Numerical modeling of low-pressure plasmas: applications to electric double layers

A thesis submitted for the degree of
Doctor of Philosophy of the Australian National University
and
Docteur de l’Université Paul Sabatier
by
Albert Meige

Research Supervisors
R. W. Boswell
J.-P. Boeuf

Research Advisors
C. Charles
G. J. M. Hagelaar

External Examiners
P. Chabert
J. Verboncoeur

Space Plasma Power and Propulsion (SP3),
Research School of Physical Sciences and Engineering,
the Australian National University,
Canberra, ACT, 0200, Australia

Centre de Physique des Plasmas et de leurs Applications de Toulouse (CPAT),
Université Paul Sabatier,
118 route de Narbonne, Toulouse Cedex 31062, France
This thesis contains no material which has been accepted for the award of any other degree or diploma in any university. To the best of the author’s knowledge and belief, it contains no material previously published or written by another person, except where due reference is made in the text.

Albert Meige
July 13, 2006
Acknowledgements

First of all, I would like to thank Rod, who was not only my supervisor, but I believe also a very good friend. Rod first gave me the opportunity to start a PhD in plasma physics, while I was “just” an engineer in telecommunications. Thank you for believing in me and thank you for all that you taught me. Thank you for your professional and personal support. I hope in 10 years, after a couple of kidneys and a Stinco D’Agnello at Marinetti’s, you will tell your new students, “actually, we did that with Albert 10 years ago, but never published it”.

Still at the Australian National University, I would like to thank Christine for always taking the time to talk about plasma physics, even when she was crawling under piles of work.

I would also like to thank my supervisors at the Université Paul Sabatier. Although I spent far less time there, each of my stays at the CPAT was very fruitful. Thank you Jean-Pierre for giving me the opportunity to do a PhD in your group and thank you for supporting me although the research I was carrying out did not really belong to the research themes of the CPAT. Also a special thank to Gerjan who spent a huge number of hours sharing with me his knowledge in numerical techniques and simulations.

I also acknowledge the work and valuable comments of all the members of my Jury: Rod Boswell, Jean-Pierre Boeuf, Gerjan Hagelaar, Pascal Chabert, John Verboncoeur and Richard Fournier.

A number of people have also helped me all the way through my PhD. Thank you to Miles Turner who welcomed me at the Plasma Research Laboratory in Dublin and who gave me some of the original ideas of this thesis. Thank you to Mike Lieberman who tried to prevent me from writing my thesis by constantly giving me new ideas. Thank you to Pascal Chabert for providing the famous “tickets rouges” and for giving me the opportunity to progress in the electronegative double-layer simulations. Thank you to Bob Dewar and Matthew Hole for helping me in my triple integrals over velocity space. Thank you to Pascal Brault for my first seminar. Thank you to Peter Alexander that I have not solicited too much, unlike my colleagues experimentalist, but who has prepared to most awesome BBQs and Xmas Ev’s. Thank you to the people at the School Computer Unit (Julie, James, Shiu) for their help during the last three years. A special thank especially for the time, just before I started writing this thesis, when I realized that all my data from 2005 had gone.

Thank you to my friends at SP3 and in the other plasma labs: Orson, for coming to my birthday party. Nico for a number of interesting conversations on electronegative plasmas, life, universe and everything. Niko, for every thing
before the orange juice. Malou, for your immuable sourire. Cormac, for trying to destroy my liver when I was writing my thesis. Devin, for inviting me at your “woody”. Dave P. and Peter L., for reminding me that my thesis could have been a lot more difficult to write. Pascal V., for the G5.

I would also like to thank my friends in France, Hong Kong and Mayotte for giving me a roof, a lift and some good time, when I was in transit and for visiting me in Australia: Pilou, Fab, Seb, Filou, Jasmin, Troll, Rage, Mel, Lise, Dino.

Also a special thank to Michel Puech, father of the young girl I was giving magic courses to, who first put me in touch with Rod.

I also wish to thank my family, Toupette, Le Chef, Marie and my grandparents for their invaluable support and encouragements: Toupette pour les colis, Le Chef pour les invitations au restaurant, Marie pour plaidoyer pour le bonheur.

