
Searching for correlations in

global environmental noise

within the context of
gravitational wave detection

A thesis written by

Karl Wette

being an account of research undertaken in the

Centre for Gravitational Physics

The Department of Physics, The Faculty of Science

The Australian National University

under the supervision of

Dr Susan Scott

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science with Honours in Theoretical Physics

Canberra, Australia

29th October, 2004

Acknowledgements

Right. It is now a few seconds past the thesis due date, and I have now gone without
sleep for over 32 hours. As I type this I see random points of light piece my vision
from out of nowhere. What to do? Nothing I suppose, except to make the customary
acknowledgements:

To my supervisor, Susan Scott: thank you for presenting me with what has been at
times an incredibly frustrating (as I’m sure you’d agree!) but in the end a most interesting
and challenging honours project. Thank you for your continued support and encourage-
ment throughout. I also gratefully acknowledge the financial assistance of The Australian
National University through an ANU Honours Scholarship.

I am very thankful for the efforts of Antony Searle and Tom Kobialka, in joining with
me in pitched battles against the demon that is Computer Software. In particular, thanks
to Tom for his help with FrameL and LDR, ‘Surly’ for his programming help and Linux
networking bag-o-tricks, and bronze stars to you both for warding off the evil spammers
that attempted to take over the cluster.

To Albert Lazzarini, Benoit Mours, and other scientists involved with PEM data ac-
quisition at LIGO and VIRGO: thank you for helping an insignificant honours student
complete his project.

Angela, Ben, Lydia, Andrew, and Antony: thanks for the many welcomed distractions
and discussions throughout the year, and for your help in proofreading my thesis (even
when it resulted in more work). To Amy, Ben, Phil, and Anthony at “Burgie”, cheers for
helping me make the rest of my life more enjoyable. I also acknowledge all the random
people I have met and corresponded with in Australia over the past year; without knowing
it, you helped me keep a grasp on my own sanity just that little bit longer.

To my wonderful family, for your continued love and support, weekly updates from New
Zealand, and wise counsel during difficult times: I would never have survived without you.

And finally, to all the myriad problems which have dogged my progress this year:
broken instruments, software hacks that work one minute and not the next, bugs that
can never be found, deficient operating systems, obtuse programs, stupid programming
languages, tropical cyclones, and everything else, I can only say this:

I am still here.

That is all.

iii

Declaration

This thesis is an account of research undertaken between February and October 2004, in
The Centre for Gravitational Physics, The Department of Physics, The Faculty of Science,
The Australian National University, Canberra, Australia. Except where appropriately
acknowledged, the material presented in this thesis constitutes my own original work, and
furthermore has not been previously submitted in whole or in part for a degree at any
university.

Karl Wette
Canberra, Australia
29th October, 2004

v

Abstract

The high sensitivity required of interferometric gravitational wave detectors is such that
environmental noise becomes a very important consideration. Local environmental noise
may be partially or wholly eliminated by cross-correlating data from two widely displaced
detectors; such a strategy, however, will not be immune to environmental noise that is
global in nature. Thus the characterisation of global environmental noise is of vital im-
portance to the detection of gravitational waves.

In this project the author will attempt to gain some understanding of physical environ-
ment noise, in particular whether it can be global as well as local in nature, by investigating
the correlation of widely displaced physical environment monitoring stations. We found
that, though there were no immediately significant correlations between the detectors, the
unknown physical origin of the observed correlations would certainly be worthy of further
research.

vii

Contents

Acknowledgements iii

Declaration v

Abstract vii

Prologue 1

1 Introduction 3
1.1 Large scale interferometric gravitational wave detectors 3
1.2 Review of physical environment noise investigations 4
1.3 Overview of this project . 6

2 Data acquisition 7
2.1 A physical environment monitoring station 7

2.1.1 The original setup . 7
2.1.2 Additional hardware . 9

2.2 The data acquisition software . 9
2.2.1 The original setup . 9
2.2.2 Porting libraries . 10
2.2.3 Code interfaces . 10
2.2.4 Virtual circuitry . 15
2.2.5 Uploading files . 18

2.3 The data storage system . 19
2.3.1 The original format . 19
2.3.2 Reprocessing . 19

2.4 Data acquisition in practice . 20
2.4.1 Locally . 20
2.4.2 From LIGO . 20
2.4.3 From VIRGO . 21

3 Data analyses 23
3.1 Long timescale analyses . 23

3.1.1 The autocorrelation . 23
3.1.2 The correlation . 24
3.1.3 The power spectrum . 24
3.1.4 The cross spectrum and the coherence 27

3.2 Short timescale analyses . 28
3.2.1 What is a transient event? . 28
3.2.2 The power spectrogram and the cross spectrogram 29
3.2.3 The search algorithm . 29
3.2.4 The difference-in-mean test . 30

ix

x Contents

3.2.5 The Student paired t-test . 30
3.2.6 The Wilcoxon signed rank test . 31
3.2.7 The Kolmogorov-Smirnov test . 31
3.2.8 The Wilcoxon-Mann-Whitney rank sum test 31

4 Data processing 33
4.1 Some technologies . 33

4.1.1 Parallel programs . 33
4.1.2 Message-passing . 33
4.1.3 MPI . 34
4.1.4 LAM/MPI . 35
4.1.5 FFTW . 35
4.1.6 C . 35
4.1.7 The GNU Compiler Collection . 35

4.2 A parallel data processing program . 36
4.2.1 The header . 36
4.2.2 The main subroutine . 36
4.2.3 The collector subroutine . 39
4.2.4 The processor subroutine . 42
4.2.5 Implementation of the long timescale analyses 43
4.2.6 Implementation of the short timescale analyses 44

5 Results 45
5.1 Long timescale analyses . 45

5.1.1 Power spectra . 45
5.1.2 Autocorrelations . 46
5.1.3 Correlations . 57
5.1.4 Coherence . 59

5.2 Short timescale analyses . 65

6 Conclusion 71

A Additional code 73
A.1 The parallel data processing program . 73

A.1.1 The header . 73
A.1.2 The main subroutine . 75
A.1.3 The collector subroutine . 77
A.1.4 The processor subroutine . 79
A.1.5 Implementation of the long timescale analyses 81
A.1.6 Implementation of the short timescale analyses 84
A.1.7 Miscellaneous subroutines and functions 87

A.2 The MATLAB post-processing code . 96

Bibliography 105

Figures

2.1 The physical environment monitoring station 8
2.2 The LabVIEW data acquisition software diagram 16
2.3 The LabVIEW data acquisition software front panel 17
2.4 Timeline of the physical environment monitoring station data; the shaded

areas indicate the times for which data exists in the Mass Data Storage
System. 19

4.1 Example for four physical environment monitoring stations of the structure
of the collector-to-processor/cross-processor communicators. Numerals in
brackets refer to ranks in the new communicators; those without refer to
ranks in MPI COMM WORLD. 38

5.1 Summary of the performed data processing. 45
5.2 Power spectra of the ANU horizontal and vertical seismometers. 47
5.3 Power spectra of the ANU mains voltage monitor and magnetic field sensors. 48
5.4 Power spectra of the LHO horizontal and vertical seismometers. 49
5.5 Power spectra of the LHO mains voltage monitor and magnetic field sensors. 50
5.6 Power spectra of the LLO horizontal and vertical seismometers. 51
5.7 Power spectra of the LLO mains voltage monitor and magnetic field sensors. 52
5.8 Power spectra of the VIRGO horizontal and vertical seismometers. 53
5.9 Power spectra of the VIRGO mains voltage monitor and magnetic field

sensors. 54
5.10 Autocorrelation of the ANU horizontal and vertical seismometers. 55
5.11 Autocorrelation of the LHO horizontal seismometer. 56
5.12 Autocorrelation of the LLO vertical seismometer. 56
5.13 Autocorrelation of the LLO mains voltage monitor. 56
5.14 Autocorrelation of the VIRGO horizontal and vertical seismometers. 57
5.15 Correlation of ANU-LHO mains voltage monitors. 58
5.16 Correlation of the ANU-VIRGO horizontal and ANU-LLO vertical seis-

mometers. 58
5.17 Correlation of the LHO-LLO horizontal and vertical seismometers. 60
5.18 Correlation of the LHO-LLO magnetic field sensors. 61
5.19 Coherence of the ANU-VIRGO mains voltage monitors. 62
5.20 Coherence of the ANU-LHO, ANU-LLO and LHO-LLO magnetic field sensors. 63
5.21 Coherence of the LHO-LLO, LHO-VIRGO and LLO-VIRGO magnetic field

sensors. 64
5.22 Bursts in seismometer spectrograms. 66
5.23 More bursts in seismometer spectrograms. 67
5.24 Bursts, gaps, and wandering lines in magnetic field sensor spectrograms. . . 68
5.25 Spectrographic “phase changes” in seismometer and magnetic field sensor

spectrograms. 69

xi

Listings

2.1 The OpenFile code interface node subroutine 11
2.2 The OpenFrame code interface node subroutine 12
2.3 The OpenFrame code interface node subroutine (continued) 12
2.4 The OpenFrame code interface node subroutine (continued) 12
2.5 The AddData code interface node subroutine 13
2.6 The AddData code interface node subroutine (continued) 13
2.7 The AddData code interface node subroutine (continued) 14
2.8 The CloseFrame code interface node subroutine 14
2.9 The CloseFile code interface node subroutine 14
2.10 The MoveFiles AppleScript . 18
4.1 The main subroutine . 36
4.2 The main subroutine (continued) . 36
4.3 The main subroutine (continued) . 36
4.4 The main subroutine (continued) . 37
4.5 The main subroutine (continued) . 38
4.6 The main subroutine (continued) . 39
4.7 The collector subroutine . 39
4.8 The collector subroutine (continued) . 39
4.9 The collector subroutine (continued) . 39
4.10 The collector subroutine (continued) . 40
4.11 The collector subroutine (continued) . 40
4.12 The collector subroutine (continued) . 41
4.13 The collector subroutine (continued) . 41
4.14 The collector subroutine (continued) . 41
4.15 The processor subroutine . 42
4.16 The processor subroutine (continued) . 42
4.17 The processor subroutine (continued) . 42
4.18 The processor subroutine (continued) . 43
A.1 The header . 73
A.2 The main subroutine variable declarations 75
A.3 The main subroutine construction of the collector-to-processor/cross-processor

communicators . 75
A.4 The main subroutine processing of the channels file 75
A.5 The main subroutine calls to the collector and processor subroutines 76
A.6 The main subroutine cleanup . 76
A.7 The collector subroutine variable declarations 77
A.8 The collector subroutine initialisation . 77
A.9 The collector subroutine synchronisation of starting times 78
A.10 The collector subroutine transmission of data 78
A.11 The collector subroutine cleanup . 79
A.12 The processor subroutine variable declarations 79

xiii

xiv Listings

A.13 The processor subroutine initialisation . 79
A.14 The processor subroutine reception of data 80
A.15 The processor subroutine execution of the analyses 80
A.16 The processor subroutine cleanup . 81
A.17 The doLongAuto subroutine . 81
A.18 The doLongCorr subroutine . 82
A.19 The doLongPower subroutine . 83
A.20 The doLongCross subroutine . 83
A.21 The doTrnsPower subroutine . 84
A.22 The doTrnsCross subroutine . 84
A.23 The doTrnsSearch subroutine . 85
A.24 The algrCross subroutine . 87
A.25 The algrCrossSqrd subroutine . 87
A.26 The algrRead function . 88
A.27 The algrWrite subroutine . 88
A.28 The bufferAdd subroutine . 89
A.29 The bufferFree subroutine . 90
A.30 The bufferInit subroutine . 90
A.31 The bufferShift subroutine . 90
A.32 The error subroutine . 90
A.33 The longFinal subroutine . 91
A.34 The longInit subroutine . 91
A.35 The qsort double abs function . 92
A.36 The qsort fftw real function . 92
A.37 The spctgmWrite subroutine . 92
A.38 The sprintfalloc function . 93
A.39 The statCompute subroutine . 93
A.40 The strcatfalloc subroutine . 94
A.41 The trnsFinal subroutine . 95
A.42 The trnsInit subroutine . 95
A.43 The MATLAB post-processing code . 96

Prologue

Da könnt’ mir halt der liebe Gott leid tun, die Theorie stimmt doch.
Then I would have been sorry for the dear Lord – the theory is correct.

— Einstein [1]

The general theory of relativity is one of the foremost accomplishments of human
thought. It is a world where space and time, freed from the chains of the absolute, may
merge, entwine, twist and contort themselves. It is the world of black holes, pulsating
quasars, naked singularities, and the Big Bang. It is a world of a mathematical beauty
appreciable only by theoretical physicists, yet it has inspired generations of non-physicists
in art, literature, cinema, and beyond. Therefore it is small wonder that Albert Einstein,
its chief architect, was so completely convinced of its truth – for surely, if such a world
extended no further than our imagination, then indeed our reality would be the poorer of
the two.

Despite Einstein’s conviction, ever since the publication of the theory in 1915 physicists
have endeavoured to verify its predictions by experiment. While the first such experiment,
the observation by Eddington of the deflection of light by the Sun, and of the correct
magnitude predicted by general relativity, was not only a success but caused widespread
public sensation, subsequent attempts to repeat this observation were significantly less
successful, and the accuracy of the first attempt was called into question. By 1960, it
could be argued that general relativity was supported experimentally by only two verified
predictions: the precession of the perihelion of the orbit of Mercury, to an accuracy of
approximately 1%; and the deflection of light by the Sun, to an accuracy of then barely
50%. Attempts to measure the gravitational red-shift of light, from the Sun and from
white dwarf stars, were inconclusive, and subsequently it was shown that it was not in
fact a consequence of the complete theory [2].

The twenty years following 1960, however, brought about a golden age of experimental
general relativity. Experiments attempted in the past were reborn with the help of new
technologies and experimental techniques. A series of experiments by Pound, Rebka and
Snider measured gravitational red-shifts in the laboratory to high precision for the first
time, while others successfully measured the effect in solar spectral lines. The change in
the rates of atomic clocks lifted aloft on jet aircraft and on satellites were successfully mea-
sured. Experiments performed by Eötvös and others tested the principle of equivalence,
while others successfully bounced lasers off the Moon to measure the Nordtvedt effect,
and radio waves off Venus to measure the time delay of light. A series of discoveries with
great importance to general relativity were made in astronomy, such as the discoveries of
the cosmic microwave background, of pulsars, of binary pulsars and their characteristic
orbital period decrease, and of the first black hole candidate Cygnus-X1. At the same time
a more rigourous framework was put in place for the experimental verification of general
relativity and of alternate theories of gravity. In all experimental tests conducted so far,
general relativity has without fail predicted the results within experimental error [2].

Gravitational waves are the subtle oscillations induced in the structure of space-time by

1

2 Prologue

accelerating bodies, in an analogous manner to the production of electromagnetic radiation
by accelerating charges. They have come to the fore in the last two decades, not only as a
means of testing general relativity in regions of strong gravity, such as for example would
exist around black holes, but as a whole new spectrum of radiation from the Universe
whose properties are yet to be investigated. The introduction to astronomy over the past
60 years of observation in the radio, infrared, X-ray and gamma ray components of the
electromagnetic spectrum have heralded untold and previously unthought-of discoveries,
and it is hoped that gravitational wave astronomy, when realised, will have an equal if not
greater impact.

The first attempt to directly detect gravitational waves was made by Weber around
1960, using the resonance of massive aluminium cylinders, but this attempt was ulti-
mately unsuccessful [3]. Though the construction of the so-called resonant bar detectors
has continued, in the 1970s a new technique, using the perturbation in the difference
in arm lengths of laser interferometers, was first considered and a number of prototypes
constructed [4, 3]. Laser interferometric detectors, when successfully implemented on a
large scale, will be the most likely instruments to first succeed in detecting and measuring
gravitational waves. The obstacles standing in the way of this first detection, however,
remain substantial.

Chapter 1

Introduction

Gravitational waves are small — very, very small. The average signal is not expected to
perturb the difference in arm lengths of a large scale interferometric detector by much
more than 10−18 metres. The sensitivity required to measure such a change in length is
analogous to measuring the surface of the Earth to the precision of a square millimetre.
It is therefore almost certain that any detectable gravitational wave signal will be deeply
embedded in a mass of random noise, the principal cause of which will be the surrounding
physical environment.

For the detection of a gravitational wave signal to be credible, it must be clearly
demonstrated that the signal could not have arisen by chance from random noise. This
point cannot be stressed enough. The reputation of the entire gravitational wave detection
community depends on their confidence in the initial detection of gravitational waves, and
their ability to instil that confidence in the wider scientific community. This cannot be
achieved unless every other possible cause of the candidate gravitational wave signal has
been convincingly eliminated. The most likely source of potential candidate gravitational
wave signals is physical environment noise; it is therefore essential to the future successful
detection of gravitational waves to understand all of the physical environment noise sources
that might hinder their detection.

1.1 Large scale interferometric gravitational wave detectors

In recent years, serious projects have been mounted to bring to fruition the detection of
gravitational waves, by the construction of several large scale interferometric detectors
with arm lengths up to several kilometres. To date they are the following:

• The Laser Interferometer Gravitational Wave Observatory (LIGO) [5] has constructed
3 detectors at 2 locations in the United States: a combined 4 kilometre and 2 kilome-
tre arm length detector on the Hanford Nuclear Reservation near Richland, Wash-
ington State; and a 4 kilometre arm length detector near Livingston, Louisiana.
The project is run by the California Institute of Technology and the Massachusetts
Institute of Technology, in collaboration with numerous other universities around
the world (including The Australian National University) through the LIGO Science
Collaboration.

• The VIRGO Project [6] has constructed a 3 kilometre arm length detector near
Pisa, Italy. It is a collaboration between the French National Centre for Scientific
Research (CNRS1) and the Italian National Institute for Nuclear Physics (INFN2).

1Centre national de la recherche scientifique
2Istituto Nazionale di Fisica Nucleare

3

4 Introduction

• The GEO600 project [7], a collaboration between the University of Hanover, the
University of Glasgow, Cardiff University, and the Max Planck Institutes for Quan-
tum Physics and for Gravitational Physics (the Albert Einstein Institute), has con-
structed a 600 metre arm length detector near Hanover, Germany.

• The TAMA300 project [8] has constructed a 300 metre detector in Tokyo, Japan.
It is run by the Japanese National Astronomical Observatory in collaboration with
several other Japanese research institutions.

To date no detector has acquired the sensitivity believed to be required for gravitational
wave detection. The detectors most likely to eventually achieve such sensitivity have yet
to become fully operational.

1.2 Review of physical environment noise investigations

Notwithstanding the importance of physical environment noise to gravitational wave de-
tection, it is not yet a primary focus for research at the major observatories. Their chief
concern is, as it should be, to eliminate or reduce the instrumental noise generated by
the detector components as much as possible, in order to optimise the detection of grav-
itational waves. Within this context, however, some research has been undertaken into
physical environment noise. The following is a review of such research conducted at the
LIGO observatories.

Physical environment noise can be divided into two broad categories. Local physical
environment noise is said to be localised within the surroundings of a particular gravita-
tional wave detector only; it would therefore be uncorrelated between two widely displaced
detectors. The LIGO project has built two widely displaced detectors precisely for the
purpose of trying to identify local physical environment noise by cross-correlating the
detectors. Such a strategy, however, will not be immune to potential global physical en-
vironment noise sources, which would be correlated between the detectors and thereby
unidentifiable by this method.

Local physical environment noise sources can be further divided into three categories.
One category is noise originating from the natural environment, due to either geophysical
or atmospheric activity. Such noise cannot be controlled; the best that can be done is to
monitor its effect on the gravitational wave detectors. If it is a continuous effect, one can
then try to compensate for it in real time, as for example in the case of the sophisticated
isolation stacks used to isolate the interferometer mirrors from seismic vibrations. If it is a
transitory effect, one can try to develop methods for identifying and thus removing it after
the fact. In the first case, extensive studies have been conducted to characterise seismic
noise spectra and its effect on the detector instruments [9, 10]. In the second case several
studies have identified the effects of various transitory phenomena on the detectors. For
example, several earthquakes over the past four years have been clearly registered; other
more local effects such as wind gusts have, on occasions, prevented the interferometer from
achieving lock [11, 12]. Signals which appear to have been caused by lightning strikes have
been registered by magnetic field sensors at both Hanford and Livingston detectors, but
there was no correlation between them, and these signals have not been observed on other
monitoring channels [13, 14, 15].

A second category is noise originating from machinery being operated in the environs
of the detectors. Several studies have been made of these effects. For example, nearby
construction work has at times prevented the Hanford interferometer from achieving lock

1.2 Review of physical environment noise investigations 5

[12]. Tank fire on a military firing range near to the Hanford observatory was detected in
seismic and acoustic monitoring channels [16]. Road traffic noise in the area around the
Hanford observatory was subject to an extensive study, which determined the frequency
of the resultant seismic noise to be a function of velocity and the spacing of the vehicles’
axles [17, 12]. Heavy freight trains running on tracks near to the Livingston observatory
are clearly identifiable in the seismic noise spectrum [18]. Giant cooling fans at a nuclear
reactor near to the Hanford observatory were found to be the cause of 20% of the noise
in some of the optical components [19]. A substantial study was made of a proposed
wind farm project near to the Hanford observatory and its potential effect on the seismic
background noise [20].

A third category is noise sources originating within the detector itself, or within its
immediate environs. Unlike the previous two categories, this category of noise sources
can in most cases be eliminated; hence it has attracted the most thorough investigation.
The sources found to cause detectable effects on the detector gravitational wave channel
range from cooling fans [19], air compressors [16], loose nuts and bolts [21], broken wires
[19], local vehicles [16], and even the movement of people [16, 18, 15]! In addition to
identifying and attempting to remove these noise sources, experiments have been made
to deliberately generate acoustic, magnetic, radio and seismic noise in the vicinity of the
detector instruments in order to characterise their response. This process identified several
different couplings between many of the instruments [16, 22, 23].

The existence of truly global physical environment noise is a question whose answer is
vitally important to the detection of gravitational waves. While local physical environment
noise can be eliminated by cross-correlation between widely displaced detectors, global
physical environment noise cannot. Some investigations have been made into correlations
between the Hanford and Livingston detectors. Correlated transient bursts have been
detected in the signals of seismometers, magnetic field sensors and mains voltage monitors,
but further analysis suggested that they may have only been chance coincidences [13, 24,
14, 15]. Many continuous correlations were found to disappear when observed over long
timescales [25]; many other correlations that persisted have since been identified and
reduced or eliminated [26]. A few have still persisted, such as for example the corrections
to the frequencies of the U.S. power grids [27, 28]. Many of the detected correlations
may simply have been due to the similarity of some of the equipment at both sites,
thus not implying any causal connection [21]. Some investigations have also been made
into correlations between physical environment monitors at LIGO and at The Australian
National University [29].

The investigation of long and short timescale correlations between instruments, such
as were investigated above, is not usually found outside of the context of gravitational
wave detection. Most experiments in physics do not require such techniques, and areas
such as archaeology and climatology are generally more interested in simpler linear trends.
Integration of a signal over a long timescale is often required in astronomy, but any corre-
lation, such as between elements of an optical or radio telescope array, is known in advance
by the geometry of the elements. And astronomers have the benefit of being able to accu-
rately characterise their noise response instruments in the absence of the signal they are
trying to detect, a convenience also unavailable to gravitational wave detectors. The only
other project known to the author which requires long timescale searches for momentary
correlations is the Search for Extra-Terrestrial Intelligence project [30].

In the future, gravitational wave detection will become gravitational wave astronomy,
harnessing several large-scale interferometric detectors in a coherent analysis to detect the

6 Introduction

precise location of gravitational wave sources. Such an observatory would, however, be
severely restricted, perhaps even rendered impossible, by the presence of truly global phys-
ical environment noise. Thus, the search for the existence of global physical environment
noise is very important, not only for the immediate needs of gravitational wave detection,
but for the potential future of gravitational wave astronomy.

1.3 Overview of this project

In this project the author attempted to gain some understanding of physical environment
noise, in particular the important question of whether it is global as well as local in na-
ture, by investigating the correlation of widely displaced physical environment monitoring
stations. The importance of the question of global physical environment noise is such that
this project can only form an initial first step towards its answer; but it is hoped that it
will provide sufficient insight in order to form a useful base for future research.

Chapter 2 details the physical environment monitoring station at The Australian Na-
tional University, and some substantial modifications made to its original setup by the
author. Chapter 3 gives an overview of the mathematical analyses used to search for long
and short timescale correlations in the physical environment monitoring data from stations
around the world. Chapter 4 presents the software written by the author to perform the
analyses, using parallel programming techniques. Results from the completed analyses are
presented in Chapter 5, and Chapter 6 will summarise the conclusions of the project and
suggest future directions for this research.

Chapter 2

Data acquisition

Monitoring apparatus sense disturbances in their surrounding environment. By their phys-
ical construction they interact with these disturbances, producing as output a continuous
electrical signal in some way proportional to the disturbance. A data acquisition system
must be able to acquire this output, perform any necessary calibration, and write the
final digitised signal to permanent storage; and it must be able to perform this process
repeatedly and reliably.

2.1 A physical environment monitoring station

A physical environment monitoring station, originally set up by Benedict Cusack in 2002, is
located in the Gravitational Wave Research Facility attached to the Department of Physics
at The Australian National University (figure 2.1). This section details its original setup
and some subsequent modifications made by the author.

2.1.1 The original setup

The station comprises 3 single-axis seismometers to measure seismic vibrations in the
longitudinal (X), latitudinal (Y) and vertical (Z) directions; a Stefan Mayer Instruments
[31] FL3-100 3-axis fluxgate magnetic field sensor to measure magnetic disturbances in
the same directions; and a sensor custom-built in the Department of Physics to measure
fluctuations in the mains voltage supply (figure 2.1(a)). The instruments are supplied by
a ±15 volt DC power supply (figure 2.1(b)). The seismometers are sampled at 256 Hz;
the magnetic field sensor and mains voltage monitor are sampled at 2048 Hz. Acquisi-
tion is synchronised to the Global Positioning System (GPS) time standard used by all
gravitational wave observatories.

Signal outputs are fed via Bayonet Neill-Concelman (BNC) coaxial cables to BNC
jacks, the output wires from which are screwed into a National Instruments [32] CB-68LP
terminal block. Also connected to the block are a TrueTime [33] XL-DC GPS time and
frequency receiver, which is used to encode the GPS time at acquisition, and a Stanford
Research Systems [34] DS345 30 MHz synthetic function generator, which is used to locally
synchronise the GPS time receiver and the data acquisition card (figure 2.1(c)). Finally,
the inputs to the terminal block are sent to a National Instruments PC-MIO-16XE-50
data acquisition card, installed on an Apple [35] PowerMac Blue-and-White G3 (figure
2.1(d)).

The principal problem with the monitoring station hardware concerned a single instru-
ment: the vertical (Z) single-axis seismometer. This instrument was non-functional when
the author first became involved, and a subsequent review of previously acquired data

7

8 Data acquisition

(a) Inside the laboratory: the longitudinal (X)
and latitudinal (Y) seismometers, the magnetic
field sensor, the mains voltage monitor, the seis-
mometer control box and tubular electronics
units.

(b) Outside the laboratory: access hole to the
laboratory, the monitors’ power supply, the anti-
aliasing filters’ power supplies, and the anti-
aliasing filters.

(c) The Apple Macintosh, the GPS time and
frequency atop the synthetic function generator,
the terminal block connecting the monitors to
the data acquisition card.

(d) The GPS time and frequency atop the syn-
thetic function generator, the Apple Macintosh
running the LabVIEW data acquisition soft-
ware.

Figure 2.1: The physical environment monitoring station
All identifications are specified clockwise from top left-hand corner of upright image.

2.2 The data acquisition software 9

found that it had been dysfunctional for most of the history of the station. Unfortunately
it could not be repaired within the time frame of this project.

