Inequality and Sustainability

Colin David Butler

February, 2002

A thesis submitted for the degree of Doctor of Philosophy of The Australian National University.
This thesis is my original work, except where indicated.

Signed

Colin David Butler
Table of Contents

List of Figures and Tables .. xvi

Abbreviations and acronyms ... xviii

Acknowledgements ... xxi

Abstract ... 1

Synopsis ... 3

Section one ... 11

Chapter one: Inequality, sustainability and civilisation .. 13

 Abstract .. 13

 Introduction: Inequality and sustainability ... 14

 Inequality ... 15

 The sustainability of civilisation and anthropocentricism .. 16

 The scope of this thesis: a disclaimer .. 17

 Civilisation failure .. 18

 Paths to civilisation failure ... 20

 The Holocene, the Anthropocene, Gaia and Prometheus ... 22

 Eco-totalitarianism and the global commons ... 23

 Co-operation and the global commons ... 25

 Sustainability .. 27

 Human society and the local environment ... 29

 Ancient civilisation failure and the environment ... 30

 Biodiversity, localised extinctions and the commons .. 33

 Human health and global environmental change: growing awareness 34

 The 1960s and 1970s .. 34

 The late 1970s and early 1980s ... 36

 The resurgence of interest in global change and human health in the late 1980s 37

 The World Scientists’ Warning to Humanity ... 39
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Have epidemiologists been slow to consider global change and human health?</td>
<td>40</td>
</tr>
<tr>
<td>Has the research agenda for epidemiology – along with other scientific disciplines - been funnelled away from certain politically sensitive questions?</td>
<td>41</td>
</tr>
<tr>
<td>Review articles and conferences</td>
<td>44</td>
</tr>
<tr>
<td>Non-English health literature, the World Health Organisation, and global change</td>
<td>45</td>
</tr>
<tr>
<td>Global environmental change, human health and society: recent literature</td>
<td>46</td>
</tr>
<tr>
<td>Climate change</td>
<td>47</td>
</tr>
<tr>
<td>The science of climate change</td>
<td>47</td>
</tr>
<tr>
<td>Theory</td>
<td>47</td>
</tr>
<tr>
<td>Empirical evidence</td>
<td>48</td>
</tr>
<tr>
<td>Separating the natural and anthropogenic components of global warming</td>
<td>51</td>
</tr>
<tr>
<td>The “carbon sink” and climate change</td>
<td>52</td>
</tr>
<tr>
<td>The science of the carbon sink</td>
<td>53</td>
</tr>
<tr>
<td>The oceanic carbon sink</td>
<td>53</td>
</tr>
<tr>
<td>The terrestrial carbon sink</td>
<td>54</td>
</tr>
<tr>
<td>Climate change and human health</td>
<td>58</td>
</tr>
<tr>
<td>“Climate wilding”</td>
<td>60</td>
</tr>
<tr>
<td>Sea level change</td>
<td>62</td>
</tr>
<tr>
<td>The El Niño Southern Oscillation, human health and human society</td>
<td>64</td>
</tr>
<tr>
<td>Stratospheric Ozone Depletion</td>
<td>65</td>
</tr>
<tr>
<td>The science of stratospheric ozone depletion</td>
<td>65</td>
</tr>
<tr>
<td>Stratospheric ozone depletion and human health</td>
<td>67</td>
</tr>
<tr>
<td>Biodiversity and ecosystem health</td>
<td>69</td>
</tr>
<tr>
<td>Indonesian logging, inequality, and greed</td>
<td>71</td>
</tr>
<tr>
<td>Inertia and global environmental change</td>
<td>74</td>
</tr>
<tr>
<td>The Gulf Stream</td>
<td>75</td>
</tr>
<tr>
<td>Inertia, climate change and stratospheric ozone depletion</td>
<td>76</td>
</tr>
<tr>
<td>Bjørn Lomborg, the sceptical environmentalist</td>
<td>77</td>
</tr>
<tr>
<td>Poverty, human health and epidemiology</td>
<td>80</td>
</tr>
</tbody>
</table>
Chapter two: Inequality, sustainability and causality ... 87
Abstract ... 87
Introduction .. 88
Plausibility: Inequality and civilisation failure ... 89
 Re-discovering the link between global inequality and global security 89
The aftermath of September 11, 2001... 92
Plausibility: Inequality, adverse environmental change and civilisation failure....... 95
 Inequality and environmental public goods ... 96
Globalisation, global environmental change and risk .. 97
 Athanasiou, Chatterjee, Finger and the Brundtland Report 98
 The Worldwatch Institute .. 99
 Epidemiology, public health, and ecosystem health ... 101
Inequality and policy .. 102
 Science, power and research .. 104
Inequality, sustainability and causality ... 106
Methodology ... 106
Attitudinal transition .. 108
 Ecological economics .. 109
Plausibility: How might inequality self-propagate? .. 110
 Relative poverty, absolute poverty, and ecological economics 111
 Kuznets’ hypothesis ... 112
 Global environmental consequences of self-propagating inequality 113
Summary .. 114

