulations, signalling
the break down of the mean field approximation.

The above results give a clear indication of the operating range of PB theory for
an electrolyte confined within a dielectric boundary. While the Boltzmann factor
(Eq. 5.1) puts a limit to the increase in anion concentration (otherwise there would
be a perfect shielding with very large concentrations to provide it), it clearly does
not capture the whole physical picture. Reflecting on these results, it is clear that
the continuum description which distributes the ionic charges over the whole volume
is ultimately responsible for the failure of the PB theory. When the integrity of the
ionic charges are kept as in the BD simulations, there is an enormous repulsive

force on a counter ion (due to induced surface charges) as it attempts to enter the
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Figure 5.2: Test of the PB theory for a 500 mM electrolyte in a sphere of
radius 20 A. (A) Force acting on a fixed cation is plotted against its radial
position. The solid curve shows the force obtained from the PB theory and
filled circles with error bars show the BD simulation results. The dashed line
indicates the force in the case of a single ion (¢y = 0). The error bar on BD
data points is one standard error of means and is not shown when it is smaller
than the size of the data point. (B) Concentration of mobile ions in a region of
constant solid angle (30°) between a fixed cation and the spherical boundary.
The average concentration obtained from the PB theory (solid lines) and the
BD simulations [open (Cl) and filled (Na) circles fitted with the dotted lines]

are plotted against the radial position of the fixed cation.
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narrow region between the test ion and the boundary. This force largely prevents
the anions from entering the narrow region, and is responsible for the drop in anion
concentration in BD. In PB calculations at 500 mM, an average cell with a grid
size of 1 A contains 1/3000 of a unit charge. Distribution of charge into such small
units cuts down the effectiveness of the repulsive force, and hence allows relatively
large anion concentrations to occur in the narrow region. While the total negative
charge in this region is only about 30% of a unit charge, the PB results indicate that
even this small amount could still provide a very effective shielding. This happens
because the surface charges induced on the boundary are proportional to 1/r%, and
therefore, those charge elements nearer the boundary can induce proportionately
more negative charges on the surface which cancel the positive charges induced by
the test ion more efficiently.

Figure 5.3 illustrates the origins of the discrepancy between the PB and BD
results. In the PB theory, the electrolyte is distributed in a continuous manner,
allowing negative charge to build up around the test ion, even if the ion is close
to the dielectric boundary of the sphere. This counter charge can reduce, or shield
the induced charges on the boundary. If the ions are treated as discrete entities
as in BD, there will only be an average negative charge near the test ion if ions
actually move through this region during the simulation. However, if the counter
charge itself comes close to the boundary it is repelled away by the surface charges
it induces. This makes it unlikely for ions to spend time in this region, and so there

is little shielding of the reaction field experienced by the test ion.

5.6.2 Cylindrical model

We next consider cylindrical channels with rounded corners. The rounding is
necessitated by the fact that sharp corners cause difficulties in the numerical solu-
tions of Poisson’s equation, and, in any case seems to be a more realistic depiction
of real ion channels. The dimensions of the channel are outlined in Fig. 5.4, with
the channel obtained by rotating the curve shown in the figure around the axis of
symmetry. The radius of the channel is varied from 3 A to 13 A in the comparisons.
The height h of the reservoir is adjusted to keep the volume fixed when the radius
is varied. For r = 3 A, a height of h = 25 A is used. The dielectric constants are 2
for protein and 80 for water unless otherwise specified. An average concentration of
300 mM is used in all the PB calculations, which is determined from the total cation
(or anion) charge in the system as in the case of the sphere. The BD simulations
are carried out with a total of 24 Na™ and 24 Cl~ ions, corresponding to an average

concentration of 300 mM. The reason for using this higher value instead of the more
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Figure 5.3: Schematic picture of the distribution of negative charge between
a fixed cation and the nearby boundary of a dielectric sphere in (A) the

continuum and (B) the discrete picture of the electrolyte.
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physiological 150 mM is entirely statistical; twice as many ions leads to better ac-
curacy in the BD simulations. The results are hardly sensitive to concentration in
BD, and exhibit only a logarithmic dependence in PB calculations. Thus essentially

similar results would be obtained using a concentration of 150 mM.
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Figure 5.4: Cylindrical channel models used in comparisons of PB theory with
BD simulations. A three dimensional channel model is generated by rotating
the cross section about the central axis by 180°. The cylindrical section is
25 A in length, and the rounded corners have a radius of 5 A. The radius of
the cylinder 7 is varied from 3-11 A. The reservoir height A is adjusted so as
to keep the total (reservoir and channel) volume constant when the radius is

changed.