Finally, Ane deserves the most special thanks of all. Tussen takk min Sukker Klump for helping me to finish and for preventing me from falling further down into madness.
Abstract

Inductive plasmas are simulated by using a one-dimensional particle-in-cell simulation including Monte Carlo collision techniques (pic/mcc). To model inductive heating, a non-uniform radio-frequency (rf) electric field, perpendicular to the electron motion is included into the classical particle-in-cell scheme. The inductive plasma pic simulation is used to confirm recent experimental results that electric double layers can form in current-free plasmas. These results differ from previous experimental or simulation systems where the double layers are driven by a current or by imposed potential differences. The formation of a super-sonic ion beam, resulting from the ions accelerated through the potential drop of the double layer and predicted by the pic simulation is confirmed with nonperturbative laser-induced fluorescence measurements of ion flow. It is shown that at low pressure, where the electron mean free path is of the order of, or greater than the system length, the electron energy distribution function (eedf) is close to Maxwellian, except for its tail which is depleted at energies higher than the plasma potential. Evidence supporting that this depletion is mostly due to the high-energy electrons escaping to the walls is given.

A new hybrid simulation scheme (particle ions and Boltzmann/particle electrons), accounting for non-Maxwellian eedf and self-consistently simulating low-pressure high-density plasmas at low computational cost is proposed. Results obtained with the “improved” hybrid model are in much better agreement with the full pic simulation than the classical non self-consistent hybrid model. This model is used to simulate electronegative plasmas and to provide evidence supporting the fact that propagating double layers may spontaneously form in electronegative plasmas. It is shown that critical parameters of the simulation were very much aligned with critical parameters of the experiment.
Résumé

Un modèle *particle-in-cell / Monte Carlo collisions* (pic/mcc) unidimensionnel est utilisé pour simuler un plasma inductif. Un champ électrique radiofréquence (rf) est utilisé pour modéliser le chauffage inductif. L'amplitude du champ est non-uniforme et sa direction perpendiculaire à celle du déplacement des électrons. Ce modèle de plasma inductif permet de confirmer de récents résultats expérimentaux démontrant la possibilité de former des doubles couches électriques au sein de plasmas sans courant. Les doubles couches étudiées par le passé, aussi bien numériquement qu’expérimentalement, ont toujours été imposées par différence de potentiel ou en forçant un courant électrique dans le plasma. C’est en ce sens que les résultats présentés ici diffèrent de ceux précédemment reportés. La simulation prédit la formation d’un faisceau d’ions supersoniques résultant des ions accélérés par le saut de potentiel de la double couche. L’existence de ce faisceau d’ions supersoniques est confirmée par fluorescence induite par laser (nonperturbative laser-induced fluorescence). La simulation montre aussi qu’à basse pression, lorsque le libre parcours moyen des électrons est du même ordre de grandeur ou plus grand que le système, la fonction de distribution en énergie des électrons (eedf) est quasi-Maxwellienne, à l’exception de sa queue, dépeuplée pour des énergies supérieures au potentiel plasma. Ce dépeuplement est principalement dû à la perte aux parois des électrons les plus rapides.

Un nouveau schéma de simulation hybride (ions particulières et électrons particulières et Boltzmann), permettant de simuler des plasmas hautes pressions et hautes densités, en des temps de calculs relativement faibles, est proposé. Les résultats obtenus avec ce modèle hybride “amélioré” sont bien plus proches de ceux d’une simulation pic, que le sont ceux d’une simulation hybride classique. Ce modèle est appliqué à la simulation de décharges électronégatives et confirme des résultats expérimentaux démontrant la possibilité de formation de doubles couches propagatives. En particulier, les paramètres critiques contrôlant cette formation dans la simulation corroborent ceux de l’expérience.
Contents