Chapter three: Demography, carrying capacity and sustainability 117
Abstract ... 117
Introduction ... 118
Malthusianism and global carrying capacity .. 119
Neo- and anti-Malthusianism .. 123
Overpopulation, the ecological footprint, demographic entrapment and causation... 124
Chapter four: Critical global environmental change ..159

Abstract ..159

Introduction ...160

Proposition one: "Critical" global environmental change160

“Dangerous” climate change..160

“Dangerous” stratospheric ozone depletion and ecosystem service decline.......161

Environmental brinkmanship, conflict and civilisation failure162

The causation of conflict: resource scarcity and the quest for economic security...163

The ecological footprint ...124

Demographic entrapment ..126

Poverty, causation and demographic entrapment ...129

Cornucopianism, neoliberalism, and US family planning policy131

1960-1980 ...131

1981-2001 ...133

Analysing the change in US family planning policy ...134

Julian Simon’s recipe - the “demand” solution to overpopulation135

Malthusianism and the Population and Development Review137

Biological naïveté? ...139

Problems with intensive farming ...140

Demography, rapid population growth, and ambivalence142

Are modern demographers biased away from neo-Malthusianism?144

Demographers, King and the “population establishment”147

Inequality, governance, and demographic transition ..147

Demography, “network closure”, funding and bias ..148

Ester Boserup ...150

Neo-Malthusians, cornucopians and contrarians: the wider debate..................151

The Cornucopian enchantment ..151

Cassandra’s fate - ignoring the warnings of Science ...153

Economics and technological optimism ..155

Cornucopians, family planning, and foreign aid ..156

Conclusion ..157
Section two

Chapter five: The distribution of global income and power

Conclusion
Data checks ... 244

Results ... 246

Exchange adjusted global income distribution ... 246

Purchasing power parity global income distribution ... 249

Discussion ... 256

Conclusion .. 266

Chapter seven: Index of global environmental change .. 269

Abstract ... 269

Introduction ... 270

Sustainability Indicators .. 271

The Index of Global Environmental Change ... 272

The Living Planet Index: 1970-1995 ... 275

The global ecological footprint: 1961-1997 ... 276

Method of construction of the IGEC ... 277

Atmospheric index ... 277

Introduction ... 277

Selection of maximum and minimum values .. 278

Methane ... 281

Selection of maximum and minimum values .. 282

Data transformation .. 283

Weighting .. 284

Results ... 286

Stratospheric ozone index .. 287

Introduction ... 287

Data source ... 287

Method ... 288

Results ... 290

Global annual ozone thickness ... 290

Calculation of Stratospheric Ozone Depletion indices .. 295
Discussion .. 327
Problems with the ecological footprint as a sustainability indicator 327

Problems with the IGEC .. 328
Scale ... 328
Selection bias, measurement error and confounders ... 329

Advantages of the IGEC and future trends of the sub-indices 330
Atmospheric sub-index .. 330
Stratospheric ozone decline sub-index ... 331
Biodiversity and ecosystem health sub-index ... 332

The paradox of a declining IGEC and rising human well-being 334
Threshold events .. 334

Conclusion .. 335

Section three ... 337

Chapter eight: Carrying capacity, foresight, complexity and inequality 339
Abstract .. 339
Introduction ... 340

Carrying capacity, complexity and foresight ... 341
Problems with the classic economic solution to diminishing marginal returns: Ohlin,
free trade and industrialisation .. 345
Ohlin, Wolfensohn and free trade ... 346
Optimal population - theory .. 347
Optimal population – prospects ... 347

Marginal carrying capacity ... 348
Optimal population and inequality .. 351
Impact, short and long-term carrying capacity ... 351
Optimistic extremists ... 352
Optimal inequality .. 353
The USSR, Eastern Europe, inequality and the environment 354
The tragedy of the commons – a lack of ownership .. 355
Excessive equality...355

Conclusion ..357

Chapter nine: Summary, further research, and conclusion359

Introduction: global civilisation, sustainability and philosophy360
 A new vocabulary to explain unsustainability ...361
 Economic contributions ..362
 Environmental and sustainability indicators ...362
 Carrying capacity, demography and economics ...364
 Public health and epidemiology ..363

Inequality and sustainability ...365
 The tragedy of the commons and inequality as causes for unsustainability365
 Population, affluence, technology and inequality as causes for unsustainability367

Paths to sustainability..367
 Foreign aid and development ..367
 A swing back to regulation? ..368