2.1.2 Additional hardware

During this project anti-aliasing filters were connected in series with the magnetic field
sensor and mains voltage monitor signal outputs (figure 2.1(b)). The filters suppress all
signals oscillations below ∼1.6 Hz and above 900 Hz by −30dB; see page 27 for a discussion
of anti-aliasing. In order to connect them the magnetic field sensor was removed and BNC
jacks were soldered to its output leads. BNC cables connected these to the inputs of the
filters, and the outputs to a further set of BNC jacks, the output wires from which were
screwed back into the terminal block. Power leads were soldered to the anti-alias filters
and connected to a separate ±15 volt power supply, consisting of 2 variable DC power
supplies both set to +15 volts and connected in anti-series. It was found preferable to
connect the filters to a separate power supply after finding that the filters, when connected
to the same power supply as the monitoring instruments, not only overloaded the power
supply but also induced severe distortion of the mains voltage monitor signal.

2.2 The data acquisition software

Data acquisition and storage is controlled using National Instruments’ LabVIEW. Lab-
VIEW is a sophisticated virtual instrumentation system that allows virtual electronic
circuits to be built and executed in software. Each virtual component is represented vi-
sually by an icon; icons are connected together with software “wires” to form a circuit.
LabVIEW includes common features of standard programming languages, such as condi-
tional and iterative execution, file input/output and a variety of integer and floating point
number, string, and array types. In addition a graphical user interface, using controls
that mimic those of real instruments, can be added to allow data to be displayed and
manipulated.

This section details the original data acquisition software and some substantial modi-
fications by the author.

2.2.1 The original setup

The original data acquisition software was written by Benedict Cusack. It acquired data at
2048 Hz, down-sampled the seismometer data to 256 Hz, interpreted the GPS time signal,
displayed the data graphically, and wrote the data using native file input/output functions
to a set of intermediate files. An FTP server, NetPresenz, made the files available to a Perl
script, written by Jon Smillie of the ANU Supercomputer Facility (ANUSF) [36], which
periodically uploaded the files to the ANUSF’s Mass Data Storage System (MDSS) [37],
a robot-driven 1,200 terabyte tape library. A further script written by Benedict Cusack
converted the intermediate files into Frame files using the FrameL library.

The Frame data format [38] is a standard agreed upon by LIGO, VIRGO and other
projects for the exchange of gravitational wave related data. It is based upon a series of
nested structures. At the top is the FrameH header structure, which contains basic infor-
mation such as the origin, GPS start time and length of all data stored within that unit,
or frame. It can also reference many other structures. The FrHistory structure contains
information on any modifications such as data conditioning; the FrDetector structure con-
tains basic information about the originating detector. There are many structures used to

10 Data acquisition

store various types of processed and simulated data, as well as meta-data on any transient
“events” detected by monitoring software. Actual experimental data is stored under the
FrRawData structure, which in turn can reference several FrAdcData structures contain-
ing the raw analogue-to-digital signal from different channels. A Frame file itself may
contain many FrameH structures. Additional information is written to the file in order
to reconstruct the structures and data correctly irrespective of computer architecture or
operating system.

The FrameL library [39] implements the Frame format in C [40]. It provides functions
to read in and write out Frame files in various ways, to iterate through the frames in a
file, to compress, tag and merge frames, and to create and extract various structures and
their associated data.

2.2.2 Porting libraries

During this project significant modifications were made to the acquisition software. It was
thought desirable to eliminate the intermediate files and additional conversion scripts, and
instead to write the data directly as Frame files, thus making it more readily available for
immediate use.

The first step was to port the FrameL library to the Macintosh operating system Ma-
cOS 9.2.2. Since FrameL is available as source code this involved only recompilation.
The compiler used was part of the Apple Macintosh Programmers’ Workshop (MPW),
a free suite of compilers, tools, scripts and reference material for writing and developing
programs on the Macintosh. Its MrC compiler was used to recompile the FrameL source
code. This was generally straightforward since the FrameL library only relies upon stan-
dard ANSI C libraries and includes additional required libraries as source code. A couple
of problems were encountered, however. In dealing with these problems it was decided not
to modify the FrameL source code itself, since such modifications would then have to be
re-implemented should the FrameL library be upgraded.

A minor problem was that the FrameL library by default implements file input/output
using UNIX system calls, which are unavailable under MacOS 9.2.2. It can also implement
the same functionality, however, using standard C library functions; this was invoked by
defining the FRIOCFILE preprocessor symbol, and creating blank files in place of some of
the UNIX system header files referenced by the FrameL library.

A more major problem was encountered later. The FrameL library follows the UNIX
convention of assuming that the names of files and directories will not contain any spaces.
This is however not the case under MacOS; for example, “MacintoshÃHD” is the de-
fault name for the Macintosh startup disk. Thus any attempt to specify the name and
path of Frame files on the startup disk using the MacOS path convention, for example
“MacintoshÃHD:LabVIEWÃ5.1:K-776999700-900.gwf”, resulted instead in all files being
written on a single file called “Macintosh” in the default directory. This problem was
eventually circumvented simply by specifying only the file names, which do not contain
spaces, and not their desired paths, which may have contained spaces. This resulted in-
stead in all files being written to an undesired directory; the solution to this latter problem
is discussed on page 18.

2.2.3 Code interfaces

The next step was to interface between the FrameL library and LabVIEW. This was
accomplished using LabVIEW code interface nodes. A LabVIEW code interface node is a

2.2 The data acquisition software 11

LabVIEW component which directly executes an external subroutine written in C using
a special interface. The subroutine can be passed arguments from LabVIEW and can
modify and return those arguments; it can also call external C functions and reference C
libraries such as FrameL. The subroutines are compiled and created using special tools
that LabVIEW provides for a number of standard compilers, including MPW.

Five code interface nodes were written. Below are summaries of their respective func-
tion and implementation, along with images of their representative LabVIEW icons1,
which show the input arguments to the code interface node on the left-hand side of the
icon, and the return arguments on the right-hand side.

The OpenFile code interface node opens a Frame file.
Its input arguments specify the desired data compression al-
gorithm (choices include combinations of a differential, zero
suppression and gzip algorithms), the compression strength
of the gzip algorithm (if invoked by the first argument), and the length of the file, ex-
pressed as the total number of seconds to be stored. It returns a raw pointer to the
internal FrameL representation of the open file. The underlying subroutine is:

Listing 2.1: The OpenFile code interface node subroutine

#include "extcode.h"

#include "hosttype.h"

#include "FrameL.h"

#include "FrVect.h"

#define frameErr 999

CIN MgErr CINRun(int32 ∗compress, uInt16 ∗gzipLevel, int32 ∗length, uInt32 ∗file) {
∗file = (uInt32) FrFileONewM("K", (int) ∗compress, NULL, (int) ∗length);

if (∗file == NULL) {
DbgPrintf("FrFileONewM failed: %s\n", FrErrorGetHistory());

return frameErr;

}
FrFileOSetGzipLevel((FrFile∗) ∗file, (unsigned short) ∗gzipLevel);

return noErr;

}
The first 4 lines direct the compiler to include header files required by LabVIEW and
FrameL. The 6th line defines the special interface required by LabVIEW. The remaining
lines open the file using the convenient FrameL function FrFileONewM, which automati-
cally generates appropriate Frame file names and will transparently open a new file once
the current file becomes full.

The OpenFrame code interface node creates a frame
within which data can be stored. Its arguments specify the
GPS time to associate with the frame and the length in sec-
onds of the data to be stored. The GPS time is specified as
the number of seconds since the Coordinated Universal Time (UTC)2 date January 6th

1The acronym “LVFL” which appears in the icons is simply an abbreviation of “LabVIEW to FrameL”.
The “.vi” appearing after the code interface node names is the file extension for LabVIEW virtual instru-
ment files.

2The acronym “UTC” is a compromise between the abbreviations of the English “Coordinated Universal
Time” and the French “Temps universel coordonné”.

12 Data acquisition

1980 00:00:00; since early 2002 GPS times specified in this way have been 9-digit numbers
beginning with 7. OpenFile returns a raw pointer to the internal FrameH structure. At
this point the frame is not associated with a particular file. The underlying subroutine

Listing 2.2: The OpenFrame code interface node subroutine

#include "extcode.h"

#include "hosttype.h"

#include "FrameL.h"

#include "FrVect.h"

#define frameErr 999

CIN MgErr CINRun(uInt32 ∗gpsStart, int32 ∗length, uInt32 ∗frame) {
FrHistory∗ history = NULL;

CStr ccomment = NULL;

creates the FrameH structure and initialises some of its members:

Listing 2.3: The OpenFrame code interface node subroutine (continued)

∗frame = (uInt32) FrameHNew("ACIGA");

if (frame == NULL) {
DbgPrintf("FrameHNew failed: %s\n", FrErrorGetHistory());

return frameErr;

}
((FrameH∗) ∗frame)−>run = 0;

((FrameH∗) ∗frame)−>dataQuality = 0;

((FrameH∗) ∗frame)−>GTimeS = (unsigned int) ∗gpsStart;

((FrameH∗) ∗frame)−>GTimeN = 0;

((FrameH∗) ∗frame)−>ULeapS = FRGPSDELTA;

((FrameH∗) ∗frame)−>dt = ∗length;

It also adds a FrHistory structure identifying the originating program:

Listing 2.4: The OpenFrame code interface node subroutine (continued)

ccomment = DSNewPtr(SPrintf(NULL, (CStr) "FrameL %0.2f <- LabVIEW CIN",

FrLibVersion(NULL)));

SPrintf(ccomment, (CStr) "FrameL %0.2f <- LabVIEW CIN", FrLibVersion(NULL));

history = FrHistoryAdd((FrameH∗) ∗frame, (char∗) ccomment);

if (history == NULL) {
DbgPrintf("FrHistoryAdd failed: %s\n", FrErrorGetHistory());

return frameErr;

}
DSDisposePtr(ccomment);

history−>time = (unsigned int) ∗gpsStart;

return noErr;

}

The AddData code interface node takes a frame and adds a channel of raw data to it,
returning the resultant frame. The data are stored as 16-bit signed integers scaled between
−32, 760 and +32, 760, which is slightly less than the maximum possible range; input
arguments specifying the expected maximum and minimum values of the data determine
the scaling. Other input arguments specify the channel name and number, the length

2.2 The data acquisition software 13

of the data in seconds, a string indicating the physical units of the data, and optionally
a down-sampling ratio (a value of 1 will perform no down-sampling). The underlying
subroutine

Listing 2.5: The AddData code interface node subroutine

#include "extcode.h"

#include "hosttype.h"

#include "FrameL.h"

#include "FrVect.h"

#define frameErr 999

#define minshort (−32760.0)

#define maxshort (+32760.0)

typedef struct {
int32 dimSize;

float32 dataS1[1];

} TD1;

typedef TD1 ∗∗TD1Hdl;

CIN MgErr CINRun(uInt32 ∗frame, LStrHandle chName, uInt32 ∗chNumber, int32

∗length, float32 ∗min, float32 ∗max, LStrHandle units, TD1Hdl dataS, uInt32

∗downSample) {
FrAdcData∗ adc = NULL;

CStr cchName = NULL, cunits = NULL;

float bias = 0, slope = 0;

double sampleRate = 0;

FRLONG nData = 0;

int i = 0, j = 0;

float32 dataS1 = 0;

creates the FrAdcData structure, automatically computing the sample rate and the linear
coefficients required to reconstruct the original scaling of the signal:

Listing 2.6: The AddData code interface node subroutine (continued)

cchName = DSNewPtr(SPrintf(NULL, (CStr) "K0:ANU-%H", chName));

SPrintf(cchName, (CStr) "K0:ANU-%H", chName);

cunits = DSNewPtr(SPrintf(NULL, (CStr) "%H", units));

SPrintf(cunits, (CStr) "%H", units);

nData = (FRLONG) floor(1.0 ∗ (∗dataS)−>dimSize / ∗downSample);

sampleRate = (1.0 ∗ nData) / (1.0 ∗ (∗length));

bias = ((∗min) ∗ maxshort − (∗max) ∗ minshort) / ((∗min) − (∗max));

slope = (minshort − maxshort) / ((∗min) − (∗max));

adc = FrAdcDataNewF((FrameH∗) ∗frame, (char∗) cchName, NULL, 0, (unsigned

int) ∗chNumber, 16, (−bias / slope), (1.0 / slope), (char∗) cunits,

sampleRate, nData);

if (adc == NULL) {
DbgPrintf("FrAdcDataNewF failed: %s\n", FrErrorGetHistory());

return frameErr;

}
DSDisposePtr(cchName);

DSDisposePtr(cunits);

14 Data acquisition

It then scales and writes the data from the input argument to the FrAdcData structure,
down-sampling by the given ratio by simply averaging together blocks of data points:

Listing 2.7: The AddData code interface node subroutine (continued)

for (i = 0; i < nData; i++) {
dataS1 = 0;

for (j = 0; j < ∗downSample; j++) {
dataS1 = dataS1 + (∗dataS)−>dataS1[((∗downSample) ∗ i) + j];

}
dataS1 = dataS1 / ∗downSample;

dataS1 = (slope ∗ dataS1) + bias;

adc−>data−>dataS[i] = (short) dataS1;

}
return noErr;

}
The above down-sampling algorithm is not very sophisticated: ideally it should incor-

porate anti-alias filtering to prevent the signal from being corrupted by higher-frequency
content. It is meant only to be used to down-sample signals where the highest frequencies
are much lower than the Nyquist frequency, so that higher-frequency content can safely
be assumed to be zero (see the discussion on page 27); it is convenient to perform the
down-sampling immediately to reduce the amount of data needing to be handled.

The CloseFrame code interface node takes the given frame,
writes it to the given Frame file and closes the frame. This may
also close the file internally, if it was full, and open a new file.
This is accomplished by the underlying subroutine:

Listing 2.8: The CloseFrame code interface node subroutine

#include "extcode.h"

#include "hosttype.h"

#include "FrameL.h"

#include "FrVect.h"

#define frameErr 999

CIN MgErr CINRun(uInt32 ∗file, uInt32 ∗frame) {
if (FrameWrite((FrameH∗) ∗frame, (FrFile∗) ∗file) != NULL) {

DbgPrintf("FrameWrite failed: %s\n", FrErrorGetHistory());

return frameErr;

}
FrameFree((FrameH∗) ∗frame);

∗frame = NULL;

return noErr;

}

The CloseFile code interface node closes a Frame file. Its underlying
subroutine is:

Listing 2.9: The CloseFile code interface node subroutine

#include "extcode.h"

2.2 The data acquisition software 15

#include "hosttype.h"

#include "FrameL.h"

#include "FrVect.h"

#define frameErr 999

CIN MgErr CINRun(uInt32 ∗file) {
FrFileOEnd((FrFile∗) ∗file);

∗file = NULL;

return noErr;

}

2.2.4 Virtual circuitry

LabVIEW’s visual interface makes it easy to write simple programs quickly, and it provides
a wealth of built-in functionality targeted at data acquisition and experimental control.
Programming more complicated behaviour can however lead to difficulties. For instance,
LabVIEW executes its programs by checking for dependencies between components, as
indicated by wires, and executing them as required. This means that the precise order
of execution of components is not always self-evident, and this can lead to unexpected
and undesired behaviour unless given greater attention. The visual nature of LabVIEW
programming can also sometimes be a hindrance, as an unstructured layout of compo-
nents, while not affecting the program’s execution, can make understanding behaviour
and effecting modifications more difficult.

The code interface nodes were used to substantially modify the original LabVIEW
data acquisition software. In doing so it was found to be necessary to compile the FrameL
library as a shared library, as opposed to a static library. A static library is simply a
collection of pre-compiled source code which is embedded into programs at compile time;
each program therefore having its own distinct copy of the library. However the subroutines
perform actions which must be recognised by every other subroutine; for example, opening
a Frame file creates an internal structure in the FrameL library which must be available to
every other subroutine, if they are to refer to the same open file. A shared library, on the
other hand, is an independent code object which is linked to programs at compile time;
each program then accesses the same copy of the library when executed, producing the
desired bahaviour.

Images of the LabVIEW data acquisition software diagram and front panel are shown
in figures 2.2 and 2.3 respectively. It will aid the understanding of LabVIEW software
diagrams to be familiar with a few basic components:

• Components are joined by wires representing e.g. integers , booleans
and arrays of single precision real numbers .

• Variables are set by controls on the front panel. They can represent 16-bit unsigned
integers and booleans ; their icons usually have thick borders.

• Variables can be displayed on the front panel by indicators. They can represent 32-
bit signed integers , booleans , strings and floating point number
arrays ; their icons usually have thin borders.

• Constants can represent numbers , booleans and strings .

16 Data acquisition

B

N

R

Z
YX

V
U

S T

W

Q

G

E

C

H I J

L

A

K

O

M

A

F

D

P

Figure 2.2: The LabVIEW data acquisition software diagram

• Operators can perform a variety of numeric , logical and relational
operations.

• Case structures make decisions based upon boolean or integer

input. Data can also be passed through the sides of the case structure .

• Loop structures increment a counter until the test becomes false.

Data passed through the sides of the loop structure are read on the first iteration;
data can also be passed from iteration to iteration using shift registers .

• Additional properties of controls and indicators can be read and modified: .

The upper half of the diagram (figure 2.2) is mostly concerned with acquiring, writing
and storing data. Controls on the front panel (A, figures 2.2 and 2.2) specify the hardware
device to acquire data from (in this case, a number representing the data acquisition card),
the rate at which to acquire data, the size of a buffer to store acquired data, any data
compression algorithms to use, and the number of seconds to store per frame and per
Frame file. These settings are read at startup into a large infinite loop. A hardware
acquisition component (B, figure 2.2) acquires data from the data acquisition card and
produces a table, the columns of which contain data from the three seismometers, the

2.2 The data acquisition software 17

D

A

S

V

G
M

U

Y

O

Q

Figure 2.3: The LabVIEW data acquisition software front panel

three axes of the magnetic field sensor, the mains voltage monitor and from the GPS time
receiver. The table is sent to an inner loop, where an array component (C) extracts each
column in turn and sends then to a graph control on the front panel (D, figures 2.2 and
2.3) and to an AddData code interface node (E, figure 2.2).

The table column of the GPS time receiver is extracted by another array component
and sent to an IRIG-B interpreter (I). This component interprets the waveform produced
by the GPS time receiver and returns a GPS time, specified as the number of seconds since
UTC January 6th 1980 00:00:00. Unfortunately the GPS time thus produced was found
to be unstable, having a tendency to jump by random intervals intermittently over a long
period of time, and occasionally produced a completely mangled signal when starting the
data acquisition software. The reason for this instability is unknown but is probably some
combination of loss of quality in the reception of the GPS signal via satellite, deficiencies
in the GPS time receiver itself, and lack of robustness of the interpreter. This problem
was circumvented by using the GPS time produced by the interpreter only on the first
iteration, as decided by H; thereafter the time standard is maintained effectively by the
synthetic function generator, whose manufacturer specifies an accuracy of 5 parts per
million at 20–30 ◦C, degenerating at 5 parts per million per year [34]. The GPS time
being recorded is displayed on the front control panel both as a raw integer (M, figures
2.2 and 2.3) and as a human-readable date (G); it also drives a pair of retro blinking lights
(Q).

The GPS time is sent to an OpenFrame code interface node (J, figure 2.2) to create
a frame, which is then sent via a shift register to the inner loop, where data is iteratively
added to the frame by E, using the parameters supplied by F. Frame files are opened as
required by K and are sent with the completed frame to L, where the frame is written to
the Frame file. The Frame file is then closed as required by N.

The lower half of the diagram is mostly concerned with the user interface and control of
data acquisition. One made made of the GPS time stamping, imposed by the components
R, was the the starting GPS time for the initial frame in a Frame file, i.e. the starting
GPS time for the Frame file, must be a multiple of the total length in seconds of the Frame

18 Data acquisition

file. This will mean that, for example, Frame files of 15-minute lengths must start either
on the hour or at 15, 30 or 45 minutes past it. While not important for the data itself,
this condition greatly facilitates the organisation and packaging of very large numbers of
Frame files.

Two key controls are the boolean switches S and V (figures 2.2 and 2.3). The former
specifies whether or not the software should write acquired data to files; the latter specifies
whether the software should write files continually or only write a finite number of files.
In this latter case, the number of files to acquire and write is specified by U, and the
components X (figure 2.2) calculate the number of seconds of data acquired, and display
the number of seconds remaining to be acquired (Y, figures 2.2 and 2.3). When all files
have been acquired, the software switches itself off through the control Z (figure 2.2).

The values of the switches S and V are maintained in shift registers, which are only
allowed to take the switches’ current values when the output of R is true; the indicator
O shows the time to elapse before the switches’ current values will actually take effect.
When this does happen, the logical operator T controls whether data is written to files:
it controls the boolean case structures surrounding K, J, E, L and N, and it controls the
visibility of some controls and indicators (W).

Despite much effort to produce a reasonably sophisticated, flexible, and usable piece
of software, at least one deficiency remains. It was discovered, some months after the
software was thought to be complete, that the functionality to create frames of lengths
not equal to 1 second had not been implemented correctly, although this functionality was
never actually used. Nevertheless, the addition of the ability to write Frame files directly
represents a substantial practical improvement to the data acquisition software.

2.2.5 Uploading files

Files acquired and written by the data acquisition software, requiring no further processing,
are uploaded to the Mass Data Storage System using a freeware Macintosh FTP client
called FTupperWare [41]. This software simply monitors a folder specified by the user,
and uploads any files placed in that folder to a specified FTP server. The only remaining
problem was to move the Frame files from the LabVIEW directory (where they were forced
to be written due to the problem, discussed on page 10, concerning using path names with
the FrameL library) to the FTupperWare hot folder. This was accomplished using a short
AppleScript:

Listing 2.10: The MoveFiles AppleScript

tell application ”Finder”

delete (every file of folder ”LabVIEW 5.1” of startup disk whose name contains

”.gwf” and name contains ” OPEN”)

repeat

move (every file of folder ”LabVIEW 5.1” of startup disk whose name contains

”.gwf” and name does not contain ” OPEN”) to folder ”Hot Folder”

of folder ”FTupperWare” of startup disk

end repeat

end tell

Files which are incomplete are distinguished by the ” OPEN” suffix. After deleting
any old incomplete files, the script moves all completed Frame files to the FTupperWare
hot folder.

2.3 The data storage system 19

2.3 The data storage system

Data from the physical environment monitoring station has been stored on the Mass Data
Storage System since 2002, although the record is far from continuous (see figure 2.4).
This section details the original format of the data and subsequent reprocessing.

2.3.1 The original format

The data was originally stored in 28,246 uncompressed Frame files with an average size
of 13 megabytes, each file containing 1000 frames of length 1 second. In total the files
consumed 345 gigabytes.

22/02/02 15/03/02 05/04/02 26/04/02 17/05/02 07/06/02 28/06/02

15/07/02 05/08/02 26/08/02 16/09/02 07/10/02 28/10/02 18/11/02

29/11/02 20/12/02 10/01/03 31/01/03 21/02/03 14/03/03 04/04/03

15/04/03 06/05/03 27/05/03 17/06/03 08/07/03 29/07/03 19/08/03

29/05/04 19/06/04 10/07/04 31/07/04 21/08/04 11/09/04 02/10/04

Figure 2.4: Timeline of the physical environment monitoring station data; the shaded areas
indicate the times for which data exists in the Mass Data Storage System.

2.3.2 Reprocessing

Each Frame file was compressed using the FrameL library’s internal compression algo-
rithms. Some modifications were made to the channel names to make them compliant
with the formal naming standard [38]. The Frame files were then packaged into .tar.gz

compressed archive files, such that each archive contained continuous data. The result
was 1,658 files with an average size of 127 megabytes, consuming a total of 205 gigabytes.
Although in theory the data now consumes 40% less storage space, due to the nature of

20 Data acquisition

tape-based file systems that space is likely to be unrecoverable. Nevertheless the vastly
reduced number of files makes the data set much easier to manage. Due to the large
size of the data set, scripts were written to download the files from the storage system to
an attached scratch disk, perform the reprocessing and then upload the files back to the
storage system, a process which took several days to complete.

2.4 Data acquisition in practice

This section recounts the practicalities of operating the local physical environment moni-
toring station, and of acquiring data from the US LIGO Observatory and the French-Italian
VIRGO Project.

2.4.1 Locally

The physical environment monitoring station was brought into operation, for the first time
after the modifications described in sections 2.1 and 2.2, on July 22nd 2004 (see figure 2.4).
It operated until August 4th, when it was shut down in order to disconnect and send the
faulty vertical (Z) seismometer for repair. The station was restarted on August 6th, and
was operational until crashing on August 27th. It was found that the freeware FTP client
software FTupperWare was for some reason no longer uploading the files being moved into
its hot folder, which eventually caused the acquisition software to consume all 6 gigabytes
of the Macintosh’s hard drive. At the time it was thought that this may have been caused
by a momentary network outage or the Mass Data Storage System temporarily being
unavailable.

The station was restarted on September 2nd, but subsequently crashed again on
September 18th, in very similar circumstances to August 27th. It is now believed that the
crashes were caused by the Macintosh operating system MacOS 9.2.2 and its lack of pre-
emptive multi-tasking, a feature of most modern operating systems which allows multiple
running programs to more equally share processor time. It is likely that FTupperWare
was effectively being suspended by the processor-intensive data acquisition software, and
was therefore unable to upload the files. It was also discovered that the data acquired
during this period had not been properly time-stamped, for reasons unknown, and was
thus deleted. The station was restarted again on September 29th and operated without
further incident until October 12th and the conclusion of data acquisition for this project.

While the station’s modified LabVIEW data acquisition software performed well under
the circumstances, the station will be moved onto a Windows PC in the near future.

2.4.2 From LIGO

Data was acquired from LIGO using the LIGOtools software utility package [42]. The
utility getFrames was used to acquire data, stored on the central server at the California
Institute of Technology, from the LIGO S2 Science Run, which was in progress from
February 9th to April 14th 2003.

More recent data was acquired in real time directly from the observatories at Hanford
and Livingston. This acquisition was set up by Antony Searle of the Department of
Physics, ANU, using a small C++ [43] program which, when executed, would instruct
getFrames to acquire 1 hour of data, starting from 24 hours in the past. The program was
automatically executed every hour using a UNIX cron job.

2.4 Data acquisition in practice 21

2.4.3 From VIRGO

Acquisition of recent data from VIRGO was carried out on our behalf by Benoit Mours of
the Laboratoire d’Annecy-le-vieux de Physique des Particules, France, who packaged the
data required into Frame files and uploaded them to a local server.

Chapter 3

Data analyses

The theory of data analyses is for the most part heuristic in character. The importance of
the derivation and mathematical properties of an analysis are usually secondary; of primary
importance is whether the analysis was successful in carrying out the tasks required of
it, and in particular whether it found anything of physical interest. The consequence is
that it is often the case that there is no generally agreed upon method of performing
certain tasks, rather a sometimes overwhelming multitude of different ideas, each with
their unique features and flaws. One is free to experiment with these ideas, however, and
with one’s own, in the hope that the particular combination arrived at might show a new
way forward.

This chapter presents the data analyses that will be utilised in analysing the data
from the physical environment monitors. Some analyses were chosen because they are
very widely used, and therefore their implementation and manner of interpretation are
well established. Others were cobbled together from various ideas where there were no
well-established procedures. A few were chosen simply because, in the author’s opinion,
they were interesting and appeared worthy of further investigation.

3.1 Long timescale analyses

This section focuses on analyses designed to find features that might present themselves
over long periods of time.

3.1.1 The autocorrelation

The autocorrelation A(τ) of a time series X measures to what extent oscillations in X at
time t are reproduced at time t + τ , over the duration of the time series. It is useful for
finding persistent recurring features of the time series. For a continuous time series X(t),
the autocorrelation is

A[X(t)](τ) =
∫ ∞

−∞
X(t)X(t + τ) dt . (3.1)

For a discrete time series Xt of length n, the autocorrelation is

A[Xt]τ =
n−τ−1∑

t=0

XtXt+τ , (3.2)

23

24 Data analyses

where

A[Xt]−τ = A[Xt]τ . (3.3)

From numerical experimentation using MATLAB, the following observations were made.
An autocorrelation of a random time series was found to be flat, apart from a large spike
at τ = 0 where the series exactly matches itself. An autocorrelation of a time series where
oscillations reproduced themselves in the short term were found to have a few oscillations
either side of the central peak before reducing to a flat background. Autocorrelations of
periodic time series were found to be periodic with the same period.

