National Centre for Epidemiology & Population Health

How much Gastroenteritis in Australia is due to food? Estimating the Incidence of Foodborne Gastroenteritis in Australia

Dr Gillian Hall
National Centre for Epidemiology and Population Health, The Australian National University, ACT

And the OzFoodNet Working Group
Martyn Kirk, Food Safety & Surveillance Section, Department of Health and Ageing
Rosie Ashbolt, Public and Environmental Health, Department of Health and Human Services, TAS
Joy Gregory and Karin Lalor, Communicable Disease Section, Department of Human Services, VIC
Geoff Millard, ACT Government Analytical Laboratory, Health Protection Service, ACT
Dr Jane Raupach, Communicable Disease Control Branch, Department of Human Services, SA
Mohinder Sarna, Communicable Disease Control Directorate, Department of Health, WA
Russell Stafford, Foodborne Disease Epidemiologist, Queensland Health, QLD

NCEPH Working Paper Number 51
September 2004

Address for correspondence:
National Centre for Epidemiology & Population Health
The Australian National University
Canberra ACT 0200 Australia

T: +61 2 6125 2378
F: +61 2 6125 0740
E: Gillian.Hall@anu.edu.au
How much Gastroenteritis in Australia is due to food? Estimating the Incidence of Foodborne Gastroenteritis in Australia.

Gillian Hall
And the OzFoodNet Working Group

T: +61 2 6125 2378
F: +61 2 6125 0740
E: Gillian.Hall@anu.edu.au

ISBN 0-9579769-3-3
ISSN 1033-1557

© National Centre for Epidemiology & Population Health

Published by the National Centre for Epidemiology & Population Health
The Australian National University
Canberra ACT 0200 Australia
CONTENTS

LIST OF TABLES ... 4
LIST OF FIGURES ... 4
PREFACE: OzFOODNet ... 5
EXECUTIVE SUMMARY .. 6
ESTIMATING THE LEVEL OF FOODBORNE GASTROENTERITIS .. 8

1. Background ... 8
2. Estimation Methods .. 10
 2.1 Assessing Uncertainty .. 10
 2.2 Literature review and Delphi process .. 10
 2.3 Data sources .. 11
 2.4 Estimating the total amount of infectious gastroenteritis in Australia ... 13
 2.5 Estimating the plausible number of cases of infectious gastroenteritis due to each 'known' pathogen 14
 2.6 Estimating the proportion of cases of gastroenteritis due to foodborne transmission 20
 2.7 Estimating the plausible number of cases due to foodborne transmission in Australia 21

3. Estimation results ... 21
4. Discussion of the estimation study ... 25

APPENDICES .. 30

 Appendix 1. Under-reporting factors ... 31
 Appendix 2. Delphi process ... 32

REFERENCES .. 33
LIST OF TABLES

Table 1 Source of data p14
Table 2 Factors used to adjust primary raw data p15
Table 3 Specific pathogens that cause gastroenteritis and are reported to the surveillance systems p16
Table 4 Under-reporting factors for Moderate, Bloody and Serious illness p17
Table 5 Outbreak data from Victoria 1998-2002 p18
Table 6 Data on pathogens from the WQTS longitudinal study in Melbourne, 1998 and laboratory data. p20
Table 7 Gastroenteritis in Australia in a ‘typical’ year ~2000: Total number of cases and number of foodborne cases among known pathogens p23
Table 8 Number and incidence of all cases of gastroenteritis and of foodborne Gastroenteritis in Australia in a ‘typical’ year ~2000 p24

LIST OF FIGURES

Figure 1 Notified cases represent only a proportion of the burden of foodborne infectious disease p12
Figure 2 Simulation of ‘Plausible distribution of number of cases of gastroenteritis in Australia around the year 2000’ Simulated N=1000 p13
Figure 3 Plausible distribution of number of cases of foodborne gastroenteritis in Australia in a ‘typical’ year ~2000. Simulated N=1000. p24
PREFACE: OZFOODNET

The overall brief of OzFoodNet is to enhance the surveillance and understanding of foodborne illness in Australia. OzFoodNet is a collaboration of foodborne disease epidemiologists largely based in Commonwealth and State/Territory health departments, and many other players who make up the wider OzFoodNet working group. The collaboration started in November 2000 and is funded by the Commonwealth Dept of Health and Ageing.

This paper is the second from two linked OzFoodNet/NCEPH projects, namely the *Community Gastroenteritis Survey* and *Estimating the Level of Foodborne Gastroenteritis in Australia*. The study team comprises the following people:

Dr Gillian Hall, National Centre for Epidemiology and Population Health, The Australian National University

Martyn Kirk, Food Safety & Surveillance Section, Department of Health and Ageing

Rosie Ashbolt, Public and Environmental Health, Department of Health and Human Services, TAS

Joy Gregory and Karin Lalor, Communicable Disease Section, Department of Human Services, VIC

Geoff Millard, ACT Government Analytical Laboratory, Health Protection Service, ACT

Dr Jane Raupach, Communicable Disease Control Branch, Department of Human Services, SA

Mohinder Sarna, Communicable Disease Control Directorate, Department of Health, WA

Russell Stafford, Foodborne Disease Epidemiologist, Queensland Health, QLD

Leanne Unicomb, Hunter Population Health, NSW

Special acknowledgement is also due to Professor Niels Becker, Ass/Professor Scott Cameron, Dr Craig Dalton, Dr Edmond Hsu, Dr Karin Leder, Dr Paul Mead, and Dr Mark Veitch for considerable input with various aspects of the project. Thanks are also given to many other people who were involved at different times.
EXECUTIVE SUMMARY

Estimating the Incidence of Foodborne Gastroenteritis in Australia

- Of the 17 million episodes of gastroenteritis identified in a year in the gastroenteritis survey, it is estimated that about 32%, or 5.4 (Credible interval: 4.0-6.9) million cases are due to foodborne transmission. This equates to an incidence of 0.29 episodes per person per year; on average, every Australian can expect to experience an episode of foodborne illness every three to four years.

- Other similar studies to estimate the amount of foodborne gastroenteritis have been done recently in US [1] and UK [2]. The Australian estimate is remarkably similar to that reported for the United States of America, but higher than in the United Kingdom. In America, 36% of all gastroenteritis was estimated to be due to foodborne transmission and the incidence estimate is 0.28 cases per person per year.

- Almost four and a half million cases (Credible interval: 3.5-5.3) of gastroenteritis were estimated to be due to ‘known’ pathogens. This leaves over 12 million of the total 17 million cases estimated from the gastroenteritis survey unaccounted for. Of the known causes, about 1.6 million (Credible interval: 1.59-1.68) are due to bacterial infections, 2.3 million (Credible interval: 1.74-2.82) due to viral infections and 0.7 million (Credible interval: 0.44-0.97) due to parasites. About 58% of bacterial, 21% of viral and 14% of parasitic gastroenteritis is estimated as foodborne, with an overall total estimate of 32% (Credible interval: 24-40%) of all gastroenteritis due to foodborne transmission. The pathogens responsible for the greatest number of episodes of foodborne gastroenteritis are Caliciviruses, *E. coli*, *Campylobacter* and *Salmonella*.

Comment on Methods

- Using the methodology described in this report for estimating the number of foodborne cases, the estimate of the incidence of all gastroenteritis is crucial for the final estimate of foodborne disease.

- The case definition used in this study includes both severe and milder gastroenteritis [10]

- The definition of gastroenteritis should be the same when comparing across countries and times, as even an apparently small change in the definition can cause a large impact on the incidence. Standardization of methods is crucial when studies are being compared over time or place for comparison of results to be meaningful.

- The simulation method used to account for uncertainty in this Australian estimation has an interpretation akin to Bayesian inference and is simple to use. It is important to emphasise that there is a range of plausible values rather than one single point value, and this technique is a means of interpreting the available data in a reasonable way. Results are given with a ‘credible interval’ which can be interpreted in a way similar to a 95% confidence interval.

- In this Australian calculation overseas acquired infections were accounted for and not included.

Future estimations

- Monitoring of foodborne disease is necessary to evaluate improvements or otherwise in the control of foodborne disease. It would be worthwhile repeating the current study in 5-10 years time to identify any trends in Australia.

- Improved data are needed in order to improve estimations. In particular, these include:
 - Data to allow better estimates of the under-reporting fraction. This includes not only further analysis of available data, but collection of new data from laboratories
 - Further longitudinal studies with pathogen identification

Enhanced outbreak data collection
• In order to compare estimations, a standardised methodology is needed. In particular, the major issues are:
 - standardised definition of gastroenteritis
 - standardised data collection method for the gastroenteritis survey
 - standardised method of estimating the foodborne component

ESTIMATING THE LEVEL OF FOODBORNE GASTROENTERITIS

1. **Background**

The focus on ‘foodborne’ gastroenteritis comes from interest in the safety of the food chain. Ongoing monitoring of the level of foodborne gastroenteritis assists in evaluating intervention and control strategies aimed at food safety at a national level. The purpose of estimating the burden of foodborne gastroenteritis in this study is to provide a baseline against which trends can be measured over time.

