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Abstract
This paper surveys technological changes that affect the collection, organization,
analysis and presentation of data.  It considers changes or improvements that ought to
influence the research process and direct the use of technology. It explores implications
for graduate research training.

The insights of Evidence-Based Medicine are widely relevant across many different
research areas.  Its insights provide a helpful context within which to discuss the use of
technological change to improve the research process. Systematic data-based overview
has to date received inadequate attention, both in research and in research training.
Sharing of research data once results are published would both assist systematic overview
and allow further scrutiny where published analyses seem deficient.  Deficiencies in data
collection and published data analysis are surprisingly common.

Technologies that offer new perspectives on data collection and analysis include data
warehousing, data mining, new approaches to data visualization and a variety of
computing technologies that are in the tradition of knowledge engineering and machine
learning.  There is a large overlap of interest with statistics.  Statistics is itself changing
dramatically as a result of the interplay between theoretical development and the power
of new computational tools. I comment briefly on other developing mathematical science
application areas – notably molecular biology. The internet offers new possibilities for
cooperation across institutional boundaries, for exchange of information between
researchers, and for dissemination of research results.

Research training ought to equip students both to use their research skills in areas
different from those in which they have been immediately trained, and to respond to the
challenge of steadily more demanding standards. There should be an increased emphasis
on training to work cooperatively.



“At bottom my critique is pretty simple-minded:  Nobody pays much attention to
the assumptions, and technology tends to overwhelm common sense.”
[Freedman 1987.]

“I personally look forward to the proper balance that will emerge from the
mixing of computational algorithm-oriented approaches characterizing the
database and computer science communities with the powerful mathematical
theories and methods for estimation developed in statistics.”
[Fayyad 1998.]

“Statistics has been the most successful information science.  Those who ignore
statistics are condemned to re-invent it.”
[Efron, quoted in Friedman 1997.]

“Some members of the profession are trying hard to make changes, by teaching
courses in which substantive questions come first and technique is introduced to
find answers.  Of course, all too often, technique comes first; data come in as
purely decorative illustrations – a practice not confined to statistics
departments.”
[Freedman 1991.]
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Preface
Technological changes offer the research community unprecedented challenges and
opportunities. My focus is on changes that affect the collection, organization, analysis
and presentation of data. Concluding comments explore implications for graduate
research training.  Influences from my own contact with research, in horticulture and
agriculture, in entomology, in industry, in the humanities and more recently in medicine,
are obvious.

I note common present deficiencies in the conduct and reporting of research, but do not
attempt to quantify the extent of these deficiencies.  The needed data are not available.
Published systematic critical scrutiny of all papers which have appeared in a journal or
group of journals is unusual.  There are a few instances where applied statisticians have
conducted overviews of the statistical analysis and presentation in one or another area,
but most of these fall well short of systematic regular overview.  The scientific
community has been slow to apply systematic scientific processes to the scrutiny of its
research.

Useful information on the career progress of  US PhD students will come from a book, to
be published in the next year or two, by Dean Joseph Cerny and Research Director Maresi
Nerad from the Graduate Division of the University of California at Berkeley. There is a
dearth of quantitative information on Australian PhD graduates and on their later views
of their training experience, though this should soon change.

My purpose is both to inform and to stimulate discussion.  I will be glad to receive
comment and/or pointers to relevant information which I may have missed. I hope, at
some later point, to revise this paper in the light of discussion and comment.

I am grateful to Dr John Hooper (Dean, ANU Graduate School) and to Christine Donnelly
(Statistical Consulting Unit, ANU Graduate School) for drawing my attention to errors
and ambiguities in successive drafts of this paper, and for helpful discussion.  I am solely
responsible for any remaining errors.



1. Changing Research Demands
An examination of changes of the past two decades gives clues on how research demands
may change in the next two decades.  We should expect changes of a similar or larger
magnitude.  Some changes will arise from the attempt to fix problems with our current
approaches. Some will be driven by technological advance.  Some will be demand driven.
Demands to improve the quality and coherence of research are an appropriate point of
departure both for examining the place of new information technologies and for
considering new training demands.

Features of the present rapidly changing research scene are the demand to gather better
data, to gather more comprehensive data, to organize data better, and to make better use
of the data we then have. Computing has from its beginnings carried with it the promise
to address these concerns.  Hence the emergence of computer-oriented departments,
societies and journals devoted to Information Technology, Informatics, Machine
Learning, Data Mining, Knowledge Discovery in Databases (KDD), and so on.  Hence
also the emergence of the data-based approach to the use of research knowledge in
medicine that is captured by the name Evidence-Based Medicine.  Computing is an
important tool for evidence-based medicine, but not a driving force.

Information technology is, on the one hand, a general term for technologies for
collecting, processing, organizing, interpreting and presenting data. There is also a narrow
usage, that has specific reference to computing technologies.  The range of usage of the
word informatics, which is an English rendering of the French informatique or the
German Informatik, is similar.

The methods and insights of Evidence-Based Medicine have potential far-reaching
implications for research, both in medicine and in other areas.  Unless such insights are
taken on board, increased use of computer technology may do little or nothing to
enhance research.  Its ideas and insights are a good point of departure for discussing how
research approaches and research training ought to change.  A key issue for Evidence-
Based Medicine is, to put it bluntly, to distinguish the data and associated interpretation
that merit attention from crap.

Data collection is driven by an understanding of what is worth collecting.  In this sense
scientific research is driven by theory.  It is the genius of science that data may carry
within themselves the power to challenge and ultimately destroy the theory which guided
their collection.  Statistical insights and approaches have a key role in any attempt to
extract information from data.  Their use is for teasing out pattern, and for distinguishing
what may be real from artefacts of the analysis.

Statistics, and related information technologies which make data their focus, have wide
application across all research areas.  There are in addition methods and approaches that
are specific to individual research areas.  In the present paper, the interest is in methods
and approaches which, although perhaps developed initially to address the requirements of
one particular research area, have wide general application.  I will focus first on issues that
arise from the examination of current published research.

Language Issues
We will encounter a large amount of new terminology.  It is hard to tease out what really
is new, and what is a new name for what is already known.  However annoying the
continual addition of new jargon, we cannot ignore it.

Often “Debates are won by those who control the definitions . . .”.1   They may be won
by those whose language best captures a prevailing mood.  Apt words will be important in

                                                
1 R. K. Webb, in Enlightenment and Religion , ed. Knud Haakonssen, Cambridge 1996, p.310.



convincing a new generation of students that we have thought long and hard about what
we ought to teach them.  It may help to persuade them that we are active and open-
minded participants in the continuing debate about academic priorities.

Fine language must have substance behind it, if we are to improve the quality of research
and continue to attract students.   Whatever the language used, the content must be
driven by what we can justify as genuinely important.   We need a sense of deficiencies in
current research methodology, a sense of how our research approaches might take
advantage of new technologies, a sense of where leading edge research is headed, and a
sense of the subject area skills which should underpin that research.

2. Research Standards
Pressures to publish, the vast extent of the refereeing task, and the increasing
fragmentation of research between different and largely separate research traditions, have
made it difficult to maintain standards over the whole range of technologies that
contribute to effective research.  The specialist technical demands of individual disciplines
– molecular biology, electronic engineering, physiology, biochemistry, etc., continue to
advance.  These standards are reflected in the high standards which journals demand in the
specialist disciplines which they represent.

Standards may not be maintained when authors stray into areas which require expertise
that is outside of the specialist discipline or disciplines. Bureaucrats who insist on using
the number of pages of published output as a measure of academic performance ought to
consider what signals this sends to researchers, to referees, and to journals. Morrison
(1998) has an interesting commentary on other deleterious effects of the DEETYA
publication rewards system.

Data Collection and Analysis Standards
My reading of published papers, and some published surveys, persuades me that serious
problems with the design of data collection and with data analysis are common. A cursory
overview of papers in major international journals may be sufficient to reveal examples
of serious statistical misinterpretation. I cite examples in a later section. In view of the
prevalence of amateur do-it-yourself analyses, there is a case for treating all published
analyses as preliminary, pending scrutiny by researchers with relevant statistical science
skills! I would expect to find problems with other specialist skills also.  To an alarming
extent, researchers who have been trained in one area are relying on their own inadequate
resources for research which demands skills which they lack.

Concern at the quality of the statistical support for published research has been especially
evident in the medical literature (Andersen 1990; Altman 1994).   Design, which lays the
foundation for everything which follows, is even more important than analysis. This is
the point of a hard-hitting article (Chalmers and Grant 1996) which draws lessons from
the results of the collaborative eclampsia trial published in 1995. The evidence of this
latest trial is that the introduction of diazepam in 1968 is likely to have led to an increase
in death rates of women suffering from eclampsia, from 1 in 11 to 1 in 9. Chalmers and
Grant comment:

Today’s report is a triumph for the trialists, but what a scandal that we had to
wait 70 years for the answer.  … For seventy years, the proponents of various
drugs and drug cocktails have hurled disdainful abuse at each other from separate
mountain tops, secure in the knowledge that no strong evidence existed that could
undermine any one of their multitude of conflicting opinions. …

During a total period of just over five years, far more has been achieved through
the collective efforts of 27 centres in 9 developing countries (some that had little
or no previous research experience) than has been accomplished during more than
half a century of small-scale, poorly controlled, individualistically driven
investigative tinkering by others, including many people in the developed world



who believe they deserve to be regarded as serious investigators.  This lack of
scientific and professional self-discipline in the developed world, particularly the
unwillingness to collaborate in studies of sufficient size, has had substantial human
costs.

