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1. Adaptation to motion

Bialek et al. (1991) put the theme of the present part on encoding dynamic infor-
mation very succinctly: “Traditional approaches to neural coding characterize the
encoding of known stimuli in average neural responses. Organisms face nearly the
opposite task-extracting information about an unknown time-dependent stimulus
from short segments of a spike train”. Warzecha and Egelhaaf review their elegant
experiments dealing with these difficult and topical issues. This article is intended
to complement their efforts by reviewing literature and ideas that their work has
made important again with a particular focus on adaptive effects.

Neural systems adapt, changing their behaviour according to the recent
stimulus history. In the human it is clear that adaptive gain control mechanisms
are at work. For example, human observers show a Weber fraction of about 5 to
7% for discriminating image velocity and this is maintained even in the face of
quite large random fluctuations of image contrast and temporal frequency (McKee
et al. 1986). That is to say in this process gain is regulated to maintain a just
noticeable difference of about 5% of the mean velocity. Cats display a similar
characteristic of velocity discrimination, albeit with larger Weber fractions
(Vandenbussche et al. 1986).

The HI1 neurone of flies shows large adaptive changes in the gain, and tem-
poral resolution for the processing of image oscillations. The rate at which new
adapted states are obtained is primarily determined by the temporal frequency
content of moving images rather than the contrast of the images or their velocity
(Maddess and Laughlin 1985), although at low speeds velocity may be more
important (de Ruyter van Steveninick et al. 1986). Similar results are found for the
human adaptation to image motion (Lorenceau 1987), in cat striate visual cortex
(Maddess et al. 1988; Maddess and Vidyasagar 1992; Giaschi et al. 1993), in
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optomotor neurones of wallabies (Ibbotson et al. 1998) and butterflies (Maddess et
al. 1991). Insect optomotor responses also show adaptive gain control effects
(Kirschfeld 1989) as do human ocular following responses (Maddess and Ibbotson
1992; Tbbotson and Maddess 1994).

The lack of dependence shown by most of the motion adapting mechanisms
mentioned above upon variables such as luminance contrast and response rate is
understandable: changes of motion sensitivity should not be based upon informa-
tion that cannot be reliably attributed to image motion. Low-level biological
motion computation is believed to be based on cross-correlation between samples
along a baseline (Reichardt 1961; Emerson et al. 1992), a computation that does
not yield velocity per se. Thus, the best such a system could do perhaps is to base
its adaptation upon signals within an ecologically interesting range of flicker fre-
quencies induced by image motion.

2. Real-time assessment of neural responses

Warzecha and Egelhaaf (this volume) introduce several interesting ways of
assessing real-time neuronal responses. Extracting the spike variance as a function
of mean spike count within a narrow window (their Fig. 4) indicates that the spike
process that is modulated by image motion is non-Poisson. Previous authors have
reported H1 responses to less natural stimuli to be not independent of stimulus
history (Mastebroek 1974; Gestri et al. 1980). Warzecha and Egelhaaf use an ideal
observer model looking at spike rates to assess the neurone’s ability to recognize a
step in retinal slip and the time needed to detect motion, and to determine the
number of stimulus states that can be discriminated by the neuronal response (their
Fig. 8). Bruckstein et al. (1983) have shown that decoding the motion signal from
the response was greatly improved when prior knowledge about the dynamics of
changes in the modulated spike process is included. Evolution could have given
the fly optomotor system that is post-synaptic to H1 such knowledge, so that the
estimated performance of H1 and H2 as assessed by the ideal observer models of
Warzecha and Egelhaaf may represent a lower bound on actual performance.