3.1.2 The correlation

The correlation C(τ) of two time series X and Y measures to what extent oscillations in
X at time t are reproduced in Y at time t + τ , over the duration of the time series. It
is useful for finding persistent and possibly causally related features present in both time
series. For continuous time series X(t) and Y (t) the correlation is

C[X(t), Y (t)](τ) =
∫ ∞

−∞
X(t)Y (t + τ) dt . (3.4)

For discrete time series Xt and Yt of length n, the correlation is

C[Xt, Yt]τ =
{n−τ−1, τ≥0

n−1 , τ<0}∑

t={0, τ≥0
τ, τ<0}

XtYt+τ . (3.5)

Numerical experimentation within Matlab resulted in some observations. Correlations
of two random time series were found to be random. Correlations of two time series which
were both polynomials of a single random time series were found to be flat with a sharp
central peak. Correlations of two sinusoidal time series were found to be periodic, but
also asymmetric in the amplitude and period of the oscillations about the τ = 0 axis,
the degree of asymmetry being proportional to the difference between the periods of the
sinusoidal time series. Two time series where a distinct oscillation, appearing in X at time
t, was reproduced in Y at time t + τ , which might signify a causal influence propagating
from X to Y , produced an asymmetric correlation, with a feature distinguishable from
the rest of the correlation appearing at C(−τ) but not at C(τ).

3.1.3 The power spectrum

A power spectrum P(f) of a time series X measures the relative strength of those os-
cillations in X that are of frequency f . There are several different ways of defining a
power spectrum [44]; by far the most common one uses the Fourier transform. A Fourier
transform is a relation F between two (in general) complex functions X(t) and Φ(f) such
that

Φ(f) = F [X(t)](f) =
∫ ∞

−∞
X(t)e−2πift dt (3.6)

3.1 Long timescale analyses 25

and

X(t) = F−1[Φ(f)](t) =
∫ ∞

−∞
Φ(f)e+2πift df . (3.7)

There are many slightly different definitions of the transform. They differ from each other
in details such as, for example: the names t and f are often replaced by x and p, and f is
often replaced by ω = 2πf ; the factor of 2π in the exponent may be dropped, and there
may exist a normalising factor of 2π or

√
2π; and the + and − signs in the exponents

may be interchanged. These differences reflect the wide use of the Fourier transform
in pure and applied mathematics, classical and modern physics, engineering, and signal
processing [45], the last of which uses the above convention of equations 3.6 and 3.7. The
power spectrum is defined to be the complex modulus squared of the Fourier transform of
the time series:

P[X(t)](f) = |Φ(f)|2 =
∣∣∣∣
∫ ∞

−∞
X(t)e−2πift dt

∣∣∣∣
2

. (3.8)

In the case of a real time series X, the Fourier transform and the power spectrum have
some important properties. We observe that

Φ(f) =
∫ ∞

−∞
X(t)e−2πift dt (3.9)

=
∫ ∞

−∞
X(t)∗e−2πift dt (3.10)

=
[∫ ∞

−∞
X(t)e−2πi(−f)t dt

]∗
(3.11)

= Φ(−f)∗ . (3.12)

This reflective symmetry implies that only half (e.g. f > 0) of the Fourier transform is
storing unique information, since the other half (i.e. f < 0) is merely its mirror image. It
follows that

P(f) = |Φ(f)|2 = Φ(f)∗Φ(f) = Φ(−f)Φ(−f)∗ = P(−f) . (3.13)

This implies that the Fourier power spectrum does not distinguish between f and −f . This
phenomenon is referred to as aliasing; f and −f are said to be aliases of each other [46].

For a discrete time series Xt of length n, the discrete Fourier transform may be derived
from the continuous transform in two steps. The first step replaces continuous time with
discrete time points spaced at intervals of width ∆:

t → t∆ , (3.14)
∫ ∞

−∞
X(t)e−2πift dt →

n−1∑

t=0

Xte
−2πift∆ ∆ , (3.15)

∫ ∞

−∞
Φ(f)e+2πift df →

∫ ∞

−∞
Φ(f)e+2πift∆ df . (3.16)

This first step has the very important consequence of introducing additional aliasing into

26 Data analyses

the discrete Fourier transform and power spectrum. We observe that

Φ(f +
1
∆

) =
n−1∑

t=0

Xte
−2πi(f+ 1

∆
)t∆ ∆ (3.17)

=
n−1∑

t=0

Xte
−2πi(ft∆+t) ∆ (3.18)

=
n−1∑

t=0

Xte
−2πift∆e−2πit ∆ (3.19)

=
n−1∑

t=0

Xte
−2πift∆ ∆ (3.20)

= Φ(f) . (3.21)

This periodicity on its own would imply that any segment of length 1/∆ will store all the
unique information present in the discrete Fourier transform. The addition of the reflective
aliasing described above, however, reduces this length by a factor of 2; the segment must
also be symmetric about the f = 0 axis. This implies that the segment [0, 1/2∆] will store
all the unique information present in the discrete Fourier transform, and hence also in the
power spectrum. Therefore, the maximum possible frequency representable by a discrete
Fourier transform is one half of the sampling frequency: 1

2∆ . This is the sampling theorem;
1/2∆ is known as the Nyquist frequency [47].

The second and final step in the derivation of the discrete Fourier transform from
the continuous transform replaces continuous frequency with n discrete frequency points
spaced at 1/n∆ intervals between 0 and 1/∆:

f → f

n∆
, (3.22)

n−1∑

t=0

Xte
−2πift∆ ∆ →

n−1∑

t=0

Xte
−2πi f

n
t ∆ , (3.23)

∫ ∞

−∞
Φ(f)e+2πift∆ df →

n−1∑

f=0

Φfe+2πi f
n

t 1
n∆

. (3.24)

The factor of ∆ can be cancelled out, leading to the complete definition of the discrete
Fourier transform:

Φf = F [Xt]f =
n−1∑

t=0

Xte
−2πift/n , (3.25)

Xt = F−1[Φf]t =
1
n

n−1∑

f=0

Φfe+2πift/n . (3.26)

The normalising factor 1/n is sometimes discarded [48]. The discrete power spectrum is
defined to be:

P[Xt]f = |Φf |2 =

∣∣∣∣∣
n−1∑

t=0

Xte
−2πift/n

∣∣∣∣∣

2

. (3.27)

A practical consequence of changing from continuous to discrete frequency is that f

3.1 Long timescale analyses 27

now represents not a single frequency but a bin of frequencies centred on f . It turns
out that these bins are not sharply delineated from each other, but instead leak into
each other to a significant extent. This results in the power spectrum estimation of the
power at frequency f being corrupted by “leakage” from power estimates at neighbouring
frequencies. This effect can be reduced by pre-multiplying the time series by a window
function. The ideal window function should have a narrow peak in the centre of the time
series but fall off rapidly to zero at either side, but in fact these two properties are mutually
exclusive. Real window functions are always one particular trade-off between these two
properties [44].

It is important to realise that, regardless of the frequency content of the time series
X, the power spectrum can only compute the power of frequencies up to one half of the
sampling frequency. Any time series content at higher frequencies will be aliased into the
power spectrum, giving a spurious estimation of the power at some lower frequency [44].
To avoid this it is important to select a sampling frequency that adequately covers the
range of frequencies expected to appear in the time series. Additionally, anti-aliasing filters
can be used (see page 9) to filter out any higher frequency content prior to computing the
power spectrum.

When computing the power spectrum of a time series over a long period of time, it
is better to break the time series into smaller blocks, compute the power spectrum Pb

f of
each block, then add them together to arrive at an averaged power spectrum P̃f =

∑
b Pb

f .
This approach can still result in good frequency resolution, while providing much lower
variance in the power estimates and at lower computational cost. In some cases better
results can also be obtained by partially overlapping the blocks [44].

3.1.4 The cross spectrum and the coherence

The cross spectrum X of two time series X and Y measures the combined relative strength
and the phase difference of oscillations in X and Y that are of frequency f . In the context
of Fourier transforms it is defined to be

X [X(t), Y (t)](f) = F [X(t)](f)∗F [Y (t)](f) . (3.28)

The cross spectrum is, in general, complex-valued. It is related to the power spectrum by

X [X(t), X(t)](f) = P[X(t)](f) . (3.29)

It is also related to the correlation by the correlation theorem [44]:

X [X(t), Y (t)](f) = F [C[X(t), Y (t)](τ)](f) . (3.30)

A more useful quantity derived from the cross spectrum is the coherence H, defined for
two time series X and Y as the complex modulus squared of the averaged cross spectrum
of X and Y divided by the averaged power spectra of X and of Y :

H[X(t), Y (t)](f) =

∣∣∣X̃ [X(t), Y (t)](f)
∣∣∣
2

P̃[X(t)](f) P̃[Y (t)](f)
(3.31)

=

∣∣∣∑
bX b[X(t), Y (t)](f)

∣∣∣
2

∑
b Pb[X(t)](f)

∑
b Pb[Y (t)](f)

, (3.32)

28 Data analyses

where averaging is performed over small blocks of the time series. The coherence is inher-
ently an averaged quantity; it cannot be computed using non-averaged quantities:

Hnon-averaged =

∣∣∣X [X(t), Y (t)](f)
∣∣∣
2

P[X(t)](f) P[Y (t)](f)
(3.33)

=

∣∣∣F [X(t)](f)∗F [Y (t)](f)
∣∣∣
2

P[X(t)](f) P[Y (t)](f)
(3.34)

=

(
F [X(t)](f)∗F [Y (t)](f)

)∗(
F [X(t)](f)∗F [Y (t)](f)

)

F [X(t)](f)∗ F [X(t)](f) F [Y (t)](f)∗ F [Y (t)](f)
(3.35)

≡ 1 , (3.36)

whereas

H =

∣∣∣X̃ [X(t), Y (t)](f)
∣∣∣
2

P̃[X(t)](f) P̃[Y (t)](f)
(3.37)

=

∣∣∣X 1[X(t), Y (t)](f) + X 2[X(t), Y (t)](f) + . . .
∣∣∣
2

(
P1[X(t)](f) + P2[X(t)](f) + . . .

) (
P1[Y (t)](f) + P2[Y (t)](f) + . . .

(3.38)

is a function between 0 and 1. A value of 0 indicates no dependence between X and Y ,
while a value of 1 would imply complete dependence [46]. In general, the significance of a
particular peak in a graph of coherence should only be judged relative to the noise floor.

3.2 Short timescale analyses

This section focuses on analyses designed to search for transient events that would only
be present over very short timescales.

3.2.1 What is a transient event?

In order to proceed we must first define what is meant by a transient event. Unfortunately,
this is in fact the fundamental problem with such analyses. While long timescale correla-
tions are, by their very nature, stable over a long period of time, and hence more easily
defined and identified, short timescale events are much more difficult to characterise. Their
definition may therefore conceivably encompass any number of transitory phenomena that
may or may not be significant.

The precise definition of significance in itself brings further difficulties. The conven-
tional approach is to devise an algorithm to compute a numerical test statistic at various
times, then impose a threshold. Only computed values of the test statistic greater than
the threshold are considered to imply significant events. This requires substantial previ-
ous experience of the data, however, in order to set an appropriate threshold, which may
even then exclude events which should have in fact been considered significant. The only
conclusion is that the notion of significance is too vague a concept to be encoded in a gen-
eral algorithm. The best that can be achieved is to calculate multiple test statistics, each
encoding one possible way in which a transient event might be distinguished. Ultimately

3.2 Short timescale analyses 29

it is the observing scientists who must interpret the results of their analyses and decide
whether or not they constitute anything significant.

The remaining section details the development of the transient event search algorithm
and the statistical tests that were used.

3.2.2 The power spectrogram and the cross spectrogram

The power spectrogram SP of a time series X attempts to estimate, using the power
spectrum, the instantaneous power at time t of oscillations in X that are of frequency f .
Technically the notion of instantaneous power is undefined, since the power spectrum of
a time series can only be computed after observing the time series for a non-zero interval
time, thereby introducing uncertainty as to when exactly during that time interval the
time series possessed the computed power spectrum. Therefore a more accurate definition
is that the power spectrogram computes the power spectrum of a window located about
time t. The size and nature of this window are determined by its function W , which is
translated along the time series X as a function of t. The complete definition is:

SP [X(τ)](f, t) = P[X(τ)W (τ − t)](f) . (3.39)

The cross spectrum SX generalises the power spectrogram to two time series X and Y :

SX [X(τ), Y (τ)](f, t) = X [X(τ)W (τ − t), Y (τ)W (τ − t)](f) . (3.40)

The discrete forms of the spectrograms are formulated analogously:

SP [Xτ]f,t = P[XτWτ−t]f , (3.41)

SX [Xτ , Yτ]f,t = X [XτWτ−t, YτWτ−t]f . (3.42)

3.2.3 The search algorithm

The search algorithm takes as its basic premise that a transient event is any region of
a spectrogram which is significantly different from its surroundings. It uses a discrete
spectrogram Sf,t together with a square window function of length T :

Wt =

{
1, 0 ≤ t < T ;

0, otherwise .
(3.43)

The discrete spectrogram is divided by frequency and by time into bins of dimensions
F, T , originating at the point (f, t) and containing an equal number of points:

Bf,t =
{Sf ′,t′

∣∣ 0 ≤ f ′ − f < F, 0 ≤ t′ − t < T
}

. (3.44)

Each bin Bf,t is then compared with bins displaced forward and backward in time using a
test statistic T

(
Bf,t,Bf,t+dt

)
, in order to ascertain how, according to this statistical test,

each bin differs from its surroundings. The bins are compared up to a maximum search

30 Data analyses

range dt = ±dtmax, excluding dt = 0:

T
(
Bf,t,Bf,t−dtmax

)
,

T
(
Bf,t,Bf,t−dtmax+1

)
,

. . .

T
(
Bf,t,Bf,t−1

)
,

T
(
Bf,t,Bf,t+1

)
,

. . .

T
(
Bf,t,Bf,t+dtmax−1

)
,

T
(
Bf,t,Bf,t+dtmax

)
.

(3.45)

A final event statistic Ef,t is computed for the bin Bf,t by taking a geometric average of
the above comparisons:

Ef,t =

√√√√
dtmax∑

dt=1

(
T

(
Bf,t,Bf,t−dt

)2 + T
(
Bf,t,Bf,t+dt

)2
)

. (3.46)

The event statistics are then sorted into descending numerical order, with the algorithm
returning an appropriate proportion of the highest values.

Five statistical tests were selected for use by the search algorithm for this project, and
are described in the following sections. They were chosen to try to represent a range of
different approaches to testing for differences between two populations of numbers. It was
not considered as to whether or not the assumptions made by the statistical tests were
satisfied by the data supplied to them; ultimately only the findings of the search algorithm,
and whether or not they could be deemed significant was considered important. Indeed, if a
particular test statistic consistently found transient features that were deemed significant,
this might indicate that the data was indeed satisfying the assumptions of the test statistic,
in which case a valuable insight would be gained into the nature of the data.

3.2.4 The difference-in-mean test

This statistical test is one of the simplest tests one could devise for testing for a possible
difference between two populations. It simply computes the difference in the mean of the
two bins:

Tdmean

(
B1,B2

)
=

∣∣∣mean{B1} −mean{B2}
∣∣∣ . (3.47)

It was included principally for comparison against the more complicated statistical tests,
to see whether or not they were performing better than a more simplistic test.

3.2.5 The Student paired t-test

This is one of the most commonly employed statistical tests. The paired form calculates the
significance of the difference between the means of two populations, making no assumptions
about their variances, but assuming the populations to be normally distributed [49, 50].

3.2 Short timescale analyses 31

It is computed thus:

Tt-t

(
B1,B2

)
=

mean{B1} −mean{B2}√∑n−1
i=0

((
B1

i −mean{B1})− (
B2

i −mean{B2})
) . (3.48)

Unlike the Student t-test, the following three statistical tests make no assumptions
about the populations being tested; they are distribution-free [51]. A distinguishing fea-
ture of distribution-free statistical tests is that they are mathematically much simpler
than their distribution-dependent analogues, relying only on basic probability theory and
combinatorics.

3.2.6 The Wilcoxon signed rank test

This is one of many statistical tests based upon the method of randomisation. It tests
whether the measured data set

{
B1

i −B2
i

∣∣ 0 ≤ i < n
}

was significantly more likely to have
occurred than any data set obtained from the measured data set by randomly negating
some or all of its members [51]. It is computed by taking the data set

{
B1

i−B2
i

∣∣ 0 ≤ i < n
}
,

sorting them, then adding together the ranks of those values either greater or less than
zero, producing the two test statistics:

W+ =
∑{

j
∣∣∣ sorted

{
B1

i −B2
i

∣∣ 0 ≤ i < n
}

j
> 0

}
, (3.49)

W− =
∑{

j
∣∣∣ sorted

{
B1

i −B2
i

∣∣ 0 ≤ i < n
}

j
< 0

}
. (3.50)

The test statistic used was the maximum (i.e. the most significant) of W+ and W−:

TW± = max
{
W+,W−

}
. (3.51)

3.2.7 The Kolmogorov-Smirnov test

This tests for any general overall difference between two populations [49]. It is computed
by first calculating the cumulative distribution functions

Dk(x) =
∑{

Bk
i

∣∣ i ≤ x
}

, (3.52)

then finding the absolute maximum difference between them:

TK-S =
∣∣∣max

{
D1(x)−D2(x)

∣∣ 0 ≤ x ≤ n
}∣∣∣ . (3.53)

3.2.8 The Wilcoxon-Mann-Whitney rank sum test

This is another test of very general differences between two populations [49]. It is computed
by pooling the two populations B1 and B2 into a single population B, sorting it, and then
counting the number of times an element of B1 precedes an element of B2 [51]:

U =
n−1∑
i,j=0
i<j

{
1, B1

i < B2
j ;

0, otherwise .
(3.54)

32 Data analyses

The test statistic used was the absolute deviation of U from its expectation value:

TWMW =
∣∣∣E[U]− U

∣∣∣ =

∣∣∣∣∣∣∣
n(n + 1)

4
−

n−1∑
i,j=0
i<j

{
1, B1

i < B2
j ;

0, otherwise .

∣∣∣∣∣∣∣
(3.55)

Chapter 4

Data processing

A physical environment monitoring station, such as that described in section 2.1, outputs
approximately 9 thousand data points each second it is operational. In a minute it will
output 537 thousand data points; in a day, 774 million. Considering several physical
environment stations over a period of weeks, the total output easily amounts to billions
of data points. Performing the above-described analyses on this amount of data using
a single computer within a reasonable time frame would be impossible; instead we must
utilise the power of several computers, executing in parallel.

4.1 Some technologies

This section details some technologies in computer programming, in particular program-
ming for parallel computers. They will be later used in the implementation of a parallel
data analysis program.

4.1.1 Parallel programs

A process is an abstraction representing a single unit of an executing computer program.
There are several different paradigms for how multiple processes can work in parallel.
They differ from each other in details such as whether the parallel behaviour is defined
implicitly by the compiler or explicitly by the programmer, whether processes have ac-
cess to shared memory, whether processes can access each other’s local memory, whether
processes send messages between each other, and whether communication requires all pro-
cesses to explicitly participate. Many of these paradigms were motivated by a particular
computer architecture, such as e.g. vector-parallel processors [52].

Parallel programs generally refer to those in which the same program is executed on
multiple processors, each generating a single process. The processes, initially identical, are
able to uniquely distinguish themselves and thus modify their behaviour to perform differ-
ent tasks. The processes may also be able to access shared memory and/or communicate
by sending messages between each other.

4.1.2 Message-passing

In the message-passing parallel computing paradigm, processes have access only to their
local memory, but communicate with each other by sending and receiving messages over
a network. Both the sending and receiving process must explicitly participate; a process
cannot send a message until the receiving process has also asked to receive the message.
The message-passing paradigm does not specify the specific architecture of the network,

33

34 Data processing

which could be the internal architecture of a supercomputer or cables connecting clus-
ters of low-cost PCs. This makes message-passing a universal paradigm which can be
implemented for, and allow programs written for it to run on, a wide range of high-
performance and low-cost parallel computers. Another specific advantage is that it lends
itself to compiler- and hardware-optimised memory management, which for most modern
computer architectures is the key to high performance [52].

4.1.3 MPI

The Message-Passing Interface (MPI) [53] is the industry standard for implementations of
the message-passing paradigm. The standard defines a number of key concepts [52, 54]:

• A communicator is a collection of processes which may communicate with each
other. Each process is assigned a unique integer, called its rank, which it may use to
distinguish itself from other processes in the communicator. A process may belong
to more than one communicator; this allows processes to be partitioned into groups
for the purpose of performing specific tasks.

• Message data are defined by the parameters (address, count, datatype). The datatype
parameter specifies the type of data being sent; it may be a type elementary to the
programming language being used, or it may be a custom type constructed by the
programmer from within MPI. Specifying the data type independently means that
an MPI implementation can ensure that the data is sent correctly irrespective of
computer architecture or programming language differences. The parameters count
and address are the number of instances of the data type being sent and the address
of the first instance respectively.

• Messages to be sent are defined by the parameters (address, count, datatype, dest,
tag, comm). In addition to the message data parameters, comm is the communicator
on which the message will be sent, and dest is the rank of the process within the
given communicator to which the message will be sent. The parameter tag optionally
specifies a number with which to identify the message.

• Messages that are to be received are defined by the parameters (address, count,
datatype, source, tag, comm). The message data parameters must be the same as
the message parameters specified when the message was sent. In addition, comm is
the communicator on which the message is to be received, and source is the rank of
the process within the given communicator from which the message will be received.
The parameter tag can be used to receive only messages with the same tag.

• Messages may be sent synchronously or asynchronously. An asynchronous send
operation will return to the rest of the program as soon as the message has been
queued to be sent; a synchronous send operation will only return once the message
has actually been received by a corresponding receive operation.

• Messages may be sent and received as blocking or non-blocking operations. A block-
ing send/receive operation will only return to the rest of the program once the
message has been sent/received; a non-blocking send/receive operation will return
to the rest of the program immediately, allowing it to perform other tasks while
checking back occasionally to see whether the message has been sent/received.

4.1 Some technologies 35

• As well as operations to send a single message between two processes in a communi-
cator, collective operations involving all processes in a communicator are defined for
several useful operations. For example, a broadcast sends data from a root process
to all other processes in the communicator; a gather performs the inverse, sending
data from all processes to a single root process; and a reduce performs a mathemat-
ical operation (e.g. sum, product, minimum, maximum, logical AND, etc.) across
data from all processes, returning the result to a single process.

4.1.4 LAM/MPI

LAM/MPI (Local Area Multicomputer) [55] is a free open-source implementation of the
MPI standard. It includes libraries which implement the MPI subroutines, as well as
numerous utilities for starting up and shutting down a LAM/MPI environment, and for
executing, monitoring and debugging MPI programs. Its modular System Services Inter-
face (SSI) allows it to be configured to a multitude of different cluster architectures.

4.1.5 FFTW

FFTW (the Fastest Fourier Transform in the West) [48] is a library of algorithms for effi-
ciently computing the discrete Fourier transform. It implements many different FFT (fast
Fourier transform) algorithms to reduce the number of arithmetic operations. FFTW is
unique, however, in that it adaptively selects the appropriate combination of algorithms
to give optimum performance for the particular computer processor on which it is run-
ning. This feature makes its performance very portable between different computers and
computer architectures.

4.1.6 C

C [40] is the ubiquitous general-purpose programming language. It provides basic data
types to represent characters, integer and floating point numbers, pointers which represent
the memory addresses of other data, structures which group different data types together
as a single unit, and arrays which are multiple instances of a single data type. It provides
arithmetical, logical, relational and other operators with which to manipulate these data
types. It provides constructions which allow the evaluation of an expression to decide
whether to execute or re-execute a block of commands, thus enabling a program to modify
its own execution sequence. And it allows blocks of commands to be encapsulated as
functions, which can then be called, receive data from and return data to other parts
of the program. Beyond these basic elements, C provides no direct support for more
sophisticated functionality, such as manipulation of an entire array or string of characters,
memory allocation and management, and file input/output. Such functionality must either
be handled directly by the programmer, or else is provided by explicitly-called functions,
such as those provided by the C standard libraries. Nevertheless the limited number of
basic elements have had the advantage of making C easy to learn, extremely portable and
extensively optimisable.

4.1.7 The GNU Compiler Collection

The GNU Compiler Collection [56] is a free open-source collection of compilers for a
number of programming languages, including C (the compiler for which is named gcc). It

36 Data processing

is part of the GNU Project, which aims to build a complete open-source operating system
using free open-source software, and which is closely associated with the Linux operating
system.

4.2 A parallel data processing program

This section presents a parallel data processing program, written by the author in C using
the MPI interface. It was compiled with LAM/MPI version 7.0.5, FFTW version 2.1.5,
and the FrameL library version 6.14, using the gcc version 3.4.0 compiler. It was tested
and finally executed on the ACIGA Data Analysis Cluster (ADAC) [57], a local cluster of
8 PCs attached via a high-speed network to 3 dual-processor servers.

A principal concern to the author was to create a functioning program within a short
period of time, in order to devote as much of the remaining time as possible to processing
the data. It is freely acknowledged that the design of the program presented below is
not the most suitable, nor is its construction the most elegant. It is hoped that the
accompanying criticism of its features and flaws will demonstrate the benefit of hindsight
and experience.

4.2.1 The header

Most C programs include a header section. The header contains directives to include
the headers for required libraries, definitions of new data types and data structures, and
declarations of any global variables. The header directs the compiler to include the headers
for a number of standard C libraries, as well as for the libraries of LAM/MPI, FFTW,
FrameL and Frv. The Frv (Frame vector) library [58] is an addition to the FrameL library
which provides additional functions to manipulate the vectors of data stored in Frame
files. The header is included as listing A.1 in section A.1.1.

The following sections detail the main subroutines of the program. Other subroutines
and utility functions are included as listings in section A.1.7.

4.2.2 The main subroutine

All C programs start by executing the main subroutine

Listing 4.1: The main subroutine

int main(int argc, char ∗argv[]) {
(See listing A.2 in section A.1.2 for variable declarations). Its arguments contain any
command-line arguments passed to the program when it was executed. C variable dec-
larations usually immediately proceed the start of a subroutine or function. The first
executable statement of a program using the MPI interface must call the subroutine

Listing 4.2: The main subroutine (continued)

MPI Init(&argc, &argv);

which properly initialises the MPI environment. The programs then calls

Listing 4.3: The main subroutine (continued)

MPI Comm rank(MPI COMM WORLD, &rank);

MPI Comm size(MPI COMM WORLD, &size);

MPI Comm group(MPI COMM WORLD, &group);

4.2 A parallel data processing program 37

to determine its rank within the default communicator MPI COMM WORLD, the size of
the communicator (i.e. how many copies of the program are running) and a group object
representing the processes within the communicator.

The program requires a number of command-line arguments. The first argument
should specify the name of the channels file, a text file containing basic information about
the channels of data to be analysed; the remaining arguments should specify the names
of text files containing lists of names of Frame files to be analysed from each physical
environment monitoring station. For example, the channels file for this project contained

256 SEISX SEISY SEBDCE01 SEBDCE02

256 SEISZ SEBDCE03

2048 LINE V1 power50

2048 MAG MABDCE

The first token of each line gives the sampling rates for the channels; the remaining tokens
on each line give a distinctive part of the names of the Frame FrAdcData structures which
should be searched for. In the above example, the program is instructed to analyse four
channels. The first channel, sampled at 256 Hz, will be the average of the seismome-
ter longitudinal (X) and latitudinal (Y) directions from a particular physical environment
monitoring station: ANU, LIGO Hanford, LIGO Livingston, or VIRGO. The second chan-
nel, also sampled at 256 Hz, will the the seismometer vertical (Z) direction. The third and
fourth channels, both sampled at 2048 Hz, will be the mains voltage monitor signal, and
the average of all the magnetic field sensor directions. It was decided to average together
some of the directions in order to reduce the computational load down from a possible 7
channels; it was also recognised that the actual seismometers and magnetic field sensors
scattered around the world will undoubtedly not be aligned in the same directions. In the
case of the seismometers, the division into horizontal (X, Y) and vertical (Z) corresponds
to actual classes of seismic vibrations [59].

