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Abstract

This thesis investigates the design and the analysis of acoustic signal processing
algorithms in reverberant rooms. Reverberation poses a major challenge to acous-
tic signal processing problems. It degrades speech intelligibility and causes many
acoustic algorithms that process sound to perform poorly. Current solutions to the
reverberation problem frequently only work in lightly reverberant environments.
There is need to improve the reverberant performance of acoustic algorithms.

The approach of this thesis is to explore how the intrinsic properties of re-
verberation can be exploited to improve acoustic signal processing algorithms. A
general approach to soundfield modelling using statistical room acoustics is applied
to analyze the reverberant performance of several acoustic algorithms. A model of
the underlying structure of reverberation is incorporated to create a new method
of soundfield reproduction.

Several outcomes resulting from this approach are: (i) a study of how more
sound capture with directional microphones and beamformers can improve the ro-
bustness of acoustic equalization, (ii) an assessment of the extent to which source
tracking can improve accuracy of source localization, (iii) a new method of sound-
field reproduction for reverberant rooms, based upon a parametrization of the
acoustic transfer function and (iv) a study of beamforming to directional sources,
specifically exploiting the directionality of human speech.

The approach to soundfield modelling has permitted a study of algorithm per-
formance on important parameters of the room acoustics and the algorithm design.
The performance of acoustic equalization and source tracking have been found to
depend not only on the levels of reverberation but also on the correlation of pres-
sure between points in reverberant soundfields. This correlation can be increased
by sound capture with directional capture devices. Work on soundfield reproduc-
tion has shown that, though reverberation significantly degrades the performance
of conventional techniques, by accounting for the reverberation it is possible to

design reproduction methods that function well in reverberant environments.






Symbols and Terms

[-] ceiling operator
|-] floor operator
[-]*  complex conjugate of a matrix
[-]7 transpose of a matrix
[[]#  complex conjugate transpose of a matrix
|| magnitude of a complex number
/- phase of a complex number
|- || Euclidian norm of a vector
x -y dot product between two vectors
E{-} expectation operator
Pr{-} probability
Var{-} variance operator
Re{-} real part
Im{-} imaginary part
0(-) Dirac delta function
O0nm Kronecker delta function
RVAS]
I, n xnidentity matrix
C™ n dimensional complex number space
R™ n dimensional real number space
7  set of non-negative integers
CDF  cumulative density function
DFT discrete Fourier transform
DRR direct-to-reverberant energy ratio
MTF modulation transfer function
PDF probability density function
SNR signal-to-noise ratio
STI speech transmission index
ULA uniform linear array

WNG white noise gain
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