There is no evidence that other areas are generally better than clinical epidemiology.  On
the contrary, medical experimentation typically faces greater statistical and other
scrutiny than is common elsewhere.

Faults in Published Papers
Recent examples of errors or faults in data collection or analysis in published papers are
summarized below.  Further examples will be presented later in this paper.  Items 1-4
came to my attention in the course of my work, rather than as the result of a systematic
search:

1. Much literature in biological anthropology uses secondary data without careful
evaluation of sources. In a comparative study of nuclear and mitochondrial genome
diversity in humans and chimpanzees that appeared in Molecular Biology and
Evolution in 1997, the statement  is made that “the human material was from various
sources.”  Was it obtained from whoever was available in the laboratory?  The source
of the chimpanzee material is better documented, though without providing evidence
that the animal sources used could be treated as a random sample from an identifiable
population.  This low tech approach to the design of data collection contrasts starkly
with the high tech molecular biology and statistical classification methodology used.
For purposes of making a comparative assessment of variability, this Achilles heel can
fatally flaw the study.

2. Articles in the Journal of Economic Entomology which demonstrate statistical
misunderstanding are relatively common.  Thomas and Mangan (1997) is something
of a record in this respect.  They claim that sample size affects the tolerance
distribution, i. e. the variation with insecticide dose of the proportion of insects
expected to die.  It does not.  One incorrect formula is correctly derived from another
incorrect formula. They suggest, quite wrongly, that a lognormal tolerance distribution
makes it appropriate to assume a logit or complementary log-log distribution.  They
misrepresent results that are presented in authors from whom they quote.  They claim
to use the Maentel-Haenzel test for testing goodness of fit to an assumed tolerance
distribution, an entirely inappropriate use.  This is an incomplete list.

3. Papers are common in the Journal of Economic Entomology which fit probit
models, even though a plot will make it clear that the data do not at all fit this model.
Jessup and Baheer (1990), for example, estimate that their treatment gives a 1 in
300,000 insect survival after 29.4 days, which is blatantly at odds with the proposed
12 day commercial treatment.  A plot makes it clear that their statistical model is
grossly at odds with the data.

This widespread use of inappropriate models invalidates inter-region comparisons of
estimates of 99% and other lethal mortality points. Published results make it
impossible to determine whether the response of the fruit fly Bactrocera tryoni to
heat treatment is the same in Queensland as in New Caledonia.  Where the model is
seriously wrong, estimates have a bias that depends on the choice of doses and the
allocation of insects between doses.  Where two researchers have used the same wrong
model, there may be large differences in the bias.

4. Using data from 1910-1992, Nicholls et al. (1996) estimate a straight line
relationship between the Southern Oscillation Index (SOI) and all-Australian rainfall.
A smooth trend line suggests little or no relationship for values of the SOI less than
zero.  For values greater than around zero, there does seem to be evidence for higher
rainfall at high SOI values.  Irrespective of what may be the correct form of response,
the statistical analysis which Nicholls et al. present is wrong, and almost certainly



optimistic. It does not allow for sequential dependence in the data.  This failure to
allow for sequential dependence is a relatively common fault.

5. Further examples of errors and faults may be found in Andersen (1990), Bryan-
Jones and Finney (1983), Gartland (1988), Maindonald and Cox (1984), Maindonald
(1992) and McCance (1995),

Reasons for Inadequacies

The twin ideas that experimental design is a pushover, and that statistical analysis will
soon be reduced to button pressing, do not die easily.  Spin doctors who know enough
statistics to be dangerous hail each new major improvement to statistical software, if not
as the fulfilment of this dream, then as very close to it.  Some popular expositors of data
mining are once again making the same absurd claims.  They encourage amateurs to
attempt to turn data analysis into a button-pushing exercise, with results such as I have
noted.

Researchers may attempt, without consultation with expert practitioners, design of data
collection and statistical analysis tasks for which they are not qualified.  They may
struggle with older inadequate methods that are now superseded. They may have not
updated their knowledge of statistical methods in line with new knowledge, and in line
with new heavily computer dependent approaches.  It is as though a molecular biologist
were to limit him/herself to methods that were in vogue five years ago!  The problem is
not at all confined to users of statistics – professionals find it difficult to keep their skills
up to date.  Retraining of statistical specialists is an important issue for the profession.

A contributory factor is that some of the widely used statistical packages have been slow
to change. Some areas – psychology and perhaps education – have developed their own
statistical traditions, too much cut off from the statistical mainstream and slow to feel
the influence of theoretical advances. Gigerenzer et al. (1989) give a fascinating historical
account of the origins of these separate traditions.

The mathematics underlying modern methods is often complicated.  Users do not,
typically, need to trouble themselves about this complication, as the computer takes care
of it.  The end result may be much closer to the way that users find it natural to think
about their problems.  Often results are well summarized in a few well-chosen graphs.   In
addition new computing technologies, to an extent separate from those already identified,
are influencing research methodology and opening up new research directions.

Openings for Improvement
Funding bodies must continue to look for ways to get better value from the research
dollar.  Inevitably, there will be changes. It is salutary to look at changes in those areas
(such as clinical epidemiology) where in the past twenty years there have been large
advances in approaches to the design of data collection and data analysis, and to consider
the implications of these changes for other research.  These trends can then be
extrapolated a limited distance into the future.  This is the motivation for the following
list.

1. Requirements to place data and supporting documentation in the public domain,
inviting scrutiny and facilitating incorporation, where this is pertinent, into overview
studies.

2. Widespread development of mandatory reporting standards comparable to those set
out for randomized controlled trials in the CONSORT statement (Begg et al. 1996).

3. Identification of skill gaps which compromise research that otherwise demonstrates
high levels of technical skill.

4. In medicine, health and education, the development of mechanisms that will replace
multiple small trials by large carefully co-ordinated multi-centre trials.



5. Except where they break radically new ground or where experimental approaches are
impossible for ethical or other practical reasons, increased reluctance to fund non-
experimental studies.

6. Demands to present cost-benefit or other economic analyses.

7. Insistence, where relevant, that researchers spell out the practical implications of their
research.  (For example, what are the negatives – false positives and their associated
trauma, etc. – that should be set against the ~2 in 1000 reduced deaths from breast
cancer screening of women in their 50s and 60s?)

8. Insistence, where appropriate, that researchers use qualitative and quantitative
approaches to complement each other.

Items 1 and 2 could be implemented without making any substantial change to refereeing
processes.  As there are existing models, these are the changes that seem most
immediately likely. Moves to collect data into data bases that operate as commercial
entities (Transborder 1998) will to a greater or lesser extent work in the other direction,
restricting access to data.

Attention to potential skill gaps in ancillary disciplines is more than ever important as we
respond to the seductions of new technology - molecular biology, informatics, machine
learning, data mining, and so on.  The use of a new technology, or of an old technology
under a new name, must not be a new opening to dispense with the complementary
disciplines needed for an effective study.

The Relevance of Information Technologies
The relevance of information technologies to the above discussion includes the following:

1. There have been huge advances in the methodology for data analysis, taking
advantage of the advances in computing hardware and software.   There are large
differences between statistical packages in the extent to which they have taken up
these methodological advances.

2. There has been a large emphasis on methods for Exploratory Data Analysis.  As we
will see, this has a large overlap with the methods and approaches of Data Mining.

3. There have been substantial advances, again taking advantage of the increased power
of computing systems, in the methodology for analyzing data from overview studies.

4. Database technology, already a powerful tool for storing and accessing data, has
extended to the networking of physically separate databases.

5. There are new data analysis challenges that arise from the sheer size of some
databases.

6. There is a new emphasis on the key role of data aggregation for the scientific
enterprise. Statisticians, while rightly emphasizing the hazards of making inferences
from data that is from disparate sources, may have been slow to take this new
emphasis on board.

7. The computer science perspective seems appropriate for attempts at automating the
task of making data based inferences.  To date, these attempts have had very limited
success.

Overall, we see a growth in methodologies which require a pooling of the skills of
computer scientists, statisticians and subject area specialists.



3. Data-Based Overview

The Demand for Data-Based Overview (Systematic Overview)
There are, in many areas, serious deficiencies of overview.  Again, developments in
medicine hint at changes that are needed in other areas.  Deficiencies of overview are
serious in two areas in which I have worked – disinfestation research, and post-harvest
horticultural research.  One looks in vain for papers which provide a data-based summary
of, for example, major aspects of kiwifruit research, or the use of methyl bromide for
codling moth disinfestation.

Data-based overview places the individual studies under critical scrutiny, and places them
in context.  In a recent review of yield-density studies on green asparagus, Bussell et al.
(1998) found large differences within the same locality.  Based on commercial
experience, it is likely that fertilizer and soil effects, and variety, were the main factors
explaining yield differences between trials. Information on relevant factors was so
incomplete that it was impossible to draw from the trials themselves any certain
inference on factors affecting yield.  Two only of the 15 trials gave any information on
climate, irrigation and terrain.  Four trials gave no information on soil type.  The trials
give benchmarks against which growers in a local region can compare their own yields.
This aside, none of the recent trials have added anything of consequence to what
commercial growers already knew – use a modern variety on a sandy or light silt loam
soil, plant at the highest density that is practical, and use a fertilizer that is at least as
effective as farmyard manure!