The program requires a fixed number of processes p to operate, the number being a
function of the number of physical environment monitoring stations s it is being asked to
analyse:

p = s(s + 1) . (4.1)

The program computes how many processes it needs and will throw an error if this number
does not match the actual number of processes present:

Listing 4.4: The main subroutine (continued)

if (argc > 2) {
COLLECTORS = argc−2;

PROCESSORS = COLLECTORS;

CROSSPROCESSORS = COLLECTORS∗(COLLECTORS−1)/2;

SIZE = COLLECTORS + PROCESSORS + 2∗CROSSPROCESSORS;

}
else {

return error(rank, 0, "At least one channel list and one file list must

be supplied");

}
if (size != SIZE) {

return error(rank, 0, "For %i file lists, %i nodes are required",

COLLECTORS, SIZE);

38 Data processing

}
The processes are each designated a specific task, depending on their rank within MPI COMM WORLD.
“Collectors” are responsible for reading in Frame files from one physical environment mon-
itoring station each and sending the data to “processors” and “cross-processors”. Proces-
sors process data from only one station; two1 sets of cross-processors perform correlated
analyses between stations. Processes with the smallest ranks are designated collectors,
then processors, then cross-processors as required.

The program creates a number of new communicators. One set of communicators are
created to allow the collectors and the processors/cross-processors to communicate with
each other separately:

Listing 4.5: The main subroutine (continued)

MPI Comm split(MPI COMM WORLD, rank < COLLECTORS, 0, &local comm);

This subroutine will return one of two new communicators in the variable local comm,
depending upon whether the expression rank < COLLECTORS is true (for the collectors)
or false (for the processors/cross-processors).

Another set of communicators are created for each collector to communicate with and
send data to the appropriate processors and cross-processors. They are constructed such
that, as per their definitions, each processors will communicate uniquely with only one
collector, and each cross-processor will communicate with a unique combination of two
collectors. An example for four physical environment monitoring stations is shown in
table 4.1. The permutations of collectors assigned to each cross-processors is found by
reading down the columns; the particular cross-processors contained in the communicator
assigned to each collector is found by reading across rows. The code is included as listing
A.3 in section A.1.2.

This structure of a fixed number of processes, each with a designated task, was
originated motivated by its simplicity; once the communicators between collectors and
processors/cross-processors are set up, the overall structure of the program is fixed and
need no longer be known by the remainder of the program. Despite this, it is in retrospect
a serious design flaw, for a number of reasons. Once reason partains to load balancing, a
essential consideration for parallel programs which states that work should be distributed
as evenly as possible across all processes, or at least across all processes that work syn-
chronously. Unfortunately this turned out not to be the case for the implemented analyses;
the correlated analyses were split over two sets of cross-processors in a belated attempt
to rectify this, but regardless a large load imbalance remained, causing a significant per-
formance cost. The requirement for a fixed number of nodes in squared proportion to

1The reason for this is explained below

Processor Cross-processors
(New) Ranks 4 5 6 7 8/14 9/15 10/16 11/17 12/18 13/19

0 (0) (1) (2/5) (3/6) (4/7)

Collector
1 (0) (1) (2/5) (3/6) (4/7)
2 (0) (1) (2/5) (3/6) (4/7)
3 (0) (1) (2/5) (3/6) (4/7)

Figure 4.1: Example for four physical environment monitoring stations of the structure of the
collector-to-processor/cross-processor communicators. Numerals in brackets refer to ranks in the
new communicators; those without refer to ranks in MPI COMM WORLD.

4.2 A parallel data processing program 39

the number of physical environment monitoring stations being analysed meant that, for
4 stations, the 20 processes required exceeded ADAC’s 14 computer processors. Schedul-
ing multiple processes on some computer processors was therefore required, which was
cumbersome and affected performance.

After processing the channels file (see listing A.4 in section A.1.2), the program creates
a touch file:

Listing 4.6: The main subroutine (continued)

if (rank == 0) {
fclose(fopen(TOUCH FILENAME, "wb"));

}
This facilitates a very simple way of communicating a user command to the program,
which will be running in the background and therefore not possess any user interface. In
this case, deleting the touch file will cause the program to terminate cleanly at the next
possible opportunity.

The program calls several subroutines to initialise the long and short timescale anal-
yses, and then finally transfers control to one of two subroutines which implement the
collectors and the processors/cross-processors (see listing A.5 in section A.1.2). Once
these subroutines return, it cleans up any dynamically-allocated resources (a usual house-
keeping routine for C programs), calls the MPI Finalize subroutine to properly finalise the
MPI environment, and exits (see listing A.6 in section A.1.2).

4.2.3 The collector subroutine

The collector subroutine takes as arguments the communicator of all collectors; the com-
municator of the processor and cross-processors to which it will be sending data; the
number of channels, and an array containing the sampling rates for each channel; the size
of an array of the structure type StringIndex, containing the names of the Frame FrAdc-
Data structure which should be searched for and the channels they correspond to, and the
array itself; and the name of the text file containing the list of names of the Frame files
to be analysed from one of the physical environment monitoring stations:

Listing 4.7: The collector subroutine

int collector(MPI Comm local comm, MPI Comm to proc comm, int CHANNELS,

double sampling rate[], int CHANNEL NAMES, StringIndex ∗channel names,

char ∗list filename) {
(See listing A.7 in section A.1.3 for variable declarations). To initialise itself the subroutine
first gets its rank within and the size of the communicator of all collectors:

Listing 4.8: The collector subroutine (continued)

MPI Comm rank(local comm, &local rank);

MPI Comm size(local comm, &local size);

The subroutine then broadcasts the name of the list file to the processors and cross-
processors, which will use it to identify the files they create to store the results of their
analyses:

Listing 4.9: The collector subroutine (continued)

for (i = strlen(list filename); (i > 0) && (isalnum(list filename[i−1])); i−−);

40 Data processing

strcpy(line, &list filename[i]);

MPI Bcast(line, LINE, MPI CHAR, 0, to proc comm);

After initialising the buffers that will be used to store the data from the Frame files, and
creating an output list file to store the names of the Frame files that have been processed
(see A.8 in section A.1.3), the subroutine opens the input list file and begins to read the
name of each Frame file in turn, line by line, using the C library function fgets. It also
tests the value of the variable coll continue which determines whether the collector should
continue processing; if it is set to 0 (equivalent to false), the C logical AND operator &

will terminate the loop:

Listing 4.10: The collector subroutine (continued)

flist = fopen(list filename, "r");

coll continue = 1;

while ((fgets(line, LINE, flist) != NULL) & coll continue) {
line[strlen(line)−1] = ‘\0’;

while (access(line, F OK) != 0) {
sleep(1);

};
The UNIX access function determines whether or not the file exists; the subroutine will
halt until this function returns true. This functionality was originally included for the pur-
pose of performing data processing concurrent to data acquisition, but was never actually
needed.

The subroutine now opens the Frame file and begins to cycle through all the frames,
represented by FrameH structures, in the file. The while loop also tests the value of the
coll continue variable. At each iteration it uses the UNIX access function to determine
whether the touch file still exists; if it does not, it sets the coll continue variable to 0. The
continue statement causes the loop to immediately proceed to its next iteration, where
the & coll continue condition will fail and the loop will terminate:

Listing 4.11: The collector subroutine (continued)

frfile = FrFileINew(line);

frame = NULL;

while (((frame = FrameReadRecycle(frfile, frame)) != NULL) & coll continue) {
if (access(TOUCH FILENAME, F OK) != 0) {

coll continue = 0;

continue;

}
The subroutine will now iterate through any FrAdcData structures in the frame, searching
the name of each structure for one of the names in the channel names array. If a match
is found, the data is copied from the frame file to the appropriate buffer (see listing
A.1.3 in section A.1.3). The FrvZeroMean Frv library subroutine reduces the data to zero
mean, as this was found by prior experimentation in MATLAB to give better results than
otherwise for correlation studies by ameliorating the inconsistent scaling of data from the
four physical environment monitoring stations.

C does not provide class structures to encapsulate data and subroutines associated
with it into a single unit, therefore the buffers were implements as a Buffer structure type
(see listing A.1 in section A.1.1) together with several buffer. . . subroutines that manipu-
lated the structure (and which are listed in section A.1.7). In general this is a very poor

4.2 A parallel data processing program 41

programming paradigm, as the Buffer structure containing the data could accidentally
be manipulated in a way that might invalidate it. Encapsulation can prevent this situa-
tion from arising, by making the data accessible only through the subroutines of a class,
in which the data is contained. The C++ [40] programming langauge provides a very
powerful class structure among many other features for more structured, object-oriented
programming (OOP). Although at the time it was felt that the increased design time
required for a well-implemented C++ program would be a hindrance to rapid implemen-
tation, and other reasons such as the slightly simpler nature of the MPI interface under C
than under C++ resulted in the author adopting C, a more considered re-implementation
would undoubtedly be written in C++.

After iterating through all the FrAdcData structures in each frame, the subroutine
checks to see if all buffers contain at least some data:

Listing 4.12: The collector subroutine (continued)

all have data = 1;

for (i = 0; i < CHANNELS; i++) {
all have data = all have data & (series[i].length > 0);

}
if (all have data) {

If this is true, it synchronises the starting GPS times of the channels across all the col-
lectors, if it has not done so already, using an MPI all-reduce operation. This convenient
feature means that the sets of Frame files being processed by the collectors need not them-
selves be synchronised to begin at the same GPS time, which was inevitably the case (see
listing ?? in section A.1.3).

Once the buffers have been synchronised, the subroutine repeatedly checks to see if all
buffers contain at least SEND SEGMENT seconds of data:

Listing 4.13: The collector subroutine (continued)

coll continue = 1;

while (all have data & coll continue) {
all have data = 1;

for (i = 0; i < CHANNELS; i++) {
all have data = all have data & (series[i].length >= SEND SEGMENT);

}
If this is true, then the collector is deemed to have sufficient data to send off to the
processors and cross-processors. At this point the subroutine calls an MPI all-reduce
operation over all of the collectors’ coll status variables, combining them with the logical
AND operator MPI LAND and returning the result to all collectors as coll continue. The
MPI Allreduce subroutine will wait for all collectors to reach this point before returning:

Listing 4.14: The collector subroutine (continued)

if (all have data & coll continue) {
coll status = 1; coll continue = 0;

MPI Allreduce(&coll status, &coll continue, 1, MPI INT, MPI LAND,

local comm);

If another collector has also reached this point, its coll status variable will be 1. If it has
read all of its Frame files, or if it detected the touch file had been deleted, its coll status

42 Data processing

variable will be 0, and thus the coll continue variables of all the collectors will also be
0. If all collectors agree to continue, each collector will broadcast the channel number,
the starting GPS time of the data, and the data itself to their respective processors and
cross-processors (see listing A.10 in section A.1.3).

Once a collector has finished read all of its Frame files, it closes all open files, indicates
to all other collectors and its respective processors/cross-processors that it has finished,
cleans up any dynamically-allocated resources and returns to the main subroutine (see
listing A.11 in section A.1.3).

4.2.4 The processor subroutine

The processor subroutine takes as arguments the size of an array containing the communi-
cators of which the processor/cross-processor is a member (which will be 1 for a processor
and 2 for a cross-processor) and the array itself; an integer indicating for a cross-processor
which set it belongs to (which will be either 1 or 2); the number of channels, and an array
containing the sampling rates for each channel:

Listing 4.15: The processor subroutine

int processor(int FROM COLL COMM, MPI Comm from coll comm[], int crossproc set,

int CHANNELS, double sampling rate[]) {
It first receives the file name(s) broadcast by the collector(s) with which it communicates,
concatenating them into a single string which will be used to identify the files created by
the analyses. It then initialises the buffers that will store data from the collectors (see
listing A.13 in section A.1.4).

The subroutine then sets the from coll comm left variable to the number of commu-
nicators, and hence the number of collectors communicating with the processor. This
variable keeps track of how many collectors are still active. Whenever a collector indicates
that it has finished reading Frame files, the from coll comm left variable is reduced by 1.
Once the count is zero, the processor can safely terminate:

Listing 4.16: The processor subroutine (continued)

from coll comm left = FROM COLL COMM;

while (from coll comm left > 0) {
The subroutine now iteratively checks each communicator to see whether there is data
to be received from the corresponding collector. The from coll comm stopped array keeps
track of specifically which collectors are still active:

Listing 4.17: The processor subroutine (continued)

for (j = 0; j < FROM COLL COMM; j++) {
if (!from coll comm stopped[j]) {

i = 0;

while (i > PROC CONTINUE) {
MPI Bcast(&i, 1, MPI INT, 0, from coll comm[j]);

As long as the variable i receives from the collector a value larger than the constant
PROC CONTINUE, it represents a valid channel number: the processor will then receive
each channel in turn and store the data it in the appropriate buffers (see listing A.14 in
section A.1.4).

4.2 A parallel data processing program 43

Once the variable i receives PROC CONTINUE, the loop is broken and the processor
will move on to checking the next collector. If the variable i receives PROC STOP, the
collector is removed from the check-list:

Listing 4.18: The processor subroutine (continued)

}
if (i == PROC STOP) {

from coll comm stopped[j] = 1;

from coll comm left−−;

}
}

}
If all collectors are still active, then the processor or cross-processor may proceed with
the execution of the analyses (see listing A.15 in section A.1.4). Once all collectors are
removed from the check-list, the processor/cross-processor cleans up any dynamically-
allocated resources and returns to the main subroutine (see listing A.11 in section A.1.3).

4.2.5 Implementation of the long timescale analyses

This subsection presents the implementation of the long timescale analyses described in
section 3.1.

The discrete autocorrelation (equation 3.2) is implemented by the doLongAuto sub-
routine, which takes as arguments the Buffer which stores the data, the sampling rate of
the channel, the number of the channel, and a string used to identify any data files. The
subroutine first attempts to initialise its variables from a data file, if the file exists, and
then calculates the autocorrelation of the data for 0 ≤ τ ≤ LONG CORR SHIFT seconds,
adding it element-wise to any previously calculated autocorrelation. It then writes its data
to file and returns. It is included as listing A.17 in section A.1.5.

The cross spectrum (equation 3.28) of discrete data is implemented by the doLongCross

subroutine in a manner analogous to the doLongPower. It is included as listing A.18 in
section A.1.5.

The discrete power spectrum (equation 3.27) is implemented by the doLongPower sub-
routine, which takes similar arguments to the previous subroutines. The subroutine first
attempts to initialise its variables from a data file, if the file exists. Then, as long as
series is at least LONG SPECT WINDOW ∗ LONG SPECT OVERLAP seconds in length, it
calculates the power spectrum as follows.

The subroutine first loads the data into a pre-allocated buffer and multiplies the data
by a pre-calculated Bartlett window, for the purposes of data windowing as discussed on
page 26. The pre-allocation and pre-calculation are contained in the longInit subroutine
(see listing A.34 of section A.1.7). The Fourier transform is then computed by FFTW
using a pre-compiled plan encoding the optimal combination of FFT algorithms for the
computer processor on which FFTW is executing. The Fourier transform returned by the
rfftw subroutine is performance reasons a complicated combination of real and imaginary
components [48], which are deciphered in the computation of the power spectrum by the
algrCross subroutine (see listing A.24 in section A.1.7), which is added element-wise to
any previously calculated power spectrum. The calculation is then repeated if the series
is still of sufficient length. The data is shifted by only LONG SPECT WINDOW to create
an overlap of LONG SPECT OVERLAP, as discussed on page 27. Once there is no longer

44 Data processing

sufficient data to compute the power spectrum, the subroutine writes its data to file and
returns. It is include as listing A.19 in section A.1.5.

The cross spectrum (equation 3.28) of discrete data is implemented by the doLongCross

subroutine in a manner analogous to the doLongPower subroutine. It is included as listing
A.20 in section A.1.5.

4.2.6 Implementation of the short timescale analyses

This subsection presents the implementation of the short timescale analyses described in
section 3.2.

The discrete power spectrogram and cross spectrogram (equations 3.42 and 3.41) were
implemented by the doTrnsPower and doTrnsCross subroutines respectively.

The doTrnsPower subroutine takes as arguments the Buffer which stores the data, the
sampling rate of the channel, the Buffer in which the spectrogram is stored, the spec-
trogram “sampling rate” (as in the number of spectrogram elements per unit time), and
the number of the channel. The computation of the power spectrum is analogous to the
doLongPower subroutine. It is included as listing A.21 in section A.1.6.

The doTrnsCross subroutine is analogous to the doTrnsPower and doLongCross subrou-
tines; it is included as listing A.22 in section A.1.6.

The search algorithm described in section 3.2.3 was implemented by the doTrnsSearch

subroutine. It takes as arguments the Buffer in which the spectrogram is stored and its
associated “sampling rate”, the sampling rate of the channel, the number of the channel,
and a string used to identify data files: It firstly attempts to read in a number of data
files, if they exist. Then, while the spectrogram remains long enough, it implements the
search algorithm as follows.

The subroutine copies the spectrogram into a number of arrays corresponding to
the current “event” bin Bf,t and the comparison “search” bins Bf,t−dtmax , . . . , Bf,t−1,
Bf,t+1, . . . , Bf,t+dtmax , where dtmax is equivalent to SRCH TIME RANGE. The constants
SRCH TIME OVERLAP and SRCH FREQ OVERLAP specify the overlapping of the bins,
which will have dimensions of SRCH TIME BIN × SRCH TIME OVERLAP spectrogram
rows in time and SRCH FREQ BIN × SRCH FREQ OVERLAP Hz in frequency.

The subroutine ?? (see listing A.39 in listing A.1.7) then computes the five test statis-
tics listed in section 3.2 (equations 3.47, 3.48, 3.51, 3.53 and 3.55) and returns then in the
event stat array. For each test statistic, only the largest STAT SAVE values are saved to the
array stat list. If any of the computed statistics is large enough, it is added to the end of
stat save, and and then moved up through the array until it reaches its sorted position. If
any of the computed statistics is large enough to be within the top STAT SPCTGM SAVE

values, its associated spectrogram is saved as well. The subroutine continues to shift the
spectrogram until the remainder is insufficient for further searches. It then writes all its
data to files, and returns. It is included as section A.23 in section A.1.6.

Chapter 5

Results

In the course of this project, some 183 gigabytes of physical environment monitoring data
were acquired from four stations located around the world; at The Australian National
University (ANU), at the LIGO Hanford observatory (LHO), at the LiGO Livingston
observatory (LLO), and at the VIRGO detector (VIRGO). A total of 38 days and 21
hours of data, originating from February to March 2003 and from August to October
2004, was processed in 35 days 4 hours and 13 minutes. The processing was broken into
four data sets, and is summarised in figure 5.1. The results were then post-processed using
MATLAB (the code for which is included under section A.2), generating a total of 200
graphs and 1040 spectrograms.

This chapter presents a summary of the results of the data analyses, and attempts to
identify any interesting features, particularly with regard to correlated signals.

5.1 Long timescale analyses

5.1.1 Power spectra

Before examining the results further it is useful to verify that the data from each station
and on each channel has some consistent structure across the range of the data set; if not,
then the originating instrument is likely to be non-functional. This can be done using the
power spectra.

Figure 5.2 (page 47) shows the power spectra of the ANU seismometers. The horizontal
seismometer shows a consistent structure, with some minor movement of peaks in the
higher frequencies; the vertical seismometer, however, was clearly non-functional for figures

Data set α β γ δ

Stations involved: ANU X X X
LHO X X X
LLO X X X

VIRGO X X X
Start time: UTC 27/02/03 06/08/04 20/09/04 04/10/04

09:23:07 05:59:47 06:42:27 23:59:47
End time: UTC 14/03/03 16/08/04 29/09/04 10/10/04

05:29:47 04:34:47 01:12:51 07:48:07
Duration of data set 14d 20h 7m 9d 22h 35m 8d 18h 30m 5d 7h 48m

Computation time 7d 17h 20m 10d 4h 47m 10d 4h 47m 7d 1h 19m

Figure 5.1: Summary of the performed data processing.

45

46 Results

5.2(d) and 5.2(f).
Figure 5.3 (page 48) shows the power spectra of the ANU mains voltage monitor and

magnetic field sensor. The mains voltage monitor is nearly two orders of magnitude quieter
in the lower two figures 5.2(c) and 5.2(e), while still showing prominent harmonics at 50
Hz, the Australian mains frequency. The magnetic field sensor is also quieter, but the
shape of its spectrum has been morphed from flat to corrugated in the lower two figures,
with more substantial noise at low frequencies.

Figure 5.4 (page 49) shows the power spectra of the LHO seismometers. The most
recent spectra 5.4(e) and 5.4(f) have a much more substantial background noise compared
with previous spectra averaged over a similar period. Otherwise many structures, such as
the prominent line at 60 Hz, the United States mains frequency, are clearly distinguishable
in all the figures.

Figure 5.5 (page 50) shows the power spectra of the LHO mains voltage monitor and
magnetic field sensor. The noise in the mains voltage monitor is reduced substantially
from the first figure 5.5(a) to the lower figures 5.5(c) and 5.5(e). The symmetric structure
in 5.5(b) is a clear example of aliasing. The noise is reduced in 5.5(d), but reappears in
5.5(f). It is not clear whether this was caused by the instrument or by its environment.

Figure 5.6 (page 51) shows the power spectra of the LLO seismometers. These spectra
are flat and featureless compared with the Hanford spectra, suggesting a significantly
different local seismic noise environment. Otherwise there are no significant changes over
the three data runs.

Figure 5.7 (page 52) shows the power spectra of the LLO mains voltage monitor and
magnetic field sensor. The mains voltage monitor spectra change from flat to being slightly
curved, then substantially curved (figures 5.7(a), 5.7(c) and 5.7(e)). Most importantly
though, the 60 Hz harmonics disappear completely, indicating that something is seriously
wrong. The magnetic field sensors show qualitatively similar distortions, except that the
60 Hz harmonics remain. This suggests that it is likely that the spectra are environmental
in origin; nevertheless, the mains voltage monitor is likely to be non-functional.

Figure 5.8 (page 53) shows the power spectra of the VIRGO seismometers. These
spectra show almost identical agreement across the three data sets, indicating a more
stable seismic environment. Note the subtle differences in the horizontal and vertical
seismometer spectra, for example, the large mound from 60–70 Hz is present only in the
right-hand figures.

Figure 5.9 (page 54) shows the power spectra of the VIRGO mains voltage monitor
and magnetic field sensor. These spectra also show close agreement across the three data
sets. There is a slight reduction in noise from the first mains voltage spectrum (figure
5.9(a)) to figures 5.9(c) and figures 5.9(e), and a similar but much more substantial noise
reduction in the magnetic field sensor spectra (figure 5.9(b) to figures 5.9(d) and 5.9(f)).

5.1.2 Autocorrelations

Some interesting features were found in the autocorrelation analyses. Figure 5.10(a) (page
55) shows an interesting “wave-packet” structure, indicating that the ANU horizontal
seismometer is correlated with itself over short timescales of less than 0.5 seconds. This
structure is also present, although with a greater background oscillation, in the autocor-
relation of a later data set (figure 5.10(b)) and is only very slightly present in the vertical
direction (figure 5.10(c)). Figure 5.10(d) of the non-functional vertical seismometer indi-
cates a random signal, with the sharp peak corresponding to the instant when the signal

5.1 Long timescale analyses 47

0 20 40 60 80 100 120

10
−8

10
−6

10
−4

10
−2

10
0

Frequency / Hz (Resolution = 0.001)

α : UTC 27/02/03 09:23:07 to 14/03/03 05:29:47
Normalised power spectrum of ANU horizontal seismic

(a)

0 20 40 60 80 100 120

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Frequency / Hz (Resolution = 0.001)

α : UTC 27/02/03 09:23:07 to 14/03/03 05:29:47
Normalised power spectrum of ANU vertical seismic

(b)

0 20 40 60 80 100 120

10
−8

10
−6

10
−4

10
−2

10
0

Frequency / Hz (Resolution = 0.001)

β : UTC 06/08/04 05:59:47 to 16/08/04 04:34:47
Normalised power spectrum of ANU horizontal seismic

(c)

0 20 40 60 80 100 120
10

−8

10
−6

10
−4

10
−2

10
0

Frequency / Hz (Resolution = 0.001)

β : UTC 06/08/04 05:59:47 to 16/08/04 04:34:47
Normalised power spectrum of ANU vertical seismic

(d)

0 20 40 60 80 100 120

10
−8

10
−6

10
−4

10
−2

10
0

Frequency / Hz (Resolution = 0.001)

δ : UTC 04/10/04 23:59:47 to 10/10/04 07:48:07
Normalised power spectrum of ANU horizontal seismic

(e)

0 20 40 60 80 100 120
10

−8

10
−6

10
−4

10
−2

10
0

Frequency / Hz (Resolution = 0.001)

δ : UTC 04/10/04 23:59:47 to 10/10/04 07:48:07
Normalised power spectrum of ANU vertical seismic

(f)

Figure 5.2: Power spectra of the ANU horizontal and vertical seismometers.

48 Results

0 100 200 300 400 500 600 700 800 900 1000

10
−8

10
−6

10
−4

10
−2

10
0

Frequency / Hz (Resolution = 0.001)

α : UTC 27/02/03 09:23:07 to 14/03/03 05:29:47
Normalised power spectrum of ANU mains voltage

(a)

0 100 200 300 400 500 600 700 800 900 1000

10
−8

10
−6

10
−4

10
−2

10
0

Frequency / Hz (Resolution = 0.001)

α : UTC 27/02/03 09:23:07 to 14/03/03 05:29:47
Normalised power spectrum of ANU magnetic

(b)

0 100 200 300 400 500 600 700 800 900 1000

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Frequency / Hz (Resolution = 0.001)

β : UTC 06/08/04 05:59:47 to 16/08/04 04:34:47
Normalised power spectrum of ANU mains voltage

(c)

0 100 200 300 400 500 600 700 800 900 1000

10
−8

10
−6

10
−4

10
−2

10
0

Frequency / Hz (Resolution = 0.001)

β : UTC 06/08/04 05:59:47 to 16/08/04 04:34:47
Normalised power spectrum of ANU magnetic

(d)

0 100 200 300 400 500 600 700 800 900 1000

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Frequency / Hz (Resolution = 0.001)

δ : UTC 04/10/04 23:59:47 to 10/10/04 07:48:07
Normalised power spectrum of ANU mains voltage

(e)

0 100 200 300 400 500 600 700 800 900 1000

10
−8

10
−6

10
−4

10
−2

10
0

Frequency / Hz (Resolution = 0.001)

δ : UTC 04/10/04 23:59:47 to 10/10/04 07:48:07
Normalised power spectrum of ANU magnetic

(f)

Figure 5.3: Power spectra of the ANU mains voltage monitor and magnetic field sensors.

5.1 Long timescale analyses 49

0 20 40 60 80 100 120

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Frequency / Hz (Resolution = 0.001)

α : UTC 27/02/03 09:23:07 to 14/03/03 05:29:47
Normalised power spectrum of LHO horizontal seismic

(a)

0 20 40 60 80 100 120

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Frequency / Hz (Resolution = 0.001)

α : UTC 27/02/03 09:23:07 to 14/03/03 05:29:47
Normalised power spectrum of LHO vertical seismic

(b)

0 20 40 60 80 100 120

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Frequency / Hz (Resolution = 0.001)

γ : UTC 20/09/04 06:42:27 to 29/09/04 01:12:51
Normalised power spectrum of LHO horizontal seismic

(c)

0 20 40 60 80 100 120

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Frequency / Hz (Resolution = 0.001)

γ : UTC 20/09/04 06:42:27 to 29/09/04 01:12:51
Normalised power spectrum of LHO vertical seismic

(d)

0 20 40 60 80 100 120

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Frequency / Hz (Resolution = 0.001)

δ : UTC 04/10/04 23:59:47 to 10/10/04 07:48:07
Normalised power spectrum of LHO horizontal seismic

(e)

0 20 40 60 80 100 120

10
−6

10
−4

10
−2

10
0

Frequency / Hz (Resolution = 0.001)

δ : UTC 04/10/04 23:59:47 to 10/10/04 07:48:07
Normalised power spectrum of LHO vertical seismic

(f)

Figure 5.4: Power spectra of the LHO horizontal and vertical seismometers.

