Declaration

I, Nicolas Cherbuin, hereby declare that, except where acknowledged, that this work is my own and has not been submitted for a higher degree at any other university or institution.

Nicolas Cherbuin
Acknowledgements

I would like to thank my family, my dearest friends, Camille, Jacques, and Nicola for their unconditional support without which this research would not have been possible.

Special thanks go to Dr Cobie Brinkman. Since my undergraduate days, Cobie has been inspiring and has taught me much of what I know about the human brain. She has also provided help and support during my honours’ year as well as throughout my PhD. Importantly, although Cobie’s door was always open to me, she trusted me to conduct valuable research, even when I spent reclusive periods in the lab or in my office, or when I steered my research in unexpected directions.

I would also like to thank Mark Edwards and Anne Aimola Davies who, as members of my supervisory panel, have provided invaluable advice and encouragement, and have reviewed my work in detail.

Thanks also go to Dr Michael Smithson for his generous, and apparently limitless, sharing of statistical knowledge, and to Dr Elinor McKone for her meticulous advice.

The study of individuals with dyslexia presented in Chapter 6 has been conducted in collaboration with Judy Buchholz. Judy is a qualified clinical psychologist and I am grateful that she performed the neuropsychological assessment of participants as well as part of the experimental tests for this study.

The ANU School of Psychology has provided me with a stimulating, understanding, and caring environment which has made my research most enjoyable even during difficult times. The School also provided me with valuable resources without which some aspects of this research would not have been conducted. Ricardo Gallardo and Mary Dalton should be particularly thanked for their assistance in developing the software and hardware used in this research.
Publications arising from the thesis

Experiments 3, 5, 6, and 7 have been published in the following articles:

Abstract

The performance of most tasks requires some interaction between the cerebral hemispheres. Despite this fact, research has focused on demonstrating that each hemisphere is specialised for certain processes and has largely neglected this interaction.

Recent research has recognised the need for a better understanding of how resources are shared between the cerebral hemispheres. While these studies have shed light on factors external to the participants being tested, such as the type of task and stimuli used, presentation times, and different measurement methods, they have neglected variables that differ between individuals. The studies reported here focused on factors internal to the participants. They include sex, age, handedness, functional lateralisation, practice, attention, and hemispheric activation, which vary between individuals or within individuals across time, and have been shown to influence the structure and morphology of the corpus callosum which is the main pathway for hemispheric interactions.

This thesis examines the relationship of these variables to the efficiency of hemispheric interactions.

A literature review of the factors affecting hemispheric interactions and interhemispheric transfer is presented in Chapter 1, and methodological issues relating to the measurement of these variables in Chapter 2. Based upon this research, two tasks, the Poffenberger paradigm and a letter-matching task, were selected to assess interhemispheric transfer time and hemispheric interactions, respectively, and to investigate the relationship between these two variables.

Chapters 3 and 4 present the findings of the principal study, using a large sample of participants and regression analysis, which demonstrate that both faster interhemispheric transfer and more extreme left-handedness are associated with greater efficiency of hemispheric interaction. Surprisingly, other factors which were expected to influence hemispheric interactions (age, sex, functional lateralisation, and attention) did not have a significant effect on this variable.

A strong practice effect found in the task used in Chapters 3 and 4 is analysed in Chapter 5. Contrary to previous findings, this practice effect seems not to be due to a shift from sequential, rule-based processing to memory-retrieval, but rather, is a more general practice effect consistent with progressively more efficient use of neural resources.

Chapter 6 shows that individuals with dyslexia not only demonstrate an abnormally fast interhemispheric transfer, but also attentional deficits, due probably to decreased efficiency in hemispheric interactions. Because some clinical populations, such as individuals with dyslexia, have been shown to have hemispheric interaction deficits, the study of such clinical samples can provide valuable information about the relationship between hemispheric interactions and other individual variables.

In Chapter 7 it is demonstrated that both latent and induced patterns of lateralised hemispheric activation affect hemispheric interactions. This suggests that
assessment of hemispheric activation is important not only in this field, but probably also more generally in neuropsychological research. These findings highlight the need for a simple, inexpensive measure of hemispheric activation that can be applied routinely in cognitive experiments.