A third innovation is what Warzecha and Egelhaaf term the Stimulus
Induced Response (SIR). Their SIR is the mean neuronal response obtained to
many repeated presentations of the same velocity modulation. The authors sub-
tract the SIR from the responses to each trial and describe the resultant residuals as
the noise in the system (their Fig. 6). The mean response, however, may not in all
cases be a good model of the neuronal response. For example the spike generation
process itself may be changing as a function of response rate (see also Mastebroek
1974; Gestri et al. 1980). Even in a stationary system the median response for each
time bin might be a better indicator of central tendency than the mean, if the dis-
tribution of spike intervals is non-Gaussian.
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Figure 1 illustrates another example in which the mean SIR model would not
be suitable. Figure l1a shows model responses of an elementary motion detector
based on a conventional correlation mechanism (Reichardt 1961). The model has a
DC component in one of its two inputs, giving a mixture of response components
at the fundamental and second harmonic of the input drift frequency, that have
been found experimentally (Ibbotson et al. 1991). Independent noise is added to
both inputs. Horizontal slices across figure 1a represent responses to single pres-
entations. A simple exponential adaptive process is included where the time con-
stant of a low pass filter located after the motion computation stage decreases
linearly over time. Thus, the response to a velocity impulse declines rapidly at first
and then more slowly on subsequent trials. The change in filter characteristics also
results in phase shifts shown as a tilt away from the vertical in the stripes of figure
la. It is worth noting that the only critical feature for the present demonstration is
the adaptation: the noise, the DC response component and the phase shifts are only
introduced to make the model responses more realistic.

Analysis of Residuals

Response Time —

Fig. 1 Analysis of the residuals from a mean SIR model. a Model responses of an H1 neurone to
a moving periodic grating pattern. The moving grating stimulus is repeated many times (top to
bottom) and the responses to each repeated stimulus are shown as horizontal image rows.
Brighter regions indicate higher spike (response) rates. Responses slowly decline with stimulus
repetition due to adaptation. The abscissa, ordinate and grey scale are the same in b, showing the
mean response of the SIR model (see text), and ¢ showing considerable response components
rather than just noise in the residuals from the SIR model. d (resp) The first 5 response rows
from the top of (a); (mean) the mean across trials in (a) used to create (b); (resid) the first 5 rows
of the residuals of (c). The three sets of waveforms are displaced vertically by arbitrary amounts
to aid viewing but are otherwise at the same scale.
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Figure 1b is the mean of the responses across trials of figure 1a, reproduced
repeatedly (vertically) to illustrate what an unchanging SIR would be like. Figure
1c shows the residuals obtained by subtracting figure 1b from figure 1a. Clearly
the residuals in this case are not merely noise but contain a considerable amount of
the response.

Such an effect may be modest in the data of Warzecha and Egelhaaf given
that they interposed rest periods within each trial of their repeated 2.5 to 5 s
motion stimuli but the actual adaptation rate will depend on the particular stimu-
1us. Clearly, these types of issues will need to be addressed for continuous stimu-
lation: long term changes in gain having been described even in the earliest
recordings from motion sensitive insect neurones (Collett and Blest 1966). It has
been demonstrated formally for the H1 neurone that consideration of epochs
around 8 s (McCann 1974) is required to characterize adaptive changes.

This adaptation to image motion that changes not only the gain but also the
temporal frequency tuning of neurones is indicated by responses to velocity
impulses in H1 of flies (Zaagman et al. 1983; Maddess and Laughlin 1985; de
Ruyter van Steveninick et al. 1986; Borst and Egelhaaf 1987) and those of visual
interneurones in other insects (Maddess et al. 1991). When highly adapted the
cells not only encode progressively higher image oscillation frequencies, but may
also shift to encoding acceleration rather than velocity (Maddess and Laughlin
1985; Maddess et al. 1991; see also Shi and Horridge 1991).

The prospect of adapted optomotor neurones encoding something akin to
acceleration is also foreshadowed by the comment of Warzecha and Egelhaaf that
H1 responses contain higher temporal derivatives of the input (see also Egelhaaf
and Reichardt 1987; Egelhaaf and Borst 1989). Nonlinear control systems gener-
ally have to deal with higher temporal derivatives (e.g. Dunstan and McRuer
1961). This may seem at odds with the data of Warzecha and Egelhaaf indicating
that fly responses do not contain reliable information at temporal frequencies
much above 30 Hz because, as optomotor neurones appear to shift towards
encoding acceleration with adaptation, the high frequency components of the
response are relatively larger (Maddess et al. 1991). For example, velocity impulse
responses from some adapted butterfly optomotor neurones appear to encode
information about image oscillation frequencies in the range 10 to 100 Hz. When
unadapted the same neurones have most of their response power below 10 Hz.
Overall, it would be surprising if flying insects did not make use of the 200 Hz
bandwidth of their photoreceptors (Howard et al. 1984) to control their flight.
Warzecha and Egelhaaf use conventional Fourier analyses where the average
frequency content over the whole signal epoch is computed. A wavelet-like
approach (e.g. Gabor 1946) might reveal significant short periods of high fre-
quency response fluctuations. Such approaches permit short bursts of high fre-
quency activity to be quantified where a normal Fourier approach, that looks at
average frequency content, generates misleading results,