Where data-based overview is taken seriously, serious obstacles arise from the ‘file
drawer’ problem.  Results from a proportion of research studies do not find their way
through to publication; they remain in the file drawer. It may then be difficult or
impossible to identify all relevant studies.  For those studies which are identified, it may
be difficult or impossible to get access to raw data.  In such areas as clinical medicine, an
insistence on some form of international registration of trials at the time of
commencement seems desirable.  This would ensure that all trials relevant to a particular
overview study can be later identified.

Systematic Overview in Medicine
Clinical Epidemiology and related areas of medicine have pioneered approaches to
systematic overview and to the summarization of evidence that are useful models for
other areas. Systematic Overview is a key methodology for the conduct of studies such as
are fostered by the Cochrane Collaboration (Sackett and Oxman 1994), and for Evidence-
Based Medicine (Sackett at al. 1997; ScHARR 1998; Moynihan 1998, pp. 213-241).
Smith (1996) asks how an ‘evidence-based’ human society would conduct its business.
Cochrane type evidence bases are required in many other areas than medicine.

Lessons from experience with medical databases are highly relevant to efforts now under
way to collect other types of data, often from disparate sources, in large databases.
Draper et al. (1990) describe areas where data-based overview is important. An interesting
application is to the estimation of physical constants.  Data based overview seems
especially important when the literature is extensive, uneven in quality and different
biases may be associated with different types of study. Chambers and Altman (1995)
should be consulted for an account of systematic overview in medicine.

The advice and insights of evidence-based medicine are in the first instance directed
towards researchers.  The publisher’s blurb for the journal Evidence-Based Medicine,
directed to clinicians, argues:

With 2 million new papers published each year how can you be sure you read all
the papers essential for your daily practice, and how can  you be sure of the
scientific soundness of what you do read?



Researchers have the same interest as clinicians in getting a sense of the conclusions
which ought to be drawn from studies to date, as a starting point for their own research.
Systematic overview identifies secure knowledge and highlights gaps in research-based
knowledge.  A particular widespread gap in clinical medicine is in evidence that would
assist in tailoring treatments to the special requirements of individual patients.  Some
papers may have no information on a key covariate, e. g. baseline blood plasma zinc
levels in a zinc supplementation trial.  Too many papers focus on single end-points where
the interest should be in the response profile, i. e. in the pattern of response over time.

There may be several overview studies from which to choose.  Just as some papers are so
flawed that they merit scant attention, so also for overview studies. Advice and training is
needed that will help discriminate the good from the bad.  Sackett et al.(1997) and
Greenhalgh (1997) emphasize this point, and give advice on the critique of overview
studies. If no up to date and clearly authoritative study is available, the researcher’s first
step must be to attempt his or her own overview.

The demands of data-based overview studies which meet Cochrane Collaboration
standards are severe.  It is typically easier to do a new study than to undertake a fully
adequate overview of existing studies.  The technical demands are such that Cochrane
Collaboration studies have so far covered only a small proportion of health care.  The
conduct of overview studies requires special skills that are different from or additional to
those of subject area experts.  There is evidence that subject area experts do a poorer job
than non-experts with experience and skills in the conduct of overview studies (Oxman
and Güyatt 1983.)

At present the perspectives of evidence-based medicine, and the importance of Cochrane
Collaboration type studies, seem not to be widely recognized outside of medicine.
Pressures for change may come from three sources:

1. Researchers in e. g. psychology or education who work on the borderline of clinical
medicine may get direct exposure to the ideas and insights of evidence-based medicine.

2. Funding bodies may demand evidence that researchers are following an ‘evidence-
based’ approach.

3. The logic of this general approach to marshaling research evidence is compelling.

Kuhn (1970) and others have argued that research traditions change only when the
pressures for change are overwhelming.  The inherent logic of the approaches of
evidence-based medicine and of the Cochrane Collaboration studies will not, on its own,
be enough to bring about widespread adoption of these ideas and insights.  Experts whose
authority relies on the use of more traditional informal means for assessing the weight of
evidence may feel their authority threatened.

The Neglect of Data Overview
There are many reasons for the past relative neglect of data overview issues. An adequate
statistical theory was slow to develop.  For a long time there was more than adequate
challenge to theoretical skills from developing a theory that would handle data from an
individual field site or from an individual clinical trial.  There are severe problems in
deciding how to weight the separate sources of evidence. Scientists have often been
protective of their experiments and their data, which they may believe should stand on
their own independently of what other scientists may have been doing.  The tradition of
analysing separately data from each field experiment or each trial became firmly
established.  It remains firmly entrenched in horticulture, and in other research areas also.
Experimenters who have worked on different sites may each claim the other is ‘wrong’,
where it is unclear whether the difference is a geographical effect, or perhaps due to
differences in experimental procedure.  In these circumstances researchers who belong to
the same research tradition may “hurl disdainful abuse at each other from separate
mountain tops.”



Data-Based Overview – Examples and Further Comment
1. Science recently (Taubes, 1998) carried an article on The (Political) Science of Salt.
An over-riding issue in this debate has been the relative weight that should be placed
on different sources of evidence.  I have no doubt that the proper way to make sense
of this debate is to place the different studies in a hierarchy:

• Randomised Controlled Trials that followed strict protocols

• Other clinical trials

• Intra-population studies

• Inter-population ‘ecologic’ studies; migration studies.

It is now widely accepted that the soundest evidence is from randomised controlled
trials that follow strict protocols.  Such trials, on diet more generally as well as on salt,
are now providing insight on the superficially contradictory results that have been
obtained from other types of studies.  As often, one has to sift out the more directly
relevant and reliable sources of information, and use them to interpret less reliable
and/or relevant sources of information.

Taubes’ article highlights other key points. He discusses the 1988 Intersalt study of
the relationship between blood pressure and salt consumption, including both inter-
and intra-population components.  A key problem for the debate which followed
publication of Intersalt was that other researchers were not allowed access to the data.

There are numerous instances where the relative weighting of different sources of
evidence and the pooling of evidence were key issues – many of them modern re-runs
of the discovery that blood-letting, so far from making you better, is actually
dangerous.  A recent Cochrane meta-analysis indicates that giving albumin to patients
in critical illness increases the risk of death, by around 1 death for every 14 critically
ill patients2  who receive albumin.  (Cochrane Injuries Group Albumin Reviewers
1998.)

2. Many of the agricultural fertilizer trials that were conducted in New Zealand over
several decades prior to the 1980s were for a long time not analyzed. Not until the
1980s did a series of papers appear in the New Zealand Journal of Agricultural
Research that provided the first careful overall quantitative evaluation of evident
major effects.  They highlighted areas which had been over-researched, and identified
remaining gaps.  There was an inevitable and implicit criticism of individual trials.
Nowadays, a reasonable expectation is that such data will feed into a fertilizer
database, with data analyses regularly updated to take account of data from new trials.

3. McGuinness (1997) provides evidence of several different competing schools of
thought, each convinced it is right, on the teaching of reading.  This may be an area
where theory has grown like a weed, too little constrained by data from experiments
that follow strict protocols such as are now demanded for medical clinical trials. The
book is a careful overview of the current evidence, though perhaps overstating the
case for her own approach. She rightly criticises the quality of much reading research,
to the extent that there has been no direct comparison with competing approaches or
that claims have been based on loaded comparisons that have not used appropriate
controls. McGuinness’s account has many of the elements of the thorough data-based
overview that is required.

McGuinness uses research evidence to identify a range of sub-tasks which must all be
mastered if children are to learn to read.  There is an inexorable logic to the approach
which she defends, which includes tests for identifying failure in any sub-task. A key
insight is that children should be able to identify the 43 or 44 sounds of spoken
English before learning letters or letter combinations which represent these sounds.

                                                
2 The 95% confidence interval was 9 – 32.



The attempt to work in the other direction, from letter combinations to sounds,
introduces too many complications.  The theory which she develops seems
compelling, because it seems relatively complete and is backed up at key points by
research evidence.  She presents research evidence which shows that her methods
work.

While I find her arguments persuasive, I would like to see an independent critical
evaluation. This might lead to one of two conclusions: either present data do indeed
back up her claims, or else the jury is still out.  If the jury really is still out, the only
proper basis for judging between rival claims is a well-conducted randomised controlled
trial. Indeed this is the only ethical way to advance educational practice.

Data will enter in other ways into other forms of research synthesis. In his book Guns,
Germs and Steel Diamond (1997) seeks to explain striking differences between the long-
term histories of peoples on different continents and islands in the past 13,000 years.
The book is in a sense a sequence of data-based overview studies that are welded together
into a brilliant continuous narrative.  The data that he quotes are broad brush – numbers
of plant and animal species domesticated in different geographical locations, differences
in land area and population size, differences in between continents in the diffusion rates
of crops and artefacts that seem a result of their different geography, one-sidedness in the
transfer of diseases between Europe and the Americas,  and a variety of archaeological
and phylogenetic data.  He limits attention to data which seem to have a clear and
relatively unequivocal story to tell.  As is inevitable in a book that is intended for a wide
audience, the casual reader must largely take Diamond’s facts and figures on faith,
accepting that they are adequately accurate for his purpose.  Specialist readers will wish to
refer back to his sources.