Chapter 8 presents a new technique to measure lateralised brain activation in typical psychological experiments using functional tympanic membrane thermometry (fTMT). This measure relies on the measurement of ear membrane temperature as an index of hemispheric activation. The technique is simple and inexpensive, and is shown to be suitable for the assessment of hemispheric activation patterns during typical experiments.

In conclusion, individual characteristics such as the efficiency of interhemispheric transfer, handedness, functional lateralisation, attention, and hemispheric activation are important factors to consider when researching hemispheric interactions in both normal and clinical populations. Furthermore, future research will benefit from this newly developed measure, fTMT, by allowing the systematic study of the effects of hemispheric activation in brain processes.
TABLE OF CONTENTS

Declaration...iii

Acknowledgements...v

Publications arising from the thesis ..vii

Abstract...ix

Table of contents ..xi

Table of Figures..xv

Chapter 1 ..1

1.1 General Introduction ..1

1.1.1 Historical Perspective..1

1.3 Hemispheric Interaction and Behaviour..6

1.3.1 Meta-Control ...6

1.3.2 Resource Sharing across Hemispheres: the Bilateral Distribution Advantage (BDA)........7

1.3.3 Hemispheric Interaction, Functional Lateralisation, and Handedness ..11

1.3.4 Hemispheric Interaction and Sex...12

1.3.5 Hemispheric Interaction with Regard to Age..13

1.3.6 Hemispheric Interaction and Attention...15

1.3.7 Hemispheric Interaction and Practice..17

1.4 Interhemispheric Transfer and the Corpus Callosum..17

1.4.1 Corpus Callosum: Structure and Function..18

1.4.2 Corpus Callosum Development...22

1.4.3 The Corpus Callosum, Lateralisation and Handedness...23

1.4.4 Sexual Dimorphism of the Corpus Callosum...23

1.4.5 Corpus Callosum and Ageing..24

1.4.6 Behavioural Implications of Callosal Differences...25

1.5 Summary..28

Chapter 2 ...31

2.1 Methodology ..31

2.2 The Measurement of Interhemispheric Transfer Time..31

2.2.1 Validity of the CUD as a Measure of IHTT..33

2.2.2 Variability of the CUD...35

2.2.3 Pathways Underlying Interhemispheric Transfer in the Poffenberger Paradigm....................35

2.3 The Measurement of Hemispheric Interactions..37

2.3.1 Number of Stimuli...38

2.3.2 Stimulus Eccentricities..39

2.3.3 Type of Match ..39

2.3.4 Shape of the Display...40

2.3.5 Experiment 1 ..41

2.3.6 Motor response...47
2.3.7 Experiment 2 ... 47
2.3.8 Pathways Underlying Hemispheric Interactions in Letter-Matching Tasks ... 51
2.4 Experimental Design and Timing Accuracy 52
2.5 Summary ... 53

Chapter 3 .. 55
3.1 Callosal Transfer and Hemispheric Interaction 55
3.2 Experiment 3 .. 56
3.2.1 Method .. 57
3.2.2 Results .. 59
3.2.3 Discussion ... 62

Chapter 4 .. 67
4.1 Interhemispheric Transfer, Hemispheric Interactions, and Left-Handedness ... 67
4.2 Experiment 4 .. 69
4.2.1 Method .. 69
4.2.2 Results .. 70
4.2.3 Discussion ... 75

Chapter 5 .. 79
5.1 Hemispheric Interaction and Practice Effects 79
5.2 Supplementary Analysis of Experiment 3 80
5.2.1 Method .. 80
5.2.2 Results .. 80
5.2.3 Discussion ... 85

Chapter 6 .. 91
6.1 Interhemispheric Transfer, Hemispheric Interactions, and Dyslexia ... 91
6.2 Experiment 5 .. 93
6.2.1 Method .. 93
6.2.2 Results .. 94
6.2.3 Discussion ... 97

Chapter 7 .. 91
7.1 Hemispheric Activation and Interaction 101
7.2 Experiment 6 ... 102
7.2.1 Method .. 103
7.2.2 Results .. 104
7.2.3 Discussion ... 109

Chapter 8 .. 113
8.1 Functional Tympanic Membrane Thermometry (fTMT): a new measure of hemispheric activation .. 113
8.2 Experiment 7 ... 114
8.2.1 Method .. 114
8.2.2 Results .. 116
8.2.3 Discussion ... 117
8.3 Experiment 8 ... 117
8.3.1 Method .. 118
8.3.2 Results .. 120
8.3.3 Discussion ... 125
TABLE OF FIGURES