From the view of the dynamics of an ion in a channel environment, the quantity
that is of most interest is the force acting on it at various positions in the channel.
In Fig. 5.5, we compare the PB and BD calculations of the z-component of the
force on a test ion as it is moved along the channel axis (only the positive side is
shown since the curves are symmetric around z = 0). In BD, a test ion is held at a
fixed position on the channel axis, and the z-component of the force acting on it is
tabulated at every 10 time steps, and averaged at the end of the simulation. The
ion is then moved to another position along the channel axis, and the measurement
is repeated. The shielding effect in PB is seen to lead to a drastic reduction in force
compared to the BD result in the » = 3 A channel (Fig. 5.5 A). As the channel size

is increased, the discrepancy decreases but it remains several-fold (Figs. 5.5 B-C).
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Finally in the r = 11 A channel, when the force itself becomes quite small, the

complete shielding observed in PB theory is reproduced in BD (not shown).

Another issue that needs to be addressed in these comparisons is the effect of the
ion-wall potential (or finite ion size), which is implemented in BD simulations but
ignored in PB calculations. This issue of consistency between the two theories and
its influence on the results presented can be addressed in two ways. One method
is to implement the finite size of ions in PB equation by multiplying the right
hand side of Eq. 3 by a space dependent function that will exclude the ions from
the volume within 1 A of the boundary [173]. The second method is to do the
opposite, that is, shrink the activation distance of the hard-wall potential in BD
from 1 A to zero, thus allowing ion centers to come near the boundary. Because in
almost all applications of the PB theory to ion channels such finite size effects are
not considered and our main purpose is to provide tests for these applications, we
prefer to use the second method here. In Fig. 5.6, we plot the BD results for the
force on a cation in a r = 3 A channel as in Fig. 5.5 A, but with the activation
distance of the hard-wall potential reduced from 1 A (circles) to 0.5 A (squares)
and 0.1 A (triangles). Tt is seen that there are no discernible differences among
the various results, with all falling on the force curve obtained from the solution of
Poisson’s equation for a single ion (dashed line). Thus even if we ignore the finite
size of ions and allow them to access the whole channel volume as in PB theory, they
decline to take advantage of the extra space offered. Obviously, the steep increase
in image forces as an ion approaches the dielectric boundary makes these regions
rather inhospitable places, a fact that is missed by the PB theory because smearing
of charges dilutes the effects of the boundary forces. Since the range parameter
of the hard-wall potential does not have any influence on the results, we will keep
using the more realistic 1 A range in the rest of the comparisons.

A quantity that can be more directly related to ion permeation is the potential
energy profile of an ion which is obtained by integrating the force curves in Fig. 5.5.
We compare the PB and BD profiles in Fig. 5.7 for » = 3, 4, and 7 A channels. In
the PB case, shielding reduces the energy barrier seen by a single ion by roughly
an order of magnitude, virtually obliterating it. No shielding effects are seen in the
BD potential energy profiles in the narrow channels (r = 3-4 A). In the r = 7 A
channel, shielding is seen to reduce the barrier of a single ion by more than half.
Nevertheless, the barrier in BD remains larger than the PB result, pointing to a

sizable discrepancy despite the reduction in the potential energy values.

Compared to the sphere results, the discrepancy between the two theories is

more accentuated in the cylindrical channels because the access of counter ions to
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Figure 5.5: Test of the PB theory for the cylindrical channel shown in Fig. 5.4.
The z-component of the force acting on a fixed cation at various positions
along the channel axis is calculated using the PB theory (solid line) and the
BD simulations (filled circles fitted with the dotted line). The radius of the
channel is (A) 3 A, (B) 4 A, and (C) 7 A. The height of the reservoirs is
adjusted to keep the concentration fixed at 300 mM in all cases. The force