Particularly relevant to my discussion is Diamond’s last chapter, on “The Future of
Human History as a Science”.  Diamond proposes a research programme that would
gather quantitative information intended to test his major claims, and that would provide
more accurate quantitative estimates of e. g. the different diffusion rates of crops,
artefacts, etc., in the different continents. Diamond’s research synthesis sets the scene
for an ongoing research programme.  This leads into a wider-ranging discussion of
‘historical science’. There is an overlap of interest with the historical content of
astronomy, climatology, earth science and evolutionary biology.  A view that sees history
as a series of ‘natural experiments’ can be illuminating and insightful.

This discussion might continue, taking me well away from my central themes.
Imaginative reconstruction and synthesis readily gets out of hand. Hence the importance
of using all available data-based reality checks that we can summon to our aid. Why do I
consider that Diamond is broadly right, but reject the elaborate imaginative historical
reconstructions of Immanuel Veliskovsky, which Sagan (1979) dissects?



Data as a Resource
A recent study (Transborder 1997) identifies two conflicting trends:

1. The need for scientists to adapt to conducting research with data that come in
rapidly increasing quantities, varieties, and modes of dissemination, frequently
for purposes far more disciplinary than in the past; and

2. The worldwide trend toward imposition of increasing economic and legal
restrictions on access to scientific data gained from publicly funded research.

It seems inevitable that public funding bodies and journals will increasingly insist on
putting all data into an archive where it will be available, if necessary under some
restricted form of access, to other researchers.  This is already a requirement for research
funded by the U. K. Economic and Social Research Council (ESRC).  It seems inevitable
that other funding bodies, seeking increased value from the research dollar, must follow
suit. A common heavy reliance on secondary data makes such data archives highly
important for social scientists.

Privatization, and pressures on public institutions to recover costs, have in many
countries increasingly led to charges for services that were previously free, including the
generation and distribution of scientific data.  Thus agreements on the free interchange of
a certain minimum level of meteorological data have been accompanied by severe
restrictions on interchange beyond this level (Transborder 1997).

A major study that had U. S. government support gives the general guideline:

The value of data lies in their use.  Full and open access to scientific data should
be adopted as the international norm  for the exchange of scientific data derived
from publicly funded research.  The public-good interests in the full and open
access to and use of scientific data need to be balanced against legitimate concerns
for the protection of national security, individual privacy, and intellectual
property.
[Transborder 1997.]

There may be far-reaching changes for academic researchers in the United States under a
new provision which will require Federal awarding agencies “to ensure that all data
produced under an award will be made available to the public through the procedures
established under the Freedom of Information act.”  (Kaiser 1998.)  The background to
this change was industry concern to get access to university research data on health
effects of air pollution. There has been concern that the provision will open up new ways
for industry groups to try to discredit research results which they do not like, or even to
harass researchers. Presumably, however, environmental groups as well as industry groups
will gain the same new opportunities for access to data.  There seems wide acceptance
that processes for data sharing are in principle desirable, but tempered with concern at the
perceived absence of filtering processes.  This concern may be unwarranted (Gough
1998), though it will be necessary to address issues of proprietary data and privacy.
Clearly there will be some initial discomfort.   Against this are the substantial long term
benefits which Goldwater (1998) expects from processes for data sharing.  Moves to
charge for access to data will work in the other direction, creating obstacles to ready
access to data.

Appendix C of Transborder (1997) lists a number of successful examples of international
exchange and management of data in the natural sciences – nuclear structure, high-energy
physics, chemical sciences, genomic sequence and related data, Hubble space telescope,
seismic, and meteorological data.  The Hubble Space Telescope Archive, operated under a
memorandum of understanding between NASA and the European Space Agency, may be a
useful model for other areas.  All scientific data are archived, kept proprietary to the
contributing astronomer for one year, and after that time become available to other
astronomers.



Data Warehousing
Data warehousing provides a single point of access, perhaps through networked databases,
to data that share a common theme. Data may be from museum collections, DNA studies,
surveys, censuses, clinical trials, meteorological records, astronomy, geophysics,
laboratory and field experiments, etc.  In many areas, it will be important for researchers
to learn to access and use such material. There may be virtue in learning no more than it
is immediately necessary to know.  Next year’s system may have a radically improved
user interface.

A key part of the data warehousing task is to ensure that data are accurate and consistent,
i. e. to develop and implement a single data model for the whole database.  Even within a
single institution databases from different departments may define data fields differently,
or use different units – perhaps pounds instead of kilograms. The use of fields and the
structure of the database must be documented as part of the database itself. As far as
possible, errors must be identified and removed.  It is important to retain contextual
information which may later be crucial to data use and interpretation.  If these issues are
not handled when data are warehoused, they will be an obstacle to later use of the data.
Inevitably some errors and gross deficiencies in background information will come to light
only when the attempt is made to analyse the data.  Data cleaning, and contextual
documentation, is a huge challenge to warehousers.

The Challenge of Large Data Bases
Large data bases offer new data retrieval and data analysis challenges (Wegman 1995.)
This has become an active and important area for research.  Through the Cooperative
Research Centre for Advanced Computational Systems, ANU already has a stake in work
on the management and analysis of large data sets.  The other participants are CSIRO and
the Australian arms of three computer companies.  There is an On Line Data Archives
Program and a Data Mining program.  The Advanced Server Technologies Program has
as one of its components “techniques for managing large information repositories and
thematic information retrieval”.  The Virtual Environments Program has a data analysis
component.  There is one further program – Digital Media Libraries.

The Importance of Data Sharing
It has been suggested (Denise Lievesley, pers. comm.) that the archiving of data along
with the research design and perhaps a preliminary descriptive analysis might of itself
qualify as a publication.  In principle, this is a move that I would support.  It is clear from
the published literature that cases are frequent in which researchers do not have the skills
needed to do an adequate job of analysing their data.  Handling the analysis at arms length
from the data would encourage objective evaluation of the design of data collection and of
the quality of the data.  Under current practice, authors have an incentive to gloss over
evident deficiencies in their data.  The matter is not however straightforward, because of
the frequent interplay between analysis and a frequent demand for information which was
not initially provided to the analyst.

Access to the data makes it possible for others to check analyses which supported the
published results. The data become available to researchers who may want to use the
information in planning their own study, or who may want to include it in a wider
overview study. It will at the same time expose studies, potentially, to continuing data-
based critical review.  Publication may become a starting point for wide-ranging critical
evaluation, not a supposed final imprimatur on the research.

Demands to make data available for archiving are one aspect of the extent to which
supervisors must expect that the research environment in which their students work will
be more demanding than the environment they have themselves experienced.  There are
implications for the training of research students.  (See section 7).  Any attempt to
aggregate data that have a common theme seems welcome, in spite of the potential for



abuse. The value of individual studies on a topic lies in what they contribute to the total
picture.

Careful examination of existing data can be extraordinarily useful, as a preliminary to
undertaking one’s own study.  Where earlier data are available from an archive, this
becomes relatively straightforward.  Such data can be invaluable for the indications they
provide on how the new study should be designed.

4. Issues for the Use of Observational Data

Historical Experience with the Use of Observational Data
In the early 1980s, there was extensive debate between clinical researchers who felt that
databases containing largely observational data had an important role in the evaluation of
new therapies, and those who felt that the main reliance should be on randomized
controlled trials.  Jorgensen and Gentleman (1998) give a number of references; see for
example Feinstein (1984) and Green and Byar (1984).  There is now wide agreement that
while observational databases have their uses, e. g. in drawing attention to side effects,
they are an unreliable and potentially misleading source of evidence for deciding between
alternative therapies.

There will be comparable lessons for the use of databases in other areas of knowledge.
After some initial large gains, perhaps equivalent to the early use of observational
evidence to establish a strong presumption that smoking causes lung cancer, subsequent
gains may be small and hard won.  Lessons learned in the context of clinical databases will
have to be re-learned in other contexts.

Even if observational data have been collected with extraordinary care, and the data
sources are fully documented, attempts to use the significance of regression coefficients
to argue for causation are, without other supporting evidence, inevitably flawed. An
exception is where it is possible to argue that the data are ‘quasi-experimental’, i. e. they
have the characteristics of experimental data. Snow’s (1855) study of the causes of
cholera outbreaks is a famous example.

The attempt to derive causation from statistical evidence of association commits the
‘ecologic’ fallacy. There are many reasons for this failure, the most fundamental of
which is that causation may go in either direction or may arise from association with a
third variable that may not even have been measured.  There may be temporal or spatial
correlation, or clustering effects.  There are data quality issues, especially likely to be
serious when the details of data collection are not known.  Finally, many authors make
technical mistakes in their use of the methodology, such as not allowing for variable
selection bias.  All these problems are apparent in a Kanarek et al. (1984) paper which
argued, wrongly if the evidence in this paper is the only basis for the claim, that asbestos
fibres in the drinking water cause lung cancer.  Freedman (1991) uses this paper in drawing
attention to the gross over-optimism with which many sociologists have used regression
techniques. As Freedman (1987) says:

At bottom my critique is pretty simple-minded:  Nobody pays much attention to
the assumptions, and technology tends to overwhelm common sense.

The problem is fundamental, and no technological statistical or computing fix is possible.
Causal inference is a difficult and challenging area in which to work.  It is more difficult
where experiments are impossible.  See also Fraker and Maynard (1987), who made a
comparison between the use of non-experimental data to compare manpower programs,
and results from experiments that compared the same programs. Path analysis and Linear
Structural Relations have even more serious problems than regression.  Bartholomew
(1995), who is sympathetic to the aims of social science users of these models, has a brief
judicious summary.