50 Results

0 100 200 300 400 500 600 700 800 900 1000

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Frequency / Hz (Resolution = 0.001)

α : UTC 27/02/03 09:23:07 to 14/03/03 05:29:47
Normalised power spectrum of LHO mains voltage

(a)

0 100 200 300 400 500 600 700 800 900 1000

10
−8

10
−6

10
−4

10
−2

10
0

Frequency / Hz (Resolution = 0.001)

α : UTC 27/02/03 09:23:07 to 14/03/03 05:29:47
Normalised power spectrum of LHO magnetic

(b)

0 100 200 300 400 500 600 700 800 900 1000

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Frequency / Hz (Resolution = 0.001)

γ : UTC 20/09/04 06:42:27 to 29/09/04 01:12:51
Normalised power spectrum of LHO mains voltage

(c)

0 100 200 300 400 500 600 700 800 900 1000
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Frequency / Hz (Resolution = 0.001)

γ : UTC 20/09/04 06:42:27 to 29/09/04 01:12:51
Normalised power spectrum of LHO magnetic

(d)

0 100 200 300 400 500 600 700 800 900 1000

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Frequency / Hz (Resolution = 0.001)

δ : UTC 04/10/04 23:59:47 to 10/10/04 07:48:07
Normalised power spectrum of LHO mains voltage

(e)

0 100 200 300 400 500 600 700 800 900 1000

10
−8

10
−6

10
−4

10
−2

10
0

Frequency / Hz (Resolution = 0.001)

δ : UTC 04/10/04 23:59:47 to 10/10/04 07:48:07
Normalised power spectrum of LHO magnetic

(f)

Figure 5.5: Power spectra of the LHO mains voltage monitor and magnetic field sensors.

5.1 Long timescale analyses 51

0 20 40 60 80 100 120

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Frequency / Hz (Resolution = 0.001)

α : UTC 27/02/03 09:23:07 to 14/03/03 05:29:47
Normalised power spectrum of LLO horizontal seismic

(a)

0 20 40 60 80 100 120
10

−4

10
−3

10
−2

10
−1

10
0

Frequency / Hz (Resolution = 0.001)

α : UTC 27/02/03 09:23:07 to 14/03/03 05:29:47
Normalised power spectrum of LLO vertical seismic

(b)

0 20 40 60 80 100 120

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Frequency / Hz (Resolution = 0.001)

γ : UTC 20/09/04 06:42:27 to 29/09/04 01:12:51
Normalised power spectrum of LLO horizontal seismic

(c)

0 20 40 60 80 100 120
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Frequency / Hz (Resolution = 0.001)

γ : UTC 20/09/04 06:42:27 to 29/09/04 01:12:51
Normalised power spectrum of LLO vertical seismic

(d)

0 20 40 60 80 100 120

10
−6

10
−4

10
−2

10
0

Frequency / Hz (Resolution = 0.001)

δ : UTC 04/10/04 23:59:47 to 10/10/04 07:48:07
Normalised power spectrum of LLO horizontal seismic

(e)

0 20 40 60 80 100 120

10
−6

10
−4

10
−2

10
0

Frequency / Hz (Resolution = 0.001)

δ : UTC 04/10/04 23:59:47 to 10/10/04 07:48:07
Normalised power spectrum of LLO vertical seismic

(f)

Figure 5.6: Power spectra of the LLO horizontal and vertical seismometers.

52 Results

0 100 200 300 400 500 600 700 800 900 1000
10

−8

10
−6

10
−4

10
−2

10
0

Frequency / Hz (Resolution = 0.001)

α : UTC 27/02/03 09:23:07 to 14/03/03 05:29:47
Normalised power spectrum of LLO mains voltage

(a)

0 100 200 300 400 500 600 700 800 900 1000

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Frequency / Hz (Resolution = 0.001)

α : UTC 27/02/03 09:23:07 to 14/03/03 05:29:47
Normalised power spectrum of LLO magnetic

(b)

0 100 200 300 400 500 600 700 800 900 1000

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Frequency / Hz (Resolution = 0.001)

γ : UTC 20/09/04 06:42:27 to 29/09/04 01:12:51
Normalised power spectrum of LLO mains voltage

(c)

0 100 200 300 400 500 600 700 800 900 1000

10
−8

10
−6

10
−4

10
−2

10
0

Frequency / Hz (Resolution = 0.001)

γ : UTC 20/09/04 06:42:27 to 29/09/04 01:12:51
Normalised power spectrum of LLO magnetic

(d)

0 100 200 300 400 500 600 700 800 900 1000

10
−4

10
−3

10
−2

10
−1

10
0

Frequency / Hz (Resolution = 0.001)

δ : UTC 04/10/04 23:59:47 to 10/10/04 07:48:07
Normalised power spectrum of LLO mains voltage

(e)

0 100 200 300 400 500 600 700 800 900 1000

10
−8

10
−6

10
−4

10
−2

10
0

Frequency / Hz (Resolution = 0.001)

δ : UTC 04/10/04 23:59:47 to 10/10/04 07:48:07
Normalised power spectrum of LLO magnetic

(f)

Figure 5.7: Power spectra of the LLO mains voltage monitor and magnetic field sensors.

5.1 Long timescale analyses 53

0 20 40 60 80 100 120

10
−6

10
−4

10
−2

10
0

Frequency / Hz (Resolution = 0.001)

β : UTC 06/08/04 05:59:47 to 16/08/04 04:34:47
Normalised power spectrum of VIRGO horizontal seismic

(a)

0 20 40 60 80 100 120

10
−6

10
−4

10
−2

10
0

Frequency / Hz (Resolution = 0.001)

β : UTC 06/08/04 05:59:47 to 16/08/04 04:34:47
Normalised power spectrum of VIRGO vertical seismic

(b)

0 20 40 60 80 100 120

10
−6

10
−4

10
−2

10
0

Frequency / Hz (Resolution = 0.001)

γ : UTC 20/09/04 06:42:27 to 29/09/04 01:12:51
Normalised power spectrum of VIRGO horizontal seismic

(c)

0 20 40 60 80 100 120

10
−6

10
−4

10
−2

10
0

Frequency / Hz (Resolution = 0.001)

γ : UTC 20/09/04 06:42:27 to 29/09/04 01:12:51
Normalised power spectrum of VIRGO vertical seismic

(d)

0 20 40 60 80 100 120

10
−6

10
−4

10
−2

10
0

Frequency / Hz (Resolution = 0.001)

δ : UTC 04/10/04 23:59:47 to 10/10/04 07:48:07
Normalised power spectrum of VIRGO horizontal seismic

(e)

0 20 40 60 80 100 120

10
−6

10
−4

10
−2

10
0

Frequency / Hz (Resolution = 0.001)

δ : UTC 04/10/04 23:59:47 to 10/10/04 07:48:07
Normalised power spectrum of VIRGO vertical seismic

(f)

Figure 5.8: Power spectra of the VIRGO horizontal and vertical seismometers.

54 Results

0 100 200 300 400 500 600 700 800 900 1000
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Frequency / Hz (Resolution = 0.001)

β : UTC 06/08/04 05:59:47 to 16/08/04 04:34:47
Normalised power spectrum of VIRGO mains voltage

(a)

0 100 200 300 400 500 600 700 800 900 1000

10
−8

10
−6

10
−4

10
−2

10
0

Frequency / Hz (Resolution = 0.001)

β : UTC 06/08/04 05:59:47 to 16/08/04 04:34:47
Normalised power spectrum of VIRGO magnetic

(b)

0 100 200 300 400 500 600 700 800 900 1000

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Frequency / Hz (Resolution = 0.001)

γ : UTC 20/09/04 06:42:27 to 29/09/04 01:12:51
Normalised power spectrum of VIRGO mains voltage

(c)

0 100 200 300 400 500 600 700 800 900 1000

10
−8

10
−6

10
−4

10
−2

10
0

Frequency / Hz (Resolution = 0.001)

γ : UTC 20/09/04 06:42:27 to 29/09/04 01:12:51
Normalised power spectrum of VIRGO magnetic

(d)

0 100 200 300 400 500 600 700 800 900 1000
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Frequency / Hz (Resolution = 0.001)

δ : UTC 04/10/04 23:59:47 to 10/10/04 07:48:07
Normalised power spectrum of VIRGO mains voltage

(e)

0 100 200 300 400 500 600 700 800 900 1000

10
−8

10
−6

10
−4

10
−2

10
0

Frequency / Hz (Resolution = 0.001)

δ : UTC 04/10/04 23:59:47 to 10/10/04 07:48:07
Normalised power spectrum of VIRGO magnetic

(f)

Figure 5.9: Power spectra of the VIRGO mains voltage monitor and magnetic field sensors.

5.1 Long timescale analyses 55

−1.5 −1 −0.5 0 0.5 1 1.5

−6

−4

−2

0

2

4

6

8

x 10
13

Time shift of ANU relative to itself / s

α : UTC 27/02/03 09:23:07 to 14/03/03 05:29:47
Autocorrelation of ANU horizontal seismic

(a)

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x 10
13

Time shift of ANU relative to itself / s

β : UTC 06/08/04 05:59:47 to 16/08/04 04:34:47
Autocorrelation of ANU horizontal seismic

(b)

−1.5 −1 −0.5 0 0.5 1 1.5

−5

0

5

10

x 10
14

Time shift of ANU relative to itself / s

α : UTC 27/02/03 09:23:07 to 14/03/03 05:29:47
Autocorrelation of ANU vertical seismic

(c)

−1.5 −1 −0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

2

2.5

3

x 10
7

Time shift of ANU relative to itself / s

δ : UTC 04/10/04 23:59:47 to 10/10/04 07:48:07
Autocorrelation of ANU vertical seismic

(d)

Figure 5.10: Autocorrelation of the ANU horizontal and vertical seismometers.

identically matches itself.
Figure 5.11(a) (page 56) shows irregular oscillations in the LHO horizontal seismometer

autocorrelations, again suggesting some kind of short timescale self-coherence. The effect
has, however, disappeared in the autocorrelations (figure 5.11(b)) of a later data set.
Figure 5.12(a) and 5.12(b) show a similar but much smaller effect in the LLO vertical
seismometers. The autocorrelation are also much smoother, likely due to a deliberate or
accidental filtering process.

Figure 5.13(a) and 5.13(b) (page 56) would seem to indicate a fault in the LLO mains
voltage monitor. While the first spectrum is dominated by the expected 60 Hz oscillations,
the second spectrum shows a bizarre triangular shape with a sharp central spike. It is not
clear what is implied of the signal by this shape of autocorrelation.

Figure 5.14 (page 57) shows autocorrelations of the VIRGO horizontal and vertical
seismometers. It is interesting that the oscillating structure shown in figure 5.14(c) for the
vertical seismometer is reproduced in the autocorrelation (figure 5.14(b)) of a later data
set, except that this time it is for the horizontal seismometer. Figures 5.14(a) and 5.14(d)
might also be considered in a similar way. One obvious answer is that the two channels
may have somehow been switched, which could be easily verified; if not a more unusual

56 Results

−1.5 −1 −0.5 0 0.5 1 1.5

1.5

2

2.5

3

3.5

4

x 10
12

Time shift of LHO relative to itself / s

α : UTC 27/02/03 09:23:07 to 14/03/03 05:29:47
Autocorrelation of LHO horizontal seismic

(a)

−1.5 −1 −0.5 0 0.5 1 1.5

4.2

4.4

4.6

4.8

5

5.2

x 10
12

Time shift of LHO relative to itself / s

δ : UTC 04/10/04 23:59:47 to 10/10/04 07:48:07
Autocorrelation of LHO horizontal seismic

(b)

Figure 5.11: Autocorrelation of the LHO horizontal seismometer.

−1.5 −1 −0.5 0 0.5 1 1.5

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

12

Time shift of LLO relative to itself / s

α : UTC 27/02/03 09:23:07 to 14/03/03 05:29:47
Autocorrelation of LLO vertical seismic

(a)

−1.5 −1 −0.5 0 0.5 1 1.5

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

x 10
13

Time shift of LLO relative to itself / s

δ : UTC 04/10/04 23:59:47 to 10/10/04 07:48:07
Autocorrelation of LLO vertical seismic

(b)

Figure 5.12: Autocorrelation of the LLO vertical seismometer.

−1.5 −1 −0.5 0 0.5 1 1.5

−6

−4

−2

0

2

4

6

x 10
15

Time shift of LLO relative to itself / s

α : UTC 27/02/03 09:23:07 to 14/03/03 05:29:47
Autocorrelation of LLO mains voltage

(a)

−1.5 −1 −0.5 0 0.5 1 1.5

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

x 10
9

Time shift of LLO relative to itself / s

γ : UTC 20/09/04 06:42:27 to 29/09/04 01:12:51
Autocorrelation of LLO mains voltage

(b)

Figure 5.13: Autocorrelation of the LLO mains voltage monitor.

5.1 Long timescale analyses 57

−1.5 −1 −0.5 0 0.5 1 1.5

−6

−4

−2

0

2

4

6

8

x 10
13

Time shift of VIRGO relative to itself / s

β : UTC 06/08/04 05:59:47 to 16/08/04 04:34:47
Autocorrelation of VIRGO horizontal seismic

(a)

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

1.5

2

x 10
13

Time shift of VIRGO relative to itself / s

γ : UTC 20/09/04 06:42:27 to 29/09/04 01:12:51
Autocorrelation of VIRGO horizontal seismic

(b)

−1.5 −1 −0.5 0 0.5 1 1.5
−6

−4

−2

0

2

4

6

8

x 10
13

Time shift of VIRGO relative to itself / s

β : UTC 06/08/04 05:59:47 to 16/08/04 04:34:47
Autocorrelation of VIRGO vertical seismic

(c)

−1.5 −1 −0.5 0 0.5 1 1.5

−3

−2

−1

0

1

2

3

4

5

x 10
13

Time shift of VIRGO relative to itself / s

γ : UTC 20/09/04 06:42:27 to 29/09/04 01:12:51
Autocorrelation of VIRGO vertical seismic

(d)

Figure 5.14: Autocorrelation of the VIRGO horizontal and vertical seismometers.

explanation would be required.

5.1.3 Correlations

Figure 5.15(a) and 5.15(b) (page 58) show a quantitative change in the oscillations of the
ANU-LHO mains voltage monitors’ correlations. As noted in chapter ??, asymmetries
in oscillating correlations are indicative of two sinusoidal signals of differing frequencies.
The change in the asymmetry of the correlation, as in the change in amplitudes of the
oscillations, would seem to indicate a change in the frequencies or relative phases of the
signals themselves.

Figure 5.16 (page 58) shows random correlations between the ANU-VIRGO horizontal
and ANU-LLO vertical seismometers. Notice that unlike autocorrelations of random data
there is no central peak where the signal exactly matches itself. Little information can be
gained from these correlations, except to note that the ANU-VIRGO correlations appear
to be significantly noisier than the ANU-LLO correlations.

Figure 5.17 (page 60) shows correlations between LHO and LLO horizontal and ver-
tical seismometers. As was the case for figures 5.12(a) and 5.12(b) (page 56), they are
surprisingly smooth, a deliberate or accidental filtering process likely to be responsible. It

58 Results

−1.5 −1 −0.5 0 0.5 1 1.5

−2.5
−2

−1.5
−1

−0.5
0

0.5
1

1.5
2

2.5
x 10

10

Time shift of ANU relative to LHO / s

α : UTC 27/02/03 09:23:07 to 14/03/03 05:29:47
Correlation of ANU−LHO mains voltage

(a)

−1.5 −1 −0.5 0 0.5 1 1.5
−4

−3

−2

−1

0

1

2

3

4
x 10

9

Time shift of ANU relative to LHO / s

δ : UTC 04/10/04 23:59:47 to 10/10/04 07:48:07
Correlation of ANU−LHO mains voltage

(b)

Figure 5.15: Correlation of ANU-LHO mains voltage monitors.

−1.5 −1 −0.5 0 0.5 1 1.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x 10
9

Time shift of ANU relative to VIRGO / s

δ : UTC 04/10/04 23:59:47 to 10/10/04 07:48:07
Correlation of ANU−VIRGO horizontal seismic

(a)

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

x 10
10

Time shift of ANU relative to LLO / s

α : UTC 27/02/03 09:23:07 to 14/03/03 05:29:47
Correlation of ANU−LLO vertical seismic

(b)

Figure 5.16: Correlation of the ANU-VIRGO horizontal and ANU-LLO vertical seismometers.

5.1 Long timescale analyses 59

is also interesting to note that the general shapes of figures 5.17(a) and 5.17(b), replicated
in figures 5.17(e) and 5.17(f), are instead replaced with a single general shape in figures
5.17(c) and 5.17(d). The similarity of both the horizontal and the vertical seismometers
would appear to indicate a single influence during this stretch of data.

Figure 5.18 (page 61) shows the correlation of the LHO-LLO magnetic field sensors.
We notice a linear slope enveloping the figure 5.18(a), which changes to a smaller slope
in the opposite direction in figure 5.18(b), before reverting back to the original slope in
figure 5.18(c). It is not clear what is implied by this linear envelope, but it would appear
to corroborate figures 5.17 (page 60) with regard to some additional influence affecting
LHO and LLO during the γ data set.

5.1.4 Coherence

Figure 5.19(a) and 5.19(b) (page 62) show minor (< 0.1) coherence of 50 Hz harmonics
between ANU-VIRGO mains voltage monitors. It is interesting to note how the magni-
tudes of the coherence changes quite substantially between the two dataset; or this may
simply indicate that the durations averaged over were not long enough to produce stable
coherence, if it existed.

Figure 5.20 (page 63) shows more substantial coherence between ANU-LHO, ANU-
LLO, and LHO-LLO magnetic field sensors. In particular, figure 5.21(e) shows substantial
large coherence between LHO and LLO at a multitude of frequencies. Many of these
originate from the 50 and 60 Hz harmonics of the mains. Other coherences are not as
certain. In particular, we note a coherence line appearing at all three sites, at around
400 Hz, in the δ data run, with a magnitude of 0.18 in figure 5.20(b) (the maximum), a
magnitude of 0.45 in figure 5.20(d) (also the maximum), and a magnitude of 0.16 in figure
5.21(b).

Figure 5.21 (page 64) shows coherences between LHO-LLO, LHO-VIRGO and LLO-
VIRGO magetic field sensors. Notice that the 400 Hz line is still present, with a magnitude
of 0.16 in figure 5.21(d), and a magnitude of 0.5 in figure 5.21(f). Other large coherences
at harmonics of 50 Hz, particularly at 600–1000 Hz are also present in a number of the
figures. Although in the case of these coherences the 400 Hz line may just simply be
another harmonic of 50 Hz, it is interesting that this line is so comparatively large in
figures 5.20(b) and 5.20(d) (page 63), noting that 400 Hz is not a harmonic of 60 Hz,
whereas no other 50 Hz lines appear in these figures to the same magnitude.

60 Results

−1.5 −1 −0.5 0 0.5 1 1.5

−4

−3

−2

−1

0

1

x 10
11

Time shift of LHO relative to LLO / s

α : UTC 27/02/03 09:23:07 to 14/03/03 05:29:47
Correlation of LHO−LLO horizontal seismic

(a)

−1.5 −1 −0.5 0 0.5 1 1.5

−4

−2

0

2

4

6

8

10

12

x 10
10

Time shift of LHO relative to LLO / s

α : UTC 27/02/03 09:23:07 to 14/03/03 05:29:47
Correlation of LHO−LLO vertical seismic

(b)

−1.5 −1 −0.5 0 0.5 1 1.5
−2

0

2

4

6

8

10

12

14

x 10
10

Time shift of LHO relative to LLO / s

γ : UTC 20/09/04 06:42:27 to 29/09/04 01:12:51
Correlation of LHO−LLO horizontal seismic

(c)

−1.5 −1 −0.5 0 0.5 1 1.5

0

5

10

15

20
x 10

9

Time shift of LHO relative to LLO / s

γ : UTC 20/09/04 06:42:27 to 29/09/04 01:12:51
Correlation of LHO−LLO vertical seismic

(d)

−1.5 −1 −0.5 0 0.5 1 1.5
0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

11

Time shift of LHO relative to LLO / s

δ : UTC 04/10/04 23:59:47 to 10/10/04 07:48:07
Correlation of LHO−LLO horizontal seismic

(e)

−1.5 −1 −0.5 0 0.5 1 1.5

−1.6

−1.4

−1.2

−1

−0.8

−0.6

x 10
11

Time shift of LHO relative to LLO / s

δ : UTC 04/10/04 23:59:47 to 10/10/04 07:48:07
Correlation of LHO−LLO vertical seismic

(f)

Figure 5.17: Correlation of the LHO-LLO horizontal and vertical seismometers.

5.1 Long timescale analyses 61

−1.5 −1 −0.5 0 0.5 1 1.5

−5
−4
−3
−2
−1

0
1
2
3
4
5

x 10
12

Time shift of LHO relative to LLO / s

α : UTC 27/02/03 09:23:07 to 14/03/03 05:29:47
Correlation of LHO−LLO magnetic

(a)

−1.5 −1 −0.5 0 0.5 1 1.5

−6

−4

−2

0

2

4

6

x 10
11

Time shift of LHO relative to LLO / s

γ : UTC 20/09/04 06:42:27 to 29/09/04 01:12:51
Correlation of LHO−LLO magnetic

(b)

−1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

12

Time shift of LHO relative to LLO / s

δ : UTC 04/10/04 23:59:47 to 10/10/04 07:48:07
Correlation of LHO−LLO magnetic

(c)

Figure 5.18: Correlation of the LHO-LLO magnetic field sensors.

62 Results

0 100 200 300 400 500 600 700 800 900 1000

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Frequency / Hz (Resolution = 0.001)

β : UTC 06/08/04 05:59:47 to 16/08/04 04:34:47
Coherence of ANU−VIRGO mains voltage

(a)

0 100 200 300 400 500 600 700 800 900 1000

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Frequency / Hz (Resolution = 0.001)

δ : UTC 04/10/04 23:59:47 to 10/10/04 07:48:07
Coherence of ANU−VIRGO mains voltage

(b)

Figure 5.19: Coherence of the ANU-VIRGO mains voltage monitors.

5.1 Long timescale analyses 63

0 100 200 300 400 500 600 700 800 900 1000

0.1

0.2

0.3

0.4

0.5

0.6

Frequency / Hz (Resolution = 0.001)

α : UTC 27/02/03 09:23:07 to 14/03/03 05:29:47
Coherence of ANU−LHO magnetic

(a)

0 100 200 300 400 500 600 700 800 900 1000

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Frequency / Hz (Resolution = 0.001)

δ : UTC 04/10/04 23:59:47 to 10/10/04 07:48:07
Coherence of ANU−LHO magnetic

(b)

0 100 200 300 400 500 600 700 800 900 1000

0.05

0.1

0.15

0.2

0.25

0.3

Frequency / Hz (Resolution = 0.001)

α : UTC 27/02/03 09:23:07 to 14/03/03 05:29:47
Coherence of ANU−LLO magnetic

(c)

0 100 200 300 400 500 600 700 800 900 1000

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Frequency / Hz (Resolution = 0.001)

δ : UTC 04/10/04 23:59:47 to 10/10/04 07:48:07
Coherence of ANU−LLO magnetic

(d)

0 100 200 300 400 500 600 700 800 900 1000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Frequency / Hz (Resolution = 0.001)

α : UTC 27/02/03 09:23:07 to 14/03/03 05:29:47
Coherence of LHO−LLO magnetic

(e)

0 100 200 300 400 500 600 700 800 900 1000

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Frequency / Hz (Resolution = 0.001)

δ : UTC 04/10/04 23:59:47 to 10/10/04 07:48:07
Coherence of LHO−LLO magnetic

(f)

Figure 5.20: Coherence of the ANU-LHO, ANU-LLO and LHO-LLO magnetic field sensors.

64 Results

0 100 200 300 400 500 600 700 800 900 1000

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Frequency / Hz (Resolution = 0.001)

γ : UTC 20/09/04 06:42:27 to 29/09/04 01:12:51
Coherence of LHO−LLO magnetic

(a)

0 100 200 300 400 500 600 700 800 900 1000

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Frequency / Hz (Resolution = 0.001)

δ : UTC 04/10/04 23:59:47 to 10/10/04 07:48:07
Coherence of LHO−LLO magnetic

(b)

0 100 200 300 400 500 600 700 800 900 1000

0.1

0.2

0.3

0.4

0.5

0.6

Frequency / Hz (Resolution = 0.001)

γ : UTC 20/09/04 06:42:27 to 29/09/04 01:12:51
Coherence of LHO−VIRGO magnetic

(c)

0 100 200 300 400 500 600 700 800 900 1000

0.05

0.1

0.15

0.2

0.25

0.3

Frequency / Hz (Resolution = 0.001)

δ : UTC 04/10/04 23:59:47 to 10/10/04 07:48:07
Coherence of LHO−VIRGO magnetic

(d)

0 100 200 300 400 500 600 700 800 900 1000

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Frequency / Hz (Resolution = 0.001)

γ : UTC 20/09/04 06:42:27 to 29/09/04 01:12:51
Coherence of LLO−VIRGO magnetic

(e)

0 100 200 300 400 500 600 700 800 900 1000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Frequency / Hz (Resolution = 0.001)

δ : UTC 04/10/04 23:59:47 to 10/10/04 07:48:07
Coherence of LLO−VIRGO magnetic

(f)

Figure 5.21: Coherence of the LHO-LLO, LHO-VIRGO and LLO-VIRGO magnetic field sensors.

5.2 Short timescale analyses 65

5.2 Short timescale analyses

The search algorithm has produced spectrograms containing features which might be said
to be interesting, if not significant. A representative selection of these spectrograms is
shown in figures 5.22 (page 66), 5.23 (page 67), 5.24 (page 68), and 5.25 (page 69).

The most common transient event detected were bursts of activity covering most of
the width of the spectrogram. They might also include other features. For example,
figures 5.22(a) and 5.22(b) also contain a strong frequency line, spiralling into the burst
in the first figure and flying out of it in the second. Sometimes a secondary burst was
seen following the first (figure 5.22(h)). Bursts could also link between several strong
frequency lines figures 5.22(e), 5.22(f)). Sometimes plumes of activity would remain for
a short while after the burst (figures 5.23(g), 5.23(h)). As well as sharply defined bursts,
momentary eruptions of harmonic lines were also observed (figure 5.23(e)). These were
most often observed in the magnetic field sensor spectrograms (figures 5.24(c) and 5.24(d)).
Sometimes the two would combine to produce sharp bursts at harmonic frequencies (figures
5.24(b), 5.24(e), and 5.24(f)).

Some other interesting features were found by the algorithm, including a few instances
of wandering frequency lines (figures 5.24(g) and 5.24(h)). One of the more interesting
features was bursts which appeared to delineate quantitatively different areas of the spec-
trogram – a spectrographic “phase change” (figure 5.25). They were found to delineate
an area of either random or little activity from an area with some harmonic frequencies
(figures 5.25(c), 5.25(a), 5.25(d) and 5.25(f)). They were found to also delineate between
areas where the harmonic frequencies changed (figures 5.25(b), 5.25(g), and 5.25(h)).