The routes of transmission of infectious gastroenteritis vary across the known pathogens, with many having more than one route. Transmission can be from person-to-person, from the environment, by food, or by water. Some pathogens that cause infectious gastroenteritis are thought to be totally foodborne, such as* Bacillus cereus*, while others have only a small component of illness caused by the foodborne route, such as Rotavirus.

To estimate the burden of foodborne gastroenteritis two key estimates are required; firstly, the total amount of gastroenteritis in the country and secondly, the proportion of gastroenteritis that is foodborne. The product of these two estimates gives the total number of cases of foodborne gastroenteritis. This is the basic methodology that was used in the US recently [1] and which is applied to Australia in this report. As there is an inherent degree of uncertainty in the data used in these calculations, a new method using simulation has been employed to take account of this.

Total gastroenteritis

The total amount of infectious gastroenteritis in Australia in one year is known from the gastroenteritis survey described in the working paper titled “Results from the National Gastroenteritis Survey 2001-2002”.
Foodborne gastroenteritis

To estimate the proportion of infectious gastroenteritis that is foodborne, gastroenteritis identified as caused by ‘known’ pathogens is studied. The definition of ‘foodborne’ includes any infectious gastroenteritis caused by ingestion of food, including food contaminated early in the food chain, during processing, just before eating by food handlers, washing in contaminated water or by contact with unhygienic surfaces.

There is a large array of ‘known’ pathogens that cause infectious gastroenteritis, and each one has different characteristics with different laboratory tests needed to identify the various types of micro-organism. There are also many cases of gastroenteritis with ‘unknown’ pathogens where a pathogen is not identified at all but that are clinically assessed as ‘presumed infectious’. Among the group of ‘unknown’ but presumed infectious cause, are cases where a known pathogen is present but is not identified, either because the stool was not tested in a laboratory, or it was not tested for the pathogen specifically, or the test resulted in a false negative. Also in this group are cases where the pathogen is as yet totally unknown. There are numerous pathogens that are now considered commonplace that were unknown only a few decades ago, including *Salmonella, Campylobacter*, and viruses. It is likely that there are many more that are major causes of morbidity, some of which will become apparent with time and investigation.

With the assumption that the proportion of gastroenteritis due to foodborne transmission among the ‘unknown’ causes is the same as for ‘known’ causes, the estimate of the proportion foodborne among all ‘known’ pathogens is used as proxy for estimating the proportion of all infectious gastroenteritis that is foodborne. For each known pathogen in Australia, the total number of cases of gastroenteritis caused by that micro-organism, and the number due to foodborne transmission, has been estimated as described in the following sections.

The overall objective of this study was to estimate the number of cases of foodborne gastroenteritis in a ‘typical year around 2000’, and to take account of uncertainty in the estimate.
2. Estimation Methods

2.1 Assessing Uncertainty
While statistical uncertainty can be measured by concepts like the standard error and confidence intervals, much of the uncertainty in the data needed for these calculations is not statistical and is inherent in the data itself, largely due to paucity of information. Simulation is used to take account of this, using the concept of a ‘plausible distribution of values for Australia around the year 2000’, instead of a point estimate. Such interval estimates are credibility intervals, with an interpretation akin to credibility intervals in Bayesian inferences.

Wherever uncertainty exists for a factor used in the calculations, a simulated distribution of ‘plausible values’ is used to model the uncertainty in that factor. In the absence of definitive statistically sound data, the decisions about the plausible distribution of values are based on ‘a reasonable interpretation’ of real data. This means that the parameters of the ‘plausible distribution’ are not necessarily based on a statistically derived value, but on interpretation of the best available data. The properties of the different distributions are used to simulate a 1000 ‘plausible’ values within a range, with the ‘most likely’ values having the greatest frequency. Where the properties of the distribution resulted in a few simulated values becoming negative at the lowest extreme, these were ignored so that all simulated ranges were from at least zero as the minimum value.

The width of the ‘credible interval’ of the final estimate is hence determined by the precision with which each of the component probabilities are estimated.

2.2 Literature review and Delphi process
For each known pathogen, a study of the literature was undertaken. The objective of the review for each pathogen was primarily to identify suitable data sources for estimating the number of cases in Australia, and to identify sources for estimating the proportion of transmission that is by food. Data on transmission modes was particularly scant, and the literature review was supplemented by opinion from a Delphi process. The ‘Delphi process’ was used to fill gaps in data and to ensure that there was agreement that the necessary assumptions and decisions were generally acceptable to foodborne disease experts. This
included a survey and consultation with ten Australian foodborne disease epidemiologists and infectious diseases clinicians experienced in foodborne disease, about the proportion of gastroenteritis for each pathogen that is foodborne. Some details are given in Appendix 2.

2.3 Data sources

OzFoodNet National Gastroenteritis Survey 2001/2

The total amount of gastroenteritis comes from the gastroenteritis survey described in the working paper titled “Results from the National Gastroenteritis Survey 2001-2002”.

Notifiable Surveillance System 1996-2000

There is mandatory reporting of illnesses due to certain pathogens to the state and territory surveillance systems by doctors and, in all bar one state, by laboratories. However, it is inevitable that the surveillance will not capture all cases in the community, as many cases will not even present to a doctor, and of those that do, many will not have a stool test taken. There has been little work done in Australia on under-reporting to the surveillance systems, and the under-reporting fractions for different pathogens are largely unknown in this country. The state systems have some differences in reporting practices and the fraction of all community cases that are actually reported probably varies by locality. Ultimately, data from the state systems is reported to the National Notifiable Diseases Surveillance System (NNDSS).
Figure 1 shows the multiple steps in the process of notifying a case of foodborne disease.

Figure 1 Notified cases represent only a proportion of the burden of foodborne infectious disease

The under-reporting fraction is the product of the proportions at each step of the pyramid:

\[
\text{Under Reporting Fraction} = P_{\text{Doctor}} \times P_{\text{Stool}} \times P_{\text{Lab Pos}} \times P_{\text{Reported}}.
\]

An ‘over-reporting fraction’ is theoretically possible if extra cases are erroneously entered on the surveillance database. This is unlikely to be a consistent occurrence. The inverse of the under-reporting fraction is the factor used to calculate the number of cases in the community from the surveillance data.

Victorian Outbreak Database 1998-2001

For some pathogens the best available data is from the database of outbreak investigations in the state of Victoria. During investigation the number of cases was recorded and this is used as the raw starting data to estimate the number of cases of gastroenteritis in the community. Adjustments are made to account for under-reporting.

Water Quality and Treatment Survey in Melbourne 1997-99

A randomised controlled trial of the effect of filtering drinking water was carried out in Melbourne in 1997-1999 [3]. Six hundred families with children were followed for 15 months, and all cases of gastroenteritis were reported. The filtering had no effect on diarrhoea incidence. About one third of gastroenteritis cases submitted a stool sample for testing. For each pathogen, the proportion of positive stool tests form the basis for estimating the number of cases nationally, by applying the proportion to the total number of cases of gastroenteritis nationally in one year.
Laboratories in Queensland and South Australia.

The proportion of stools submitted for testing that are positive for a particular pathogen is used to calculate the estimate of all gastroenteritis due to that pathogen.

2.4 Estimating the total amount of infectious gastroenteritis in Australia

The results of the national survey of gastroenteritis that ran from September 2001 to August 2002 (see the working paper titled “Results from the National Gastroenteritis Survey 2001-2002”) were weighted by state, age, sex, and household size. There were an estimated 17.2 million (95% CI, 14.5 - 19.9) cases of gastroenteritis across Australia in 2001/2. These data were used to simulate a ‘plausible distribution of the number of cases of gastroenteritis in Australia around the year 2000’. Each simulated value (N=1000) represents a possible estimate. The decision about the parameters describing the ‘plausible distribution’ were informed by the standard error from the gastroenteritis survey giving a ‘credible interval’ of 14.5 to 19.9 million. The most common values are around 17.2 million while values closer to the extremes of the ‘credible interval’ are expected to be less likely, as shown in Figure 2.

Figure 2 Simulation of ‘Plausible distribution of number of cases of gastroenteritis in Australia around the year 2000’ Simulated N=1,000

![Histogram showing simulated values for gastroenteritis cases]
2.5 Estimating the plausible number of cases of infectious gastroenteritis due to each ‘known’ pathogen

The objective was to estimate the number of cases due to each of all known pathogens in Australia in a ‘typical year’ around 2000 and then to estimate the number of these that were foodborne. A total of 26 ‘known’ pathogens were considered. In order to estimate the total number of cases of infectious gastroenteritis caused by these pathogens each year in Australia, data were drawn from sources as listed in the following Table 1. Some pathogens were not considered to cause foodborne-gastroenteritis in Australia, leaving 17 pathogens for further exploration.