Acknowledgements
Abstract
Résumé
Contents

1 Introduction
1.1 Electric double layers in plasmas
1.1.1 Definition and classification
1.1.2 Double layers: theory
1.1.3 Double layers: simulations
1.1.4 Double layers: experiments
1.1.5 Double layers: in space
1.1.6 Summary
1.2 Modeling plasmas
1.2.1 Equivalent circuit models
1.2.2 Analytical models
1.2.3 Fluid models
1.2.4 Kinetic models
1.2.5 Hybrid models
1.3 Scope of this thesis

2 Electron heating in a non-uniform transverse ac electric field
2.1 Motivation
2.2 Analytical model
2.2.1 Another approach to derive the Joule heating law
2.2.2 Power absorbed per electron in a non-uniform ac electric field: smooth transition
2.2.3 Averaging over a Maxwellian distribution
2.2.4 Power absorbed per electron in a non-uniform ac electric field: abrupt transition
2.3 Monte Carlo model
2.3.1 Good agreement with the analytical model
2.3.2 Anisotropy introduced by the stochastic heating
2.4 Discussion and conclusion
3 Current-free double layers in 1D PIC simulations 43
 3.1 Current-free double layers in Chi-Kung 43
 3.2 Particle-in-cell simulations 46
 3.2.1 Introduction and background 46
 3.2.2 General particle-in-cell scheme 48
 3.3 Simulation of an inductively coupled plasma 51
 3.3.1 Inclusion of a transverse rf field in 1D PIC simulations 52
 3.3.2 The transverse heating mechanism in practice 53
 3.4 Formation of the current-free double layer 55
 3.4.1 Development of the steady state 56
 3.4.2 Current-free nature of the double layer 58
 3.5 Important parameters for the current-free double layer 63
 3.5.1 Sudden geometric expansion 63
 3.5.2 Possible significant role of the magnetic force 64
 3.6 Conclusion 67

4 Particle transport in the current-free double layer 69
 4.1 Depletion of the electron energy distribution function 69
 4.1.1 Background 69
 4.1.2 Double-layer plasma 71
 4.1.3 Inductively-coupled plasma 72
 4.1.4 Discussion 75
 4.2 A Bolzmann equilibrium “by part” 76
 4.3 The electrons seem to be hotter where they are not heated 78
 4.4 Formation of an ion beam, comparison with experiment 79
 4.5 Conclusion 81

5 An improved hybrid Boltzmann-PIC simulation 85
 5.1 Introduction 85
 5.2 Basic equations of the hybrid model 88
 5.2.1 Linearization of Poisson’s equation 88
 5.2.2 Calculation of the density reference n_0 90
 5.2.3 Ion source term profile 93
 5.2.4 Ion radial loss to model 2D effects 93
 5.2.5 Stability criteria 96
 5.3 Self-consistent hybrid model: model $h2x$ 96
 5.3.1 Introduction 96
 5.3.2 Coupling the Monte Carlo to the hybrid model: model $h2x$ 97
 5.3.3 Simulation of an electron path 99
 5.3.4 Control of the electric field amplitude 101
 5.3.5 Matching the Monte Carlo and hybrid electron densities 101
 5.3.6 Electron radial loss to model 2D effects 103
 5.4 Results and applications: comparison PIC, hybrid and $h2x$ 104
 5.5 Conclusion 106
6 Simulations of double layers in electronegative plasmas 107
6.1 What makes electronegative plasmas different? 107
6.2 Double-layer formation in an electronegative plasma 108
6.3 2D hybrid simulations of electronegative double layers 111
 6.3.1 Model .. 111
 6.3.2 Formation of a stable double layer 111
6.4 The model $h2x$ applied to electronegative plasmas 115
 6.4.1 Model .. 115
 6.4.2 Fully self-consistent electronegative double-layer simulation 117
 6.4.3 Parametric study of electronegative double layers 119
6.5 Discussion and conclusion 127

7 Conclusion 129
7.1 Inductive plasma simulation and current-free double layer 130
7.2 Self-consistent hybrid model and electronegative double layer 131

8 Appendix 133
8.1 Trigonometric identities and transcendental integrals 133
8.2 Electron density in a Monte Carlo simulation 133
8.3 Spatial discretization of Poisson’s equation 134