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Abstract 

We investigate the problem of predicting the outcomes of a sequence of discrete random 
variables that are almost uniform, in the sense that they are generated from a random 
process that is designed to produce independent uniform outcomes but may not do so 
exactly.  Using assumptions based around this notion we derive a useful stochastic 
ordering.  We reject the gambler’s belief as unsound and find that the reverse gambler’s 
belief is the optimal prediction method.  This method arises under a wide class of Bayesian 
models.  One of the main contributions of this paper is that it uses only weak and intuitive 
prior assumptions and should therefore be more palatable to sceptics than existing Bayesian 
models. 

BAYESIAN STATISTICS; EXCHANGEABILITY; STOCHASTIC DOMINANCE; GAMBLER’S FALLACY; 
REVERSE GAMBLER’S FALLACY; FREQUENT OUTCOME APPROACH. 

 

1.  The gambler’s fallacy 

 

If an abundance of heads come up on a coin, observers may be heard to assert that 

a tail is due; that it is more likely to come up than another head.  This kind of belief or 

assertion is often called the gambler’s fallacy (or the Monte Carlo fallacy), though it 

should more properly be called the gambler’s belief when it is not accompanied by 

any proposed justification.  The term is often applied outside a gambling context and, 

at its widest, the term can be ascribed to any belief that deviations from expected 

behaviour are likely to eventually be evened out by opposite deviations. 

In statistical literature this belief has been attributed to a failure to understand 

statistical independence or to a misunderstanding of informal principles akin to 

Kolmogorov’s strong law of large numbers (that assert the almost sure convergence of 

expectation and sample mean for independent random variables).  Kahneman, Slovic 

and Tversky (1982) attribute the belief to a heuristic cognitive principle that they call 

the representativeness heuristic, where the probabilities of outcomes are estimated 

according to how they resemble quintessentially random-looking outcomes. 
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However, as Cowan (1969) rightly warns, the reasoning behind the gambler’s 

belief is rarely explicated and is therefore imputed by the logician: 
Thus the argument, whether valid or fallacious, and if valid, whether sound or unsound, is 
for the most part an artificial creature, a construction the logician makes to help us decide 
what evidence to look for next, for esthetic purposes, or whatever. 

In the absence of explicit reasoning for the belief it is rather presumptuous to say 

that the argument behind the gambler’s belief is unsound, and it is outright incorrect 

to say that the argument is a logical fallacy (since the latter is an error in logical 

argument that is independent of the truth of its premises).  Quite rightly, Cowan finds 

that the argument (if there is one), while often unsound, is not fallacious: 
The gambler’s argument may very well be valid in the sense that if the premises are true, 
the conclusion is also true, but in many cases the premises required are simply not true.  …  
[I]t is the logician’s job to find out what is necessary to get the conclusion.  Then we can 
see whether what would have to be true for the conclusion to be evidenced is in fact true. 

 

In fact, the usual informality of the assertion of the gambler’s belief and the lack of 

explicit reasoning sometimes makes it difficult to establish what is even being 

asserted.  The assertion of the belief is usually framed or timed so as to suggest that it 

is at least a denial of the exchangeability of observations, but even this may be 

uncertain.  Moreover, it is not always clear whether the gambler is looking to all 

previous tosses of the coin or just the last run of tosses as evidence for the conclusion 

that a tail is due.  In this paper we take the former view as our conception of the 

gambler’s belief: that is, we take the belief as being that the most likely next outcome 

is one of the outcomes that have occurred the least so far. 

 

Following Cowan’s suggestion we will demonstrate sufficient conditions that 

preclude the gambler’s belief.  We thereby find that the denial of these conditions is 

necessary for the belief.  This gives some power to the analysis by attributing to the 

gambler a minimal belief that the gambler cannot escape by failure to properly 

explicate their reasoning.  We endeavour to use only conditions that we believe are 

reasonable in the case of random processes used in gambling; this provides a 

reasonable argument against the gambler’s argument however it may be framed. 
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2.  The reverse gambler’s fallacy 

 

Continuing the coin tossing example, where we have observed an abundance of 

heads, some observers may also be heard to assert, in opposition to the gambler’s 

belief, that another head is more likely than a tail.  This opposite assertion has been 

called the reverse gambler’s fallacy though again it should more properly be called 

the reverse gambler’s belief when it is not accompanied by any proposed justification.  