Commitment, uncertainty and a campaign of hope ..369
Traversing the bottleneck..371
 Ecosystem repair and protection in the South...371
 Geo-engineering ...372
Global security and global inequality ...374
 Contrarians, uncertainty, evolution and the media ...375

Future research suggestions ..376
 Scenarios of civilisation failure ..376

Conclusion ..378

Appendices...379
 1. Impacts of climate change on cropping potential of rain-fed cereals379
 2. Method used to estimate global per capita grain production 1966-2001381
 3. Global inequality (FX and PPP adjusted) ...383
 4. A brief examination of comparative advantage and free trade384
5: Studies of global income distribution adjusted for national income distribution .. 388

6. Correspondence with Branko Milanovic ... 390

7. Correspondence with Professor Albert Berry .. 396

8. Income distribution for 102 countries .. 400

9. Regional Gini coefficients .. 404

10. National income distribution for 60 countries ... 405

11. Table used to estimate the FX Gini coefficient (1999) 409

12. Indicator set using Worldwatch database (Bossel, 1999) 412

13. Potential indicators for an improved Index of Global Environmental Change .. 413

Glossary of technical terms .. 419

Afterword ... 423

Bibliography ... 426

Index ... 510

Publications and conference presentations (relevant to thesis) 529
Figures

2.1 Foreign aid, as a percentage of GNP 94
4.1 World grain consumption 1966-2001 173
5.1 Global inequality: exchange adjusted quintile ratios 207
5.2 Five studies of global income distribution (PPP) adjusted for national income distribution 220
6.2 Lorenz curve: 1999 243
6.3 Method used to estimate Gini coefficient 244
6.4 Global exchange adjusted income distribution: 1964-1999 247
6.5 The comparative incomes of China, India, Indonesia and Bangladesh: 1972-1999 251
6.6 Global distribution of PPP adjusted income (current international dollars) 1964-1992 253
6.7 Global distribution of PPP adjusted income (constant international dollars) 1960-1998 253
6.8 Global distribution of PPP adjusted income (current international dollars) 1975-1998 254
6.9 Three time series charts of near-global Gini coefficients (PPP) 255
6.10 Comparison of the FX and three PPP time series analyses of global income distribution 257
6.11 Kravis coefficients for India and China (1964-1992) 260
6.12 Annual Kravis coefficients US, Australia, Japan 1964-1992 261
7.1 Annual carbon dioxide concentration: 1832-2000 279
7.2 Carbon dioxide index 281
7.3 Average annual atmospheric methane concentration: 1000-1998 283
7.4 The radiative forcing ratio of carbon dioxide to methane: 1960-1999 285
7.5 Weighted atmospheric index: 1960-1999 286
7.6 Average monthly global stratospheric ozone column thickness: 1978-2001 291
7.7 Average stratospheric ozone layer thickness: 1978-2001 extra-tropical Southern Hemisphere (25°-90° S) 293
7.8 Average stratospheric ozone layer thickness: 1979-2000 Northern Hemisphere (25°-90° N) 294
7.9 Comparison of two times series measures of global ozone 1978-1999 295
7.10 Timing and value of annual maximum and minimum global ozone mass: 1978-1999 297
7.11 Stratospheric ozone depletion indices: 1979-2000 303
7.12 Indices of the average annual trophic levels of marine and fresh water harvests: 1950-1997 311
7.13 Moist (humid) tropical rainforest clearance index: 1960-1997 317
7.14 Raw and corrected data used to compute index of quasi-global amphibian population change: 1950-1997 320
7.15 Quasi-global amphibian population index: 1954-1997 322
7.16 Biodiversity and ecosystem index: 1960-1997 323
7.17 Index of global environmental change (1960-1997) 325
8.1 A tradeoff exists between population size and carrying capacity 343