Freedman argues that any case for causative effects must build on many sources of
evidence, in which a careful use of regression modelling may have a small part.  This



makes the research task demanding.  Rosenberg (1968) is a good basic text that treats
many of the important issues, in a way that stays close to the data.

For just these same reasons, information from existing data bases will rarely be as useful as
evidence that is directly collected in order to answer a question that is of interest.  This
restricts the sorts of questions which data mining, to which we will turn in the next
section, can address.  It may be able to tell us that men who buy beer on a Friday night
commonly also buy disposable nappies.  It cannot tell us, without other supporting
knowledge, how to increase the sales of either product.

Qualitative Research
The current enthusiasm for qualitative research may in part be a response to the
perceived futility of inadequate quantitative research. Quantitative and qualitative
research should be complementary, working in tandem to build a convincing case, a point
which has had scant attention in the literature.

Quantitative research must start from qualitative judgments on what research questions
are to be pursued, and may rely on qualitative insights for the interpretation of results.  It
may be even easier to do poor qualitative research, perhaps largely reflecting the
researcher’s own prejudices, than to do poor quantitative research.  Good qualitative
research is every bit as demanding as good quantitative research, and should not be seen as
an easy alternative which avoids the heavy demands of quantitative research.  Greenhalgh
(1997, chapter 11) has a useful brief discussion, and gives references which interested
readers can pursue further. While acknowledging the importance of qualitative research,
she is critical of much of what has appeared under this name.

Note that researchers outside of social science may use other names for approaches that
have strong connections with qualitative research.  Thus Scholtes (1988), who does mix
quantitative and ‘qualitative’ approaches, discusses at length methods for generating and
honing ideas.

5. Data Mining (Knowledge Discovery in Databases)
Data are a valuable resource.  As such, perhaps one can mine the resource for its nuggets
of gold. In part the interest in data mining has been driven by individuals and
organizations who find themselves with large data holdings, which they feel ought to be
sources of valuable information.  They may have little idea what to do with them.  The
interest has been fanned by hardware and software computer vendors who are looking for
new market niches.

There is no firm distinction between data mining and statistics. Much commercial data
mining activity uses relatively conventional statistical methods.  A difference is that data
miners may be working with quite huge data sets. Hence Friedman’s (1998) definition of
data mining as the “computer automated exploratory data analysis of (usually) large
complex data sets.”  A data set with values of twenty or thirty variables for each of
several hundred thousand records is, in the context of commercial data mining, small.

A simple example of ‘exploratory’ data mining is the use of medical practice variations
as a starting point for questions about operating or prescribing practices.  McPherson
(1990) quotes standardised rates for hysterectomy that were six times as high in the
United States as in Norway.  Such a huge difference calls for investigation and comment.
In a classical statistical sense, the data miner is looking for outliers. Detection of fraud, in
large clinical trials, or in business records, provides another example.  What sorts of
unusual patterns might make closer scrutiny desirable?

This more exploratory form of data mining applies a search process to a data set, often a
very large data set, and looks for interesting associations.  While the data may initially
have been collected to answer some primary question or questions, the expectation is that
there will be other interesting and potentially useful information in the data.  Most
experienced statisticians have at some time encountered unexpected and interesting



results when, as a prelude to the main analysis, they have set out to do a careful
exploratory analysis.  Is it possible to set up automatic processes that may bring such
results to attention?  Jorgensen and Gentleman (1998) cite examples of data sets where
there is bound to be unmined interesting information – fisheries data collected by
Australian and New Zealand agencies over a number of years, secondary information in
databases on clinical trials, and databases of routinely collected business information.

Much of the focus of data mining research has been on ways to find views of data that
highlight ‘interesting’ or unusual features – a search for what statisticians would call
‘outliers’.  Friedman (1997) lists a number of approaches.  Exploratory Data Analysis, a
name invented by John Tukey, is in the spirit of Fayyad’s description of data mining.
Research on data visualization is in this same tradition.

Some data mining approaches are fairly specific to individual research areas, such as
astrophysics at one extreme or business data processing at the other.  Students in those
areas ought perhaps to gain a general familiarity. It is not clear to me that this work has
yet produced results which ought to be widely taught, rather than to particular specialized
groups of students.

Commercial Data Mining Packages
Modesty has not sat well with vendors of commercial data mining packages. Friedman
(1997) suggests that as in gold rushes of the past, their interest is in “mining the miners”.
Data mining may be sold as an investment that is small relative to the cost of a large
database system, one that will add value.   Additionally a powerful sales argument is that
without these new powerful tools businesses will suffer disadvantage by comparison with
adventurous competitors, who it is suggested are already reaching out eagerly to seize the
new data mining opportunities.  Even if purchasers later feel cheated, they are unlikely to
admit that they made a bad business decision.  From the beginnings of electronic
computing, ambitious salespeople have oversold new types of computer systems.  It is
well to recall the exaggerated hype that accompanied early work on artificial intelligence.

Alas for AI [Artificial Intelligence], the funding came screaming in with lots of
strings attached and unrealistic expectations, and the results were pitifully few.
Most of the applications didn’t work – for good reasons: they were hard problems
and still are.  It was essentially, in much of the AI community, hubris – arrogance
about one’s capabilities and potentials, which just failed.  The systems did not do
what they claimed.  But remember, often it wasn’t the scientists who were doing
the claiming.

….

One impediment is the perception by much of the computer and management
culture that making something work is primarily a matter of getting the right
specifications and interpreting them, so to speak – making a program that
satisfies those specifications.  In a very fundamental way that is just plain wrong.
[Selfridge 1996.]

It is in this context that skeptical comments from the statistician Peter Huber seem
relevant:

I do not think that I am doing injustice to the present situation by contending
that data mining is still a nearly empty hull, held in place by hot air, and serving
as a place-holder for more substantive contents to come.
[Huber, quoted in Fayyad 1998.]

Elder and Abbott (1998) compare the features of “leading data mining tools”.  Several
tools that are primarily statistical systems, including S-PLUS (MathSoft 1997), appear in
the comparison.



Mining Business Databases
There is a growing literature on experience with business data mining .  Most of this
reflects the experience of very large organizations.  They have the most to gain from
effective use of their large databases, and they can employ the specialists needed to
handle analysis and interpretation.  Commercial confidentiality prevents the publication
of independent objective evaluations in refereed journals.   From the commentary which
does appear in the published literature, the following points emerge

• In building a data mining model a large proportion of the time – one ballpark estimate
(Kelly, quoted in Fabris 1998) is 75% – goes on data validation.

• Efforts at data mining may draw attention to the poor quality of the data, perhaps to
the extent that analysis is pointless.  The Gartner Group estimates that only about
10% of collected data are analyzed.  (Simoudis 1996.)

• Data mining teams need to complement business expertise with statistical expertise.
(Fabris 1998.)

Attempts to mine collections of scientific data from disparate sources will encounter
these same obstacles.

Issues of Size
Note that many physically large data sets have very limited information at the level of
information that matters for the intended use of the data. A huge data base of
information on the effects of hospital management practices may turn out to have
information on a rather small number of hospitals.  Each hospital is a different ‘case’.
There is an important distinction between those data sets that, using a realistic definition
of case, really do have information on vast number of  ‘cases’, and those which have
information on only a small number of cases.  Where the number of cases is modest the
size of the data base is an issue only to the extent that it creates problems for
summarizing the data for input to a conventional form of analysis.

The use of appropriate averaging to reduce the number of cases may be essential for the
use of classical statistical methods with large data sets. There may be a dependence
structure which classical approaches cannot model adequately.  If Hampel (1998) is right,
long term dependencies in space or time, of a kind that classical methods do not model
well, are a pervasive feature of data sets which have very large numbers of observations.

A Computing Perspective on Data Mining
Fayyad argues that there may be a misunderstanding of the aims of data mining.

Data mining is not about automating data analysis.   Data mining is about making
analysis more convenient, scaling analysis algorithms to large databases, and
providing data owners with easy-to-use tools to help them navigate, visualize,
summarize, and model data. …

I personally look forward to the proper balance that will emerge from the mixing
of computational algorithm-oriented approaches characterizing the database and
computer science communities with the powerful mathematical theories and
methods for estimation developed in statistics.
[Fayyad 1998.]

These aims are modest, attainable, and far removed from the hype that has often
surrounded data mining. The systems that Fayyad describes could be extraordinarily useful
partners to statistical experts.  They take on, at most, very limited aspects of the
statistical expert’s task.  Friedman (1997) quotes other definitions from the data mining
literature.  For example:



Data mining is a set of methods used in the knowledge discovery process to
distinguish previously unknown relationships and patterns within data.
[Ferruza].

Elsewhere Fayyad (1996) himself seems to enlarge the scope of data mining to include
statistical analysis.  He defines the primary tasks of data mining as classification,
regression, clustering summarisation, dependency modelling, and change and deviation
detection.  Perhaps Fayyad has in mind a heavily automated use of these tools, as a
preliminary to careful statistical examination of anything that seems to warrant more
careful examination.

Data Mining Tools
Tree-based regression and neural nets have been widely promoted as data mining tools.
Both these methods are beginning to attract interest from the statistical community.
They are most commonly applied to discrimination problems, e. g. a bank may want to
distinguish good from bad lending risks. Fayyad (1996) distinguishes Knowledge Discovery
in Data Bases (KDD) from Data Mining.  KDD, it is said, refers to the overall process of
discovering useful knowledge from data, while data mining refers to the initial step of
extracting patterns, without the additional steps designed to check whether these patterns
are meaningful.