on a single ion (¢ = 0, dashed line) is also shown, for reference purposes.
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Figure 5.6: Effect of changing the activation distance of the hard wall poten-
tial in BD simulations. The force on a cation in ar = 3 A channel is plotted as
in Fig. 4 A but for three distance parameters, 1 A (circles) to 0.5 A (squares)
and 0.1 A (triangles). The ion-ion interaction from Eq. 3.13 is employed in
the simulations. All the BD results follow the single ion results shown by the
dashed line. The error bars are not shown to avoid cluttering.
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Figure 5.7: The potential energy profiles in PB (solid line) and BD (open
circles) obtained by integrating the force curves in Fig. 5.5. The dotted line
is a fit to the BD results in (C).
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a narrow cylinder is further hindered in BD while no such hindrance occurs in PB
theory. To quantify this statement, we compare the cation (Fig. 5.8 A) and anion
(Fig. 5.8 B) concentrations predicted by PB (solid line) and BD (bars) theories for
a r =3 A channel when the test ion is located near the pore mouth (z = 12.5 A).
In PB calculations, both anions and cations uniformly occupy the channel at about
the average concentration, except near the test ion when the former shoots to very
large values and the latter dips to zero as expected. This difference in the anion and
cation concentrations leads to a net screening charge of —0.61e in the channel. In
stark contrast, both anions and cations are completely excluded from the channel
interior in BD. While there is some excess of counter ions near the channel entrance,
these only amount to —0.01le, which is too small to provide any shielding as seen
from the force at z = 12.5 A in Fig. 5.5 A. A constant anion concentration of 300
mM throughout the channel would correspond to a total charge of —0.21e. Thus
the amount of anion charge is increased several-fold compared to the background in
PB, while it remains negligibly small in BD.

Rather than repeating the above study for each channel size, which is not very
informative, we demonstrate the changes in concentration by plotting the total
screening charge in the channel as a function of its radius (Fig. 5.9 A). This study
is carried out for a cation fixed at z = 12.5 A where the force on an ion is at
a maximum. The total screening charge in PB remains nearly constant with the
increasing radius, the slight increase being due to the approaching bulk conditions
(note that the screening charge in the channel remains less than —e because the
channel volume is limited to z = +15 A). In BD, this charge is negligible at » = 3 A
but it steadily rises with r, converging to the PB value at about r = 11 A or
2 Debye lengths. As shown in Fig. 5.9 B, the force on the test ion at z = 12.5 A
correlates very well with the screening charge results in (A). The force in BD initially
coincides with that of a single ion at » = 3 A (no shielding), and with increasing
channel radius, it gradually converges to the PB values at around 2 Debye lengths.
This study establishes the domain of validity of PB theory for channels as 2 Debye
lengths, below which the underlying mean field approximation breaks down to an

increasingly larger degree with decreasing radius.

So far we have considered only the central axis in comparisons, which may
give the impression that an agreement between the PB and BD results can be
obtained in the larger size channels (Fig. 5.5 D). However, the central axis is a rather
special place where the forces from the boundary charges are at a minimum, and
the shielding effects in BD are maximized due to the azimuthal symmetry. From

the sphere results it is expected that as the ion is moved towards the boundary
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Figure 5.8: Variation of the average concentration along a r = 3 A channel for
cations (A), and anions (B) when a cation is fixed on the z axis at z = 12.5 A
(where the channel starts curving). In BD, the channel is divided into 32
layers and the average value of the concentration is calculated at each layer.
The PB concentrations are indicated by the solid curve and the BD ones by
the bar graph.
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Figure 5.9: Pore size dependence of the screening charge and force on a cation
held at z = 12.5 A. (A) The net screening charge in the channel (from z = —15
to 15 A) is plotted as a function of the channel radius. The PB results are
shown by the solid line and the BD values by the filled circles fitted with
the dotted line. (B) Force on the cation as the channel radius is increased.
The PB (solid line), BD (filled circles fitted with a dotted line) and single ion

results (dashed line) are indicated in the figure.
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discrepancies between the two theories will resurface. This is quite obvious for
the radial component of the force but not so for the z component. In Fig. 5.10,
we present comparisons of the z-component of the force on a test ion similar to
Fig. 5.5 D (reproduced at the top) but along a line that is offset from the z axis by
4 A (Fig. 5.10 B) and 8 A (Fig. 5.10 C). Shielding effects are again overestimated
in PB theory compared to BD as the ion approaches the boundary. To see this
more clearly, we show in Fig. 5.11 how the z-component of the force changes as the
ion is moved radially from the centre to the boundary. Up to 3 A from the centre
the two theories agree, that is, shielding of the force in PB theory is reproduced in
BD. But after that, shielding progressively weakens in BD in contrast to PB theory
which provides a very good shielding right up to the boundary. Thus even in large
channels, the predictions of the PB theory are bound to fail as one approaches the
channel walls. Such discrepancies in large channels are relevant, for example, in
calculating concentrations near a binding site, but not in ion transport as ions tend

to stay near the channel axis where the radial force is minimum [48,127].