Tables

4.1. Contrasts and similarities between and of nuclear and environmental brinkmanship 187
5.1 PPP data relies extensively upon extrapolation 209
5.2 Factors which influence individual and average incomes and purchasing power in low and high FX economies 213
6.1 Analysis of national inequality (Deininger and Squire dataset) 233
6.2 Income categories used to estimate missing income data 239
7.1 List of original (maximum) and minimum levels used to construct index of global environmental change 273
Abbreviations and acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIDS</td>
<td>Acquired Immuno-Deficiency Syndrome</td>
</tr>
<tr>
<td>ANU</td>
<td>Australian National University</td>
</tr>
<tr>
<td>bp</td>
<td>before present</td>
</tr>
<tr>
<td>BMJ</td>
<td>British Medical Journal¹</td>
</tr>
<tr>
<td>C</td>
<td>carbon</td>
</tr>
<tr>
<td>CH₄</td>
<td>methane</td>
</tr>
<tr>
<td>CFC</td>
<td>chlorofluorocarbon</td>
</tr>
<tr>
<td>CO₂</td>
<td>carbon dioxide</td>
</tr>
<tr>
<td>CRES</td>
<td>Centre for Resource and Environment Studies</td>
</tr>
<tr>
<td>EKC</td>
<td>environmental Kuznets curve</td>
</tr>
<tr>
<td>ENSO</td>
<td>El Niño Southern Oscillation</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agricultural Association</td>
</tr>
<tr>
<td>FX</td>
<td>foreign exchange (adjusted)</td>
</tr>
<tr>
<td>G7</td>
<td>Group of Seven</td>
</tr>
<tr>
<td>GEC</td>
<td>global environmental change</td>
</tr>
<tr>
<td>GDP</td>
<td>gross domestic product</td>
</tr>
<tr>
<td>GID</td>
<td>global income distribution</td>
</tr>
<tr>
<td>GHG</td>
<td>greenhouse gas</td>
</tr>
<tr>
<td>GMO</td>
<td>genetically modified organisms</td>
</tr>
<tr>
<td>GNP</td>
<td>gross national product</td>
</tr>
<tr>
<td>GPI</td>
<td>Genuine Progress Indicator</td>
</tr>
<tr>
<td>Gt</td>
<td>gigaton (10^9 tons)</td>
</tr>
<tr>
<td>ha</td>
<td>hectare</td>
</tr>
<tr>
<td>H-1211</td>
<td>halon-1211</td>
</tr>
<tr>
<td>HIV</td>
<td>Human Immunodeficiency Virus</td>
</tr>
<tr>
<td>IIASA</td>
<td>International Institute for Applied Systems Analysis</td>
</tr>
<tr>
<td>ICP</td>
<td>International Comparison Project</td>
</tr>
</tbody>
</table>

¹ The British Medical Journal changed its name to the acronym several years ago.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGEC</td>
<td>Index of Global Environmental Change</td>
</tr>
<tr>
<td>IMF</td>
<td>International Monetary Fund</td>
</tr>
<tr>
<td>IPCC</td>
<td>Intergovernmental Panel on Climate Change</td>
</tr>
<tr>
<td>IRRI</td>
<td>International Rice Research Institute</td>
</tr>
<tr>
<td>KC</td>
<td>Kravis coefficient</td>
</tr>
<tr>
<td>ky</td>
<td>kiloyears</td>
</tr>
<tr>
<td>JAMA</td>
<td>Journal of the American Medical Association</td>
</tr>
<tr>
<td>LSE</td>
<td>London School of Economics</td>
</tr>
<tr>
<td>LSH&TM</td>
<td>London School of Hygiene and Tropical Medicine</td>
</tr>
<tr>
<td>m</td>
<td>metre</td>
</tr>
<tr>
<td>MAPW</td>
<td>Medical Association for the Prevention of War</td>
</tr>
<tr>
<td>MJA</td>
<td>Medical Journal of Australia</td>
</tr>
<tr>
<td>mm</td>
<td>millimetre</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>NBP</td>
<td>net biome production</td>
</tr>
<tr>
<td>NCEPH</td>
<td>National Centre for Epidemiology and Population Health</td>
</tr>
<tr>
<td>NEP</td>
<td>net ecosystem production</td>
</tr>
<tr>
<td>NGO</td>
<td>non-government organisation(s)</td>
</tr>
<tr>
<td>NID</td>
<td>national income distribution</td>
</tr>
<tr>
<td>NIWA</td>
<td>National Institute for Water and Atmospheric Research</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanic and Atmospheric Administration</td>
</tr>
<tr>
<td>NPP</td>
<td>net primary production</td>
</tr>
<tr>
<td>NRC</td>
<td>National Research Council</td>
</tr>
<tr>
<td>OCF</td>
<td>Our Common Future</td>
</tr>
<tr>
<td>ODS</td>
<td>ozone depleting substance(s)</td>
</tr>
<tr>
<td>OECD</td>
<td>Organisation for Economic Development and Co-operation</td>
</tr>
<tr>
<td>OPEC</td>
<td>Organisation of Petroleum Exporting Countries</td>
</tr>
<tr>
<td>pa</td>
<td>per annum</td>
</tr>
<tr>
<td>pc</td>
<td>per capita</td>
</tr>
<tr>
<td>PHC</td>
<td>Primary Health Care</td>
</tr>
<tr>
<td>PNG</td>
<td>Papua New Guinea</td>
</tr>
<tr>
<td>ppbv</td>
<td>parts per billion by volume</td>
</tr>
</tbody>
</table>
ppmv parts per million by volume
PPP purchasing power parity
pptv parts per trillion by volume
PRC Peoples Republic of China
PWT Penn World Tables
RSPAS Research School of Pacific and Asian Studies
RSBS Research School of Biological Sciences
RSSS Research School of Social Sciences
SAPs structural adjustment programme(s)
SF₃CF₃ trifluoromethyl sulphur pentafluoride
SLAPP strategic law suit(s) against public participation
SOL stratospheric ozone layer
SOD stratospheric ozone depletion
SST sea surface temperature(s)
UK United Kingdom
UN United Nations
UNCED United Nations Conference for Environment and Development
UNCTAD United Nations Conference on Trade and Aid
UNDP United Nations Development Programme
UNEP United Nations Environment Programme
UNFPA United Nations Fund for Population Activities
US United States
USSR Union of Soviet Socialist Republics
UVR ultra violet radiation
WB World Bank
WCED World Commission on Environment and Development
WDI World Development Indicators
WDR World Development Report
WHO World Health Organisation
WMD weapons of mass destruction
WW World War
WWF Worldwide Fund for Nature
Acknowledgements