Friedman (1998) describes a Stanford University course which presents a broadly
statistical perspective on data mining.  The course is aimed at statistical and computing
specialists, and provides a broad coverage of techniques that come both from the
statistical and from the computing literature.  Methodology is classified under the
headings: decision tree induction (tree-based regression, etc.), rule induction, association
rules (market basket analysis), clustering, and hot spot analysis.  Hot spot analysis looks
for subgroups of cases which show particularly strong patterns, e. g. banks will wish to
identify mortgage holders who are at especially high risk of defaulting on their payments.

Building on Statistical Insights
There is now wide acceptance that progress in data mining will demand a merging of the
insights of computing specialists with those of theoretical and applied statisticians.  There
are general points, relevant to all use of databases, which ought to be widely known and
understood:

• Inferences can only be as good as the data allow.

• There is a potential for serious loss of information in the process of moving data from
one medium to another, i. e. now, from paper to electronic storage.

• Data must be ‘good’ for their intended use.

• If you mix bad coin with good, the bad coin will ‘drive out’ the good.  Mixing
unreliable data in with highly accurate data, without discrimination, reduces all data to
the level of their least reliable components.

• Analyses must have regard to data structure.  As noted above, many physically large
data sets are, from a statistical perspective, small!

• There are no royal routes to getting data to yield their insights, not yet anyway, and I
expect not anytime soon.

Getting a relevant graphical view or views is usually essential to getting data to yield their
insights (Cleveland 1993.)

In a chapter entitled “Reservations to Automatic Modelling in Statistics” Elder and
Pregibon (1996) comment on the data mining pre-occupation with problems which have
not yielded well to conventional statistical approaches.  They warn that data miners must
take on board statistical insights regarding the potential for spurious associations,



selection bias, and issues of substance versus statistical significance. I find it surprising that
they do not discuss at any length issues of data quality and structure.

Elder and Pregibon give a rough chronology of significant contributions to statistics,
relevant to the KDD community, since the 1960s.  As Elder and Pregibon explain:

. . . this time period coincides with the significant increases in computing power
and memory, powerful and expressive programming languages, and general
accessibility to computing that has propelled us into the Information Age.  In
effect this started a slow but deliberate shift in the statistical community, whereby
important influences and enablers were to come from computing rather than from
mathematics.

Unfortunately SPSS, SAS and some other widely used statistical packages continue to
reflect, in the style of statistical analysis which they promote, older approaches to
statistical analysis which have not adequately taken on board the insights that have been
stimulated by the computer revolution and by allied advances in mathematical theory.
Actually SAS and to some extent SPSS mix new methodology with older approaches, in a
manner that may thoroughly confuse the novice.  A new SAS product – JMP – does
reflect modern approaches much better.  It has a strong linkage between statistical
analysis and graphical presentation.  Packages which lack this linkage should not be taken
seriously.

Kolsky (1998), in a useful brief note on data mining, comments that “the same statistical
issues that have plagued statisticians alike in their analysis efforts have not, in any way,
been resolved by the use of Data Mining software.”  Edelstein (1998), quoted in a
newspaper report, draws attention to data mining myths:

. . . that data mining tools need no guidance; that data mining models explain
behaviour; that data mining requires no data analysis skill; that it eliminates the
need to understand your business and your data; and that data mining tools are
different from traditional statistics.

Note however that data mining researchers, from both a computing and a statistics
background, are actively developing new data mining tools.  Some of these new tools will
in due course become part of the stock-in-trade of professional statisticians.

False Confessions
Data mining, like all forms of exploratory analysis, is open to abuse.  Under torture, the
data may yield false confessions.  Data mining readily becomes data dredging,  a practice
that well deserves its bad reputation.  Classical inferential procedures may require
substantial adaptation, or have little relevance, for data mining applications with large
data sets.

Re-inventing Statistics
Efron (quoted in Friedman 1997) has argued that:

Statistics has been the most successful information science.
Those who ignore statistics are condemned to re-invent it.

Efron is perhaps saying that there are no good alternatives to perspectives which
statistics offers on the design of data collection, on data analysis, and on modelling.
Friedman argues that, because of the intensity and exclusiveness of its love affair with
mathematics, statistics risks losing its pre-eminence as a theoretically based information
science. Academic statistics must enlarge its purview to take in all aspects of data
collection, data manipulation and data interpretation.  Unless this happens other more
strongly computer based disciplines will increasingly offer that broader perspective, taking
what they need from statistics, and consigning academic statistics to a supporting role.



Even more serious may be the tendency, found both among statisticians and among
computing oriented data miners, to foster a technique-driven approach to data analysis.
Freedman (1991, p. 357), responding to Mason’s discussion of his paper, comments:

Mason goes on to say, “Statistics has definitely evolved into a field in which
people can do their work without actually seeing and doing applications.”  If
anything, he is being tactful.  Some members of the profession are trying hard to
make changes, by teaching courses in which substantive questions come first and
technique is introduced to find answers.  Of course, all too often, technique comes
first; data come in as purely decorative illustrations – a practice not confined to
statistics departments.

Currently a problem-driven exposition of modern statistical approaches seems a priority
for training researchers in application areas.  Particular data mining pattern recognition
approaches are relevant to some specialists.  Otherwise the promise or hope of widely
applicable extensive and powerful abilities for automated data analysis remains a dream
for the future.  One reason is that the statistical computing tools that are needed to
support automated data analysis are not yet mature.  Even the best implementations of
some well-understood and important methodologies have serious deficiencies. For
example, Generalized Additive Models offer a methodology for handling general
nonlinear responses, and seem a huge advance on classical linear methods.  There are
serious deficiencies in all of the current implementations, which would seriously
compromise any automated system that attempted to use them as a basis for an
automated system.  Tools for handling Bayesian statistical analysis are even less mature.

A Holy Grail for statistical computing research had been and perhaps remains the building
of a statistical expert system.  There is at least one expert system for industrial
experimental design that has been relatively successful. A more ambitious project called
REX (Gale and Pregibon 1984), aiming to build a system for regression analysis, has now
for the time being been abandoned.  Subsequently Nelder and Pregibon worked on an
expert system called GLIMPSE.  This too seems to have foundered.  The wilder dreams of
some data miners may be seen as an attempt to revive the quest for this Holy Grail.

The Design of Data Collection
Data mining searches for information different from what the data were initially collected
to provide. Where data mining or other forms of exploratory data analysis provide
evidence of valuable ancillary information, this may suggest some redesign of the data
collection.  Ongoing data mining exercises are far more likely to yield useful information
if subsequent data collection has regard to the information that data miners may hope to
get from it.

Moves to link museum taxonomic collections in huge databases provide an example.
Because of the scarcity of data on species distribution and abundance, there will be
attempts to use this taxonomic data for distribution and abundance assessment purposes
for which it was not designed.  There is the same potential for misleading inferences as
from human inter-population and migration studies.  To what extent is it reasonable to
expect taxonomists to redirect their field collection so that future data are better able to
address issues of distribution and abundance?

Decision Trees, Artificial Neural Networks (Neural Nets), and Related
Methods
We discuss these in further detail because they seem, at present, the data mining tools
which are favoured by software developers.  More sophisticated practitioners combine
these with more classical techniques, notably logistic regression.  Largely, these tools are
used for discrimination, where they compete with more classical statistical methods.
Hybrid methods, which combine two different types of method with the aim of getting



the best of each, are also available.  Thus CART3, which started out as a decision tree
system, has now been extended to incorporate logistic regression, either as an adjunct or
as an alternative to decision trees.

A tree-based classification gives a decision tree that is similar to a botanical classification
key, except that all splits choose between two alternatives. In the simplest version of the
methodology, splits are formed one at a time in sequence.

An (artificial) neural network consists of a large number of processing elements
(neurones) and a complex pattern of linkages (synapses).  Each linkage has a connection
weight.  The learning process adjusts the connection weight. A neural net should be
thought of as a mathematical model for a learning process, rather than as a model for a
brain!  There are various different specialised types of neural nets.  They seem good
pattern recognition devices, and good at solving problems where algorithmic solutions
suffer from undue computational complexity.

There are close connections between certain specialised types of neural nets and
approaches developed by statisticians. Neural nets have attracted wide interest from
engineers, computer scientists, biologists, neurophysiologists, psychologists and
statisticians. Highly parallel systems may be required for efficient implementation. Neural
nets that operate as black boxes, providing an answer but without clues on why a
particular classification was chosen, are unsatisfactory when models are used in order to
gain scientific insight. Depending on how they are used, tree-based methods may be open
to the same objection.

Lim et al. (1997) compare 33 different methods, including twenty-two decision tree
methods and two different types of neural net, for handling 32 classification problems.
This is a careful and thorough piece of work. Over the 32 problems, the neural net
programs were among the poorer performers.  For purposes of generalizing to a wider
population from which these data sets were drawn, the differences between methods were
not however significant at the usual 5% level.

The neural net ‘Frequently Asked Questions’ information at
http://cvor.pe.wvu.edu/faq/nnfaq.htm gives a good overview.  There is a list of books that
identifies the best and the worst.  Comments on two of the worst are interesting:

Both Blum and Welstead contribute to the dangerous myth that any idiot can use
a neural net by dumping in whatever data are handy and letting it train for a few
days. They both have little or no discussion of generalization, validation, and
overfitting.