Table 1 Sources of data

<table>
<thead>
<tr>
<th>Surveillance data</th>
<th>Outbreak data</th>
<th>Longitudinal data</th>
<th>Laboratory data</th>
<th>Not foodborne-GE cases in Australia</th>
</tr>
</thead>
<tbody>
<tr>
<td>National or State</td>
<td>National or State</td>
<td>Longitudinal data</td>
<td>Laboratory data</td>
<td>Not foodborne-GE cases in Australia</td>
</tr>
<tr>
<td>Campylobacter</td>
<td>Bacillus cereus</td>
<td>E. coli other</td>
<td>Aeromonas</td>
<td></td>
</tr>
<tr>
<td>Salmonella</td>
<td>Clostridium perfringens</td>
<td>Caliciviruses</td>
<td>Vibrio parahemolyticus</td>
<td>Not GE Brucella spp</td>
</tr>
<tr>
<td>Shigella</td>
<td>Staph aureus</td>
<td>Rotavirus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shiga Toxin Like E.coli</td>
<td>Vibrio vulnificus</td>
<td>Astro/Adeno viruses</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cryptosporidium parvum</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cyclospora cayetanensis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Giardia lamblia</td>
<td>Only acquired OS Salmonella Typhi</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No cases in Aust Trichinella spiralis Botulism</td>
</tr>
</tbody>
</table>

Adjustments were made for population coverage, proportion acquired overseas, and under-reporting to surveillance. The various factors used to calculate the plausible number of cases in Australia in a typical year varied according to the type of primary data source as shown in Table 2.
Table 2 Factors used to adjust primary raw data

<table>
<thead>
<tr>
<th>Primary data source</th>
<th>Factors used to adjust primary raw data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Surveillance data</td>
<td></td>
</tr>
<tr>
<td>National or State</td>
<td>Proportion of population covered</td>
</tr>
<tr>
<td></td>
<td>Proportion acquired overseas</td>
</tr>
<tr>
<td></td>
<td>Proportion reported to surveillance from community</td>
</tr>
<tr>
<td>2. Outbreak data</td>
<td></td>
</tr>
<tr>
<td>Victoria</td>
<td>Proportion of population covered</td>
</tr>
<tr>
<td></td>
<td>Under-reporting of outbreaks compared with surveillance</td>
</tr>
<tr>
<td></td>
<td>Proportion reported to surveillance from community</td>
</tr>
<tr>
<td>3. Longitudinal survey data</td>
<td></td>
</tr>
<tr>
<td>Melbourne</td>
<td>Proportion stools with pathogen</td>
</tr>
<tr>
<td></td>
<td>Gastroenteritis total in Australia</td>
</tr>
<tr>
<td>4. Laboratory data SA and Qld</td>
<td>Proportion stools with pathogen</td>
</tr>
<tr>
<td></td>
<td>Gastroenteritis total in Australia</td>
</tr>
</tbody>
</table>

(i) Surveillance data

The specific pathogens that cause gastroenteritis and are reported to the NNDSS are listed in Table 3, together with the number of notifications from 1996-2000. The pathogens include *Campylobacter, Salmonella, Shigella, Shiga Toxin Like E.coli* and *Yersinia*. The South Australian Surveillance System has enhanced surveillance of bloody *E. Coli* so data for this pathogen was from SA only. New South Wales does not notify *Campylobacter*.
Table 3 Specific pathogens that cause gastroenteritis and are reported to the surveillance systems

<table>
<thead>
<tr>
<th>Pathogen/syndrome</th>
<th>Campylobacter</th>
<th>Salmonella</th>
<th>Shigella</th>
<th>Shiga Toxin Like E.coli</th>
<th>Yersinia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comments</td>
<td>66% of population reports</td>
<td>Not found in Hellard study</td>
<td>South Australia screens all bloody stools (8% population)</td>
<td>Dropped after 2001 as declined. Not found in Hellard study</td>
<td></td>
</tr>
<tr>
<td>Overseas acquired</td>
<td>4%</td>
<td>8%</td>
<td>40%</td>
<td>21%</td>
<td>2%</td>
</tr>
<tr>
<td>Data used in estimation</td>
<td>All states except NSW</td>
<td>All states & territories</td>
<td>All states & territories</td>
<td>SA only</td>
<td>All states & territories</td>
</tr>
<tr>
<td>Illness severity</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Bloody stools</td>
<td>Bloody stools</td>
<td>Moderate</td>
</tr>
<tr>
<td>N reports/yr</td>
<td>12176</td>
<td>679</td>
<td>5791</td>
<td>797</td>
<td>-</td>
</tr>
<tr>
<td>1996</td>
<td>11829</td>
<td>7712</td>
<td>6953</td>
<td>18</td>
<td>212</td>
</tr>
<tr>
<td>1997</td>
<td>13445</td>
<td>554</td>
<td>712</td>
<td>41</td>
<td>202</td>
</tr>
<tr>
<td>1998</td>
<td>12803</td>
<td>554</td>
<td>7436</td>
<td>487</td>
<td>171</td>
</tr>
<tr>
<td>1999</td>
<td>13528</td>
<td>51</td>
<td>6111</td>
<td>41</td>
<td>128</td>
</tr>
<tr>
<td>2000</td>
<td>-</td>
<td>18</td>
<td>6111</td>
<td>74</td>
<td>171</td>
</tr>
</tbody>
</table>

Adjustments for population and overseas acquired cases

Data on some pathogens were from a proportion of the Australian population only and so adjustments were made accordingly. Estimates of the proportion of overseas-acquired infections came from the Victorian and South Australian notification systems. Data were adjusted by removing the proportion of cases that were acquired overseas.

Adjustment for under-reporting of illnesses from the community to the notification database

Given the paucity of pathogen specific data about under-reporting in Australia, the illnesses due to pathogens notified to the Australian Surveillance System were classified by severity, and under-reporting factors for Moderate illness, Bloody diarrhoea and Serious illness were estimated for Australia, similar to the strategy used in the US [1]. These factors were estimated using information from Victorian outbreak data 1998-2002, results from the Melbourne Water Quality Gastroenteritis Study [3] [4] and the OzFoodNet/NCEPH National
Gastroenteritis Survey 2002 [10]. A plausible distribution for the notifiable fraction is used rather than a single estimate, to allow for the uncertainty in the estimates.

The under-reporting factors for Moderate, Bloody and Serious illness are shown in Table 4.

<table>
<thead>
<tr>
<th>Severity of illness</th>
<th>Information used for estimation</th>
<th>Estimate and Credible interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderate illness</td>
<td>Australian Surveillance data</td>
<td>1 in 15 (5 to 25)</td>
</tr>
<tr>
<td></td>
<td>Melbourne WQTS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Victorian outbreak data for Salmonella</td>
<td></td>
</tr>
<tr>
<td></td>
<td>National Gastroenteritis Survey</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hunter Salmonella case-control study</td>
<td></td>
</tr>
<tr>
<td>Bloody diarrhoea</td>
<td>National Gastroenteritis Survey</td>
<td>1 in 9 (1 to 17)</td>
</tr>
<tr>
<td>Serious illness</td>
<td>Mead 1999</td>
<td>1 in 2 (1 to 3)</td>
</tr>
</tbody>
</table>

Sources:
1 Hellard, 2002 [3]
2 Joy Gregory, DHS Victoria, 2002[5]
3 Kefle Yohannes, MAppEpid Bound Volume, 2002[6]
4 Mead 1999[1]

In the calculations for determining the under-reporting factor, the sensitivity of laboratory tests was estimated to be about 90% (based on estimates for Salmonella and Shigella testing in Australia, D. Lightfoot personal communication) and laboratory reporting to surveillance was estimated at 100%. More details of the information used to estimate the under-reporting factors are given in Appendix 1.

The simulation distributions based on the raw data for each pathogen in the Surveillance Systems was multiplied by the simulated distributions of the relevant under-reporting factor to produce estimates and credibility intervals of the total number of cases of gastroenteritis in one year in Australia due to each of these pathogens.
(ii) Outbreak data

A number of pathogens are identified in outbreaks but are not reported to surveillance as individual cases. Outbreak data maintained by the Victorian department of health represented the best source of data for three such pathogens, namely Bacillus cereus, Clostridium perfringens and Staphylococcus aureus. This data is shown in Table 5.

Table 5 Outbreak data from Victoria 1998-2002

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Bacillus cereus</th>
<th>Clostridium perfringens</th>
<th>Staphylococcus aureus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ncases/yr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>9</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td>1999</td>
<td>0</td>
<td>72</td>
<td>33</td>
</tr>
<tr>
<td>2000</td>
<td>37</td>
<td>73</td>
<td>40</td>
</tr>
<tr>
<td>2001</td>
<td>0</td>
<td>61</td>
<td>0</td>
</tr>
<tr>
<td>2002 (6mths only)</td>
<td>0</td>
<td>28</td>
<td>7</td>
</tr>
</tbody>
</table>

Source Data supplied by J.Gregory, DHS Victoria.