This multidisciplinary thesis has a long history and has naturally involved contributions from many people. Although started in April 1998, its genesis is much older. I can only name a fraction of these people here. I also acknowledge an unpayable debt to the countless individuals whose work has led to the body of literature that I discuss, and to the publishers, libraries and web-masters who have enabled this knowledge to be amassed, preserved, searched and accessed. I wish to particularly thank the secretarial, administrative and information technology support staff at NCEPH, the library staff at six ANU libraries, the Launceston and Hobart campuses of the University of Tasmania and the Sir John Ramsay library at the Launceston General Hospital.

This work would not have been possible without the financial support of an Australian Post-Graduate Award and a supplementary NCEPH scholarship.

Chair of advisory panel: Emeritus Professor Bob Douglas, NCEPH, ANU (epidemiology, advice and constant support, including the overall approach to examination of the research questions discussed. I especially thank Bob for advising that a research thesis and one’s passion need not be mutually exclusive, and for the risk he took in encouraging this thesis.)

Supervisor: Emeritus Professor Jack Caldwell, NCEPH, ANU (demography)

Formal advisers:
Emeritus Professor Max Neutze (deceased 2000), RSSS, ANU (economics); Professor John Deeble, NCEPH, ANU (economics); Mr Richard Eckersley, NCEPH, ANU (future, quality of life, indicators of progress); Dr Len Smith, NCEPH, ANU (inequality analysis, advice).

Informal advisers and/or correspondents
Dr Premachandra Athukorola: ANU ; Professor Albert Berry, University of Toronto, Canada; Dr Greg Bodeker, NIWA, Omakau, Otago, New Zealand (stratospheric ozone data and advice); Mr Ian Castles, Vice President, Academy of Social Sciences, Australia (helpful and stimulating debate); Dr Lincoln
Day, Washington DC, USA (demography); Dr Ed Dlugokencky, NOAA, Boulder, CO, USA (methane data and advice); Professor Steve Dowrick, ANU (PPP analysis); Professor Mark Elvin, RSPAS, ANU; Dr David Etheridge CSIRO; Professor Bob Gregory, RSSS, ANU (economics); Dr Jeff Houlahan, University of Ottawa, Canada (amphibian data and advice); Dr Elisabetta Magnani, School of Economics, The University of New South Wales, Sydney; Mr John Maindonald, ANU; Professor Tony McMichael, LSH&TM, UK and NCEPH, ANU; Dr Branko Milanovic, Development Research Group, World Bank, Washington DC; Dr Norman Myers, Oxford University, UK (tropical deforestation advice); Dr Gunnar Myhre Department of Geophysics, University of Oslo, Norway: (radiative forcing of greenhouse gases data); Professor David Shearman, Society of Doctors for the Environment, Adelaide; Professor Henry Nix, CRES, ANU (advice re environmental data analysis and advice); Professor Ian Noble, RSBS, ANU; Professor Daniel Pauly, Fisheries Centre, University of British Columbia, Canada: (marine and fresh water fishcatch trophic data and advice); Dr Simon Szreter, Cambridge University, UK, and Professor Bob Wasson, CRES, ANU.

Members of ANU globalisation discussion group, especially Professor Christine Sylvester; members of ANU human ecology discussion group and members of the Nature and Society Forum, especially Dr Brian and Anne Furnass.

Family, friends and influential lecturers

My family, especially my parents for lifelong support and encouragement and my father, Mr David Butler, for introducing me to computers in 1983, for entering some Endnote data, and for double-checking some of the manually entered national economic data.

My wife Susan, for support and patience, especially for the long periods of absence when I was in London and Canberra.

I would like to thank several workers in international health, environmental science, epidemiology and social and political change who have indirectly motivated, encouraged or informed this work. Some are mentioned in more detail in the afterword, three not mentioned there are Professor John Guillebaud, who encouraged my interest in population, especially in central Africa; Emeritus Professor John Last, for friendship, advice and encouragement, especially in the early years when I regarded all epidemiologists with awe; and, last but not least, the late Dr Eberhard Wenzel, whose barrage of alarming emails cumulatively impelled action.
Inequality and Sustainability
Abstract

Global civilisation, and therefore population health, is threatened by excessive inequality, weapons of mass destruction, inadequate economic and political theory and adverse global environmental change. The unequal distribution of global foreign exchange adjusted income is both a cause and a reflection of global social characteristics responsible for many aspects of these inter-related crises.