In general, the simple difference-in-mean test performed as well as, if not better than,
the remaining four statistical tests. The Student paired-t, the Wilcoxon signed rank and
the Kolmogorov-Smirnov tests did not perform noticeably better than each other. The
exception was the Wilcoxon-Mann-Whitney test, which performed very poorly. This was
because its limited range resulted in it being much too sensitive to small perturbations
which would then overwrite anything more important it might have found. The tests
sometimes succeeded in detecting the same transient features (figures 5.25(g) and 5.25(h)).

66 Results

α : UTC 27/02/03 09:23:07 to 14/03/03 05:29:47
Kolmogorov−Smirnov test for ANU−LLO vertical seismic

Frequency / Hz

U
TC

 ti
m

e
fro

m
 0

6/
03

/0
3

0 20 40 60 80 100 120
23:13:52

23:13:55

23:13:58

23:14:01

(a)

α : UTC 27/02/03 09:23:07 to 14/03/03 05:29:47
Difference−mean test for ANU−LHO vertical seismic

Frequency / Hz

U
TC

 ti
m

e
fro

m
 0

6/
03

/0
3

0 20 40 60 80 100 120

23:13:15

23:13:18

23:13:21

(b)

α : UTC 27/02/03 09:23:07 to 14/03/03 05:29:47
Student t test for ANU−LHO vertical seismic

Frequency / Hz

U
TC

 ti
m

e
fro

m
 0

5/
03

/0
3

0 20 40 60 80 100 120

09:10:26

09:10:29

09:10:32

(c)

δ : UTC 04/10/04 23:59:47 to 10/10/04 07:48:07
Wilcoxon signed rank test for ANU−VIRGO horizontal seismic

Frequency / Hz

U
TC

 ti
m

e
fro

m
 0

9/
10

/0
4

0 20 40 60 80 100 120

17:15:28

17:15:31

17:15:34

(d)

β : UTC 06/08/04 05:59:47 to 16/08/04 04:34:47
Wilcoxon signed rank test for ANU−VIRGO horizontal seismic

Frequency / Hz

U
TC

 ti
m

e
fro

m
 0

9/
08

/0
4

0 20 40 60 80 100 120

23:52:42

23:52:45

23:52:48

(e)

α : UTC 27/02/03 09:23:07 to 14/03/03 05:29:47
Student t test for ANU−LHO horizontal seismic

Frequency / Hz

U
TC

 ti
m

e
fro

m
 0

5/
03

/0
3

0 20 40 60 80 100 120
10:02:37

10:02:40

10:02:43

10:02:46

(f)

γ : UTC 20/09/04 06:42:27 to 29/09/04 01:12:51
Wilcoxon signed rank test for LHO−VIRGO horizontal seismic

Frequency / Hz

U
TC

 ti
m

e
fro

m
 2

3/
09

/0
4

0 20 40 60 80 100 120
21:33:41

21:33:44

21:33:47

21:33:50

(g)

δ : UTC 04/10/04 23:59:47 to 10/10/04 07:48:07
Student t test for LHO−LLO horizontal seismic

Frequency / Hz

U
TC

 ti
m

e
fro

m
 0

7/
10

/0
4

0 20 40 60 80 100 120
18:08:56

18:08:59

18:09:02

18:09:05

(h)

Figure 5.22: Bursts in seismometer spectrograms.

5.2 Short timescale analyses 67

δ : UTC 04/10/04 23:59:47 to 10/10/04 07:48:07
Difference−mean test for LHO−LLO horizontal seismic

Frequency / Hz

U
TC

 ti
m

e
fro

m
 0

9/
10

/0
4

0 20 40 60 80 100 120

21:49:38

21:49:41

21:49:44

(a)

α : UTC 27/02/03 09:23:07 to 14/03/03 05:29:47
Difference−mean test for ANU−LLO horizontal seismic

Frequency / Hz

U
TC

 ti
m

e
fro

m
 1

2/
03

/0
3

0 20 40 60 80 100 120

23:56:32

23:56:35

23:56:38

(b)

γ : UTC 20/09/04 06:42:27 to 29/09/04 01:12:51
Difference−mean test for LHO−LLO horizontal seismic

Frequency / Hz

U
TC

 ti
m

e
fro

m
 2

4/
09

/0
4

0 20 40 60 80 100 120
14:55:39

14:55:42

14:55:45

14:55:48

(c)

γ : UTC 20/09/04 06:42:27 to 29/09/04 01:12:51
Wilcoxon signed rank test for LHO−LLO vertical seismic

Frequency / Hz

U
TC

 ti
m

e
fro

m
 2

3/
09

/0
4

0 20 40 60 80 100 120
20:15:32

20:15:35

20:15:38

20:15:41

(d)

δ : UTC 04/10/04 23:59:47 to 10/10/04 07:48:07
Kolmogorov−Smirnov test for ANU−LLO horizontal seismic

Frequency / Hz

U
TC

 ti
m

e
fro

m
 0

9/
10

/0
4

0 20 40 60 80 100 120

21:40:32

21:40:35

21:40:38

(e)

γ : UTC 20/09/04 06:42:27 to 29/09/04 01:12:51
Student t test for LHO−LLO vertical seismic

Frequency / Hz

U
TC

 ti
m

e
fro

m
 2

2/
09

/0
4

0 20 40 60 80 100 120
14:25:38

14:25:41

14:25:44

14:25:47

(f)

γ : UTC 20/09/04 06:42:27 to 29/09/04 01:12:51
Wilcoxon signed rank test for LHO−LLO horizontal seismic

Frequency / Hz

U
TC

 ti
m

e
fro

m
 2

2/
09

/0
4

0 20 40 60 80 100 120
14:25:38

14:25:41

14:25:44

14:25:47

(g)

γ : UTC 20/09/04 06:42:27 to 29/09/04 01:12:51
Student t test for LHO−LLO horizontal seismic

Frequency / Hz

U
TC

 ti
m

e
fro

m
 2

2/
09

/0
4

0 20 40 60 80 100 120
14:25:38

14:25:41

14:25:44

14:25:47

(h)

Figure 5.23: More bursts in seismometer spectrograms.

68 Results

β : UTC 06/08/04 05:59:47 to 16/08/04 04:34:47
Difference−mean test for ANU−VIRGO magnetic

Frequency / Hz

U
TC

 ti
m

e
fro

m
 0

9/
08

/0
4

0 100 200 300 400 500 600 700 800 900 1000
17:37:48

17:37:51

17:37:54

17:37:57

(a)

γ : UTC 20/09/04 06:42:27 to 29/09/04 01:12:51
Wilcoxon signed rank test for LLO−VIRGO magnetic

Frequency / Hz

U
TC

 ti
m

e
fro

m
 2

0/
09

/0
4

0 100 200 300 400 500 600 700 800 900 1000

18:34:03

18:34:06

18:34:09

(b)

α : UTC 27/02/03 09:23:07 to 14/03/03 05:29:47
Difference−mean test for LHO−LLO magnetic

Frequency / Hz

U
TC

 ti
m

e
fro

m
 1

3/
03

/0
3

0 100 200 300 400 500 600 700 800 900 1000

18:56:37

18:56:40

18:56:43

(c)

α : UTC 27/02/03 09:23:07 to 14/03/03 05:29:47
Kolmogorov−Smirnov test for LHO−LLO magnetic

Frequency / Hz

U
TC

 ti
m

e
fro

m
 1

3/
03

/0
3

0 100 200 300 400 500 600 700 800 900 1000

18:56:39

18:56:42

18:56:45

(d)

δ : UTC 04/10/04 23:59:47 to 10/10/04 07:48:07
Student t test for ANU−LHO magnetic

Frequency / Hz

U
TC

 ti
m

e
fro

m
 0

8/
10

/0
4

0 100 200 300 400 500 600 700 800 900 1000
05:29:47

05:29:50

05:29:53

05:29:56

(e)

γ : UTC 20/09/04 06:42:27 to 29/09/04 01:12:51
Student t test for LHO−LLO magnetic

Frequency / Hz

U
TC

 ti
m

e
fro

m
 2

7/
09

/0
4

0 100 200 300 400 500 600 700 800 900 1000
20:49:01

20:49:04

20:49:07

20:49:10

(f)

δ : UTC 04/10/04 23:59:47 to 10/10/04 07:48:07
Student t test for LHO−VIRGO magnetic

Frequency / Hz

U
TC

 ti
m

e
fro

m
 0

6/
10

/0
4

0 100 200 300 400 500 600 700 800 900 1000

07:25:23

07:25:26

07:25:29

(g)

δ : UTC 04/10/04 23:59:47 to 10/10/04 07:48:07
Wilcoxon signed rank test for ANU−LHO magnetic

Frequency / Hz

U
TC

 ti
m

e
fro

m
 0

8/
10

/0
4

0 100 200 300 400 500 600 700 800 900 1000

02:09:05

02:09:08

02:09:11

(h)

Figure 5.24: Bursts, gaps, and wandering lines in magnetic field sensor spectrograms.

5.2 Short timescale analyses 69

δ : UTC 04/10/04 23:59:47 to 10/10/04 07:48:07
Difference−mean test for ANU−LHO horizontal seismic

Frequency / Hz

U
TC

 ti
m

e
fro

m
 0

8/
10

/0
4

0 20 40 60 80 100 120
20:01:19

20:01:22

20:01:25

20:01:28

(a)

δ : UTC 04/10/04 23:59:47 to 10/10/04 07:48:07
Difference−mean test for LHO−VIRGO magnetic

Frequency / Hz

U
TC

 ti
m

e
fro

m
 0

8/
10

/0
4

0 100 200 300 400 500 600 700 800 900 1000
18:20:10

18:20:13

18:20:16

18:20:19

(b)

δ : UTC 04/10/04 23:59:47 to 10/10/04 07:48:07
Difference−mean test for LHO−VIRGO horizontal seismic

Frequency / Hz

U
TC

 ti
m

e
fro

m
 0

8/
10

/0
4

0 20 40 60 80 100 120
20:02:12

20:02:15

20:02:18

20:02:21

(c)

δ : UTC 04/10/04 23:59:47 to 10/10/04 07:48:07
Student t test for LLO−VIRGO vertical seismic

Frequency / Hz

U
TC

 ti
m

e
fro

m
 0

5/
10

/0
4

0 20 40 60 80 100 120
19:57:26

19:57:29

19:57:32

19:57:35

(d)

δ : UTC 04/10/04 23:59:47 to 10/10/04 07:48:07
Kolmogorov−Smirnov test for LLO−VIRGO vertical seismic

Frequency / Hz

U
TC

 ti
m

e
fro

m
 0

9/
10

/0
4

0 20 40 60 80 100 120
21:39:57

21:40:00

21:40:03

21:40:06

(e)

γ : UTC 20/09/04 06:42:27 to 29/09/04 01:12:51
Difference−mean test for LLO−VIRGO vertical seismic

Frequency / Hz

U
TC

 ti
m

e
fro

m
 2

2/
09

/0
4

0 20 40 60 80 100 120

14:25:38

14:25:41

14:25:44

(f)

γ : UTC 20/09/04 06:42:27 to 29/09/04 01:12:51
Student t test for LLO−VIRGO vertical seismic

Frequency / Hz

U
TC

 ti
m

e
fro

m
 2

2/
09

/0
4

0 20 40 60 80 100 120
14:25:38

14:25:41

14:25:44

14:25:47

(g)

γ : UTC 20/09/04 06:42:27 to 29/09/04 01:12:51
Wilcoxon signed rank test for LLO−VIRGO vertical seismic

Frequency / Hz

U
TC

 ti
m

e
fro

m
 2

2/
09

/0
4

0 20 40 60 80 100 120
14:25:38

14:25:41

14:25:44

14:25:47

(h)

Figure 5.25: Spectrographic “phase changes” in seismometer and magnetic field sensor spectro-
grams.

Chapter 6

Conclusion

In this project, the author made a substantial contribution to the physical environment
monitoring station at The Australian National University. The data acquisition software
was written in LabVIEW, and was extended in order to be able to write acquired data
directly to the gravitational wave detector Frame file format. This greatly improved the
simplicity and manageability of the monitoring station. The author also improved the
organisation of previously archived data from the station.

A program was implemented for the purpose of processing and analysing data acquired
from four physical environment monitoring stations. The program was written in C,
and was able to be run as a parallel program across multiple computers by utilising an
implementation of the MPI programming standard. The program implemented several
well-defined algorithms used to identify long timescale correlations; for short timescale
correlations, a transient event search algorithm was implemented to search spectrograms
of the data. The algorithm used several statistical tests to try to characterise transient
events. The program was eventually executed on several large data sets from the physical
environment monitors.

The results of the analyses did not find any immediately significant long timescale cor-
relations between the physical environment monitoring stations. Most candidate correla-
tions could be initially explainable as being produced by independent but frequency-stable
oscillators, such as the mains power grid. A deeper investigation would require considering
the possible physical processes from which the observed correlations might have arisen;
this was, however, beyond the scope of this project.

The search algorithm implemented to detect short timescale correlations was successful
in distinguishing some interesting features. These correlations are not as easily explainable
as some of the long timescale correlations, and are certainly worthy of further investigation.

There are many future directions in which this research might lead. Further develop-
ment of the physical environment monitoring station and of the data acquisition software
are still possible. The parallel processing program, while sufficient for the purposes of this
project, has several deficiencies which might easily be improved upon to create a more
professional data analysis software.

A deeper understanding of the possible physical processes which might give rise to
global environment noise would be difficult, and most probably require further, more
specific, monitoring data, but would, in the end, be of great service in the characterisation
of global environment noise.

Further investigation into the nature of short timescale correlations and their possible
causes would also be of great benefit. In particular, a comprehensive characterisation
of short timescale correlations might enable the identification of those signals which are
gravitational wave candidates. A search for short timescale correlations running parallel to

71

72 Conclusion

an operational gravitational wave detector could then identify these signals and eliminate
them from consideration as gravitational wave candidates.

Much has been learned in this project. The author has acquired the skills to manage
and analyse large data sets using parallel processing techniques. The software developed
in the project will be useful as a base for future investigations. The results that were
obtained, while not providing a definitive answer to the question of global environmental
noise, certainly contain enough mysteries to be worthy of further and deeper investigation.
It is the hope of the author that this project will provide a firm base upon which to continue
such investigations.

Appendix A

Additional code

A.1 The parallel data processing program

A.1.1 The header

Listing A.1: The header

#include <stdlib.h>

#include <stdio.h>

#include <stdarg.h>

#include <string.h>

#include <math.h>

#include <unistd.h>

#include "mpi.h"

#include "rfftw.h"

#include "FrameL.h"

#include "Frv.h"

#ifdef FFTW ENABLE FLOAT

#define MPI FFTW REAL (MPI FLOAT)

#else

#define MPI FFTW REAL (MPI DOUBLE)

#endif

#define FFTW PLAN FLAGS (FFTW MEASURE | FFTW USE WISDOM)

#define SWAP(a, b, t) t = a; a = b; b = t

typedef struct {
char ∗string;

int index;

} StringIndex;

typedef struct {
int init;

fftw real ∗buffer;

double start;

double length;

} Buffer;

typedef struct {
int FFT;

fftw real ∗fft in;

fftw real ∗fft out;

fftw real ∗fft win;

73

74 Additional code

fftw real fft win norm;

int SPECT;

fftw real ∗spect;

int CORR;

fftw real ∗corr;
int AUTC;

fftw real ∗autc;

rfftw plan fft plan;

} LongBuf;

typedef struct {
intFFT;

fftw real ∗fft in;

fftw real ∗fft out;

fftw real ∗fft win;

fftw real fft win norm;

int SPECT;

fftw real ∗spect;

rfftw plan fft plan;

} TrnsBuf;

typedef struct {
double time;

double stat;

double ord;

} Stat;

const int CORRELATIONS = 2;

const int LINE = 1024;

const char TOUCH FILENAME[] = "delete_me_to_stop";

const double SEND SEGMENT = 100.0;

const int PROC CONTINUE = −1;

const int PROC STOP = −2;

const double LONG SPECT WINDOW = 500.0;

const int LONG SPECT OVERLAP = 2;

const double LONG CORR SHIFT = 1.5;

const double TRNS SPECT WINDOW = 0.125;

const int TRNS SPECT OVERLAP = 4;

const int SRCH TIME BIN = 4;

const int SRCH TIME OVERLAP = 1;

const int SRCH FREQ BIN = 4;

const int SRCH FREQ OVERLAP = 2;

const int SRCH TIME RANGE = 10;

const int STAT SAVE = 10000;

const int STAT SPCTGM SAVE = 20;

const int STAT COUNT = 5;

LongBuf ∗longbuf;

TrnsBuf ∗trnsbuf;

fftw real ∗event bin;

fftw real ∗∗srch bin;

A.1 The parallel data processing program 75

A.1.2 The main subroutine

Listing A.2: The main subroutine variable declarations

int COLLECTORS, PROCESSORS, CROSSPROCESSORS, SIZE, i, j, retn, rank, size;

MPI Group group;

MPI Comm comm, local comm;

int ∗coll proc ranks, coll proc max rank, coll proc comm i;

MPI Group coll proc group;

MPI Comm coll proc comm[CORRELATIONS];

FILE ∗fchannel;

char line[LINE], ∗token;

int CHANNELS, CHANNEL NAMES;

double ∗sampling rate;

StringIndex ∗channel names;

Listing A.3: The main subroutine construction of the collector-to-processor/cross-processor com-
municators

coll proc ranks = (int∗) malloc((2 + 2∗(COLLECTORS−1)) ∗ sizeof(int));

coll proc max rank = COLLECTORS + PROCESSORS;

for (i = 0; i < CORRELATIONS; i++) {
coll proc comm[i] = MPI COMM NULL;

}
coll proc comm i = 0;

for (i = 0; i < COLLECTORS; i++) {
coll proc ranks[0] = i;

coll proc ranks[1] = COLLECTORS + i;

for (j = 2; j < i+1; j++) {
coll proc ranks[j]++;

}
for (j = i+2; j < COLLECTORS+1; j++) {

coll proc ranks[j] = coll proc max rank++;

}
for (j = 0; j < COLLECTORS−1; j++) {

coll proc ranks[2 + (COLLECTORS−1) + j] = CROSSPROCESSORS +

coll proc ranks[2 + j];

}
comm = MPI COMM NULL;

MPI Group incl(group, 2 + 2∗(COLLECTORS−1), coll proc ranks,

&coll proc group);

MPI Comm create(MPI COMM WORLD, coll proc group, &comm);

MPI Group free(&coll proc group);

if (comm != MPI COMM NULL) {
coll proc comm[coll proc comm i++] = comm;

}
}
free(coll proc ranks);

76 Additional code

Listing A.4: The main subroutine processing of the channels file

fchannel = fopen(argv[1], "r");

CHANNELS = 0;

sampling rate = NULL;

CHANNEL NAMES = 0;

channel names = NULL;

while (fgets(line, LINE, fchannel) != NULL) {
token = strtok(line, " \n");

if (token != NULL) {
sampling rate = (double∗) realloc(sampling rate,

(++CHANNELS)∗sizeof(double));

sampling rate[CHANNELS−1] = strtod(token, NULL);

token = strtok(NULL, " \n");

while (token != NULL) {
channel names = (StringIndex∗) realloc(channel names,

(++CHANNEL NAMES)∗sizeof(StringIndex));

channel names[CHANNEL NAMES−1].string = (char∗) malloc(strlen(token)+1);

strcpy(channel names[CHANNEL NAMES−1].string, token);

channel names[CHANNEL NAMES−1].index = CHANNELS−1;

token = strtok(NULL, " \n");

}
}

}

Listing A.5: The main subroutine calls to the collector and processor subroutines

longInit(CHANNELS, sampling rate);

trnsInit(CHANNELS, sampling rate);

if (rank < COLLECTORS) {
if (coll proc comm i == 1) {

retn = collector(local comm, coll proc comm[coll proc comm i−1], CHANNELS,

sampling rate, CHANNEL NAMES, channel names, argv[rank+2]);

}
else {

return error(rank, rank, "Unexpected number of communicators");

}
}
else {

if (rank < COLLECTORS + PROCESSORS + CROSSPROCESSORS) {
retn = processor(coll proc comm i, coll proc comm, 1, CHANNELS, sampling rate);

}
else {

retn = processor(coll proc comm i, coll proc comm, 2, CHANNELS, sampling rate);

}
}
longFinal(CHANNELS);

trnsFinal(CHANNELS);

A.1 The parallel data processing program 77

Listing A.6: The main subroutine cleanup

if (local comm != MPI COMM NULL) {
MPI Comm free(&local comm);

}
for (i = 0; i < coll proc comm i; i++) {

if (coll proc comm[i] != MPI COMM NULL) {
MPI Comm free(&coll proc comm[i]);

}
}
free(sampling rate);

for (i = 0; i < CHANNEL NAMES; i++) {
free(channel names[i].string);

}
free(channel names);

MPI Group free(&group);

MPI Finalize();

return retn;

}
A.1.3 The collector subroutine

Listing A.7: The collector subroutine variable declarations

int i, j, local rank, local size;

char ∗listout filename, line[LINE];

FILE ∗flist, FILE ∗flistout;

FrFile ∗frfile;

FrameH ∗frame;

FrRawData ∗rawData;

FrAdcData ∗adcData;

FrVect ∗vectData;

fftw real ∗vectdataData;

Buffer series[CHANNELS];

double start sync[CHANNELS], double start sync max[CHANNELS];

int done start sync, all have data, coll status, coll continue;

Listing A.8: The collector subroutine initialisation

for (i = 0; i < CHANNELS; i++) {
bufferInit(&series[i]);

}
done start sync = 0;

listout filename = sprintfalloc("%s.out", list filename);

fclose(fopen(listout filename, "w"));

if ((rawData = frame−>rawData) != NULL) {
for (adcData = rawData−>firstAdc; adcData != NULL; adcData =

adcData−>next) {
for (i = 0; i < CHANNEL NAMES; i++) {

if (strstr(adcData−>name, channel names[i].string) != NULL) {
j = channel names[i].index;

78 Additional code

#ifdef FFTW ENABLE FLOAT

vectData = FrvCopyToF(adcData−>data, 1.0, NULL);

vectdataData = (fftw real∗) vectData−>dataF;

#else

vectData = FrvCopyToD(adcData−>data, 1.0, NULL);

vectdataData = (fftw real∗) vectData−>dataD;

#endif

FrvZeroMean(vectData, NULL);

bufferAdd(&series[j], sampling rate[j], vectdataData, round(((double)

frame−>GTimeS) + ((double) frame−>GTimeN) / 1e9),

vectData−>nData / adcData−>sampleRate,

adcData−>sampleRate);

FrVectFree(vectData);

vectdataData = NULL;

}
}

}
}

Listing A.9: The collector subroutine synchronisation of starting times

if (done start sync == 0) {
for (i = 0; i < CHANNELS; i++) {

start sync[i] = series[i].start;

start sync max[i] = 0;

}
MPI Allreduce(start sync, start sync max, CHANNELS, MPI DOUBLE,

MPI MAX, local comm);

for (i = 0; i < CHANNELS; i++) {
bufferShift(&series[i], sampling rate[i], start sync max[i]);

if (local rank == 0) {
printf("Started analysis of channel %i at time %0.0f\n", i,

start sync max[i]);

fflush(stdout);

}
}
done start sync = 1;

}

Listing A.10: The collector subroutine transmission of data

if (coll continue) {
for (i = 0; i < CHANNELS; i++) {

MPI Bcast(&i, 1, MPI INT, 0, to proc comm);

MPI Bcast(&series[i].start, 1, MPI DOUBLE, 0, to proc comm);

MPI Bcast(series[i].buffer, SEND SEGMENT ∗ sampling rate[i],

MPI FFTW REAL, 0, to proc comm);

bufferShift(&series[i], sampling rate[i], series[i].start +

SEND SEGMENT);

}

A.1 The parallel data processing program 79

}
MPI Bcast((int∗) &PROC CONTINUE, 1, MPI INT, 0, to proc comm);

}
}

}

Listing A.11: The collector subroutine cleanup

}
FrFileIEnd(frfile);

flistout = fopen(listout filename, "a");

fprintf(flistout, "%s\n", line);

fclose(flistout);

}
fclose(flist);

if (coll continue) {
coll status = 0; coll continue = 0;

MPI Allreduce(&coll status, &coll continue, 1, MPI INT, MPI LAND, local comm);

}
MPI Bcast((int∗) &PROC STOP, 1, MPI INT, 0, to proc comm);

if (local rank == 0) {
for (i = 0; i < CHANNELS; i++) {

printf("Stopped analysis of channel %i at time %0.0f\n", i, series[i].start

+ series[i].length);

fflush(stdout);

}
}
for (i = 0; i < CHANNELS; i++) {

bufferFree(&series[i]);

}
return EXIT SUCCESS;

}
A.1.4 The processor subroutine

Listing A.12: The processor subroutine variable declarations

int i, j;

char line[LINE], proc filename id[LINE];

int from coll comm stopped[FROM COLL COMM], from coll comm left;

fftw real ∗receive[CHANNELS];

double receive start[CHANNELS];

Buffer long series[CHANNELS][FROM COLL COMM];

Buffer corr series[CHANNELS][FROM COLL COMM];

Buffer trns series[CHANNELS][FROM COLL COMM];

Buffer spctgm[CHANNELS];

double spctgm sampling rate[CHANNELS];

Listing A.13: The processor subroutine initialisation

proc filename id[0] = ‘\0’;

80 Additional code

for (j = 0; j < FROM COLL COMM; j++) {
MPI Bcast(line, LINE, MPI CHAR, 0, from coll comm[j]);

if (j > 0) {
strcat(proc filename id, "-");

}
strcat(proc filename id, line);

}
for (i = 0; i < CHANNELS; i++) {

receive[i] = (fftw real∗) malloc(SEND SEGMENT ∗ sampling rate[i] ∗
sizeof(fftw real));

receive start[i] = 0;

for (j = 0; j < FROM COLL COMM; j++) {
bufferInit(&long series[i][j]);

bufferInit(&corr series[i][j]);

bufferInit(&trns series[i][j]);

}
bufferInit(&spctgm[i]);

spctgm sampling rate[i] = 0;

}
for (i = 0; i < FROM COLL COMM; i++) {

from coll comm stopped[i] = 0;

}
from coll comm left = FROM COLL COMM;

Listing A.14: The processor subroutine reception of data

if (i > PROC CONTINUE) {
MPI Bcast(&receive start[i], 1, MPI DOUBLE, 0, from coll comm[j]);

MPI Bcast(receive[i], SEND SEGMENT ∗ sampling rate[i],

MPI FFTW REAL, 0, from coll comm[j]);

if ((FROM COLL COMM == 1) | (crossproc set == 1)) {
bufferAdd(&long series[i][j], sampling rate[i], receive[i], receive start[i],

SEND SEGMENT, sampling rate[i]);

bufferAdd(&corr series[i][j], sampling rate[i], receive[i], receive start[i],

SEND SEGMENT, sampling rate[i]);

}
else {

bufferAdd(&trns series[i][j], sampling rate[i], receive[i], receive start[i],

SEND SEGMENT, sampling rate[i]);

}
}

Listing A.15: The processor subroutine execution of the analyses

if (from coll comm left == FROM COLL COMM) {
for (i = 0; i < CHANNELS; i++) {

if (FROM COLL COMM == 1) {
doLongPower(&long series[i][0], sampling rate[i], i, proc filename id);

doLongAuto(&corr series[i][0], sampling rate[i], i, proc filename id);

}

A.1 The parallel data processing program 81

else {
if (crossproc set == 1) {

doLongCross(&long series[i][0], &long series[i][1], sampling rate[i], i,

proc filename id);

doLongCorr(&corr series[i][0], &corr series[i][1], sampling rate[i], i,

proc filename id);

}
else {

doTrnsCross(&trns series[i][0], &trns series[i][1], sampling rate[i], &spctgm[i],

&spctgm sampling rate[i], i);

doTrnsSearch(&spctgm[i], spctgm sampling rate[i], sampling rate[i], i,

proc filename id);

}
}

}
}

Listing A.16: The processor subroutine cleanup

}
for (i = 0; i < CHANNELS; i++) {

free(receive[i]);

for (j = 0; j < FROM COLL COMM; j++) {
bufferFree(&long series[i][j]);

bufferFree(&corr series[i][j]);

bufferFree(&trns series[i][j]);

}
bufferFree(&spctgm[i]);

}
return EXIT SUCCESS;

}
A.1.5 Implementation of the long timescale analyses

Listing A.17: The doLongAuto subroutine

void doLongAuto(Buffer ∗series, double sampling rate, int channel, char ∗filename id) {
int i, k;

double length;

char ∗auto filename;

auto filename = sprintfalloc("long_auto_%s-%i", filename id, channel);

if (algrRead(auto filename, longbuf[channel].AUTC, sizeof(longbuf[channel].autc[0]),

longbuf[channel].autc, "Sampling: %f\nShift: %f\n", sampling rate,

LONG CORR SHIFT)) {
for (i = 0; i < longbuf[channel].AUTC; i++) {

longbuf[channel].autc[i] = 0;

}
}
while ((length = series−>length − LONG CORR SHIFT) > 0) {

for (i = 0; i <= LONG CORR SHIFT ∗ sampling rate; i++) {

82 Additional code

for (k = 0; k < length ∗ sampling rate; k++) {
longbuf[channel].autc[i] += series−>buffer[k] ∗ series−>buffer[k + i];

}
}
bufferShift(series, sampling rate, series−>start + length);

}
algrWrite(auto filename, longbuf[channel].AUTC, sizeof(longbuf[channel].autc[0]),

longbuf[channel].autc, "");

free(auto filename);

return;

}

Listing A.18: The doLongCorr subroutine

void doLongCorr(Buffer ∗series1, Buffer ∗series2, double sampling rate, int channel, char

∗filename id) {
int i, j, k;

double length;

char ∗corr filename;

corr filename = sprintfalloc("long_corr_%s-%i", filename id, channel);

if (algrRead(corr filename, longbuf[channel].CORR, sizeof(longbuf[channel].corr[0]),

longbuf[channel].corr, "Sampling: %f\nShift: %f\n", sampling rate,

LONG CORR SHIFT)) {
for (i = 0; i < longbuf[channel].CORR; i++) {

longbuf[channel].corr[i] = 0;

}
}
while ((length = ((series1−>length < series2−>length) ? series1−>length :

series2−>length) − LONG CORR SHIFT) > 0) {
for (i = 0, j = LONG CORR SHIFT ∗ sampling rate; j > 0; i++, j−−) {

for (k = 0; k < length ∗ sampling rate; k++) {
longbuf[channel].corr[i] += series1−>buffer[k] ∗ series2−>buffer[k + j];

}
}
for (j = 0; j <= LONG CORR SHIFT ∗ sampling rate; i++, j++) {

for (k = 0; k < length ∗ sampling rate; k++) {
longbuf[channel].corr[i] += series1−>buffer[k + j] ∗ series2−>buffer[k];

}
}
bufferShift(series1, sampling rate, series1−>start + length);

bufferShift(series2, sampling rate, series2−>start + length);

}
algrWrite(corr filename, longbuf[channel].CORR, sizeof(longbuf[channel].corr[0]),

longbuf[channel].corr, "");

free(corr filename);

return;

}
Note: The reader may notice that, from the first for loop to the second, the independent
variable of the correlation j, which is equivalently τ in equation 3.5, has switched position

A.1 The parallel data processing program 83

from series2 to series1. This is because each Buffer only extends in one direction from its
initial data point, whereas the correlation extends equally in both directions. Although
this would seem to imply a change in the defintion of the correlation, it actually only
implies that the values of the correlation computed in one sweep do not all correspond to
exactly the same time τ . Since the correlation will be calculated over long data sets, this
effect reduces to insignificance.