The raw data of the number of cases identified during outbreaks between 1998 and 2002 was used to simulate a plausible distribution of the number identified in a ‘typical year’ by adjusting for population, under-reporting of outbreaks to surveillance and under-reporting of community cases to surveillance.

Adjustments for population

The data is from the population of Victoria which is 25% of the total Australian population so the population factor was four.

Adjustment for under-reporting of outbreaks compared with surveillance

The ‘outbreak factor’ describes the relationship between the number of cases identified in outbreaks, and the number of cases that would have been identified by surveillance had the micro-organism been a notifiable illness. Since the pathogens of interest are not actually reported to surveillance, the outbreak factor was based on data for Salmonella which was reported to both surveillance and the outbreak database in Victoria 1998-2002. The plausible distribution of the outbreak factor was deduced from a comparison of the number of notifications of Salmonella and the number of cases of Salmonella identified in outbreaks.
On average, there were 14 times as many notifications in Victoria as cases identified in outbreaks, with variability each year. The outbreak factor was simulated as a normal distribution with mean 14, and a credible interval of 6-22.

Adjustment for under-reporting of illnesses from the community to the notification database

The illness severity for the three pathogens is classed as ‘moderate’, so the under-reporting factor for moderate illness was used.

(iii) Survey and laboratory data

The number of cases of illness due to E. coli (other than enterohaemorrhagic E. coli), Caliciviruses, Rotavirus, Astro/Adeno viruses, Cryptosporidium parvum, Cyclospora cayetanensis, Giardia Lamblia, and Toxoplasmosis gondii were derived from the longitudinal study in Melbourne conducted in 1997-9 [3].

The number of cases of illness due to Aeromonas was derived from laboratory data in South Australia in 1994-5 [7] and Queensland laboratory data 2001 was used for Vibrio paraheamolyticus (data from Russell Stafford personal communication).

The proportion of stools positive for these pathogens is shown in Table 6.
Table 6 Data on pathogens from the WQTS longitudinal study in Melbourne 1998, and laboratory data.

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>N stools tested And N positives</th>
<th>Proportion (Hellard 2001)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli other</td>
<td>53/791</td>
<td>0.067 0.051-0.081</td>
</tr>
<tr>
<td>Caliciviruses</td>
<td>75/703</td>
<td>0.107 0.085-0.132</td>
</tr>
<tr>
<td>Rotavirus</td>
<td>11/791</td>
<td>0.014 0.007-0.025</td>
</tr>
<tr>
<td>Astro/Adeno viruses</td>
<td>9/791</td>
<td>0.011 0.005-0.021</td>
</tr>
<tr>
<td>Cryptosporidium parvum</td>
<td>13/791</td>
<td>0.016 0.009-0.028</td>
</tr>
<tr>
<td>Cyclospora cayetanensis</td>
<td>Nil</td>
<td>-</td>
</tr>
<tr>
<td>Giardia lamblia</td>
<td>20/791</td>
<td>0.025 0.016-0.039</td>
</tr>
<tr>
<td>Toxoplasmosis gondii</td>
<td>Nil</td>
<td>-</td>
</tr>
</tbody>
</table>

Laboratory data

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>N positives</th>
<th>Proportion 95%CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aeromonas</td>
<td>248/107600</td>
<td>0.002 0.0020-0.0026</td>
</tr>
<tr>
<td>Vibrio parahaemolyticus</td>
<td>2/30880</td>
<td>0.00006 0.00001-0.00002</td>
</tr>
</tbody>
</table>

The estimate of the number of cases of gastroenteritis in a year in Australia due to each of these pathogens was based on a simulated binomial distribution for the proportion of stools that were found in the survey, multiplied by the simulated distribution of the total amount of gastroenteritis in Australia (see Figure 2 previously).

2.6 Estimating the proportion of cases of gastroenteritis due to foodborne transmission

For each ‘known’ pathogen, the proportion of cases of illness that are foodborne was estimated from Victorian outbreak data, a literature review, and from the Delphi process.

Outbreak data that gave a proportion of cases that were assessed as of foodborne origin was available for Bacillus cereus (100% foodborne), Campylobacter (88%), Clostridium perfringens (100%), Salmonella (97%), Shigella (0%), Calicivirus (24%), Rotavirus (0%), Cryptosporidium parvum (0%) and Giardia lamblia (0%). This data was used in the Delphi process to arrive at a consensus of a plausible range for the proportion foodborne for each pathogen.
The plausible range of the number of foodborne cases for each ‘known’ pathogen was obtained by multiplying the number (simulated plausible range) of all cases of gastroenteritis by the proportion (simulated plausible range) foodborne.

2.7 Estimating the plausible number of cases due to foodborne transmission in Australia

For each of the ‘known’ pathogens, the total number of cases of gastroenteritis, and the total number of foodborne cases, were obtained by adding the values across all pathogens. The overall proportion of foodborne cases among ‘known’ pathogens was then calculated by dividing the number (simulated plausible range) of foodborne cases by the number (simulated plausible range) of total cases.

By assuming that the proportion of gastroenteritis that is foodborne is the same for both the ‘known’ and the ‘unknown’ cases of gastroenteritis, the total number of cases of foodborne gastroenteritis was then obtained by multiplying the total number (simulated plausible range) of cases of gastroenteritis in the country by the overall proportion (simulated plausible range) foodborne. The credible interval for the final estimate is hence determined by the simulated plausible ranges used in all the components of the arithmetic functions.

3. Estimation results

For each pathogen, Table 7 shows
- the total number of cases of gastroenteritis,
- the proportion of cases that were estimated to be foodborne,
- and the number of cases due to foodborne transmission

About four and a half million cases (Credible interval: 3.7-5.5) of gastroenteritis were estimated to be due to the ‘known’ pathogens. This leaves over 12 million of the total 17 million cases estimated from the gastroenteritis survey unaccounted for. Of the known causes, about 1.6 million (Credible interval: 1.17-2.10) are due to bacterial infections, 2.3 million (Credible interval: 1.74-2.82) are due to viral infections and 0.7 million (Credible interval: 0.44-0.97) are due to parasites. About 58% of bacterial, 21% of viral and 14% of
parasitic gastroenteritis is estimated as foodborne, with an overall total estimate of 32% (Credible interval: 24-40%) of all gastroenteritis due to foodborne transmission. The pathogens responsible for the greatest number of episodes of foodborne gastroenteritis are Caliciviruses, *E. coli*, *Campylobacter* and *Salmonella*.

The total number of cases of foodborne gastroenteritis was then obtained by multiplying the plausible distribution of the total number of cases of gastroenteritis (17.2 million; Credible interval: 14.5 to 19.9), by the proportion that is estimated to be foodborne (0.32; Credible interval: 0.24-0.40). The resultant number of cases of foodborne gastroenteritis has mean 5.4 million with a credibility interval of 4.0-6.9 million cases of foodborne gastroenteritis per year in Australia. These results are summarised in Figure 3 and Table 8.

Among the cases of foodborne gastroenteritis, 1.5 million (Credible interval: 1.0-1.9) are due to ‘known’ pathogens and the remainder are due to ‘unknown’ pathogens. The incidence of foodborne gastroenteritis is estimated at 0.29 (Credible interval: 0.23-0.35) cases per person per year.
Table 7 Gastroenteritis in Australia in a ‘typical’ year~2000: Total number of cases and number of foodborne cases among known pathogens