Again, the term is often applied outside a gambling context and, at its widest, can be 

ascribed to any belief that deviations from expected behaviour are likely to continue. 

In statistical literature this belief has also been attributed to a failure to understand 

statistical independence so that, to its detractors, the belief is generally considered to 

be a manifestation of the same kind of unsound thinking as the gambler’s fallacy.  

However, such criticisms often themselves fail to understand statistical independence; 

many confuse causal independence with statistical independence and incorrectly use 

the former to assert the latter with simplistic (and flawed) arguments along the lines 

that “dice have no memories”. 

 

3.  The Bayesian approach 

 

The notion that successive outcomes are produced in an identical manner is, quite 

literally, described by the assumption of exchangeability.  In random processes with a 

finite number of possible outcomes this gives rise to a multinomial model with 

unknown long-run proportions of outcomes.  Under standard Bayesian multinomial 

models using either the reference prior or symmetric conjugate prior (both of which 

are special cases of the Dirichlet prior) it can be shown that the reverse gambler’s 

belief arises as the correct posterior conclusion.  The implications of these models are 

well known.  What is not known is, in Cowan’s words: “what is necessary to get the 

conclusion”.  This turns out not to be particularly instructive and so we instead find 

weaker sufficient conditions that also imply the reverse gambler’s belief.  Again we 

endeavour to use only conditions that we believe are reasonable in the case of random 

processes used in gambling.  One of the main contributions of this paper is that it uses 

only weak and intuitive prior assumptions and should therefore be more palatable to 

sceptics than existing Bayesian models. 
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A note of caution is needed here.  We do not intend to assert that advocates of the 

reverse gambler’s belief are necessarily reasoning correctly; their reasoning may 

indeed be unsound or even fallacious.  What we do intend is to show that their beliefs 

may be justifiable by the reasoning that we present.  Again we stress that in the 

absence of explicit reasoning it is rather presumptuous to label a belief as unsound or 

fallacious. 

 

4.  Modelling almost uniform sequences 

 

Throughout our analysis we will follow the notation in Bernardo and Smith (1994); 

in particular, we will not make any notational distinction between known values 

(constants) and unknown values (random variables) and we will not make any 

distinction between mass functions and density functions.  This will not lead us into 

any trouble since the arguments that we present will not rely on continuity and can be 

considered totally in terms of general probability measures.  The processes of interest 

can be described formally as follows: 

 

DEFINITION 1 (Preliminary definitions): Let ( )1 2 3, , ,...x x x≡x  be a sequence of 

values each with the same finite range 1  and let , 2,..., m ( )1 2, ,...,k kx x x≡x  be the 

observed outcomes.  To facilitate easier discussion we denote the observed counts by 

 with ( ) ( )1 2, ,...,k mn n n≡n x ( ) ( )1

k
i i k jj

n n I x i
=

≡ ≡ =∑x , and we denote the long-run 

proportions by ( ) ( )1 2, ,..., mθ θ θ≡ ≡xθ θ  with ( ) ( )limi i i kk
nθ θ

→∞
≡ ≡x x k .  Finally, we 

let ( ) (  1kp x p x x+≡ = x )k  be the predictive probability of interest. 

 

In modelling sequences where each outcome is produced in the same way it may 

be reasonable to assume that the order of the outcomes is always uninformative so 

that  is exchangeable.  We note immediately that the exchangeability of  is 

fundamental to the results of the paper and that finite exchangeability will be 

insufficient; this may be taken as a possible criticism of the model, though we note 

that this assumption is weaker than, and is implied by the assumptions underlying 

existing models. 

x x
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5.  The common approach to modelling almost uniform sequences 

 

When we are modelling processes that are designed to produce independent 

random outcomes it is common to assume that these processes generate exactly that.  

This is equivalent to assuming that ( )1 ,...,1m m=θ  almost surely.  In this case, if x  

is exchangeable then the elements of  are independent with x ( ) 1p x m=  so that, as 

is widely known, prediction is arbitrary. 