Listing A.19: The doLongPower subroutine

void doLongPower(Buffer ∗series, double sampling rate, int channel, char ∗filename id) {
int i;

char ∗power filename;

int add power;

power filename = sprintfalloc("long_power_%s-%i", filename id, channel);

add power = !algrRead(power filename, longbuf[channel].SPECT,

sizeof(longbuf[channel].spect[0]), longbuf[channel].spect, "Sampling:

%f\nLength: %f\n", sampling rate, LONG SPECT WINDOW ∗
LONG SPECT OVERLAP);

while (series−>length >= LONG SPECT WINDOW ∗ LONG SPECT OVERLAP) {
for (i = 0; i < longbuf[channel].FFT; i++) {

longbuf[channel].fft in[i] = series−>buffer[i] ∗ longbuf[channel].fft win[i];

}
rfftw(longbuf[channel].fft plan, 1, longbuf[channel].fft in, 1, longbuf[channel].FFT,

longbuf[channel].fft out, 1, longbuf[channel].FFT);

algrCross(longbuf[channel].FFT, longbuf[channel].fft out, longbuf[channel].fft out,

longbuf[channel].spect, longbuf[channel].fft win norm, add power);

bufferShift(series, sampling rate, series−>start + LONG SPECT WINDOW);

}
algrWrite(power filename, longbuf[channel].SPECT, sizeof(longbuf[channel].spect[0]),

longbuf[channel].spect, "");

free(power filename);

return;

}

Listing A.20: The doLongCross subroutine

void doLongCross(Buffer ∗series1, Buffer ∗series2, double sampling rate, int channel,

char ∗filename id) {
int i;

char ∗cross filename;

int add cross;

cross filename = sprintfalloc("long_cross_%s-%i", filename id, channel);

add cross = !algrRead(cross filename, 2 ∗ longbuf[channel].SPECT,

sizeof(longbuf[channel].spect[0]), longbuf[channel].spect, "Sampling:

%f\nLength: %f\n", sampling rate, LONG SPECT WINDOW ∗
LONG SPECT OVERLAP);

while ((series1−>length >= LONG SPECT WINDOW ∗ LONG SPECT OVERLAP) &

(series2−>length >= LONG SPECT WINDOW ∗
LONG SPECT OVERLAP)) {

for (i = 0; i < longbuf[channel].FFT; i++) {

84 Additional code

longbuf[channel].fft in[i] = series1−>buffer[i] ∗ longbuf[channel].fft win[i];

longbuf[channel].fft in[longbuf[channel].FFT+i] = series2−>buffer[i] ∗
longbuf[channel].fft win[i];

}
rfftw(longbuf[channel].fft plan, 2, longbuf[channel].fft in, 1, longbuf[channel].FFT,

longbuf[channel].fft out, 1, longbuf[channel].FFT);

algrCross(longbuf[channel].FFT, &longbuf[channel].fft out[0],

&longbuf[channel].fft out[longbuf[channel].FFT], longbuf[channel].spect,

longbuf[channel].fft win norm, add cross);

bufferShift(series1, sampling rate, series1−>start + LONG SPECT WINDOW);

bufferShift(series2, sampling rate, series2−>start + LONG SPECT WINDOW);

}
algrWrite(cross filename, 2 ∗ longbuf[channel].SPECT,

sizeof(longbuf[channel].spect[0]), longbuf[channel].spect, "");

free(cross filename);

return;

}
A.1.6 Implementation of the short timescale analyses

Listing A.21: The doTrnsPower subroutine

void doTrnsPower(Buffer ∗series, double series sampling rate, Buffer ∗spctgm, double

∗spctgm sampling rate, int channel) {
int i;

while (series−>length >= TRNS SPECT WINDOW ∗ TRNS SPECT OVERLAP) {
for (i = 0; i < trnsbuf[channel].FFT; i++) {

trnsbuf[channel].fft in[i] = series−>buffer[i] ∗ trnsbuf[channel].fft win[i];

}
rfftw(trnsbuf[channel].fft plan, 1, trnsbuf[channel].fft in, 1, trnsbuf[channel].FFT,

trnsbuf[channel].fft out, 1, trnsbuf[channel].FFT);

algrCross(trnsbuf[channel].FFT, trnsbuf[channel].fft out, trnsbuf[channel].fft out,

trnsbuf[channel].spect, trnsbuf[channel].fft win norm, 0);

if (∗spctgm sampling rate == 0) {
∗spctgm sampling rate = trnsbuf[channel].SPECT / TRNS SPECT WINDOW;

}
bufferAdd(spctgm, ∗spctgm sampling rate, trnsbuf[channel].spect, series−>start,

trnsbuf[channel].SPECT / ∗ spctgm sampling rate, ∗spctgm sampling rate);

bufferShift(series, series sampling rate, series−>start + TRNS SPECT WINDOW);

}
return;

}

Listing A.22: The doTrnsCross subroutine

void doTrnsCross(Buffer ∗series1, Buffer ∗series2, double series sampling rate, Buffer

∗spctgm, double ∗ spctgm sampling rate, int channel) {
int i;

while ((series1−>length >= TRNS SPECT WINDOW ∗ TRNS SPECT OVERLAP) &

(series2−>length >= TRNS SPECT WINDOW ∗ TRNS SPECT OVERLAP))

{

A.1 The parallel data processing program 85

for (i = 0; i < trnsbuf[channel].FFT; i++) {
trnsbuf[channel].fft in[i] = series1−>buffer[i] ∗ trnsbuf[channel].fft win[i];

trnsbuf[channel].fft in[trnsbuf[channel].FFT+i] = series2−>buffer[i] ∗
trnsbuf[channel].fft win[i];

}
rfftw(trnsbuf[channel].fft plan, 2, trnsbuf[channel].fft in, 1, trnsbuf[channel].FFT,

trnsbuf[channel].fft out, 1, trnsbuf[channel].FFT);

algrCrossSqrd(trnsbuf[channel].FFT, &trnsbuf[channel].fft out[0],

&trnsbuf[channel].fft out[trnsbuf[channel].FFT], trnsbuf[channel].spect,

trnsbuf[channel].fft win norm, 0);

if (∗spctgm sampling rate == 0) {
∗spctgm sampling rate = trnsbuf[channel].SPECT / TRNS SPECT WINDOW;

}
bufferAdd(spctgm, ∗spctgm sampling rate, trnsbuf[channel].spect, series1−>start,

trnsbuf[channel].SPECT / ∗ spctgm sampling rate, ∗spctgm sampling rate);

bufferShift(series1, series sampling rate, series1−>start + TRNS SPECT WINDOW);

bufferShift(series2, series sampling rate, series2−>start + TRNS SPECT WINDOW);

}
return;

}

Listing A.23: The doTrnsSearch subroutine

void doTrnsSearch(Buffer ∗spctgm, double spctgm sampling rate, double sampling rate,

int channel, char ∗filename id) {
int SRCH TIME RANGE TOTAL = (2 ∗ SRCH TIME RANGE) + 1;

int SRCH TIME LENGTH = SRCH TIME BIN ∗ (SRCH TIME OVERLAP +

SRCH TIME RANGE TOTAL − 1);

int SRCH FREQ COUNT = floor((trnsbuf[channel].SPECT / SRCH FREQ BIN) −
SRCH FREQ OVERLAP + 1);

int f, t, i, j;

fftw real ∗bin;

double event stat[STAT COUNT];

int event ord;

Stat stat list[STAT COUNT][STAT SAVE], swap;

char ∗stat list filename[STAT COUNT], ∗spctgm filename;

for (i = 0; i < STAT COUNT; i++) {
stat list filename[i] = sprintfalloc("trns_stat-%i_%s-%i", i, filename id, channel);

if (algrRead(stat list filename[i], STAT SAVE, sizeof(stat list[i][0]), stat list[i], "")) {
for (j = 0; j < STAT SAVE; j++) {

stat list[i][j].time = 0;

stat list[i][j].stat = 0;

stat list[i][j].ord= j;

}
}

}
while (spctgm−>length >= TRNS SPECT WINDOW ∗ SRCH TIME LENGTH) {

for (f = 0; f < SRCH FREQ COUNT; f++) {
for (t = 0; t < SRCH TIME RANGE TOTAL; t++) {

86 Additional code

if (t < SRCH TIME RANGE) {
bin = srch bin[t];

}
else if (t < SRCH TIME RANGE + 1) {

bin = event bin;

}
else {

bin = srch bin[t−1];

}
for (i = 0; i < SRCH TIME BIN ∗ SRCH TIME OVERLAP; i++) {

for (j = 0; j < SRCH FREQ BIN ∗ SRCH FREQ OVERLAP; j++) {
bin[(i ∗ SRCH FREQ BIN ∗ SRCH FREQ OVERLAP) + j] =

spctgm−>buffer[((t ∗ SRCH TIME BIN) + i) ∗ trnsbuf[channel].SPECT +

(f ∗ SRCH FREQ BIN) + j];

}
}

}
statCompute(SRCH TIME BIN ∗ SRCH TIME OVERLAP ∗ SRCH FREQ BIN ∗

SRCH FREQ OVERLAP, 2 ∗ SRCH TIME RANGE, srch bin, event bin,

event stat);

for (i = 0; i < STAT COUNT; i++) {
if (event stat[i] > stat list[i][STAT SAVE−1].stat) {

stat list[i][STAT SAVE−1].time = spctgm−>start +

(TRNS SPECT WINDOW ∗ SRCH TIME RANGE ∗
SRCH TIME BIN);

stat list[i][STAT SAVE−1].stat = event stat[i];

for (j = STAT SAVE−2; (j >= 0) & (stat list[i][j].stat < stat list[i][j+1].stat);

j−−) {
SWAP(stat list[i][j].time, stat list[i][j+1].time, swap.time);

SWAP(stat list[i][j].stat, stat list[i][j+1].stat, swap.stat);

if (j == STAT SPCTGM SAVE − 1) {
spctgm filename = sprintfalloc("trns_stat-%i_%s-%i_spctgm-%02.0f",

i, filename id, channel, stat list[i][j].ord);

spctgmWrite(spctgm filename, spctgm, spctgm sampling rate,

TRNS SPECT WINDOW ∗ SRCH TIME LENGTH, "Sampling:

%f\nWindow: %f\nStart: %f\nStep: %f\nSize: %i

%i\nEvent: %i %i %i %i\nStatistic: %f\nOrdinal: %i\n",

sampling rate, TRNS SPECT WINDOW ∗
TRNS SPECT OVERLAP, spctgm−>start,

TRNS SPECT WINDOW, trnsbuf[channel].SPECT,

SRCH TIME LENGTH, f ∗ SRCH FREQ BIN,

SRCH TIME RANGE ∗ SRCH TIME BIN, SRCH FREQ BIN ∗
SRCH FREQ OVERLAP, SRCH TIME BIN ∗
SRCH TIME OVERLAP, stat list[i][j].stat, stat list[i][j].ord);

free(spctgm filename);

}
else {

SWAP(stat list[i][j].ord, stat list[i][j+1].ord, swap.ord);

A.1 The parallel data processing program 87

}
}

}
}

}
bufferShift(spctgm, spctgm sampling rate, spctgm−>start +

TRNS SPECT WINDOW ∗ SRCH TIME BIN);

}
for (i = 0; i < STAT COUNT; i++) {

algrWrite(stat list filename[i], STAT SAVE, sizeof(stat list[i][0]), stat list[i], "");

}
for (i = 0; i < STAT COUNT; i++) {

free(stat list filename[i]);

}
return;

}
A.1.7 Miscellaneous subroutines and functions

Listing A.24: The algrCross subroutine

void algrCross(int N, fftw real ∗ft1, fftw real ∗ft2, fftw real ∗cross, fftw real norm, int

add) {
int i;

if (!add) {
for (i = 0; i < N+2; i++) {

cross[i] = 0.0;

}
}
cross[0] += ft1[0]∗ft2[0] / norm;

for (i = 1; i < (N+1)/2; i++) {
cross[i] += (ft1[i]∗ft2[i] + ft1[N−i]∗ft2[N−i]) / norm;

cross[N/2+1+i] += (ft1[i]∗ft2[N−i] − ft2[i]∗ft1[N−i]) / norm;

}
if (N % 2 == 0) {

cross[N/2] += ft1[N/2]∗ft2[N/2] / norm;

}
return;

}

Listing A.25: The algrCrossSqrd subroutine

void algrCrossSqrd(int N, fftw real ∗ft1, fftw real ∗ft2, fftw real ∗cross2, fftw real norm,

int add) {
int i;

fftw real norm2;

if (!add) {
for (i = 0; i < N+2; i++) {

cross2[i] = 0.0;

}

88 Additional code

}
norm2 = pow(norm, 2);

cross2[0] += pow(ft1[0]∗ft2[0], 2) / norm2;

for (i = 1; i < (N+1)/2; i++) {
cross2[i] += (pow(ft1[i]∗ft2[i] + ft1[N−i]∗ft2[N−i], 2) + pow(ft1[i]∗ft2[N−i] −

ft2[i]∗ft1[N−i], 2)) / norm2;

}
if (N % 2 == 0) {

cross2[N/2] += pow(ft1[N/2]∗ft2[N/2], 2) / norm2;

}
return;

}

Listing A.26: The algrRead function

int algrRead(char ∗filename, int N, int size, void ∗data, char ∗format, ...) {
char ∗data filename, ∗log filename;

FILE ∗fdata, ∗flog;

va list ap;

int init;

data filename = sprintfalloc("%s.dat", filename);

log filename = sprintfalloc("%s.log", filename);

fdata = NULL;

fdata = fopen(data filename, "rb");

init = (fdata == NULL);

if (init) {
flog = fopen(log filename, "w");

va start(ap, format);

vfprintf(flog, format, ap);

va end(ap);

fclose(flog);

}
else {

fread(data, size, N, fdata);

fclose(fdata);

}
free(data filename);

free(log filename);

return init;

}

Listing A.27: The algrWrite subroutine

void algrWrite(char ∗filename, int N, int size, void ∗data, char ∗format, ...) {
char ∗data filename, ∗log filename;

FILE ∗fdata, ∗flog;

va list ap;

data filename = sprintfalloc("%s.dat", filename);

log filename = sprintfalloc("%s.log", filename);

fdata = fopen(data filename, "wb");

A.1 The parallel data processing program 89

fwrite(data, size, N, fdata);

fclose(fdata);

flog = fopen(log filename, "a");

va start(ap, format);

vfprintf(flog, format, ap);

va end(ap);

fclose(flog);

free(data filename);

free(log filename);

return;

}

Listing A.28: The bufferAdd subroutine

void bufferAdd(Buffer ∗buffer, double buffer sampling rate, fftw real ∗data, double

data start, double data length, double data sampling rate) {
int i, j;

double r;

if (buffer−>init == 0) {
buffer−>start = data start;

buffer−>init = 1;

}
if (data start + data length > buffer−>start) {

if (data start + data length > buffer−>start + buffer−>length) {
i = (int) floor(buffer−>length ∗ buffer sampling rate);

buffer−>length = data start + data length − buffer−>start;

buffer−>buffer = (fftw real∗) realloc(buffer−>buffer, (int) floor(buffer−>length ∗
buffer sampling rate) ∗ sizeof(fftw real));

for (; i < (int) floor(buffer−>length ∗ buffer sampling rate); i++) {
buffer−>buffer[i] = 0;

}
}
j = (int) floor((data start − buffer−>start) ∗ buffer sampling rate);

if (j < 0) {
i = −j;

}
else {

i = 0;

}
if (data sampling rate == buffer sampling rate) {

for (; i < data length ∗ buffer sampling rate; i++) {
buffer−>buffer[j + i] += data[i];

}
}
else {

r = data sampling rate / buffer sampling rate;

for (; i < (int) floor(data length ∗ buffer sampling rate); i++) {
buffer−>buffer[j + i] += data[(int) floor(i ∗ r)];

}

90 Additional code

}
}
return;

}

Listing A.29: The bufferFree subroutine

void bufferFree(Buffer ∗buffer) {
if (buffer−>buffer != NULL) {

free(buffer−>buffer);

}
bufferInit(buffer);

return;

}

Listing A.30: The bufferInit subroutine

void bufferInit(Buffer ∗buffer) {
buffer−>buffer = NULL;

buffer−>start = 0;

buffer−>init = 0;

buffer−>length = 0;

}

Listing A.31: The bufferShift subroutine

void bufferShift(Buffer ∗buffer, double sampling rate, double to start) {
if (to start > buffer−>start) {

buffer−>length −= (to start − buffer−>start);

if (buffer−>length > 0) {
buffer−>buffer = (fftw real∗) memmove(&buffer−>buffer[0],

&buffer−>buffer[(int) floor((to start − buffer−>start) ∗ sampling rate)],

(int) floor(buffer−>length ∗ sampling rate) ∗ sizeof(fftw real));

buffer−>buffer = (fftw real∗) realloc(buffer−>buffer, (int) floor(buffer−>length ∗
sampling rate) ∗ sizeof(fftw real));

}
else {

buffer−>length = 0;

free(buffer−>buffer);

buffer−>buffer = NULL;

}
buffer−>start = to start;

}
return;

}

Listing A.32: The error subroutine

int error(int ifrank, int eqrank, char ∗format, ...) {
char ∗str;
va list ap;

A.1 The parallel data processing program 91

if (ifrank == eqrank) {
va start(ap, format);

fprintf(stderr, "ERROR: ");

vfprintf(stderr, format, ap);

fprintf(stderr, "\n");

va end(ap);

}
return EXIT FAILURE;

}

Listing A.33: The longFinal subroutine

void longFinal(int CHANNELS) {
int i;

for (i = 0; i < CHANNELS; i++) {
free(longbuf[i].fft in);

free(longbuf[i].fft out);

free(longbuf[i].fft win);

free(longbuf[i].spect);

free(longbuf[i].corr);

free(longbuf[i].autc);

rfftw destroy plan(longbuf[i].fft plan);

}
free(longbuf);

return;

}

Listing A.34: The longInit subroutine

void longInit(int CHANNELS, double sampling rate[]) {
int i, j;

longbuf = (LongBuf∗) malloc(CHANNELS ∗ sizeof(LongBuf));

for (i = 0; i < CHANNELS; i++) {
longbuf[i].FFT = LONG SPECT WINDOW ∗ LONG SPECT OVERLAP ∗

sampling rate[i];

longbuf[i].fft in = (fftw real∗) malloc(2 ∗ longbuf[i].FFT ∗ sizeof(fftw real));

longbuf[i].fft out = (fftw real∗) malloc(2 ∗ longbuf[i].FFT ∗ sizeof(fftw real));

longbuf[i].fft win = (fftw real∗) malloc(longbuf[i].FFT ∗ sizeof(fftw real));

longbuf[i].fft win norm = 0;

longbuf[i].SPECT = longbuf[i].FFT/2 + 1;

longbuf[i].spect = (fftw real∗) malloc(2 ∗ longbuf[i].SPECT ∗ sizeof(fftw real));

longbuf[i].CORR = (2 ∗ LONG CORR SHIFT ∗ sampling rate[i]) + 1;

longbuf[i].corr = (fftw real∗) malloc(longbuf[i].CORR ∗ sizeof(fftw real));

longbuf[i].AUTC = (LONG CORR SHIFT ∗ sampling rate[i]) + 1;

longbuf[i].autc = (fftw real∗) malloc(longbuf[i].AUTC ∗ sizeof(fftw real));

longbuf[i].fft plan = rfftw create plan specific(longbuf[i].FFT, FFTW FORWARD,

FFTW PLAN FLAGS, longbuf[i].fft in, 1, longbuf[i].fft out, 1);

}
for (i = 0; i < CHANNELS; i++) {

longbuf[i].fft win norm = 0.0;

92 Additional code

for (j = 0; j < longbuf[i].FFT; j++) {
longbuf[i].fft win[j] = 1 − fabs((fftw real) (2∗j − longbuf[i].FFT) / (fftw real)

longbuf[i].FFT);

longbuf[i].fft win norm += longbuf[i].fft win[j] ∗ longbuf[i].fft win[j];

}
longbuf[i].fft win norm ∗= longbuf[i].FFT;

}
return;

}

Listing A.35: The qsort double abs function

int qsort double abs(const void ∗a, const void ∗b) {
double s;

s = abs(∗((double∗) a)) − abs(∗((double∗) b));

return (s < 0) ? −1 : ((s > 0) ? 1 : 0);

}

Listing A.36: The qsort fftw real function

int qsort fftw real(const void ∗a, const void ∗b) {
double s;

s = ∗((fftw real∗) a) − ∗((fftw real∗) b);

return (s < 0) ? −1 : ((s > 0) ? 1 : 0);

}

Listing A.37: The spctgmWrite subroutine

void spctgmWrite(char ∗filename, Buffer ∗spctgm, double sampling rate, double length,

char ∗format, ...) {
char ∗data filename;

char ∗log filename;

FILE ∗fdata;

FILE ∗flog;

va list ap;

data filename = sprintfalloc("%s.dat", filename);

log filename = sprintfalloc("%s.log", filename);

fdata = fopen(data filename, "wb");

fwrite(spctgm−>buffer, sizeof(fftw real), (int) floor(length ∗ sampling rate), fdata);

fclose(fdata);

flog = fopen(log filename, "w");

va start(ap, format);

vfprintf(flog, format, ap);

va end(ap);

fclose(flog);

free(data filename);

free(log filename);

return;

}

A.1 The parallel data processing program 93

Listing A.38: The sprintfalloc function

char ∗sprintfalloc(char ∗format, ...) {
char ∗str;
va list ap;

va start(ap, format);

str = (char∗) malloc((vsnprintf(NULL, 0, format, ap) + 1) ∗ sizeof(char));

va end(ap);

va start(ap, format);

vsprintf(str, format, ap);

va end(ap);

return str;

}

Listing A.39: The statCompute subroutine

void statCompute(int BIN, int SRCH BIN, fftw real ∗∗srch bin, fftw real ∗event bin,

double ∗event stat) {
int s, i, j;

double event bin mean;

double event bin zero mean[BIN];

double srch bin mean;

double diff mean sqrd;

double diff[BIN];

double diff sqrd;

int rank;

int rank m;

double max diff;

event bin mean = 0;

for (i = 0; i < BIN; i++) {
event bin mean += event bin[i];

}
event bin mean /= BIN;

for (i = 0; i < BIN; i++) {
event bin zero mean[i] = event bin[i] − event bin mean;

}
event stat[0] = 0;

event stat[1] = 0;

for (s = 0; s < SRCH BIN; s++) {
srch bin mean = 0;

for (i = 0; i < BIN; i++) {
srch bin mean += srch bin[s][i];

}
srch bin mean /= BIN;

diff sqrd = 0;

for (i = 0; i < BIN; i++) {
diff sqrd += pow(srch bin[s][i] − srch bin mean − event bin zero mean[i], 2);

}
diff sqrd = (diff sqrd == 0) ? 1 : diff sqrd;

diff mean sqrd = pow(srch bin mean − event bin mean, 2);

94 Additional code

event stat[0] += diff mean sqrd;

event stat[1] += diff mean sqrd / diff sqrd;

}
event stat[0] = sqrt(event stat[0] / SRCH BIN);

event stat[1] = sqrt(event stat[1] / SRCH BIN);

event stat[2] = 0;

event stat[3] = 0;

for (s = 0; s < SRCH BIN; s++) {
for (i = 0; i < BIN; i++) {

diff[i] = srch bin[s][i] − event bin[i];

}
qsort(diff, BIN, sizeof(diff[0]), qsort double abs);

rank = rank m = 0;

for (i = 0; i < BIN; i++) {
if (diff[i] > 0) {

rank += i;

}
else if (diff[i] < 0) {

rank m += i;

}
}
event stat[2] += pow((rank > rank m) ? rank : rank m, 2);

event stat[3] += pow(diff[BIN−1], 2);

}
event stat[2] = sqrt(event stat[2] / SRCH BIN);

event stat[3] = sqrt(event stat[3] / SRCH BIN);

event stat[4] = 0;

qsort(event bin, BIN, sizeof(event bin[0]), qsort fftw real);

for (s = 0; s < SRCH BIN; s++) {
rank = 0;

for (i = 0; i < BIN; i++) {
for (j = 0; (j < BIN) & (event bin[j] < srch bin[s][i]); j++, rank++);

}
event stat[4] += pow(rank − BIN∗(BIN−1)/2, 2);

}
event stat[4] = sqrt(event stat[4] / SRCH BIN);

return;