<table>
<thead>
<tr>
<th>PATHOGEN</th>
<th>Total Number of cases of GE in Australia</th>
<th>Proportion of cases of GE that are foodborne</th>
<th>Number of cases of GE that are foodborne</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Median</td>
<td>Credible interval</td>
<td>Median</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>BACTERIA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aeromonas</td>
<td>39444</td>
<td>31702 47186</td>
<td>0.25</td>
</tr>
<tr>
<td>Bacillus cereus</td>
<td>6900</td>
<td>0 15842</td>
<td>1</td>
</tr>
<tr>
<td>Campylobacter</td>
<td>276507</td>
<td>89772 463242</td>
<td>0.75</td>
</tr>
<tr>
<td>Clostridium perfringens</td>
<td>43085</td>
<td>437 85733</td>
<td>1</td>
</tr>
<tr>
<td>E. coli (SLTEC bloody)</td>
<td>3041</td>
<td>0 6451</td>
<td>0.65</td>
</tr>
<tr>
<td>E. coli (other diarrhea)</td>
<td>115168</td>
<td>796527 150674</td>
<td>0.5</td>
</tr>
<tr>
<td>Salmonella</td>
<td>91974</td>
<td>26355 157593</td>
<td>0.87</td>
</tr>
<tr>
<td>Shigella</td>
<td>3216</td>
<td>0 6928</td>
<td>0.1</td>
</tr>
<tr>
<td>Staphylococcus aureus food poisoning</td>
<td>14189</td>
<td>0 29773</td>
<td>1</td>
</tr>
<tr>
<td>Vibrio parahaemolyticus</td>
<td>1075</td>
<td>0 2614</td>
<td>0.71</td>
</tr>
<tr>
<td>Yersinia</td>
<td>2166</td>
<td>0 4491</td>
<td>0.75</td>
</tr>
<tr>
<td>Total bacteria</td>
<td>1639181</td>
<td>1175020 2103342</td>
<td>0.58</td>
</tr>
<tr>
<td>VIRUSES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caliciviruses</td>
<td>1831586</td>
<td>1361086 2302086</td>
<td>0.25</td>
</tr>
<tr>
<td>Rotavirus</td>
<td>241153</td>
<td>98202 384104</td>
<td>0.02</td>
</tr>
<tr>
<td>Astro /adenovirus</td>
<td>189710</td>
<td>63394 316026</td>
<td>0.1</td>
</tr>
<tr>
<td>Total viruses</td>
<td>2276130</td>
<td>1735060 2817200</td>
<td>0.21</td>
</tr>
<tr>
<td>PARASITES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cryptosporidium parvum</td>
<td>270978</td>
<td>254763 287193</td>
<td>0.1</td>
</tr>
<tr>
<td>Giardia lamblia</td>
<td>429989</td>
<td>232396 627582</td>
<td>0.05</td>
</tr>
<tr>
<td>Total parasites</td>
<td>703996</td>
<td>442081 965911</td>
<td>0.14</td>
</tr>
<tr>
<td>TOTAL</td>
<td>4639364</td>
<td>37486101 5513367</td>
<td>0.32</td>
</tr>
</tbody>
</table>
Figure 3 Plausible distribution of number of cases of foodborne gastroenteritis in Australia in a typical year ~ 2000. Simulated N=1000.

Table 8 Number and incidence of all cases of gastroenteritis\(^1\) and of foodborne gastroenteritis in Australia in a ‘typical’ year~2000

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>Credible Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Known pathogen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total cases among ‘known’ pathogens</td>
<td>4.6</td>
<td>3.7 -5.5 million</td>
</tr>
<tr>
<td>Foodborne cases among ‘known’ pathogens</td>
<td>1.5</td>
<td>1.0-1.9 million</td>
</tr>
<tr>
<td>Unknown pathogen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total cases with ‘unknown’ pathogens</td>
<td>12.6</td>
<td>10.6-14.8 million</td>
</tr>
<tr>
<td>Foodborne cases with ‘unknown’ pathogen</td>
<td>4.0</td>
<td>3.0-5.2 million</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total cases gastroenteritis</td>
<td>17.2</td>
<td>14.5-19.9 million</td>
</tr>
<tr>
<td>Foodborne cases gastroenteritis</td>
<td>5.4</td>
<td>4.0-6.9 million</td>
</tr>
<tr>
<td>Incidence: Cases per person per year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All gastroenteritis</td>
<td>0.92</td>
<td>0.77-1.06</td>
</tr>
<tr>
<td>Foodborne gastroenteritis</td>
<td>0.29</td>
<td>0.23-0.35</td>
</tr>
</tbody>
</table>

\(^1\) Gastroenteritis: non-infectious excluded, stools>= 3 OR vomit>= 2 in 24 hrs, if resp symptoms then stools>= 4 OR vomit>= 3
4. Discussion of the estimation study

Summary of main findings
Of the 17 million episodes of gastroenteritis identified in a year in the gastroenteritis survey, it is estimated that about 32%, or 5.4 (4.0-6.9) million cases, are due to foodborne transmission. This equates to an incidence of 0.29 episodes per person per year which means that on average, every Australian can expect to experience an episode of foodborne illness every three to four years.

Using the methodology described in this report for estimating the number of foodborne cases, the estimate of the incidence of all gastroenteritis is crucial for final estimate of foodborne disease. The definition of gastroenteritis in this study was 3 loose stools or 2 vomits in 24 hours, with adjustment for those with respiratory symptoms to account for diarrhoea and vomiting secondary to a primary respiratory system. The decision to use this definition was a collective outcome of the Delphi process, involving ten foodborne disease experts in Australia. This definition includes “mild to moderate illness” as well as more “serious illness”. It should be borne in mind that if the focus had been on more severe gastroenteritis, such as illness that interferes with daily activities, or duration of 3 days or more, or some other criteria, then we would have considerably less cases of gastroenteritis due to foodborne disease.

Across countries, different case definitions of gastroenteritis and different methodologies of collecting data make comparisons of the estimate of gastroenteritis very problematic.

Other similar studies of the amount of foodborne gastroenteritis have been done recently in US [1] and UK [2]. The Australian estimate is remarkably similar to that reported for the United States of America, but higher than in the United Kingdom. In America, 36% of all gastroenteritis was estimated to be due to foodborne transmission and the incidence estimate is 0.28 cases per person per year.

In the UK in 1995, the total amount of gastroenteritis in the community was much lower than Australia or US at only 0.2 cases per person per year. [8]. Some possible methodological reasons that may have influenced the estimate of a lower incidence of total gastroenteritis
from the UK survey compared with the US and Australia were discussed at the end of the working paper titled “Results from the National Gastroenteritis Survey 2001-2002”.

The proportion of gastroenteritis estimated to be due to foodborne transmission was also lower in the UK. In 1995, there were an estimated 2.37 million infections due to foodborne gastroenteritis which is only 26% of the total estimate of all gastroenteritis of nearly 10.5 million [2]. One of the key influential estimates among ‘known’ pathogens is for Calicivirus; this was assessed as contributing a very high number of gastroenteritis cases in all three countries. Only 10% of NLV (Caliciviruses) gastroenteritis was ascribed to foodborne transmission in the UK study, compared with 40% in the US, and 20% in Australia[1, 2]. Both the UK and Australian estimates were based on outbreak data. In the UK, the low total estimate of community gastroenteritis (0.2 cases per person per year) combined with a low proportion thought to be foodborne (26%) leads to a very low estimate of foodborne gastroenteritis of 0.04 cases per person per year in the UK in 1995.

The UK study also compared estimates between 1992 and 2000, using adjusted annual General Practitioner surveillance data for the total estimate of gastroenteritis, and adjusted laboratory data for the individual pathogens. The number of laboratory reports for all infectious gastroenteritis was about 123,000 in 1992 and 117,000 in 2000, suggesting a stable situation. However, the estimate for foodborne gastroenteritis decreased from 2.9 to 1.3 million cases.

The change in the estimates for foodborne gastroenteritis suggest that the number of people reported as visiting GPs and/or the proportion of gastroenteritis that is foodborne must have changed over the ten years, although these numbers are not given. A change in GP visits for gastroenteritis seems unexpected given the stable number of reports from laboratories.

In the UK calculations it is not clear whether the same ‘proportion due to food’ was applied at different times (that is, using the 1995 estimate of 26% for 1992 and 2000) or whether different proportions were estimated at the different time points. If the estimates were based on data at each time point, the influence of changed reporting must be borne in mind. The number of infections reported to laboratories due to ‘unknown’, *Yersinia* and *Clostridium perfringens* and *Salmonella* declined over the period 1992 to 2000, but the number due to Norwalk Like Virus increased. The decline for the bacterial pathogens is presumably real, but
the increase in NLV is likely to be related to increased and improved laboratory testing. As
the UK authors themselves point out, the potential influence of Norwalk Like Virus on the
calculations is considerable, and so the possible influence of changed laboratory practices on
the proportion foodborne needs to be carefully assessed.

The need for Improved and Standardised Methodology

The importance of a standardised methodology when comparing results of the amount of
foodborne gastroenteritis across countries or times cannot be overemphasised. Not only the
study design is likely to be influential, but also the definition of gastroenteritis. In this
Australian study, the definition took some account of those with concurrent respiratory
symptoms but most studies estimating the amount of gastroenteritis have not considered this.
The US study [1] adjusted for those with respiratory illness, by excluding a proportion of
cases that were thought likely to have symptoms secondary to respiratory infections rather
than a primary gastro-intestinal infection. The UK definition of gastroenteritis was different
from the Australian definition in several ways. While there are differing arguments that can
be raised about the ‘best definition’ of gastroenteritis, the main concern is to have a
consistent, reasonable definition for comparative purposes.

The studies in the US and UK did not account for uncertainty, which is inherent in the type of
calculations used for estimation of the foodborne component. The simulation method used in
this Australian estimation to account for uncertainty has an interpretation akin to Bayesian
inference and is simple to use. It is important to emphasise that there is a range of plausible
values rather than one single point value, and this technique is a means for interpreting the
available data in a reasonable way. In this Australian calculation overseas-acquired infections
were accounted for and not included.