The global distribution of foreign exchange adjusted income for the period 1964-1999 is examined. Using data for more than 99% of the global population, a substantial divergence in its distribution is found. The global Gini co-efficient, adjusted for national income inequality, increased from an already high value of 71% in 1964 to peak at more than 80% in 1995, before falling, very slightly, to 79% in 1999. The global distribution of purchasing parity power income is also examined, for a similar period. Though also found to be extremely unequal, its trend has not been to increased inequality. Implications of the differences between these two trends are discussed.

A weighted time series index of global environmental change (IGEC) for the period 1960-1997 was also calculated. This uses nine categories of global time series environmental data, each scaled so that 100% represents the level of each category in nature prior to anthropogenic change; zero represents decline to a critical point. This index fell from 82% in 1960 to 55% in 1997, and will further decline during this century.

Using evidence from several disciplines, it is argued that the decline in the IGEC correlates with major macro-environmental changes, which, combined with flawed social responses to scarcity and its perception, place at risk the ability of civilisation to function. This could occur because of the interaction of conflict, economically disastrous extreme climatic events, deterioration of other ecosystem services, regional food and water insecurity, and currently unforeseen events. Uncertainty regarding both a safe rate of decline and the tolerable nadir of the IGEC is substantial.

Substantial reduction in the inequality of foreign exchange adjusted income is vital to enhance the development of policies able to reverse the decline in the environmental goods which underpin civilisation, and to promote the co-operation needed to maximise the chance that civilisation will survive.
This thesis is multi-disciplinary, drawing especially from epidemiology, environmental science, pherology, economics and demography. It is divided into three main sections. The first introduces the main ideas, propositions, and non-economic literature upon which the thesis is constructed. The second section presents an improved, comprehensive measure of global economic inequality and an index of global environmental change, and also discusses relevant literature of a more technical nature. The final section has two chapters. The first presents a new theory concerning carrying capacity and inequality, and attempts to explain the main argument of the thesis from a different view. The final chapter summarises the main contributions of the thesis and suggests avenues for further research.

Section one

Chapter one introduces three main elements of the thesis. Two – inequality and sustainability – already have a vast literature. The third, “civilisation failure” is less familiar, but it too is attracting increasing attention, though not generally as this term. The writer’s home academic discipline is in public health and epidemiology, and this chapter contains an extensive review of the health literature concerning global environmental change (GEC). The chapter argues that the most serious potential adverse health effects of GEC is via a pathway of significant global “civilisation failure”.

To substantiate this claim, the chapter reviews the general scientific literature relevant to many aspects of global environmental change. This is also done to introduce the “Index of Global Environmental Change” (IGEC) in section two. The chapter concludes that adverse human health effects resulting from GEC is a legitimate, currently under-explored topic for public health research and that seeking to better understand the causes of GEC is an important and legitimate research question.

Chapter two introduces the main idea explored by this thesis, which is that the contemporary scale of global inequality risks civilisation failure by undermining and

1 The science of carrying capacity
obstructing efforts to achieve sustainability, while at the same time risking the provocation of a “global guerrilla war” via pathways of large-scale population exclusion and resentment. It is argued that inequality acts to undermine sustainability via the cumulative effect of many individual government policies.

The methodology used in the thesis is discussed. It is argued that the existing epidemiological causal criteria can be adapted to contribute to causal theory for the emerging discipline of “sustainability science”, and that the thesis makes important steps towards this. These include quantitative estimates of the distribution and trend of global economic power and the scale and trend of global environmental change, over recent decades. However, causation in this field will primarily depend on plausibility. Because of the inevitability of both uncertainty and pre-existing (Bayesian) biases, it is admitted that adducing causality beyond all doubt will continue to be elusive. Nevertheless, the evidence of a causal relationship between inequality and sustainability is at least as strong as that for most existing economic and policy assertions.

I argue that inequality – the relationship between groups with different power on a global scale – acts most directly to impair sustainability by delaying the global attitudinal transition by limiting awareness, at both elite and public levels, of the risks to civilisation from both inequality itself, and also from adverse global environmental change. This leads to policy making which obstructs the other, material elements of the sustainability transition.