 

6.  An alternative approach to modelling almost uniform sequences 

 

Contrary to the common approach, it is the authors’ belief that some processes, 

such as the rolling of a die or the tossing of a coin produce outcomes that may not be 

perfectly uniform, in the sense that the long-run proportions of outcomes may differ.  

After all, in order to distinguish between the faces of a die or coin, these faces must be 

made to be non-identical so that the items themselves must be non-symmetric.  This 

non-symmetry gives us plausible reason to believe that the long run proportions of 

outcomes may not be equal.  We therefore diverge from the common approach by 

instead assuming that θ  is unknown and may therefore be biased towards some 

outcome.  Of course, in the absence of information regarding which way the process 

is likely to be biased we may reasonably assume that θ  is exchangeable.  Again it is 

the authors’ belief that this assumption is reasonable in the context of processes such 

as the rolling of a die or the tossing of a coin.  Of course, this assumption does not 

preclude the common approach.  Rather, we diverge from the common approach by 

making some assumption that corresponds to our contemplation of the possibility of 

bias in the random process.  Either of the following captures this notion: 

 

DEFINITION 2 (Prior non-degeneracy): If a priori there is some positive probability 

that the elements of θ  are all positive and not all equal we say that θ  is non-

degenerate. 

 

DEFINITION 3 (Posterior non-degeneracy): If a posteriori there is some positive 

probability that the positive elements of kxθ  are not all equal we say that kxθ  is 

non-degenerate.  
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7.  A useful stochastic ordering 

 

Following Fishburn (1980) and suppressing notation of the order of domination we 

have the following definition of first order stochastic dominance. 

 

DEFINITION 4 (First order stochastic dominance): If ( ) (P x t P y t> ≥ > )  for all t  

we say that x  stochastically dominates  (written as y x y ).  Moreover, if x y  and 

additionally  for some t( ) (P x t P y t′> > > )′ ′  we say that x  strictly stochastically 

dominates  (written as y x y ). 

 

THEOREM 1: If  and x θ  are both exchangeable then: 

(a) if  then an n≥ b a k b kθ θx x

b

; and 

(b) if  and either an n> θ  or | kxθ  are non-degenerate then a k b kθ θx x . 
 

PROOF: Since  is exchangeable, it follows from the representation theorem of de 

Finetti (1937/1964) that: 

x

( ) ( )

1

i k
m

n
k i

i

p θ
=

=∏ xx θ . 

Let θ  be the permutation of θ  with uθ  swapped with vθ .  Since θ  is exchangeable, 

for all 0aθ >  we have: 

( ) ( ) ( )
( )

( ) ( )
( ) ( )

a b a bn n n n
k kb b

k k
k a k a

p p p p
p p

p p
θ θ
θ θ

− −
⎛ ⎞ ⎛ ⎞

= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

x x
x x

x x

θ θ θ θ
θ θ . 

It follows that for all t : 

( ) ( ) ( ) ( )
( )( ) ( )( )

( )( ) ( )

                                           E E

                                           E E

      

a b

a k b k a b k b a k

a b k b a k

n n

b
a b k a b k

a

P t P t P t P t

I t I t

I t I t

θ θ θ θ θ θ

θ θ θ θ

θθ θ θ θ
θ

−

> − > = > ≥ − > ≥

= > ≥ − > ≥

⎛ ⎞⎛ ⎞⎜ ⎟= > ≥ − > ≥ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

x x x x

x x

x x

( ) ( )                                     E 1 .                         1
a bn n

b
a b k

a

I t θθ θ
θ

−⎛ ⎞⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟= > ≥ − ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
x
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(a) If  then the integrand in an n≥ b ( )1  is non-negative over the range of the integral 

(that is, the range of the indicator).  It follows that ( ) ( )a k bP t P tθ θ> ≥ >x xk  

for all t  so that a k b kθ θx x

b

 which was to be shown. 

(b) If  then the integrand in an n> ( )1  is strictly positive over the range of the 

integral (that is, the range of the indicator).  Also, from Lemma 1 (see Appendix) 

we have ( ) 0a b kP θ θ> x >  so that ( ) 0a b kP tθ θ′> ≥ >x  for some t .  It follows 

that 

′

( ) (a k bP t P tθ θ′> > >x x )k′  for some t′  so that a k b kθ θx x  which was to 

be shown.   