Strengths and limitations of the data

In this study, as in others overseas, each of the data sources had strengths and weaknesses and
data gaps remain. Notification data and outbreak data are likely to be subject to reporting
variation across jurisdictions, over times and by illness, which can affect the estimate of the
amount of foodborne gastroenteritis. The National Gastroenteritis Survey provided useful
information for estimating the level of under-reporting to surveillance, and other data were
also used to gain insight into this, including data from outbreak investigations. Outbreak data
represents only those episodes of illness that are ultimately recognised as linked, and as such
is possibly more likely to be ‘serious’ illness and biased towards a smaller under-reporting factor. Both the under-reporting factor and outbreak factor used in the calculations were largely based on reports of Salmonella, but the factors are likely to be illness specific. Further work to improve the estimates of under-reporting would be very beneficial to improve the calculations, and in addition, to provide more insight into the surveillance systems in Australia.

The Melbourne longitudinal study represents the best data of its kind in Australia [3]. However, it should be remembered that it was based on families with children in one locality, and bias of the pathogen estimates is possible due to the age distribution of the sample, clustering by person and household, and especially the constrained locality. About one third (795 of 2669) of gastroenteritis cases actually submitted a stool, so this may represent more severe cases, or cases early in the study when enthusiasm was higher, which could lead to differences due to seasonality of illness caused by different pathogens. While a wide range of pathogens were sought, there were still some ‘known’ pathogens that were not tested for. Only 17% of the stools examined had a pathogen identified.

Two important issues regarding the National Gastroenteritis Survey that would benefit from further enquiry are recall bias and the influence of the case definition.

Future estimations

Monitoring of foodborne disease is necessary to evaluate improvements or otherwise in the control of foodborne disease. The study in the UK [2] suggests that the level of foodborne gastroenteritis has declined in the last decade and it would be worthwhile repeating the current study in 5-10 years time to identify any trends in Australia.
Improved data are needed in order to improve estimations. In particular, these include:

- Data to allow better estimates of the under-reporting fraction. This includes not only further analysis of available data, but collection of new data from laboratories
- Further longitudinal studies with pathogen identification
- Enhanced outbreak data collection

In order to compare estimations, a standardised methodology is needed. In particular, the major issues are:

- standardised definition of gastroenteritis
- standardised data collection method for the gastroenteritis survey
- standardised method of estimating the foodborne component
Appendix 1 Under-reporting factors

Factors for moderate, bloody and serious illness

The factor for moderate illness was derived from several data sources. Data on outbreaks in Victoria due to Salmonella, indicated that about one case of Salmonellosis in six was reported to surveillance. The Melbourne longitudinal study [3] provided data that suggested under-reporting factors for Salmonella of 23, and Campylobacter of 21, when extrapolated rates were compared with the number of notifications in Australia. The gastroenteritis survey results regarding duration of illness being an important predictor for visiting a doctor and having a stool sample taken was combined with information about the duration of Salmonella infections from a case-control study in the Hunter region of NSW. This indicated an under-reporting factor of 11 for Salmonella [6].

Given this information, a distribution of the Moderate Illness Reporting Factor was simulated to be a normal distribution, with one reported illness in every 15 illnesses in the community, with a credible interval of 5 to 25.

The factor for bloody diarrhoea was derived from the national gastroenteritis survey. Twelve cases had bloody diarrhoea and of these, three saw a doctor and two of these had a stool taken. Although the number of cases is extremely small, similar results were found in the US gastroenteritis surveys, which lends some validity to the results [9]. The fraction of bloody stools that had a stool test was 0.17(95%CI: 0.07,0.32), or conversely, for 3-14 cases of bloody stool in the community, one had a stool test. Given this information, and allowing for further uncertainty about the sensitivity of the laboratory test and reporting to surveillance, a plausible distribution of the Bloody Diarrhoea Reporting Factor was simulated to be a normal distribution, with one reported illness in every 9 illnesses in the community, with a credible interval of 1 to 17.

The under-reporting factor for serious disease was taken as one in every two illnesses in the community, the same as the US estimate [1], with credible interval 1 to 3.
Appendix 2. Delphi process

Estimation of the proportion of gastroenteritis that is foodborne

As there are little data on how much of the illnesses are due to foodborne transmission, foodborne disease experts were asked for their opinion to supplement opinion in the literature (most of which are not based in strong evidence).

Ten foodborne disease experts (epidemiologists and clinicians) were sent a survey to estimate the proportion of illnesses of 26 pathogens that cause gastroenteritis that were due to foodborne transmission. The results were collated and other information was provided from the literature and outbreak data. A meeting was held to discuss the results and the 26 pathogens were either considered not relevant to foodborne gastroenteritis in Australia, or a plausible distribution of the proportion foodborne was agreed upon.

<table>
<thead>
<tr>
<th>Experts asked about pathogens causing foodborne gastroenteritis, 2002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr Craig Dalton, Director, Hunter Public Health Unit</td>
</tr>
<tr>
<td>Martyn Kirk, Co-ordinating Epidemiologist, OzFoodNet</td>
</tr>
<tr>
<td>Scott Crerar, ANZFA</td>
</tr>
<tr>
<td>Geoff Millard, OzFoodNet Epidemiologist, ACT</td>
</tr>
<tr>
<td>Dr Mark Veitch, Public Health Physician, MDU, Victoria</td>
</tr>
<tr>
<td>Dr Rod Givney, Epidemiologist Communicable Diseases, SA</td>
</tr>
<tr>
<td>Russell Stafford, OzFoodNet Epidemiologist, Queensland</td>
</tr>
<tr>
<td>Leanne Unicomb, OzFoodNet Epidemiologist, Hunter Region NSW</td>
</tr>
<tr>
<td>Joy Gregory, OzFoodNet Epidemiologist, Victoria</td>
</tr>
<tr>
<td>Dr Scott Cameron, Public Health Physician, SA</td>
</tr>
</tbody>
</table>
REFERENCES

NCEPH Working Papers

Working Paper No. 1
Aboriginal Mortality in Central Australia, 1975-77 to 1985-86: a comparative analysis of levels and trends
Khalidi NA
April 1989
ISBN 0 7315 0801 7
Published in A Gray (Ed) A Matter of Life and Death: Contemporary Aboriginal Mortality, Aboriginal Studies Press 1990
ISBN 0 5575 291 X

Working Paper No. 2
Discovering Determinants of Australian Aboriginal Population Health
Gray A
May 1989
ISBN 0 7315 0629 4

Working Paper No. 3
Predicting the course of Al DS in Australia and evaluating the effect of AZT: a first report
Solomon PJ, Doust JA, Wilson SR
June 1989
ISBN 0 7315 0660 X

Working Paper No. 4
The Mediscover Proposals
Deeble J
August 1989
ISBN 0 7315 0737 1

Working Paper No. 5
Intergovernmental relations and health care
Butler JRG
August 1989
Published as 'Health Care' in B Galligan, O Hughes, C Walsh (Eds), Intergovernmental Relations and Public Policy, Allen and Unwin, Sydney, 1991, pp 163-89
ISBN 0 7315 0740 1

Working Paper No. 6
Aboriginal Fertility: trends and prospects
Gray A
October 1989
Published in Journal of the Australian Population Association, vol 7, 1 May 1990, pp 57-77
ISBN 0 7315 0809 2

Working Paper No. 7
The public versus the policies: the ethical basis of Australian retirement income policy
McCallum J
November 1989
ISBN 0 7315 0798 3

Working Paper No. 8
Aboriginal Fertility in Central Australia
Khalidi NA
November 1989
ISBN 0 7315 0825 4

Working Paper No. 9
The Dynamics of Community Involvement in Old Age: the syndrome of underuse
McCallum J
November 1989
ISBN 0 7315 0826

Working Paper No. 10
Noncontributory Pensions for Developing Countries: rehabilitating an old idea
McCallum J
December 1989
ISBN 0 7315 0838 6

Working Paper No. 11
Predicting the Prevalence of a Disease in a Cohort at Risk
Mackisack M, Dobson AJ, Heathcote CR
December 1989
ISBN 0 7315 0839 4

Working Paper No. 12
The Changing Pattern of Coronary Heart Disease in Australia
Heathcote CR, Keogh C, O'Neill TJ
December 1989
ISBN 0 7315 0839 4

Working Paper No. 13
Analysis of Components of Demographic Change
Gray A
March 1990
Published in Mathematical Population Studies 1991, 3:1, pp 21-38
ISBN 0 7315 0877 7

Working Paper No. 14
Day Surgery: cost reducing technological change?
Butler JRG
April 1990
ISBN 0 7315 0889 0

Working Paper No. 15
Disease and the Destruction of Indigenous Populations
Kunitz SJ
April 1990
ISBN 0 7315 0889 0
Working Paper No. 16
Projections of Acquired Immune Deficiency Syndrome in Australia using Data to the end of September 1989
Solomon PJ, Fazekas de St Groth C, Wilson SR
April 1990
ISBN 0 7315 0889 0

Working Paper No. 17
Fluoridation of Public Water Supplies and Public Health: an old controversy revisited
Hill AM, Douglas RM
June 1990
ISBN 0 7315 0910 2