At the same time it should be recalled that Warzecha and Egelhaaf found
that above 30 Hz the signal power was less than that of the noise under their test
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conditions. We did not examine the signal to noise ratio measured in highly
adapted conditions where average responses appear to encode acceleration
(Maddess and Laughlin 1985; Maddess et al. 1991). As stated at the outset ani-
mals do not get the chance to examine their average response to hundreds of pres-
entations when navigating in the visual environment. Thus, our data should not be
taken as refuting the findings of Warzecha and Egelhaaf, and more experiments
are needed to determine the exact effects of adaptation and its significance to real-
time behaviour.

So far our experiments on frequency response dynamics have been crude in
that they have only used lengthy adaptation times but there is precedent for very
rapid changes in tuning of visual systems. For example the contrast gain control
system of vertebrate retinal ganglion cells regulates these cells’ frequency
response on a time scale of 15 ms (Victor 1988) giving them their transient char-
acter. This “contrast” gain control system is strongly spatial and temporal fre-
quency dependent. Figures 1b,d of Warzecha and Egelhaaf indicate that H1’s
response is sometimes a nonlinear, and sometimes quite transient, function of the
stimulus. Thus, a similar contrast gain control system may precede motion proc-
essing by HI, at times amplifying higher frequencies. Such rapid changes in fre-
quency response may explain apparent discrepancies between the results of Harris
et al. (1999), who examined impulse responses of motion sensitive neurones after
full adaptation, and experiments with continuous velocity fluctuations. The pres-
ence of a gain control preceding motion computation as in Y-cells would lead to
the prediction that the impulse responses would be biphasic, which is actually
observed (Harris et al. 1999), and would show contrast dependent transients,
which is observed in wallaby motion sensitive neurones (Ibbotson personal com-
munication). For continuous stimuli the velocity impulse response would partially
reflect the frequency response of the presynaptic units with rapid contrast adapta-
tion.

3. Low image speeds and afterimage effects

So far we have considered the impact of adaptation and non-stationarity of the
spike generating process upon potential methods for assessing real-time perform-
ance of optomotor neurones. Another effect may be relevant when average image
slip speeds are low: the so-called afterimage-like effect (Maddess 1985, 1986).
Perhaps the best demonstration of this phenomenon is obtained by briefly placing
a low contrast stationary bar in the receptive field of an H1 neurone. If the recep-
tive field is probed a second or more later with a thin moving line, an imprint in
the sensitivity profile of the H1 cell receptive field is observed where the bar was.
This is clearly not a light adaptation effect given that a dark adapting bar can
produce a depression of sensitivity to a moving bright line, and that there is mark-
edly different processing of ON and OFF responses (Maddess 1986). When a
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stationary grating is presented for 200 ms or more, a very deep modulation of the
response can be observed once the grating begins to move. Afterimage effects for
gratings moving at up to 100 “/s have also been demonstrated with gratings that
had a spatial frequency of 0.1 c/° that are about optimal for flies (Maddess 1985).
Hence the underlying mechanism is low pass with a corner frequency around 2 Hz
(Fig. 2).