}

Listing A.40: The strcatfalloc subroutine

void strcatfalloc(char ∗∗s, char ∗format, ...) {
char ∗str;
va list ap;

va start(ap, format);

str = (char∗) malloc((vsnprintf(NULL, 0, format, ap) + 1) ∗ sizeof(char));

va end(ap);

va start(ap, format);

vsprintf(str, format, ap);

A.1 The parallel data processing program 95

va end(ap);

if (∗s == NULL) {
∗s = str;

}
else {
∗s = (char∗) realloc(∗s, (strlen(∗s) + strlen(str) + 1) ∗ sizeof(char));

strcat(∗s, str);

free(st);

}
return;

}

Listing A.41: The trnsFinal subroutine

void trnsFinal(int CHANNELS) {
int i;

for (i = 0; i < CHANNELS; i++) {
free(trnsbuf[i].fft in);

free(trnsbuf[i].fft out);

free(trnsbuf[i].fft win);

free(trnsbuf[i].spect);

rfftw destroy plan(trnsbuf[i].fft plan);

}
free(trnsbuf);

free(event bin);

for (i = 0; i < (2 ∗ SRCH TIME RANGE); i++) {
free(srch bin[i]);

}
free(srch bin);

return;

}

Listing A.42: The trnsInit subroutine

void trnsInit(int CHANNELS, double sampling rate[]) {
int i, j;

trnsbuf = (TrnsBuf∗) malloc(CHANNELS ∗ sizeof(TrnsBuf));

for (i = 0; i < CHANNELS; i++) {
trnsbuf[i].FFT = TRNS SPECT WINDOW ∗ TRNS SPECT OVERLAP ∗

sampling rate[i];

trnsbuf[i].fft in = (fftw real∗) malloc(2 ∗ trnsbuf[i].FFT ∗ sizeof(fftw real));

trnsbuf[i].fft out = (fftw real∗) malloc(2 ∗ trnsbuf[i].FFT ∗ sizeof(fftw real));

trnsbuf[i].fft win = (fftw real∗) malloc(trnsbuf[i].FFT ∗ sizeof(fftw real));

trnsbuf[i].fft win norm = 0;

trnsbuf[i].SPECT = trnsbuf[i].FFT/2 + 1;

trnsbuf[i].spect = (fftw real∗) malloc(2 ∗ trnsbuf[i].SPECT ∗ sizeof(fftw real));

trnsbuf[i].fft plan = rfftw create plan specific(trnsbuf[i].FFT, FFTW FORWARD,

FFTW PLAN FLAGS, trnsbuf[i].fft in, 1, trnsbuf[i].fft out, 1);

}
for (i = 0; i < CHANNELS; i++) {

96 Additional code

trnsbuf[i].fft win norm = 0.0;

for (j = 0; j < trnsbuf[i].FFT; j++) {
trnsbuf[i].fft win[j] = 1 − fabs((fftw real) (2∗j − trnsbuf[i].FFT) / (fftw real)

trnsbuf[i].FFT);

trnsbuf[i].fft win norm += trnsbuf[i].fft win[j] ∗ trnsbuf[i].fft win[j];

}
trnsbuf[i].fft win norm ∗= trnsbuf[i].FFT;

}
event bin = (fftw real∗) malloc(SRCH TIME BIN ∗ SRCH TIME OVERLAP ∗

SRCH FREQ BIN ∗ SRCH FREQ OVERLAP ∗ sizeof(fftw real));

srch bin = (fftw real∗∗) malloc((2 ∗ SRCH TIME RANGE) ∗ sizeof(fftw real∗));
for (i = 0; i < (2 ∗ SRCH TIME RANGE); i++) {

srch bin[i] = (fftw real∗) malloc(SRCH TIME BIN ∗ SRCH TIME OVERLAP ∗
SRCH FREQ BIN ∗ SRCH FREQ OVERLAP ∗ sizeof(fftw real));

}
return;

}

A.2 The MATLAB post-processing code

Listing A.43: The MATLAB post-processing code

function process(varargin)

global args

args = varargin;

channel = {’0’, ’1’, ’2’, ’3’};
channeltitle = {’horizontal seismic’, ’vertical seismic’, ’mains voltage’,

’magnetic’};
numchannels = length(channel);

f = false;

for k = 1:numchannels

f = f || argcmp([’k’,channel{k}]);
end

if ˜f

args = {’k’, args{:}};
end

stat = {’0’, ’1’, ’2’, ’3’, ’4’};
stattitle = {’Difference-mean’, ’Student t’, ’Wilcoxon signed rank’,

’Kolmogorov-Smirnov’, ’Wilcoxon-Mann-Whitney’};
numstats = length(stat);

numspctgm = 20;

if argcmp(’x’)

close all;

end

for d = dir(’.’)’

if d.isdir && argcmp(d.name)

directory = [’.\’, d.name, ’\’];

name = [directory, d.name, ’_’];

load([directory, ’processdata.mat’], ’datatitle’, ’datafrom’, ’datato’,

A.2 The MATLAB post-processing code 97

’sitechoose’);

datefrom = datenum([1980, 1, 6, 0, 0, datafrom − 13]);

dateto = datenum([1980, 1, 6, 0, 0, datato − 13]);

datatitle = sprintf(’\\%s : UTC %s %s to %s %s\n’, datatitle, ...

datestr(datefrom, ’dd/mm/yy’), datestr(datefrom, ’HH:MM:SS’), ...

datestr(dateto, ’dd/mm/yy’), datestr(dateto, ’HH:MM:SS’));

site = {’aciga’, ’hanford’, ’livingston’, ’virgo’};
sitetitle = {’ANU’, ’LHO’, ’LLO’, ’VIRGO’};
site = {site{sitechoose}};
sitetitle = {sitetitle{sitechoose}};
numsites = length(site);

if argcmp(’a’)

for k = 1:numchannels

if argcmp(’k’) || argcmp([’k’, channel{k}])
for i = 1:numsites

file = sprintf(’long_auto_%s-%s’, site{i}, channel{k});
namedfigure(’%slong_auto_%s-%s’, name, site{i}, channel{k});
f = fopen([directory, file, ’.log’]);

sampl = fscanf(f, ’Sampling: %f\n’);

shift = fscanf(f, ’hift: %f\n’);

fclose(f);

f = fopen([directory, file, ’.dat’]);

auto = fread(f, inf, ’double’);

auto = [auto(end:−1:2); auto];

fclose(f);

time = linspace(−shift, shift, length(auto));

subaxes(1, 1, 1, 1);

plot(time, auto);

axis tight;

title(sprintf(’%sAutocorrelation of %s %s’, datatitle, sitetitle{i},
channeltitle{k}));

xlabel(sprintf(’Time shift of %s relative to itself / s’,

sitetitle{i}));
printfigure;

clear time auto;

end

end

end

end

if argcmp(’c’)

for k = 1:numchannels

if argcmp(’k’) || argcmp([’k’, channel{k}])
for i = 1:numsites

for j = (i+1):numsites

file = sprintf(’long_corr_%s-%s-%s’, site{i}, site{j}, channel{k});
namedfigure(’%slong_corr_%s-%s-%s’, name, site{i}, site{j},

channel{k});
f = fopen([directory, file, ’.log’]);

98 Additional code

sampl = fscanf(f, ’Sampling: %f\n’);

shift = fscanf(f, ’hift: %f\n’);

fclose(f);

f = fopen([directory, file, ’.dat’]);

corr = fread(f, inf, ’double’);

fclose(f);

time = linspace(−shift, shift, length(corr));

subaxes(1, 1, 1, 1);

plot(time, corr);

axis tight;

title(sprintf(’%sCorrelation of %s-%s %s’, datatitle, sitetitle{i},
sitetitle{j}, channeltitle{k}));

xlabel(sprintf(’Time shift of %s relative to %s / s’, sitetitle{i},
sitetitle{j}));

printfigure;

clear time corr;

end

end

end

end

end

if argcmp(’p’)

for k = 1:numchannels

if argcmp(’k’) || argcmp([’k’, channel{k}])
for i = 1:numsites

file = sprintf(’long_power_%s-%s’, site{i}, channel{k});
namedfigure(’%slong_power_%s-%s’, name, site{i}, channel{k});
f = fopen([directory, file, ’.log’], ’r’);

sampl = fscanf(f, ’Sampling: %f\n’);

len = fscanf(f, ’Length: %f\n’);

fclose(f);

f = fopen([directory, file, ’.dat’], ’r’);

power = fread(f, inf, ’double’);

fclose(f);

freq = linspace(0, sampl/2, length(power));

subaxes(1, 1, 1, 1);

semilogy(freq, power / max(power));

axis tight;

title(sprintf(’%sNormalised power spectrum of %s %s’, datatitle,

sitetitle{i}, channeltitle{k}));
xlabel(sprintf(’Frequency / Hz (Resolution = %0.0g)’, 1 / len));

printfigure;

clear freq power;

end

end

end

end

if argcmp(’h’)

A.2 The MATLAB post-processing code 99

for k = 1:numchannels

if argcmp(’k’) || argcmp([’k’, channel{k}])
for i = 1:numsites

for j = (i+1):numsites

file = sprintf(’long_cross_%s-%s-%s’, site{i}, site{j}, channel{k});
files{1} = sprintf(’long_power_%s-%s’, site{i}, channel{k});
files{2} = sprintf(’long_power_%s-%s’, site{j}, channel{k});
namedfigure(’%slong_coher_%s-%s-%s’, name, site{i}, site{j},

channel{k});
f = fopen([directory, file, ’.log’], ’r’);

sampl = fscanf(f, ’Sampling: %f\n’);

len = fscanf(f, ’Length: %f\n’);

f = fopen([directory, file, ’.dat’], ’r’);

coher = fread(f, inf, ’double’);

coher = coher(1:(length(coher)/2)).ˆ2 +

coher(((length(coher)/2)+1):end).ˆ2;

fclose(f);

for n = 1:length(files)

f = fopen([directory, files{n}, ’.dat’], ’r’);
coher = coher ./ fread(f, inf, ’double’);

fclose(f);

end

freq = linspace(0, sampl/2, length(coher));

subaxes(1, 1, 1, 1);

plot(freq, coher);

axis tight;

title(sprintf(’%sCoherence of %s-%s %s’, datatitle, sitetitle{i},
sitetitle{j}, channeltitle{k}));

xlabel(sprintf(’Frequency / Hz (Resolution = %0.0g)’, 1 / len));

printfigure;

clear freq coher;

end

end

end

end

end

for s = 1:numstats

if argcmp(’t’) || argcmp([’t’, stat{s}])
for k = 1:numchannels

if argcmp(’k’) || argcmp([’k’, channel{k}])
for i = 1:numsites

for j = (i+1):numsites

file = sprintf(’trns_stat-%s_%s-%s-%s’, stat{s}, site{i}, site{j},
channel{k});

namedfigure(’%strns_stat-%s_%s-%s-%s’, name, stat{s}, site{i},
site{j}, channel{k})

f = fopen([directory, file, ’.dat’], ’r’);

data = fread(f, [3, inf], ’double’);

100 Additional code

times{i,j} = data(1,:);

statistics{i,j} = data(2,:);

ordinals{i,j} = data(3,:);

clear data;

fclose(f);

subaxes(1, 1, 1, 1);

title(sprintf(’%s%s statistic for %s-%s %s’, datatitle, stattitle{s},
...

sitetitle{i}, sitetitle{j}, channeltitle{k}));
axis off;

subaxes(1, 2, 1, 1);

plot(times{i,j}, statistics{i,j}, ’.’);
axis tight;

dates(gca, ’X’, 86400, 1, 3, ’dd/mm/yy’);

xlabel(’Time’);

ylabel(sprintf(’%s statistic’, stattitle{s}));
subaxes(1, 2, 1, 2);

semilogy(1:length(statistics{i,j}), statistics{i,j});
axis tight;

xlabel(’Rank’);

ylabel(sprintf(’%s statistic’, stattitle{s}));
printfigure;

if argcmp(’s’)

for n = 1:numspctgm

file = sprintf(’trns_stat-%s_%s-%s-%s_spctgm-%02.0f’,

stat{s}, ...

site{i}, site{j}, channel{k}, ordinals{i, j}(n));

namedfigure(’%strns_stat-%s_%s-%s-%s_event-%02.0f’, name,

stat{s}, site{i}, site{j}, channel{k}, n)

f = fopen([directory, file, ’.log’], ’r’);

sampl = fscanf(f, ’Sampling: %f\n’);

window = fscanf(f, ’Window: %f\n’);

start = fscanf(f, ’Start: %f\n’);

step = fscanf(f, ’ep: %f\n’);

siz = fscanf(f, ’Size: %f %f\n’)’;

event = fscanf(f, ’Event: %f %f %f %f\n’)’;

statistic = fscanf(f, ’Statistic: %f\n’);

ordinal = fscanf(f, ’Ordinal: %f\n’);

fclose(f);

time = start + step∗event(2);

f = fopen([directory, file, ’.dat’], ’r’);

spctgm = fread(f, siz, ’double’)’;

fclose(f);

for b = 1:size(spctgm,2)

spctgm(:,b) = log(spctgm(:,b) − min(spctgm(:,b)) + 1);

end

spctgmx = linspace(0, sampl/2 + 1, siz(1));

spctgmy = start + (0:step:(step∗(siz(2)−1)));

A.2 The MATLAB post-processing code 101

eventx =

[event(1),event(1)+event(3),event(1)+event(3),event(1),event(1)];

eventx = (eventx / siz(1) ∗ (max(spctgmx) − min(spctgmx))) +

min(spctgmx);

eventy =

[event(2),event(2),event(2)+event(4),event(2)+event(4),event(2)];

eventy = (eventy / siz(2) ∗ (max(spctgmy) − min(spctgmy))) +

min(spctgmy);

subaxes(1, 1, 1, 1);

title(sprintf(’%s%s statistic for %s-%s %s event #%i’,

datatitle, stattitle{s}, ...

sitetitle{i}, sitetitle{j}, channeltitle{k}, n));

axis off;

subaxes(1, 2, 1, 1);

plot(times{i,j}, statistics{i,j}, ’.’, time, statistic, ’o’);

axis tight;

dates(gca, ’X’, 86400, 1, 3, ’dd/mm/yy’);

xlabel(’UTC time’);

ylabel(sprintf(’%s statistic’, stattitle{s}));
subaxes(1, 2, 1, 2);

colormap(jet(256));

contourf(spctgmx, spctgmy, spctgm);

shading flat; hold on;

plot(eventx, eventy, ’k-’);

set(gca, ’XLim’, [min(spctgmx), max(spctgmx)]);

set(gca, ’YLim’, [min(spctgmy), max(spctgmy)]);

dates(gca, ’Y’, 1, 1, 3, ’HH:MM:SS’);

xlabel(’Frequency / Hz’);

ylabel([’UTC time from ’, datestr(datenum([1980, 1, 6, 0, 0,

min(spctgmy) − 13]), ’dd/mm/yy’)]);

printfigure;

clear spctgm spctgmx spctgmy;

end

end

end

end

end

end

end

end

end

end

function f = argcmp(str)

global args

f = false; v = 1;

while (˜f & v <= length(args))

f = strcmpi(args{v}, str);

v = v + 1;

102 Additional code

end

function namedfigure(varargin)

set(figure, ’Name’, sprintf(varargin{:}), ’NumberTitle’, ’off’);
set(gcf, ’PaperType’, ’A4’, ’PaperOrientation’, ’portrait’);

set(gcf, ’PaperUnits’, ’normalized’, ’PaperPosition’, [0, 0, 0.5, 0.25]);

function subaxes(varargin)

rows = varargin{1}; cols = varargin{2};
r = varargin{3}; c = varargin{4};
left = 0.14; bottom = 0.14; right = 0.02; top = 0.14;

pos = [(c − 1)/cols, (rows − r)/rows, 1/cols, 1/rows] + [left, bottom, −[right+left,

top+bottom]];

axes(’Position’, pos);

function printfigure

for j = reduce(get(gcf, ’Children’))

if strcmpi(get(j, ’Type’), ’axes’)

set(j, ’XTickMode’, ’manual’);

set(j, ’YTickMode’, ’manual’);

end

end

if argcmp(’j’)

print(gcf, ’-djpeg’, get(gcf, ’Name’));

end

if argcmp(’e’)

print(gcf, ’-depsc’, get(gcf, ’Name’));

end

if argcmp(’x1’)

close(gcf)

end

pack;

function b = reduce(a);

if iscell(a)

b = [];

for i = 1:prod(size(a))

b = [b, reduce(a{1})];
end

else

b = a(:)’;

end

function dates(axis, xyz, unit, incr, every, format)

range = get(axis, [xyz, ’Lim’]);

time = (ceil(range(1) / unit) ∗ unit) + 13;

while time > range(1)

time = time − unit;

end

tick = []; ticklabel = [];

count = 0;

while time <= range(2)

date = [1980, 1, 6, 0, 0, time − 13];

A.2 The MATLAB post-processing code 103

tick = [tick; time];

if mod(count, every) == 0

ticklabel = [ticklabel; datestr(datenum(date), format)];

else

ticklabel = [ticklabel; blanks(size(ticklabel, 2))];

end

time = time + unit∗incr;

count = count + 1;

end

set(gca, [xyz, ’Tick’], tick, [xyz, ’TickLabel’], ticklabel, ’Layer’, ’top’);

Bibliography

[1] G. Holton, Thematic Origins of Scientific Thought: Kepler to Einstein, Harvard
University Press, 1973.

[2] C. M. Will, Theory and experiment in gravitational physics, Cambridge University
Press, 1981.

[3] P. R. Saulson, Fundamentals of Interferometric Gravitational Wave Detectors, World
Scientific, 1994.

[4] B. F. Schutz, ‘Gravitational Wave Astronomy’, Classical Quantum Gravity 16,
A131–A156 (1999).

[5] The Laser Interferometer Gravitational Wave Observatory, http://www.ligo.

caltech.edu.

[6] The VIRGO Project, http://www.virgo.infn.it/.

[7] The GEO600 Project, http://www.geo600.uni-hannover.de/.

[8] The TAMA300 Project, http://tamago.mtk.nao.ac.jp/.

[9] D. Sigg et al., ‘Characterization Of Environmental And Input Beam Noise Inputs’,
Technical note LIGO-G000115-00-D, LIGO, 2000, http://www.ligo.caltech.edu/
docs/G/G000115-00.pdf.

[10] M. Fyffe, J. Kovalik, D. Lormand, S. Marka, P. Saulson, R. Wooley, J. Romano,
R. Luna, M. Casquette, and A. Zermeno, ‘PEM Audit at LIGO Livingston’, Techni-
cal note LIGO-G000258-00-D, LIGO, 2000, http://www.ligo.caltech.edu/docs/

G/G000258-00.pdf.

[11] R. Schofield, M. Ito, R. Rahkola, E. Mauceli, R. Frey, D. Strom, and J. Brau, ‘Some
Effects of Earthquakes, Temperature, Wind Storms and Barometric Pressure on the
Interferometer at Hanford’, Technical note LIGO-G000088-00-D, LIGO, 2000, http:
//www.ligo.caltech.edu/docs/G/G000088-00.pdf.

[12] R. Schofield, S. Mukherjee, R. Rahkola, and J. Sylvestre, ‘Environmental Distur-
bances: E5, E6 and E7 Investigations’, Technical note LIGO-G020252-00-Z, LIGO,
2002, http://www.ligo.caltech.edu/docs/G/G020252-00.pdf.

[13] N. Christensen, ‘E4 Correlations: Detector Charactersation’, Technical note LIGO-
G010315-00-Z, LIGO, 2001, http://www.ligo.caltech.edu/docs/G/G010315-00.

pdf.

[14] R. Schofield, G. Gonzalez, M. Landry, and P. Sutton, ‘Intersite Environmental Tran-
sients: E5, E6, and E7 investigations’, Technical note LIGO-G020253-00-Z, LIGO,
2002, http://www.ligo.caltech.edu/docs/G/G020253-00.pdf.

105

106 Bibliography

[15] R. Schofield, ‘S2 Intersite Environmental Transients Investigation’, Technical
note LIGO-G030641-00-Z, LIGO, 2003, http://www.ligo.caltech.edu/docs/G/

G030641-00.pdf.

[16] R. Schofield, P. Saulson, and E. Daw, ‘The LIGO E2 Investigation of Non-
Stationary Noise’, Technical note LIGO-G010159-00-Z, LIGO, 2001, http://www.

ligo.caltech.edu/docs/G/G010159-00.pdf.

[17] R. Schofield, M. Ito, E. Mauceli, H. Radkins, C. Gray, G. Moreno, and G. Gonzalez,
‘Source and Propagation of the Predominant 1-50 Hz Seismic Signal From Off-Site
at LIGO-Hanford’, Technical note LIGO-G000262-00-D, LIGO, 2000, http://www.

ligo.caltech.edu/docs/G/G000262-00.pdf.

[18] J. Giaime and E. Daw, ‘LLO environmental excitation update’, Technical note LIGO-
G030228-00-D, LIGO, 2003, http://www.ligo.caltech.edu/docs/G/G030228-00.
pdf.

[19] R. Schofield, E. D’Ambrosio, D. Cook, R. Drever, V. Sannibale, and B. Bland, ‘En-
vironmental Disturbances (Including S1 - Stoppers)’, Technical note LIGO-G020396-
00-Z, LIGO, 2002, http://www.ligo.caltech.edu/docs/G/G020396-00.pdf.

[20] R. Schofield, ‘Seismic Measurements at the Stateline Wind Project: And A Predic-
tion of the Seismic Signal that the Proposed Maiden Wind Project Would Produce
at LIGO’, Technical note LIGO-T020104-00-Z, LIGO, 2002, http://www.ligo.

caltech.edu/docs/T/T020104-00.pdf.

[21] R. Schofield, ‘Progress on S1 Intersite Transients Study’, Technical note LIGO-
G030330-00-Z, LIGO, 2003, http://www.ligo.caltech.edu/docs/G/G030330-00.

pdf.

[22] R. Schofield, M. Ito, S. Mohanty, S. Penn, R. Rahkola, P. Saulson, and J. Sylvestre,
Technical report.

[23] R. Schofield, A. Ageyev, M. Ito, and B. OReiley, ‘Measurements of Environmen-
tal Coupling to the Gravitational Wave Channel (PEM Injections)’, Technical
note LIGO-G030297-00-Z, LIGO, 2003, http://www.ligo.caltech.edu/docs/G/

G030297-00.pdf.

[24] R. Schofield, J. Hester, N. Christensen, P. Fritschel, M. Ito, S. Klimenko, M. Landry,
S. Marka, S. Mohanty, A. Ottewill, and R. Rahkola, ‘Intersite Environmental Correla-
tions: E3 and E4 Investigations. Part 2: Bursts’, Technical note LIGO-G010396-00-Z,
LIGO, 2001, http://www.ligo.caltech.edu/docs/G/G010396-00.pdf.

[25] M. Landry, N. Christensen, P. Fritschel, M. Ito, S. Klimenko, S. Marka, S. Mo-
hanty, A. Ottewill, R. Rahkola, R. Schofield, and J. Sylvestre, ‘E3/E4 PEM
Correlations, Part I’, Technical note LIGO-G010286-00-H, LIGO, 2001, http:

//www.ligo.caltech.edu/docs/G/G010286-00.pdf.

[26] N. Christensen, ‘S2 and S3 Interchannel Correlations’, Technical note LIGO-
G040148-00-Z, LIGO, 2004, http://www.ligo.caltech.edu/docs/G/G040148-00.

pdf.

Bibliography 107

[27] A. Lazzarini, R. Schofield, and A. Vicere, ‘60 Hz Mains Correlations for the U. S.
Power Grids’, Technical note LIGO-G020245-00-E, LIGO, 2002, http://www.ligo.
caltech.edu/docs/G/G020245-00.pdf.

[28] A. Lazzarini, A. Vicerè, and R. Schofield, ‘Analysis of the effects of long term correla-
tions over long baselines over narrowband features in cross-correlation measurements’,
Technical note LIGO-T010101-01-E, LIGO, 2001, http://www.ligo.caltech.edu/

docs/T/T010101-01.pdf.

[29] B. Cusack, A. Searle, S. Scott, and D. McClelland, ‘Global Second and Third Order
Correlations in Physical Environment Monitors’, Technical note LIGO-G030364-00-
Z, LIGO, 2003, http://www.ligo.caltech.edu/docs/G/G030364-00.pdf.

[30] The SETI Institute, http://www.seti-inst.edu/.

[31] Stefan Mayer Instruments, http://www.stefan-mayer.com/.

[32] National Instruments Corporation, http://www.ni.com/.

[33] Symmetricom Inc., http://www.symmttm.com/.

[34] Stanford Research Systems Inc., http://www.thinkSRS.com/.

[35] Apple Computer Inc., http://www.apple.com/.

[36] The ANU Supercomputer Facility, http://www.anusf.anu.edu.au/.

[37] The Mass Data Storage System at the ANU Supercomputer Facility, http://nf.

apac.edu.au/facilities/mdss/.

[38] ‘Specification of a Common Data Frame Format for Interferometric Gravitational
Wave Detectors’, Technical note LIGO-T970130-F-E/VIRGO-SPE-LAP-5400-102,
LIGO, VIRGO, 2002, http://www.ligo.caltech.edu/docs/T/T970130-F.pdf.

[39] B. Mours, Frame Library User’s Manual, VIRGO, http://wwwlapp.in2p3.fr/

virgo/FrameL/FrDoc.html.

[40] B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice Hall,
second edition, 1988.

[41] StimpSoft Inc., http://www.stimpsoft.com/.

[42] LIGO Data Analysis System, http://www.ldas-sw.ligo.caltech.edu/.

[43] B. Stroustrup, The C++ Programming Language, Addison-Wesley, third edition,
1997.

[44] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes
in C: The Art of Scientific Computation, Cambridge University Press, second edition,
1992.

[45] E. W. Weisstein, Fourier Transform, from MathWorld – A Wolfram Web Resource,
http://mathworld.wolfram.com/FourierTransform.html.

[46] P. Bloomfield, Fourier Analysis of Time Series: An Introduction, John Wiley &
Sons, second edition, 2000.

108 Bibliography

[47] J. F. James, A student’s guide to Fourier transforms: with applications in physics
and engineering, Cambridge University Press, 1995.

[48] M. Frigo and S. G. Johnson, FFTW User’s Manual: For version 2.1.5, 16 March
2003, in http://www.fftw.org/fftw-2.1.5.tar.gz.

[49] G. K. Kanji, 100 Statistical Tests, SAGE Publications, new edition, 1999.

[50] E. W. Weisstein, Paired t-Test, from MathWorld – A Wolfram Web Resource,
http://mathworld.wolfram.com/Pairedt-Test.html.

[51] J. V. Bradley, Distrubution-Free Statistical Tests, Prentice-Hall, 1968.

[52] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel Programming
with the Message-Passing Interface, The MIT Press, second edition, 1999.

[53] The Message-Passing Interface Forum, http://www.mpi-forum.org/.

[54] APAC National Facility MPI Programming Course, http://nf.apac.edu.au/

training/MPIProg/.

[55] LAM/MPI Parallel Computing, http://www.lam-mpi.org/.

[56] The GNU Compiler Collection, http://gcc.gnu.org/.

[57] S. M. Scott, A. C. Searle, B. J. Cusack, A. J. Moylan, D. E. McClelland, D. Coward,
R. Burman, E. Howell, and D. Blair, ‘ACIGA Data Analysis’, Technical note LIGO-
G030365-00-Z, Australian National University, University of Western Australia, 2003,
http://www.ligo.caltech.edu/docs/G/G030365-00.pdf.

[58] D. Buskulic, I. Fiori, I. Ferrante, F. Marion, and B. Mours, The Frame Vector Library,
VIRGO, http://wwwlapp.in2p3.fr/virgo/FrameL/Frv.html.

[59] E. J. Daw, J. A. Giaime, D. Lormand, M. Lubinski, and J. Zweizig, ‘Long term study
of the seismic environment at LIGO’, Classical Quantum Gravity 21(9), 2255–2273
(2004).

