Function and Evolution
of Putative Odorant Carriers
in the Honey Bee (Apis mellifera)

Sylvain FORÊT

A thesis submitted for the degree of Doctor of Philosophy of
The Australian National University

July 2006
This thesis is submitted in complete fulfilment of the requirements for the degree of Doctor of Philosophy, and does not exceed 100,000 words. Work presented herein is the original work of the author, except where otherwise acknowledged.

Sylvain FORÊT July 31, 2006
A mes parents
Acknowledgements

First, I would like to sincerely thank my supervisor, Dr. Ryszard Maleszka. Words cannot express the extend of my gratitude for his guidance and support. I am extremely grateful to my thesis advisor Dr. Eldon Ball for his invaluable help.

I also thank Joanna Maleszka for her enthusiasm and technical expertise, Paul Helliwell and Dr. Robert Kucharski for their encouragement and helpful advice. I owe an immense debt of gratitude to Dr. Aung Si, for his help with my English. I thank Dr. David Guez for enlightening conversations. I also wish to thank various people, that I got acquainted with during these three years and, who provided me useful comments, in particular, Dr. Jan Hemi, Dr. Andrew Barron, Dr. Angel Roberto Bartchuk, Regan Ashby and many others.

I thank the Australian government for financial support.

Last but not least, I thank Maturost Rodsuti without whom life would be bleak and insipid.
Abstract

The remarkable olfactory power of insect species is thought to be generated by a combinatorial action of G-protein-coupled olfactory receptors (ORs) and olfactory carriers. Two such carrier gene families are found in insects: the odorant binding proteins (OBPs) and the chemosensory proteins (CSPs). In olfactory sensilla, OBPs and CSPs are believed to deliver hydrophobic airborne molecules to ORs, but their expression in non-olfactory tissues suggests that they also may function as general carriers in other developmental and physiological processes.

Bioinformatics and experimental approaches were used to characterise the OBP and CSP gene families in a highly social insect, the western honey bee (*Apis mellifera*). Comparison with other insects reveals that the honey bee has the smallest set of these genes, consisting of only 21 OBPs and 6 CSPs. These numbers stand in stark contrast to the 66 OBPs and 7 CSPs in the mosquito *Anopheles gambiae* and the 46 OBPs and 20 CSPs in the beetle *Tribolium castaneum*. The genes belonging to both families are often organised in clusters, and evolve by lineage specific expansions. Positive selection has been found to play a role in generating a greater sequence diversification
in the OBP family in contrast to the CSP gene family that is more conserved, especially in the binding pocket. Expression profiling under a wide range of conditions shows that, in the honey bee only a minority of these genes are antenna-specific. The remaining genes are expressed either ubiquitously, or are tightly regulated in specialized tissues or during development. These findings support the view that OBPs and CSPs are not restricted to olfaction, and are likely to be involved in broader physiological functions.

Finally, the detailed expression study and the functional characterization of a member of the CSP family, \emph{uth (unable-to-hatch)}, is reported. This gene is expressed in a maternal-zygotic fashion, and is restricted to the egg and embryo. Blocking the zygotic expression of \emph{uth} with double-stranded RNA causes abnormalities in all body parts where this gene is highly expressed. The treated embryos are ‘unable-to-hatch’ and cannot progress to the larval stages. Our findings reveal a novel, essential role for this gene family and suggest that \emph{uth} is an ectodermal gene involved in embryonic cuticle formation.
Publications resulting from this project:

Publications partially related to this project:

Contents

1 Olfaction in Insects 1
 1.1 Chemical Senses 2
 1.2 Insects Chemosensory Structures 4
 1.3 Molecular Mechanisms of Olfaction 6
 1.3.1 Conserved Principles Across Phyla 6
 1.3.2 Perireceptor Events 8
 1.3.3 Transduction Events 11
 1.4 Olfactory Encoding 12
 1.5 Project Aims 14

2 Methods 17
 2.1 Identification of OBPs and CSPs in Insects 17
 2.1.1 OBPs 17
 2.1.2 CSPs 18
 2.2 Annotation Procedure 18
 2.3 Nomenclature 19
 2.4 Gene Evolution 20
 2.4.1 Secondary Structure Profiles 20
2.4.2 Sequence Alignment ... 21
2.4.3 Phylogeny ... 21
2.5 Tests for Positive Selection 22
 2.5.1 Evolution of the CSP Binding Pocket 23
2.6 Sample Collection ... 24
 2.6.1 Eggs .. 24
 2.6.2 Larvae and Pupae ... 24
 2.6.3 Adults .. 24
2.7 Molecular Biology ... 25
 2.7.1 RNA Extraction .. 25
 2.7.2 DNA Extraction .. 25
 2.7.3 Reverse Transcription 26
 2.7.4 PCR ... 26
 2.7.5 Sequencing .. 27
 2.7.6 Northern Blots .. 27
 2.7.7 Southern Blots .. 28
 2.7.8 Reverse Northern Dot Blots 28
 2.7.9 Molecular Cloning .. 30
2.8 In Situ Hybridization .. 32
 2.8.1 Probe .. 32
 2.8.2 Tissues Preparation 33
 2.8.3 Hybridization .. 33
 2.8.4 Washing and Detection 34
2.9 Double Stranded RNA Inhibition 34
 2.9.1 Double Stranded RNA Synthesis 34
3 The OBP Family