Working Paper No. 18
Do Treatment Costs Vary by Stage of Detection of Breast Cancer?
Butler JRG, Furnival CM, Hart RFG
July 1990
ISBN 0 7315 1000 3

Working Paper No. 19
Repetition Strain Injury in Australia: Medical Knowledge and Social Movement
Bammer G, Martin B
August 1990
ISBN 0 7315 1095 X

Working Paper No. 20
Occupational Disease and Social Struggle: the case of work-related neck and upper limb disorders
Bammer G
August 1990
ISBN 0 7315 1096 8

Working Paper No. 21
Australian Mandatory Retirement Challenged
McCallum J
November 1990
ISBN 0 7315 1148 4

Working Paper No. 22
Nonlinear Component of Variance Models
Solomon PJ, Cox DR
January 1991
ISBN 0 7315 1144 1

Working Paper No. 23
A Model for Estimating the Incremental Cost of Breast Cancer Screening Programs
Butler JRG, Hart RFG
February 1991
ISBN 0 7315 1197 2

Working Paper No. 24
The Neurogenic Hypothesis of RSI
Quintner J, Elvey R
May 1991
ISBN 0 7315 1197 2

Working Paper No. 25
The Means Test on the Japanese Kosei Pension: Wages versus hours adjustment
Keiko S, McCallum J
August 1991
ISBN 0 7315 1269 3

Working Paper No. 26
Tax Expenditures on Health in Australia: 1960-61 to 1988-89
Butler JRG, Smith JP
August 1991
ISBN 0 7315 1269 3

Working Paper No. 27
Blood Donation and Human Immunodeficiency Virus Infection: do new and regular donors present different risks?
Jones ME, Solomon PJ
December 1991
ISBN 0 7315 1328 2

Working Paper No. 28
Fiscal Stress and Health Policy in the ACT
Butler JRG, Neill AL
December 1991
ISBN 0 7315 1329 0

Working Paper No. 29
AIDS in Australia: reconstructing the epidemic from 1980 to 1990 and predicting future trends in HIV disease
Solomon PJ, Attewell EB
December 1991
ISBN 0 7315 1355 X

Working Paper No. 30
The Health of Populations of North Queensland Aboriginal Communities: change and continuity
Kunitz SJ, Santow MG, Streatfield R, de Craen T
June 1992
ISBN 0 7315 1402 5

Working Paper No. 31
The Relevance of Concepts of Hyperalgesia to "RSI"
Cohen M, Arroyo J, Champion D
November 1992
ISBN 0 7315 1447 5
With 7 commentaries in G Bammer (Ed) Discussion Papers on the Pathology of Work-Related Neck and Upper Limb Disorders and the Implications for Diagnosis and Treatment
ISBN 0 7315 1447 5

Working Paper No. 32
Overuse Syndrome and the Overuse Concept
Fry HJH
January 1993
ISBN 0 7315 1507 2
Working Paper No. 33
Issues in Conducting a Cost-Benefit Analysis of Lead Abatement Strategies
Butler JRG
January 1994
ISBN 0 7315 1899 3

Working Paper No. 34
Supporting Aboriginal Health Services: a program for the Commonwealth Department of Human Services and Health. (Also titled: Beyond the Maze)
Bartlett B, Legge D
December 1994
ISBN 0 646 22396 8

Working Paper No. 35
Cost Benefit Analysis and Mammographic Screening: A Travel Cost Approach
Clarke PM
March 1996
ISBN 0 7315 2423 2

Working Paper No. 36
Paving the Way for the Cost-effective Reduction of High Cholesterol: Achieving Goals for Australia's Health in 2000 and Beyond
Antioch KM, Butler JRG, Walsh MK
June 1996
ISBN 0 7315-2424 1

Working Paper No. 37
Economic Aspects of Lower Urinary Tract Symptoms in Men and Their Management
Butler JRG
November 1996
ISBN 0-7315-2542 6

Working Paper No. 38
A Microsimulation Model of the Australian Health Sector: Design Issues
Butler JRG
December 1996
ISBN 0 7315 2542 7

Working Paper No. 39
Cardiovascular Disease Policy Model: A Microsimulation Approach
Mui SL
January 1997
ISBN 0 7315 2546 9

Working Paper No. 40
The Economic Value of Breastfeeding in Australia
Smith JP, Ingham LH, Dunstone MD
May 1998
ISBN 0 7315 2879 4

Working Paper No. 41
Valuing the Benefits of Mobile Mammographic Screening Units Using the Contingent Valuation Method
Clarke PM
August 1998
ISBN 0-7315-2896-4

Working Paper No. 42
Integrated Health Records
Mount C, Bailie R
April 1999

Working Paper No. 43
Estimating Elasticities of Demand for Private Insurance in Australia
Butler JRG
May 1999
ISBN 0-7315-3317-8

Working Paper No. 44
Policy Change and Private Health Insurance: Did the Cheapest Policy do the Trick
Butler JRG
October 2001
ISBN 0-9579769-0-9

Working Paper No. 45
Coinsurance Rate Elasticity of Demand for Medical Care in a Stochastic Optimization Model
Sidorenko, A
November 2001
ISBN 0-9579769-1-7

Working Paper No. 46
Estimating disease-specific costs of GP services in Australia
Butler JRG, Britt H
November 2001

Working Paper No. 47
The Past and Futures of Private Health Insurance in Australia
Quinn C
December 2002
ISBN 0-9750180-1-9

Working Paper No. 48
Modelling Australia’s Private Health Insurance Industry
Manners P
July 2003
ISBN 0-9750180-3-5

Working Paper No. 49
Korda RJ, Butler JRG
September 2004
ISBN 0-9752400-1-3
NCEPH PUBLICATIONS

Working Paper No. 50
Results from the National Gastroenteritis Survey 2001 - 2002
Hall G and the OzFoodNet Working Group
September 2004
ISBN 0-9579769-4-1

NCEPH Discussion Papers

NCEPH Discussion Paper No. 1
W(h)ither Australian General Practice?
Douglas RM, Saltman DC
1991
ISBN 0 7315 1319 3

NCEPH Discussion Paper No. 2
Health Information Issues in General Practice in Australia
Douglas RM, Saltman DC (Eds)
1991
ISBN 0 713 1318 5

NCEPH Discussion Paper No. 3
Integrating General Practitioners and Community Health Services
Saltman DC, Martin C, Putt J
1991
ISBN 0 7315 1323 1

NCEPH Discussion Paper No. 4
Speaking for Themselves: Consumer Issues in the Restructuring of General Practice
Broom DH
1991
ISBN 0 7315 13177

NCEPH Discussion Paper No. 5
Too Many or Too Few?: Medical Workforce and General Practice in Australia
Douglas RM, Dickinson J, Rosenman S, Milne H
1991
ISBN 0 7315 1350 9

NCEPH Discussion Paper No. 6
Money Matters in General Practice Financing Options and Restructuring
Veale BM, Douglas RM
1992
ISBN 0 7315 1324 X

NCEPH Discussion Paper No. 7
Everyone’s Watching: Accreditation of General Practice
Douglas RM, Saltman DC
1992
ISBN 0 7315 1409 2

NCEPH Discussion Paper No. 8
Teaching Teaches! Education about and for general practice through the divisional structure
Douglas RM, Kamien M, Saltman DC (Eds)
1993
ISBN 0 7315 1568 4

NCEPH Discussion Paper No. 9
Rural Health and Specialist Medical Services
Stocks N, Peterson C
1994
ISBN 0 7315 2051 3

NCEPH Discussion Paper No. 10
Advancing General Practice through Divisions
McNally CA, Richards BH, Mira M, Sprogis A, Douglas RM, Martin CM
1995
ISBN 0 7315 2136 6

NCEPH Discussion Paper No. 11
Proceedings of the General Practice Thinktank
Douglas RM (ed)
1995
ISBN 0 7315 2162 5

NCEPH Discussion Paper No. 12
Mixed Feelings: Satisfaction and Disillusionment Among Australian General Practitioners
1997
ISBN 0 7315 28190

NCEPH Discussion Paper No. 13
Discontent and Change: GP Attitudes to Aspects of General Practice Remuneration and Financing
Sibthorpe B, Bailie R, Douglas RM, Broom D
1997
ISBN 0 73152820 4

NCEPH Discussion Paper No. 14
Summary Proceedings of the Health on Line Discussion Forum
Edited by Mount C
1998
ISBN 0 7315 2795 X

NCEPH Discussion Paper No. 15
Proceedings of the Second Health on Line Discussion Forum
Edited by Mount C
1998
ISBN 0 7315 2895 6

NCEPH Discussion Paper No. 16
Proceedings of the Third Health on Line Discussion Forum
Editor Douglas RM
1998

NCEPH Discussion Paper No. 17
Aboriginal Health Initiatives in Divisions of General Practice During the Move to (Outcomes Based) Block Grant Funding 1998-1999
Sibthorpe Beverly, Meihubers Sandra, Grew Robert, Lyttle Craig and Gardner Karen
ISBN 0-7315-3327-5
Working papers: Record Linkage Pilot

Record Linkage Pilot Study Working Paper No. 1
The NCEPH Record Linkage Pilot Study: A preliminary examination of individual Health Insurance Commission records with linked data sets
McCallum J, Lonergan J, Raymond C
1993
ISBN 0 7315 1880 2

Record Linkage Pilot Study Working Paper No. 2
The New "SF-36" Health Status Measure: Australian Validity Tests
McCallum J
1994
ISBN 0 7315 2045 9

(No further papers to appear in this series)

Feasibility Research into the Controlled Availability of Opioids Stages 1 & 2.