For statistical problems, neural nets provide a range of models which extend currently
available models.  Contrary to claims sometimes made in popular literature, neural nets
require exactly the same kinds of assumptions as more conventional statistical models.
Statistical inference requires the usual types of assumptions about the error structure.

Decision trees and neural nets seem most effective with very large data sets, with at least
some tens of thousands of records.  For smaller data sets, parametric methods which build
in more structure may be preferable.  In the trade-off between sampling variance and
model bias, sampling variance may be more serious in data sets with some hundreds of
records, while model bias may be more important in data sets with tens of thousands of
records.  Biases that are inherent in the data themselves are unaffected by sample size.

For statistical perspectives on neural nets, see Ripley (1996), Elder and Pregibon (1996),
and Cheng and Titterington (1994).  The theory and software have not yet developed to
a point where neural nets are everyday tools for practicing statisticians.

Friedman and Fisher (1998) discuss an approach, in the same realm of ideas as decision
tree methods, which for some regression applications seems to offer advantages over a
decision tree approach.  Their method uses all variables to define a small part of the space
                                                
3 Details of CART may be found at the site http://www.salford-systems.com



spanned by explanatory variables that is ‘peeled off’ at each split, leading to an increase
in the value of the target variable in the part of the subspace that remains.

6. Specialised Applications of the Mathematical Sciences
I have focused on methodologies that have wide relevance over many different
application areas.  Here I will comment briefly on developments that have more specific
relevance.

There are large differences between research areas in the extent and nature of their
demand for mathematical skills.  Within a research area, there may be large changes as
the area develops and matures and finds commercial applications.  Geophysics has for
several decades made severe mathematical demands.  There has for some time been a
demand for highly  trained mathematical specialists in commercial finance. More
recently, there has been evident demand for mathematical and computing specialists in
molecular biology, generated in part by interest in exploiting the commercial
opportunities of the new technology.  Names that are commonly used for a range of
disciplines that have resulted from this merging of mathematical science tools with tools
from molecular biology are bioinformatics, biological computing and computational
genomics.

Genomics and Bioinformatics
Genomics is a name for the study of the genome, i. e. of the DNA code which living
organisms carry.  There is tremendous commercial interest (Service 1998), and a large
new demand for the skills of mathematicians, statisticians and computer scientists (Eliot
1996; Skoufos 1998).  Biochemical methods for determining the proteins for which genes
code are slow. Often, experts can make substantial progress towards determining protein
structure by direct examination of the sequence of bases. Bioinformatics is often used as a
general term for applications which involve skills in one or more of these mathematical
sciences. Biological computing has a similar usage.

Genomics may be the basis for a third technological revolution, after the industrial
revolution and the computing revolution.  Multi-national companies, and some
governments, are making huge investments in genomics-based industries.  There are
potential huge implications for health, medicine, pharmaceuticals, food production, and
agriculture.  For example, newly gained knowledge of the human genome, combined with
the relatively automated rational drug design approaches, offer radically new possibilities
for the development of pharmaceuticals. There are exciting new possibilities for the
development of new industrial biochemical processes.  Much of Australia’s production is
strongly biology-based, making it important for Australia to be a major player in these
emerging technologies and associated industries.

Biologists who wish to be active players in the new technologies will need new skills.  As
already noted, there is a heavy demand for a new type of specialist, with skills that have a
strongly mathematical and computing orientation.  We can expect to emerge, within
bioinformatics, new genomics disciplines that require strong mathematics and computing
skills.  Those who have skills in these new disciplines seem likely to dominate the field.

Mishra (1998) notes

The science of computational genomics and bio-informatics have been created
out of this massive sea of sequence data and the need to establish functionality of
genes largely based on similarities discerned at the level of the DNA code;
bypassing the need for extensive biochemical characterization.

Training opportunities for bioinformatics specialists are currently limited.  Skoufos
(1998) comments that there are currently only five North American programs that offer
PhDs in bioinformatics or computational biology.  Any university which can move
quickly to respond to the new demand is likely to tap a ready market.  Industrial jobs are
going, predominantly, to applicants with a knowledge of programming languages, and



relevant mathematics and statistics.  These may get, currently, higher priority than
biological knowledge.

Important Australian bioinformatics sites are those for AGIC (Australian Genomic
Information Centre), ANGIS (Australian National Genomic Information Service), and
CMIS Bioinformatics.

Biological Computing – Further Issues
Topics set down for discussion at the Seventh International Conference on Intelligent
Systems for Molecular Biology, to be held in Heidelberg in August 1999, indicate the
range of mathematical and computing applications in molecular biology.  These include
molecular structure, genomics, molecular sequence analysis, evolution and phylogenetics,
molecular interactions, metabolic pathways, regulatory networks, developmental control,
and molecular biology generally.  “Emphasis is placed on the validation of methods using
real data sets, on practical applications in the biological sciences, and on development of
novel computational techniques.”

There are large and important statistical issues in genetic sequencing, in the sourcing of
material, and in the supporting information that is provided when this information is
incorporated into databases. Enthusiasm for data mining types of operations should not
lead to a neglect of applications of the mathematical sciences to fundamental science.

Genetic data are rarely taken from a random sample of the population which they are
thought to represent.  For some uses of the data this may not matter.  For others it
clearly does matter.  Ascertainment is a name for purposive sample selection.  Comuzzie
et al. (1999) consider the ascertainment of a sample based both on medical and genotypic
alcohol dependence criteria, in order to increase the power to detect linkage.  Different
plausible approaches to correcting for the effect of the ascertainment bias on likelihood
ratio estimates give substantially different answers. Bias problems may arise whether the
sample selection is purposive or merely haphazard, creating large problems for inferences
from material gathered using current procedures and stored in genetic databases.  This is a
serious issue for the use of genetic databases.

Problems may arise because different kinds of mathematical and computing specialists do
not always communicate well with each other, or understand their own need of help in
areas in which they are not competent.  Thus individuals with a traditional mathematical
training may not be well equipped to tackle statistical issues.  Statisticians may wrestle
with issues which require assistance from an expert in combinatorics.

Other Mathematical Science Application Areas
Detailed discussion would take me too far from the central themes of the present paper.
Two recommendations in a recent U. S. report (Senior Assessment Panel 1998) relate to
interactions with other disciplines, and warrant particular mention:

• Broaden graduate and undergraduate education in the mathematical sciences.

• Encourage and foster interactions between university-based mathematical scientists
and users of mathematics in industry, government, and other disciplines in universities.

The report draws attention to missed opportunities that may arise because related ideas
may develop in two different fields of mathematical application, but with use of notation
and jargon which is so different that there is little or no cross-fertilization.  An example
familiar in my own area of knowledge is the relatively independent development of
hierarchical analysis of variance and repeated measures modelling in statistics,
generalizability theory in psychology and multi-level modelling in educational theory.

Finding 2 of the report relates to “Interactions with Users of Mathematics”.  This
considers both the interactions of academic mathematics with industry and interaction
with other disciplines.  Often, the report argues, such interactions are often “obscured by
the inward focus of mathematics and science departments”.  There is more to say:



The structure of universities mitigates against interdisciplinary
research.  While the above finding criticizes mathematical scientists for not
collaborating more actively with other scientists and engineers, part of the fault
lies with the organization and culture of universities, here and abroad, which
restrains collaboration across scientific boundaries.  The academic award system
does not encourage collaboration; in fact, individuals who straddle fields reduce
their chances of tenure. …

Cost-Benefit and Cost-Effectiveness Analysis
Researchers face increasing pressure to supplement their findings with a cost-benefit or
cost-effectiveness analysis. In a comparison of two or more courses of action, cost-
benefit analysis attempts to account for financial costs and financial benefits that accrue
to all parties.  Spillover effects which do not incur a direct financial cost or benefit –
damage to the environment or increased noise as a result of a new motorway, are not
included. Cost-effectiveness analysis is a more limited form of comparison, used when it is
appropriate to express the outcome in terms of a single variable, e. g. number of pregnant
women saved from contracting rubella per $10,000 expenditure.

It is necessary to understand the traps and limitations of these studies.  If they are to be
useful, they must get right both the subject area evidence and the economic assessment.
The analysis is only as compelling as its weakest component.

For example, DeBaun and Sox (1991) investigate the optimum screening decision
threshold for treatment of lead poisoning. They assume no poisoning cost and no
treatment benefit for patients below a stated blood lead threshold, and a fixed poisoning
cost and a fixed treatment benefit for patients above such a threshold, assumptions which
are too crude to give useful results.  The assumption that these costs and benefits change
linearly with blood lead level, which may still be too crude, might change the conclusions.

Chapter 10 of Greenhalgh (1997), together with the references which she gives, are a
helpful starting point for literature on the use of economic analyses in medicine and
health.

7. New Training Demands for Research Students
Above, I have discussed research quality issues that bring with them new training demands.
There are further reasons for improved training. Even before we examine the impact of
new technology, we have a long list of issues which require attention.  These issues are
mostly, in a broad sense, statistical issues.

Our traditional systems of  PhD training have relied heavily on a research apprenticeship
model where the novice learns from a expert or ‘master’.  They appear to work well for
training in laboratory skills.  They do not work so well where a major part of the task is
the synthesizing of existing knowledge and data, as a background to new research.  They
do not always work well for research that requires skills in which the experts are
themselves inadequately equipped.

Graduates who have a strong training in research methodology are not only likely to do a
better job in their specialist area;  they emerge better equipped to apply their research
skills to areas different from those in which they were trained.  They are more
marketable.