3.1 Introduction

3.1.1 The First Lepidopteran OBPs
3.1.2 OBP Diversity
3.1.3 Structural Aspects
3.1.4 Olfactory and non-Olfactory OBPs
3.1.5 OBPs in Insect Genomes
3.1.6 Chapter Outline

3.2 OBP Genomics

3.2.1 Annotation
3.2.2 OBPs are Clustered in the Bee Genome

3.3 OBP Evolution

3.3.1 Honey Bee C-minus OBPs are a Monophyletic Group
3.3.2 Selection on the C-minus OBP Subfamily
3.3.3 Conserved Splice Sites

3.4 Patterns of Expression

3.5 Discussion

3.5.1 OBPs and Olfaction in the Honey Bee
3.5.2 Evolution of the OBP Family

4 The CSP Family

4.1 Introduction

4.1.1 CSPs and olfaction
Contents

4.1.2 Non olfactory CSPs ... 68
4.1.3 Comparison with OBPs 69
4.1.4 CSPs in the Honey Bee 69

4.2 CSP Genomics .. 70
4.2.1 The Honey Bee Genome Encodes Six CSPs 70
4.2.2 CSPs in Other Arthropods 71
4.2.3 CSPs are Frequently Arranged in Clusters 72
4.2.4 A Conserved Gene Structure 73

4.3 Evolution .. 73
4.3.1 Level of Conservation 73
4.3.2 Phylogeny ... 73
4.3.3 Tests for Positive Selection 77
4.3.4 Evolution of the Binding Pocket 78

4.4 Expression Profiles ... 78

4.5 Discussion .. 82

5 CSP5: ‘unable-to-hatch’ .. 86

5.1 Introduction .. 86
5.1.1 From Sequence to Function 86
5.1.2 What is the Function of Non-Olfactory CSPs? 87
5.1.3 Chapter Outline ... 88

5.2 csp5 (uth) Encodes a CSP Belonging to a Distinct Clade Con-

served in Arthropods .. 89

5.3 Expression of uth in time and space 89

5.4 RNAi inhibition of the csp5 transcript 94
5.5 Discussion ... 98

6 Conclusions .. 101
 6.1 Roles of OBPs and CSPs in Olfaction 102
 6.2 What Are the Other Functions of OBPs and CSPs ? 105
 6.3 The Origins and Evolution of OBPs and CSPs 106
 6.4 Possible Applications 107

A PCR Primers ... 109
 A.1 CSP Primers ... 109
 A.2 OBP Primers .. 110
 A.3 Housekeeping Genes Primers 111

B CSPs Accession Numbers 112
List of Figures

1.1 Chemical senses in the honey bee 3
1.2 A typical olfactory sensillum 5
1.3 Honey bee sensilla placodea 7
1.4 The olfactory cascade 9
1.5 3D structure of insect and vertebrate olfactory carriers 10

2.1 A typical dotblot result. 31

3.1 Southern blot analysis of obp6 and obp8. 45
3.2 OBP clusters in the honey bee genome. 48
3.3 Alignment of the honey bee OBP proteins. 50
3.4 Phylogeny of the honey bee OBP protein family 52
3.5 Positively selected sites in the C-minus family 55
3.6 Global expression patterns of the honey bee OBPs. 59
3.7 Expression of obp11 in drone and worker antennae. 60
3.8 Expression of obp10 in the brains of young bees and foragers. 61

4.1 Overview of the CSP genes found in various arthropods ... 71
List of Figures

4.2 Alignment of the predicted polypeptides encoding CSPs in
\textit{A. mellifera}, \textit{D. melanogaster} and \textit{A. gambiae}. 74

4.3 Phylogeny of the CSP protein families in Arthropods. 76

4.4 Binding pocket and core protein of MbraCSPA6. 79

4.5 Global expression patterns of the honey bee CSPs................. 80

4.6 Expression of \textit{csp3} in larvae and pupae. 82

5.1 Alignment of UTH (CSP5) and its relatives. 90

5.2 \textit{csp5} in eggs, in the drone testis and in the queen ovaries. ... 91

5.3 Expression of \textit{uth} in the queen ovaries. 92

5.4 Expression of \textit{uth} in 0-4 hours-old eggs. 93

5.5 Expression of \textit{uth} in the embryo. 94

5.6 \textit{csp5} in first instar larvae. 94

5.7 RNAi phenotypes at 12 and 44 hours. 95

5.8 RNAi phenotypes at 66 and 74 hours. 97
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Genome assemblies used for OBP and CSP annotation</td>
<td>19</td>
</tr>
<tr>
<td>2.2</td>
<td>PAML site models</td>
<td>22</td>
</tr>
<tr>
<td>2.3</td>
<td>Housekeeping honey bee genes and negative control vertebrates genes</td>
<td>29</td>
</tr>
<tr>
<td>3.1</td>
<td>Nomenclature of the honey bee OBP genes</td>
<td>44</td>
</tr>
<tr>
<td>3.2</td>
<td>Comparison of models of codon evolution by LRT</td>
<td>54</td>
</tr>
<tr>
<td>4.1</td>
<td>Nomenclature of the honey bee CSP genes</td>
<td>70</td>
</tr>
<tr>
<td>6.1</td>
<td>Number of CSP, OBP and OR genes in various insects</td>
<td>103</td>
</tr>
</tbody>
</table>