The BD results so far clearly indicate that narrow channels with radii 3-4 A
are pretty inhospitable places for ions regardless of their background concentration.
Therefore for ion permeation to take place, it is essential to reduce the energy barrier
of a bare channel by placing fixed charges of opposite sign on the protein wall. To
test the PB theory in this more realistic case, we place a set of negative charges
in the walls near each end of a r = 3 A channel. Eight monopoles with charges
—0.09¢ are spread evenly around the channel circumference at z = 12.5 A and
z = —12.5 A, where the channel starts curving. The PB, BD and single ion results
for the z-component of the force on a test cation (as in Fig. 5.5 A) are compared in
Fig. 5.12 A. The fixed negative charges on the channel wall reduce the presence of
counter ions in the channel and the associated shielding, hence lead to much larger
forces in PB theory compared to Fig. 5.5 A, in better agreement with the BD results.
The four-fold discrepancy observed in the bare channel (Fig. 5.5 A) is now reduced
to about a factor of 2. As the test ion is moved away from the channel, shielding
becomes more and more effective and the force in BD goes gradually from the
single ion curve towards the PB result. In Fig. 5.12 B, we show the potential energy
profiles obtained from the force curves in Fig. 5.12 A. Besides the usual discrepancy
between PB and BD theories, perhaps a paradoxical result is that shielding actually
increases the energy barrier in BD compared to that of a single ion. The reason for
this ironic result can be seen from Fig. 5.12 A; shielding operates when the ion is

outside the channel where the force is attractive but not inside when it is repulsive.

As a final study in cylindrical channels, we consider the possibility that the
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Figure 5.10: Comparison of the z-component of the force on a test ion in a
7 = 11 A channel when it is offset from the central axis by » = 4 A (middle)
and r = 8 A (bottom).
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Figure 5.11: Comparison of the z-component of the force on a test ion in

ar = 11 A channel as it is moved radially from the centre to the channel
boundary at z = 8.75 A.

dielectric constant inside the channel may be smaller than 80, especially in narrow
channels. This can be implemented in a straightforward manner in the PB algorithm
where a 3-dimensional grid is used, but it is not so easy in the BD simulations
where a boundary element method is used in solving Poisson’s equation. (Note
that in the studies in later chapters the finite difference technique was included
in the BD routines such that it could be used during simulations.) This problem
has been tackled in previous BD simulations [40,42], by using the reduced value
of the dielectric constant, €., in both the channel and reservoir, and including the
neglected Born energy difference between the channel-reservoir configurations with
€.-80 and €.-¢. as a short range energy barrier at the channel entrances. We refer
to the above references for details of this implementation in the BD program. The
Born energy difference for a 3 A channel is calculated using the PB program at zero
concentration, which gives a barrier height of 3.5 kT for ¢, = 40 and 11.8 kT for
€. = 20. In PB calculations the change in € is implemented in 5 equal steps from
the channel entrance at z = 17.5 A to z = 12.5 A, and similarly at the other end.
The potential energy profiles for ¢, = 20 and 40 are compared in Fig. 5.13. The
barrier height for a single ion increases roughly as 1/e., and a similar trend is seen
in BD. At lower €., BD results deviate more from those of single ion because of
the appearance of shielding at the mouth region. We attribute this to the stronger
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Figure 5.12: Effect of placing fixed charges in the channel wall ina r =3 A
channel. (A) Force on a cation as in Fig. 5.5 A but with fixed charges. (B)
Potential energy profiles as in Fig. 5.7 A but with fixed charges.
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Coulomb attraction between the test ion and counter ions, which increases as 1/e..
The corresponding increase in barrier height is much faster in PB theory so that the
discrepancy with BD gets smaller with decreasing €. (but stays several-fold in any
case). This faster increase of barrier height in PB is related to the loss of shielding
inside the channel with reduction in e, which affects the PB results but not BD.
Nevertheless, the overall conclusion remains the same as before; greater shielding
in PB results in much lower energy barriers compared to BD.
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Figure 5.13: Effect of changing the dielectric constant in the channel, €., on
the potential profile of a test ion in a 7 = 3 A channel without fixed charges.
(A) shows €, = 20 and (B) ¢, = 40.
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5.6.3 Catenary model