Chapter three introduces the conventional, alternative pathway to the global sustainability transition, termed, provocatively, the “Cornucopian enchantment”. This is an exaggerated, simplistic set of arguments, based almost on magical thinking, which essentially proposes that sustainability can be achieved, with little effort, almost automatically, provided certain economic elements – especially free market principles – are be embedded into global society. The most articulate spokesperson associated with this view is the late Julian Simon. The literature that gives rise to Cornucopianism is generally founded on reality, but an exaggerated form has great potency, and properly deserves the term “enchantment”. An alternative – and less charitable explanation for the widespread faith in Cornucopian principles is that it avoids any effort to redistribute wealth and power, and thus is compatible with increasing inequality and the self-interest of powerful populations. Probably both explanations are partially true.
This chapter also reviews a fragment of recent demographic literature regarding the
debate between neo- and anti-Malthusianism, concentrating mainly on a single journal, the
Population and Development Review. It proposes, controversially, that the relevant papers in
this have accepted the anti-Malthusian arguments too uncritically. Whether in response to
subtle funding pressures, from a withdrawal of engagement with the issue, or for both reasons,
it is suggested that demographers in recent decades have not acted with sufficiently clarity and
purpose to effectively challenge the unconscious adoption of the Cornucopian enchantment by
elite policy makers. A consequence of this has been the worldwide trend to reduced foreign
aid. By default, this has delayed the demographic transition, thus making the attainment of
global sustainability more problematic.

Of course, demographers cannot be held to have any special responsibility for the
decline in foreign aid, nor any unique responsibility to contribute to the debate concerning
global human carrying capacity. Nevertheless, it is suggested that if demographers had not
distanced themselves as much, as a profession, from neo-Malthusians, lobby groups such as
the Union of Concerned Scientists, and the general debate concerning sustainability, then the
politically conservative advocates of the free market are likely to have had less influence upon
government, especially with regard to reduced foreign aid, structural adjustment programmes,
and other free market policies imposed on the Third World.

The final chapter in this section discusses two more key concepts, that of “critical
environmental change” and “environmental brinkmanship”. These provide a conceptual
framework to explain how global environmental change may cause global civilisation failure,
and thus cripple population health. Environmental brinkmanship is likened to nuclear
brinkmanship, acting over a longer timescale, which undermines the environmental public
goods which civilisation relies on, including for food security. It is argued that powerful
populations are prepared to countenance environmental brinkmanship not only because of
their faith in the free market, but also because of a perceived insurance policy provided by
their power, income and affluence.

Again, therefore, global inequality provides a unifying mechanism to explain how
environmental brinkmanship, and hence the erosion of sustainability, occurs.
Section two

Chapter five reviews the existing literature related to both subjective and objective measures of global inequality. It focuses on the health impacts of economic conditions in the Third World since World War II (WWII). It argues that the general rate of improvement in health in the first post-war decades, when there was less global emphasis on the free market policies, slowed when the global free-market became more powerful, especially in sub-Saharan Africa. This chapter also reviews the quantitative literature of global income inequality, in terms of foreign exchange (FX) and adjusted for purchasing power parity (PPP). This is relevant for chapter six, in which four time series studies of global income inequality, undertaken for this thesis, are presented. It is argued that FX adjusted income is the appropriate indicator of global political influence (compared to PPP adjusted measures), mainly because governments accrue foreign debt in FX terms. National inequality, especially in the Third World, evidenced by a widespread lack of democracy and government accountability, also helps to exacerbate indebtedness. This is because such governments are frequently prepared to sanction further debt to maintain living standards for their elite populations and their own power, including by the purchase of arms. This is the case even though a consequence is further economic and health disadvantage experienced by their general populations.

Chapter six presents four time series studies of global income inequality undertaken for this thesis. One study, using FX terms, finds a clear divergence in global income distribution, while the three PPP studies show no evidence of such a divergence. However, the data are sufficient to show that the relationship between the FX and PPP measures has changed over time. This is examined in detail for China and India. It is found that the Kravis coefficient\(^2\) of the average income for these countries increased substantially during the 1970s and 1980s. It is argued that this represents a significant, previously undescribed, form of interest, which in this period acted to disadvantage these countries.

Chapter seven presents a fifth quantitative time series analysis, called the Index of Global Environmental Change. This draws on global environmental data, comprised of six main indicators, two atmospheric, one stratospheric, and three concerned with marine and terrestrial ecosystems. Technical literature relevant to each indicator is also reviewed.

\(^2\) The ratio of PPP to FX adjusted incomes.
Section three

Chapter eight proposes that existing theories of human carrying capacity are flawed by insufficient consideration of inequality. Inequality, within limits, can act to increase or to decrease total human carrying capacity. Over comparatively short periods, inequality can effectively increase the living standards of powerful populations. It can do this – provided the total population is limited – without approaching global carrying capacity limits, provided the ecological utilisation of the marginal (additional) population is low. Indeed, this describes the recent global situation.