 

COROLLARY 1 (Reverse gambler’s belief): If  and x θ  are both exchangeable then: 

(a) if  then an n≥ b ( ) ( )p a p b≥ ; and 

(b) if  and either an n> b θ  or kxθ  are non-degenerate then ( ) (p a p b> ) . 

 

PROOF: Since  is exchangeable, it follows from the representation theorem that x

(1 , ~ Mu 1,k kx + x )θ θ  so that ( ) ( ) ( )E a b kp a p b θ θ− = − x .  The proof then follows 

from the stochastic dominance findings of Theorem 1 using Fishburn (1980).   

 

Thus the exchangeability of  and x θ  is sufficient to preclude the gambler’s belief.  

Moreover, the addition of either non-degeneracy assumption then necessitates the 

reverse gambler’s belief.  This immediately gives us an optimal prediction method: 

namely, that we should predict one of the outcomes that has occurred the most in our 

observations.  We call this method the frequent outcome approach. 

 

8.  The frequent outcome approach 

 

It is easy to show —under the assumptions of Theorem 1(b)— that under the 

frequent outcome approach, unless we have observed all outcomes the same number 

of times (including none, as is the case a priori), the probability of successful 

prediction is strictly greater than 1 m .  This result calls into question the fairness of 

some so-called fair bets that are predicated on an assumption of independence 
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between outcomes.  The above results suggest that from a purely monetary 

perspective, we should accept so-called fair bets that are predicated on the outcomes 

of almost uniform sequences. 

Of course, in commercial gambling situations, we are rarely presented with a fair 

bet1; rather, there is usually a profit loading.  Whether or not we should accept such a 

bet depends upon weighing the degree to which we believe that the long-run 

proportions may be biased against the magnitude of the profit loading.  Such an 

analysis requires further assumptions.  Since the random processes in commercial 

gambling are designed to be very close to uniform, we would generally expect that the 

profit loading will outweigh any advantage gained by the frequent outcome approach 

in all but exceptional cases; thus the above analysis may be of little value.  However, 

there are a vast number of statistical endeavors that involve processes that are 

designed to be uniform, not all of which involve adverse profit or utility weightings.  

The real value of the frequent outcome approach lies in these situations. 

 

9.  Conclusion 

 

In scrutinising probabilistic beliefs, as with any application of logic, it is rather 

unfair to impute to the believer an unsound argument (which they have not 

explicated) as a basis for rejecting their beliefs.  It may very well be that gamblers 

rely on the gambler’s belief or the reverse under erroneous logical arguments.  

However, what we have shown is that in some situations the reverse gambler’s belief 

arises as the optimal rational behaviour from reasonable assumptions about random 

processes.  In particular, if we contemplate the possibility of bias in a random process 

designed to produce independent uniform random outcomes then we should reject the 

common approach that prediction is arbitrary in favour of the frequent outcome 

approach. 

 

                                                           
1 …though this is not unheard of.  In Australia for example, casinos and other gaming establishments 
offer a gambling game called two-up at fair odds (that is, the odds are fair under the common approach) 
every ANZAC day (25 April). 

 8



Appendix: Non-degeneracy conditions for Theorem 1 

 

Theorem 1(b) requires some assumption that ensures that ( ) 0a b kP θ θ> x > .  In this 

Appendix we show that the addition of either non-degeneracy assumption is sufficient 

for this condition. 

 

LEMMA 1: If  and x θ  are both exchangeable and either θ  or kxθ  is non-

degenerate, then ( ) 0a b kP θ θ> x >  for all a b≠  such that . 0an >

 

PROOF: It is easily shown that the non-degeneracy of θ  implies the non-degeneracy 

of kxθ ; it is therefore sufficient to proceed for the latter case.  Suppose —in 

contradiction to the Lemma— that ( ) 0a b kP θ θ> x = .  It can be shown that, since x  

and θ  are exchangeable we then have ( ), 0, 0a j a j kP θ θ θ θ 0≠ > > =x  for all .  

But since  this contradicts the non-degeneracy of 

j a≠

0an > kxθ .  By contradiction it 

follows that ( ) 0a b kP θ θ> x >  which was to be shown.   
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