4. Summary and suggestions

Figure 2 summarizes the temporal frequency characteristics of a number of
dynamic processes that might be considered in any real-time analysis of motion
processing in the fly. The overall unadapted temporal frequency tuning curve for
H1 responses to drifting grating stimuli (Fig. 2, “Tune”, Maddess and Laughlin
1985) is presented to provide a reference. The relative modulation depth of sensi-
tivity changes produced by the afterimage-like effect in response to slowly drifting
gratings is also provided (Fig. 2, “After”, Maddess 1985) together with the time
constant describing the rate of the previously described gain change with adapta-
tion to motion (Fig. 2, “Adapt”, Maddess and Laughlin 1985). I have also plotted
(Fig. 2, “Struct”) a parameter describing the loss of structural invariance that was
introduced by Mastebroek (1974). This parameter provides a measure of the mag-
nitude of the temporal frequency dependent change in the spike process, i.e. a loss
of stationarity, in response to flashed stimuli. Similar effects have been shown for
drifting gratings (Gestri et al. 1980). Clearly a number of effects determine the
dynamics of the H1 response and these operate within the band of frequencies of
interest to the cell. Thus, as illustrated by figure 1, slowly changing adaptation can
cause contamination the residuals from mean SIR models with signal rather than
noise, which can affect estimates of noise structure and amplitude. Lack of sta-
tionarity can lead to differences in the suitability of measures of central-tendency,
such as the mean, for different parts of a response.

Experiments by McCann (1974) where fly visual neurones were character-
ized by estimating Wiener kernels (e.g. Marmarelis and McCann 1973; James
1992) may suggest a way to characterize adapting real time responses. The Wiener
kernel expansion provides improvements over the velocity impulse response
method (Maddess and Laughlin 1985; Maddess et al. 1991) because in the Wiener
expansion linear, quadratic, cubic and higher order response interactions are each
quantified by separate kemnels. The full nonlinear SIR (or the linear and nonlinear
parts separately) can be easily computed from the kernels, complete with long
term adaptive dynamics if desired. For example, McCann (1974) showed that the
first and second order kernels computed with a memory length of 8 s formally
captured the long term adaptive character of H1. Another benefit is that the stimuli
used can be less repetitive and are thus more like natural visual stimuli. Interaction
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kernels, quantifying linear and nonlinear interactions between cells or between
parts of a cell’s receptive field, can also be computed.

Dynamic Processes of H1
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Fig. 2 Frequency dependent effects altering the response gain and dynamics of the fly H1
neurone. The following descriptions are labelled as in the figure legend. Tune: the overall
unadapted tuning curve of H1 in response to image motion in the preferred direction, units
(impulses per second) as for the left ordinate. After: the frequency tuning of the afterimage-like
effect for afterimages induced by gratings moving in the preferred direction at the indicated
contrast frequencies. The left ordinate units divided by 6 indicate the modulation depth in the H1
receptive field produced by the afterimage of a 0.1 c/° grating. The change in receptive field
sensitivity is determined by moving a thin bar through the receptive field after presenting the
moving grating, the thin bar producing a response of about 60 i.p.s. Adaprt: the time constant of
the change in gain of H1 neurones in response to motion of gratings in the preferred direction as
a function of contrast frequency. The time constant in seconds has 30 times the units on the right
ordinate. Struct: the “loss of structural invariance” described by Mastebroek (1974). This
parameter indicates the magnitude of the change in the stochastic spike generation mechanism
modulated by the neuronal response as a function of flicker frequency.

The Wiener method is not without problems, however, and methods model-
ling the changes in the velocity impulse response parametrically might be more
parsimonious. Wiener models are non-parametric models where each point in
every kernel is treated as a coefficient to be fitted. Thus, as the number and the
dimension of the kernels is increased, there is an explosion in the number of coef-
ficients to be estimated and so too in the number of data points required, since at
least one datum per coefficient is needed. Parametric models can have many fewer
coefficients. For example, Dubois (1993) demonstrated that the velocity impulse
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responses of butterfly optomotor neurones can be modelled by a third-order filter
(i.e. having 3 coefficients) and that the dynamics can in turn be modelled by
changes to just one stage (coefficient) of the filter. Interestingly, the changes to the
third order filter provide the system with response dynamics characterized by a
constant damping ratio.

In summary, better characterization of stimulus dependent changes in the
spike generation process, and tests that assume prior knowledge (e.g. Bruckstein et
al. 1983) in interpreting or decoding the spike signals should be considered in
future.
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