However, over a longer time period, the living standards of the disadvantaged population may deteriorate relatively, and even absolutely – at least if insufficient dissemination of technological and material progress occurs. This threatens civilisation failure in several ways. Resentment is likely to increase within the comparatively disadvantaged population, leading to civil strife and insurgency. This is likely to be concentrated within poor populations, but is unlikely to be confined there. Consequences of a global guerrilla war are likely to include reduced economic growth, civilisation failure, and eventually, civilisation collapse. We may already be on the brink of such a world.

Additionally, even though the ecological impact of the comparatively poor fraction of the population is low on a per-capita basis its large size still adds significantly to the erosion of environmental global public goods, thus independently increasing the risk of critical global change and, eventually, civilisation failure. To reduce the risk of a global guerrilla war, living standards of poor populations need to be increased. Paradoxically, this will increase the rate of erosion of environmental global public goods.

The chapter also introduces the concept of marginal carrying capacity. It argues that any area and its associated population is characterised by a certain carrying capacity, a function particularly of resources, technology, ingenuity, organisation, debt and offshore income, including interest. Average living standards correlate with the per capita carrying capacity. At low populations, or when technology or other carrying capacity “co-factors” are increasing, population increments are likely to be comparatively welcomed. But as the rate of increase in carrying capacity slows, additional population are unlikely to be as welcomed, unless the living standard of the incoming population is substantially below that of the average population. Beyond another point, additional population may start to be resented, even if they are comparatively poor. This is not only because, at this point, they are unlikely to increase the
average living standard of the general population, but because they may even decrease it, or be perceived as so doing, because, for example of additional policing expenses and other transaction costs.

At a global scale, powerful populations reserve extensive resources, both to enable the high living standards enjoyed by their population, and also as a stock for the future. By definition, these resources are denied to less powerful populations, thus reducing their potential living standard. Estimates of the maximum theoretical global human population need to be reduced in view of this.

Chapter nine reviews the main contributions made by this thesis, and suggests several avenues for future research. The most important contribution is the argument that the current scale of global inequality undermines attempts to achieve sustainability. It reviews the terms of a new vocabulary to explain this. These include “environmental brinkmanship”, “civilisation failure”, “critical global environmental change” and the “Cornucopian enchantment”.

Essentially, powerful elements within civilisation, enchanted by both the cornucopian vision and their own enjoyment – made possible by the scale of inequality – embrace policies that lead to environmental brinkmanship. In turn, civilisation failure is threatened, in the short run by a global guerrilla war, and over a longer time, by critical global environmental change.

Secondly, the thesis comprehensively demonstrates, quantitatively, the extent of global income inequality over recent decades. It improves substantially on all previous measures of global exchange adjusted income inequality by its annual resolution, and by more completely accounting for changes in national income distribution. Thirdly, it suggests for the first time that changes in the Kravis coefficient act as either a hidden interest or subsidy for countries repaying loans in exchange adjusted currency. Fourthly, the thesis presents an authoritative, comprehensive and quantitative measure of global environmental change that surpasses previous measures because of its comprehensiveness and reduced selection bias.

A fifth contribution is the suggestion that carrying capacity theories need to explicitly consider the appropriation of carrying capacity by powerful populations. Finally, it suggests that several scientific fields, especially demography, have been insufficiently critical in the face of the Cornucopian enchantment.

This thesis should stimulate further work in several disciplines, including the emerging discipline of sustainability science. It serves as a conceptual basis for attempts to quantify civilisation failure, by creating different future scenarios. For example, these could assume
different rates of population growth, inequality, technological change, adverse global environmental change, and access by disadvantaged, resentful populations to weapons of mass destruction.

Secondly, the thesis should serve as an incentive to both extend and improve measures of global environmental change and also of inequality. It should stimulate a more critical examination of the concept of purchasing power parity income, further development of measures of genuine income, and of the relationship between exchange adjusted and purchasing power parity income.

The thesis concludes that even in the best case, environmental brinkmanship will continue for the rest of this century. Civilisation will need a deal of luck to survive. To minimise what is an unconscionable risk, civilisation needs to urgently adopt policies to accelerate the sustainability transition. Reducing inequality will accelerate the demographic transition, while technological and organisational transition will slow environmental brinkmanship. Reliance on poor populations as a form of safety net to protect wealthier populations is unacceptable for both moral and strategic reasons. Recognition of the pervasiveness and risk of this thinking will help to drive the attitudinal transition needed among wealthier populations to generate the political and technological changes required.

It is concluded that to increase the chance of sustainability policy makers will need to devise ways to redistribute wealth to poorer populations, mainstream economists will have to adopt the principles of ecological economics, and scientists as a whole will need to better inform the general public of the urgency and changes needed to facilitate the sustainability transition.

At the end of the bound volume, following the bibliography and index, is a collection of papers relevant to the thesis and published or submitted during it. Many of these are referred to in the text.

3 Written or co-written by the author.