Volume 1 of Feasibility Research into the Controlled Availability of Opioids
Report and Recommendations
Foreword by Douglas RM
Executive Summary by Bammer G, Douglas RM
Report and Recommendations by Bammer G
July 1991
ISBN 0 7315 1235 9

Volume 2 of Feasibility Research into the Controlled Availability of Opioids
Background Papers
Includes papers by: Stevens A, Dance P & Bammer G; Rainforth J; Hartland N; Martin B; Norberry J; Bammer G, Rainforth J & Sibthorpe BM; Ostini R & Bammer G; Crawford D & Bammer G; Bammer G, Douglas RM & Dance P
July 1991
ISBN 0 7315 1236 7

Heroin Treatment New Alternatives: Proceedings of a Seminar held 1 November 1991 Ian Wark Theatre, Becker House, Canberra
Edited by Bammer G, Gerrard G
1992

Working Paper No. 1
Estimating the Nos of Heroin Users in the ACT
Larson A
October 1992
ISBN 0 7315 1459 9

Working Paper No. 2
Australian Drug Markets Research: What are we Doing? Where are we Going? What are the Gaps?
Editor: Bammer G
May 1993
ISBN 0 7315 1571 4

Working Paper No. 3
Drug use and HIV risk among homeless and potentially homeless youth in the Australian Capital Territory
Sibthorpe BM, Sengoz A, Bammer G in collaboration with the Youth Affairs Network of the ACT
June 1993
ISBN 0 7315 1586 2

Working Paper No. 4
Becoming an ex-user: Would the controlled availability of heroin make a difference?
Bammer G, Weekes S
August 1994
ISBN 0 7135 1818 7

Working papers in Women’s Health

Working Papers in Women’s Health No. 1
Advancing Australian women’s health: time for a longitudinal study. A report for researchers and health planners
Sibthorpe B, Bammer G, Broom D, Plant A
1993
ISBN 0 7315 1824 1

Working Papers in Women’s Health No. 2
Advancing Australian women’s health: time for a longitudinal study. A community report
Sibthorpe B, Bammer G, Broom D, Plant A
1993
ISBN 0 7315 1828 4

Working Papers in Women’s Health No. 3
From Hysteria to Hormones: Proceedings of National Women’s Health Research Workshop
Broom, Dorothy & Mauldon, Emily (eds)
1995
ISBN 0 7315 2170 6

(No further papers to appear in this series)
Working Paper No. 5
Does childhood sexual abuse contribute to alcohol, heroin and/or other drug problems?
Proceedings of a one-day workshop held at the National Centre for Epidemiology and Population Health, The Australian National University, Tuesday 22 June 1993
Editor: Bammer G
September 1993
ISBN 0 7315 1843 8

Working Paper No. 6
'It will kill us faster than the white invasion'
Humes G, Moloney M, Baas Becking F, Bammer G
December 1993
ISBN 0 7315 1820 9

Working Paper No. 7
Economic issues in a trial of the controlled provision of heroin
Butler, JRG, Neil A
January 1994
ISBN 0 7315 1898 5

Working Paper No. 8
Issues for designing and evaluating a 'Heroin Trial' Three Discussion Papers
Report on a workshop on trial evaluation
Bammer G, McDonald DN
An evaluation of possible designs for a heroin trial
Jarrett RG, Solomon PJ
Service Provision considerations for the evaluation of a heroin trial. A discussion paper.
McDonald DN, Bammer G, Legge DG, Sibthorpe BM
February 1994
ISBN 0 7315 1905 1

Working Paper No. 9
How could an influx of users be prevented if Canberra introduces a trial of controlled availability of heroin?
Bammer G, Tunnicliff D, Chadwick-Masters J
April 1994
ISBN 0 7315 2019X

Working Paper No. 10
How would the controlled availability of heroin affect the illicit market in the Australian Capital Territory? An examination of the structure of the illicit heroin market and methods to measure changes in price, purity and availability, including heroin-related overdoses
May 1994
ISBN 0 7315 2024 6

Working Paper No. 11
Civil liability issues associated with a 'heroin trial'
Cica N
June 1994
ISBN 0 7315 2047 5

Working Paper No. 12
Statistical issues in planning a randomised controlled 'heroin trial'
Attewell RG, Wilson SR
July 1994
ISBN 0 7315 2062 9
The Foreword - An evaluation strategy for a 'Heroin Trial' Bammer G

Working Paper No. 13
Criminal Liability Issues Associated with a 'Heroin Trial'
Bronitt, Simon
May 1995
ISBN 07315 2159 5
Part I: Drug Law in Australia
Part II: Criminal Liability for Causing Harm to Trial Participants
Part III: Criminal Liability for the Crimes Committee by Trial Participants
Part IV: Miscellaneous Issues

Working Paper No. 14
International Perspectives on the Prescription of Heroin to Dependent Users: A collection of papers from the United Kingdom, Switzerland, the Netherlands and Australia
Editor: Bammer G
January 1997
ISBN 0 7315 2539 6
Report and Recommendations of Stage 2 Feasibility Research into the Controlled Availability of Opioids
Bammer G
June 1995
ISBN 07315 2159 5

Other publications published by NCEPH
Veterans' Servicing Profiles: consultancy report to the Department of Veterans Affairs
McCallum J, Hefferan C
1990

Elder Abuse: A Survey
Matiasz S, McCallum J
1990

Health Financing Think Tank: proceedings and summary of a meeting in Bungendore, 27-28 November 1989
Douglas RM (Ed)
1990
ISBN 0 7315 1224 3
Abuse of the Elderly at Home
McCallum J, Matiasz S, Graycar A
1990
Published jointly with NCEPH by the South Australian Commissioner for the Ageing.

Ethnic Women in the Middle: A focus group study of daughters caring for older migrants in Australia. Report to the Commonwealth Department of Community Services and Health and Community Services Research and Development Grants Committee
McCallum J, Gelfand DE
August 1990
ISBN 0 7315 1097 6

A Matter of Life and Death: contemporary Aboriginal mortality. Proceedings of a workshop of NCEPH held at Kioloa, 10-12 July 1989
Gray A (Ed)
December 1990
ISBN 0 85575 219 X

Ageing and Families 7 Years After: Data from a seven year follow-up of older Australians
1991
ISBN 0 7315 1339 8

General Practice Financing Think Tank
Douglas R (Ed)
1991
ISBN 0 7315 1224 3

Improving Australia's Health: The role of primary health care
The Final Report of the 1991 Review of the Role of Primary Health Care in Health Promotion
Legge DG, McDonald DN, Benger C
1992
ISBN 0 7315 1432 7

An evaluation of successful ageing, ACT: a community project for all ages
Campbell S
December 1993

Trends in Mortality: by causes of death in Australia, the States and Territories during 1971–72, and in statistical divisions and sub-divisions during 1991–92
Jain SK
Joint publication: NCEPH & ABS
1994

Hospital Morbidity Patterns and Costs of Immigrants in Australia
Kliwer EV, Butler, JRG
1995
ISBN 0 7315 2158 7
ABS Catalogue No. 3313.0

Export of Aged Care Services Training
McCallum J (Ed)
1995
ISBN 0 7315 2197 8

What Divisions Do: An analysis of divisions' infrastructure activities for 1993–94
Todd R, Sibthorpe B
1995
ISBN 0 7315 2312 1

What Divisions Did Next
Todd R, Sibthorpe B
1997
ISBN 0 7315 2559 0

Profile of Divisions of General Practice: 1995/96
Todd R, Sibthorpe B, Todd C
1998
ISBN 0 7315 3324 0

"Bumpa Shooters": A study of the smoking habits among the Aboriginal and Torres Strait Islander community of the ACT region
Moloney M, Mozley JW
October 1998
ISBN 0 7315 3306

They'll Just Read About Us In Storybooks: Estimations of the number of young Indigenous people using illegal drugs in the ACT and region
Dance P, Brown R, Bammer G
2000

Needs for residential aged care and other services by the older Indigenous population in the ACT and region
Dance P, Brown R, Bammer G, Sibthorpe B
2000
ISBN 0 7315 3333 X

I Want To Be Heard: an analysis of needs of Aboriginal and Torres Strait Islander drug users in the ACT and region for treatment and other services.
Dance P, Tong S, Guthrie J, McDonald D, D'Souza R, Cubillo C, Bammer G.
2004