The above study in cylindrical channels gives a good idea about the expected
working range of the PB theory. To demonstrate the robustness of those conclusions,
we repeat the force and potential energy calculations in a more realistic channel
geometry with vestibules. This ‘catenary shaped channel’ is generated by rotating
the closed curve shown in Fig. 5.14 about the axis of symmetry. The vestibule of
this channel is similar in shape to that visible in the electron microscope pictures
of the acetylcholine receptor channel [202], making this a better approximation of
a real biological ion channel. The vestibules are generated by a hyperbolic cosine
function, z = acosh(z/a), where a = 4.87 A. The entrance to the vestibule has a
fixed radius of 13 A. Two such identical vestibules are connected to a cylindrical
transmembrane segment of radius 4 A and length 10 A. It is assumed for convenience
that the vestibules have the same shape and size, although the electron microscope
images show the extracellular vestibule to be larger than the intracellular vestibule.

We show in Fig. 5.15 A the z-component of the force as the test ion is moved
along the central axis of the channel. The concentration is maintained at 300 mM
in both the PB calculations and the BD simulations. As before, PB calculations are
shown by the solid line, the BD results are indicated by the filled circles which are
fitted by the dotted line, and the dashed line shows the force on a single ion. The
BD calculations of force closely track the single ion results in the narrow parts of
the channel (up to z = 10 A), and reinforce the earlier conclusion on impossibility
of shielding in narrow parts of the channel. There is a large discrepancy between
the PB and BD results in this region as in Figs. 5.5 A-B. As the ion is moved further
along the z axis, the channel expands and shielding becomes more and more effective
in BD. This is reflected in the force values in BD gradually moving from the single
ion curve to the PB results in the z = 10-30 A range. The potential energy profiles
obtained from the force curves in Fig. 5.15 A are shown in Fig. 5.15 B. Shielding is
seen to have reduced the energy barrier of a single ion by 40% in BD, however, the
barrier in BD is still three times larger than the PB result. Thus in a channel with
vestibules, shielding definitely plays some role but its effect is nowhere near the PB
predictions, where shielding demolishes the barrier presented to a single ion for all

practical purposes.

5.7 Conclusions

These comparisons of PB theory with BD simulations in various configurations

clearly demonstrate the range of validity of the former. When the distance of an
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Figure 5.14: Diagram showing the cross section of the catenary geometry
that approximates the shape of the acetylcholine receptor channel. A three
dimensional channel is generated by rotating the curves about the central
axis by 180°. Vestibules at each side of the membrane are constructed using
a hyperbolic cosine function, y = a cosh(z/a) where a = 4.87 A. The radius
at the entrance of the vestibule is 13 A and at the cylindrical transmembrane
segment 4 A. Cylindrical reservoirs (not shown), 30 A in radius and 22 A in
height, are attached to the vestibules.
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Figure 5.15: (A) The z-component of the force on a cation for a 300 mM
electrolyte in a catenary channel is plotted against its axial position. The
force obtained from the PB theory is shown by the solid curve and the BD
results are indicated by filled circles with error bars fitted with the dotted
line. The dashed line indicates the force in the case of a single ion (¢ = 0).
(B) The potential energy profiles obtained from the force curves in (A).
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ion from the channel wall is less than 1 Debye length, the PB calculations largely
overestimate the shielding effects and cannot be expected to give reliable values
of the force on and potential energy of an ion. The convergence of the PB and
BD results occurs when the ion’s distance from the channel wall is about 2 Debye
lengths, depending on the quantity and the geometry considered. Since the radii of
membrane channels are typically smaller than the Debye length, PB theory cannot
be used to obtain reliable estimates of electrostatic forces and potential energies of
ions in the channel environment.

Our BD results demonstrate that if the radial profile of a channel is less than the
Debye length throughout, it is unlikely to contain any counter ions. This conclusion
is especially reinforced in realistic channel configurations where fixed charges of
opposite sign, that are necessary for ion permeation, make it virtually impossible
for any counter ion to enter the channel (cf. Fig. 5.12). For such channels, it is
clearly better to use Poisson’s equation rather than PB, as no shielding due to ionic
atmosphere is possible. This conclusion appears ironic in the historical context of
the field because PB theory was advanced as an improvement of Poisson’s equation
in ion channels. Channels whose radial profiles exhibit large variations are more
difficult to reconcile with the existing continuum theories because each is valid in
a limited range. For such channels, BD simulations certainly offer a more reliable
method for calculations of forces and potentials. Nevertheless, if one insists on using
a continuum description, one could presumably extrapolate from Poisson’s to the

PB equation as the channel widens by using the BD results as a guide.
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