Chapter 1: General Introduction

Figure 1-1. Electrical pile discovered by Volta in 1802 and Luigi Rolando (1773-1831), pioneer in electrical brain stimulation ..2
Figure 1-2. Wilder Penfield (1891-1976), neurosurgeon renowned for his study of the cortical organization of the human brain and Penfield’s human motor homunculus ...3
Figure 1-3. Roger Sperry (1913-1994) whose research in split-brain patients was recognised by a Nobel prize in 1981 (left). A split-brain patient is able to perceive letters in both the left and right hemispheres but is unable to voice the letter perceived by the right hemisphere (right) ..4
Figure 1-4. Cross-section of the human corpus callosum indicating the representation of different cortical regions and regional differences in fibre composition20

Chapter 2: Methodology

Figure 2-1. Visual field by age group interaction for the accuracy measure of the display-shape study ...44
Figure 2-2. Visual field by sex interaction for the accuracy measure of the display-shape study ...44
Figure 2-3. Visual field by handedness group interaction for the accuracy measure of the response type (go/no go vs. forced-choice) study ..45

Chapter 3: Callosal Transfer and Hemispheric Interaction

Figure 3-1. Exemplars of the different visual field conditions of the letter-matching task used to assess hemispheric interactions ..58
Figure 3-2. Hand by visual field interaction in the Poffenberger task ...59
Figure 3-3. RT and accuracy performance in the letter-matching task ..61

Chapter 4: Interhemispheric Transfer, Hemispheric Interactions, and Left-Handedness

Figure 4-1. RT hand by visual field interaction in the letter-matching task71
Figure 4-2. Accuracy bilateral distribution advantage as a function of handedness ...73
Figure 4-3. RT bilateral distribution advantage as a function of handedness75

Chapter 5: Hemispheric Interaction and Practice Effects

Figure 5-1. Improvement in letter-matching detection over 4 sessions for different visual-field conditions ...81
Figure 5-2. Change in bilateral distribution advantage over 4 sessions82
Figure 5-3. Change in response time as a function of the number of presentations of unique combinations of letters (in identical positions) for each session. Error bars represent the standard error of the mean.

Figure 5-4. Response time as a function of presentation block for first presentations of unique stimuli in the letter-matching task.

Figure 5-5. Response times to first, second, and third presentations of unique stimuli in block 6 and block 12 of the letter-matching task.

Figure 5-6. Response times as a function of presentation block for first presentations of unique stimuli for the within-visual-field condition and for the across-visual-field condition of the letter-matching task.

Chapter 7: Hemispheric Activation and Interaction

Figure 7-1. “Unfolded” cube stimulus with arrows pointing to touching sides and rhyming word stimuli.

Figure 7-2. Accuracy in the letter-matching task as a function of side of activation.

Figure 7-3. Accuracy in the letter-matching task for participants with more typical lateralisation or with less typical lateralisation in each visual field condition and for the two types of hemispheric activation conditions.

Figure 7-4. Accuracy in the letter-matching task for participants with more typical lateralisation or with less typical lateralisation in each visual field and for the two types of hemispheric activation conditions.

Chapter 8: Functional Tympanic Membrane Thermometry

Figure 8-1. Ear probe inserted in participant’s ear (left). Helmet and flexible arms holding the ear probes (right).

Figure 8-2. Average temperature deviations from the baseline of the left and right ear during the visuo-spatial task and the verbal task.

Figure 8-3. Temperature deviation from the baseline for the left-hemisphere activation, and for the right-hemisphere activation conditions for the shape letter-matching task over time.

Figure 8-4. Temperature deviation from the baseline for the left-hemisphere activation, and for the right-hemisphere activation conditions for the name letter-matching task over time.

Appendix A: Audit of the Timing Accuracy of the Experimental Apparatus

Figure A1. Oscilloscope measurements of the mouse data packet and parallel port signal indicating the end of the trial.

Figure A2. Oscilloscope measurement of the solenoid light detection probe signal during a 15 frame stimulus presentation and the electronic signal transferred from the signal conditioning box to the data acquisition box.

Figure A3. Oscilloscope measurement of the solenoid light detection probe’s signal during the last frame of the stimulus presentation.