It is now common for researchers to work for several years on a post-doctoral fellowship
before gaining a permanent academic appointment.  Specialized subject area training thus
continues well beyond the PhD.  It then makes sense for the PhD to have a strong focus
on wide-ranging methodological skills as a grounding for all later research.



Research Protocol Design
A good model for more directed training may be the course in Research Protocol Design
(Course CCEB 661) with which I assisted while at the Centre for Clinical Epidemiology
and Biostatistics at the University of Newcastle.  In this course, medical graduate students
spend a full year designing a research study.  As the design develops, it receives critical
review from a team which includes, at a minimum, a biostatistician and an epidemiologist.
I found it fascinating and rewarding to work with highly intelligent and strongly
motivated medical graduates, some of them well-established as consultants, as they
struggled to form a clear view of current knowledge, to construct a clear statement of
research objectives, and to set down a clear plan of research. Researchers who have not
had the benefit of such training are at a disadvantage.  Attempting a major research
project in clinical epidemiology or health or the social sciences or applied biology without
such preparation may be a recipe for a seriously flawed study.

Statistical Consulting Unit Courses
The Graduate School courses in statistics address wide-ranging technical statistical issues4.
They have been well attended.  My course on Research Protocol Design this past year has
addressed wider research planning issues.  These courses complement the consultations
which statistical consulting unit staff offer to individual students, where specific statistical
design and analysis issues are discussed.

Our particular focus has been experimental and sampling design, and data analysis. Some
expansion into general research planning issues, and data overview, seems desirable.
Providing this training is backed up with access to specialist statistical skills where these
are needed, there will be a better research outcome, and graduates will emerge better
trained.

Statistical presentation issues are important for the perspective they give on the design of
data collection, and on analysis. Problems with justifying the choice and use of data gain
new force when the researcher must justify his/her procedure to a wider public
(Maindonald 1992.)  The choice of a relatively optimal form of presentation is, often,
not trivial.

We have continued to introduce new leading edge approaches, including resampling
methods, tree-based regression, hierarchical modelling (known in some quarters as
generalizability theory), repeated measures modelling, and generalized additive modeling.
In addition we have offered courses on modern statistical computing environments. In
1999 we may offer survival analysis.  Our approach has been practical and example-based.
Some refocussing of our courses is desirable, to draw attention to Data Mining and
Systematic Overview perspectives.

We need to emphasize changes in statistical approaches which have emerged in the past
ten or fifteen years.  This pace of change will continue, though likely directions for
change may be clearer than they were ten or fifteen years ago. As was pointed out earlier,
the net effect of many of these changes is to give results in a form that is easier to
describe in subject area terms than were the older analyses.  Often results can be summed
up in a few well-chosen graphs.  Those who are steeped in the older approaches may have
unlearning to do!

Courses on database technology and on web-based literature searches would be a useful
complement to our courses.  Note also the courses on social science research methods
that are offered each year in late January and early February, under the auspices of the
Australian Consortium for Social and Political Research Incorporated (ACSPRI)5.

                                                
4 A listing of 1998 courses, and course summaries, are at the web address
  http://www.anu.edu.au/graduate/scu/course98_s2.html
5 Details are at the web address http://ssda.anu.edu.au/ACSPRI/COURSES/SUMMER/



Training for Co-operative Research
In industry and Government, researchers must often work as part of a team.  The Total
Quality Management movement has a strong emphasis on training in teamwork skills,
perhaps following Scholtes (1988).  See also Peters (1989).  A strength of the Scholtes
book is its emphasis on methods for generating and honing ideas.  As noted earlier, there
are links with qualitative research approaches which have become popular in social
science.

Current PhD training, with its almost exclusive focus on individual effort, may not be
ideal training for working in or with the teams which Scholtes and Peters describe.
Teamwork skills may, typically, be less important for pure science projects than for
highly applied studies.  Thus a study on bruising when apples are transported by road
(Maindonald and Finch 1986) required skills in horticulture, engineering and statistical
experimental design.  The trial might have benefited greatly from the insights of
orchardists.

Often, there will be problems on which a group of students who are drawn from different
institutions can work co-operatively, communicating by electronic mail. Where several
apprentice researchers can be found, internationally, who are working on relatively
similar topics, Cochrane Collaboration studies provide a model for a teamwork approach
for reviewing the current state of knowledge.  Such studies require a high degree of
collaboration between participating specialists – statisticians as well as medical specialists.
Documentation of the division of responsibility for the total task should satisfy any
demands from examiners to identify the contributions of particular team members.

Internet-Based Searches
The Internet provides a facility, not otherwise available, for rapid dissemination of the
latest research information.  In many specialist areas, it has become a crucial tool for
gaining access to the latest research knowledge.  There are now some journals which
subscribers can download from the internet.  Professional electronic mail groups provide
previously unheard of opportunities to listen in to expert discussions.  It may be just as
easy to get an answer from a colleague on the other side of the world as from a colleague
in the same corridor.  The internet is a source of new software libraries as they become
available.  The current release of the highly successful R project, in which an
international team of collaborators is steadily enhancing a modern public domain
Statistical Language, can be downloaded from the internet.  The R project relies heavily
on the internet for exchange of ideas, information and code.

The proponents of evidence-based medicine have taken up the new opportunities of the
internet with enthusiasm.   Detailed advice on web-based searches, with examples, is a
major feature of the Sackett et al. manual (1997, chapter 2).  They comment (p.55):

The Internet is a veritable bouillabaisse for finding information, with a huge and
outrageously expanding pot, and you never know when you stick your fork in
what tasty morsel or bit of fishy debris you will stab …

Sackett et al. (p. 72) are scathing about information from textbooks:

Are textbooks obsolete?  Their bloated girth and rapid dating of the action parts
of textbooks on diagnosis, prognosis and therapy make it difficult to believe they
will survive the electronic age any better than dinosaurs did the Ice Age.
Unfortunately, textbooks don’t smell as their contents rot, so readers will need to
develop alternative crap detectors to avoid poisoning their minds and robbing
their patients of current best care. … (Fortunately the principles of science do not
age so quickly!)

There is a section (pp. 72-76) on “Teaching skills on how to search”. Sackett et al.
comment



Clinicians learn how to search for the best external evidence in different ways.
Some are entirely self-taught …, some by watching colleagues search, some from
reading books like this one and progressively more from organized seminars,
workshops and short courses run by expert searchers.  …

Given the opportunity, people can learn to do searches as competently as
librarians (for sensitivity, if not specificity, whether or not they have had formal
training from librarians …

A small amount of training can help avoid time-wasting, and reduce the risk that key
information will be missed.  There is detailed technical discussion in Chambers and
Altman (1995) of issues that arise from the use of internet-based searches in systematic
reviews in medicine. It is important to know what might have been missed!

Librarians are likely to be useful partners, both in constructing short courses on internet
based searches and in handling initial training.  Library staff provided several effective
short courses for graduate students during the time that I worked at the Centre for Clinical
Epidemiology and Biostatistics at the University of Newcastle. Chapter 2 of Sackett at al.
(1997) would be a good place to start in looking for ideas on the construction of training
aimed at other specialist areas.

Knowledge Engineering and Machine Learning
A nice addition to Statistical Consulting Unit courses would be a visionary course on
future fallout from current research in Knowledge Engineering and Machine Learning. It
should be tempered with an account of past failures to deliver on often visionary
promises! Our task is to keep learning from our students and from the literature, and to be
sensitive to demands to make new information technologies accessible.

Bioinformatics (Biological Computing)
The Scientific Opportunities Evaluation Workshop (SCOPE) workshop, organized by
Professor Adrian Gibbs and held on December 9 1998 at the ANU Research School of
Biological Sciences, identified broad areas of research activity and resources available in
Canberra. The range of expertise on the ANU campus and in CSIRO seems a good basis
for mounting initiatives in genomics and other areas of bioinformatics. Genomics is of
such importance to the nation and to ANU’s future as a leader in biological research
training that it is vital to find ways around current funding roadblocks.

The methods and knowledge of molecular biology, including recent mathematical
methodologies, have become widely important to all researchers whose focus is in some
sense biology. This creates a demand for training that is accessible to students, both at
undergraduate and graduate level, who are not mathematical science specialists. This
includes anthropology, education and psychology, as well as biology itself.

There is a demand from industry for specialists with a high level of skill in relevant
mathematical and computing tools.  New course initiatives seem needed, both at the
undergraduate and at the graduate level.  Offering a few mathematical science courses to
molecular biology students will not be an adequate response.  The same mathematical
science depth is required, though with different content, as in specialist mathematics and
computing courses.



8. Summary of Main Points
The best clues on how research demands may change in the next two decades come from
examining the most innovative changes of the past two decades.

Some changes will be driven by attempts to fix problems with our present approaches,
some will be driven by technology and some will be driven by demands from funding
bodies or from users of results.

The approaches of evidence-based medicine have large implications for medical research
as well as for medical practice.  These carry across to many or most other research areas.

It may seem a truism that new research should build on a basis of careful data-based
overview of research to date.  It is necessary to make it true!

Archiving of data when results are published may become standard practice in all areas.
Access to earlier data would often be a huge help in improving the design of later studies.
Such access may be essential for the conduct of high quality data-based overview studies.
High quality data should be seen as a valuable resource.

For much published research, publication should be seen as a first step in exposing results
to critical evaluation, not as a final imprimatur.

Web-based searches of relevant databases have become essential for literature review.

Large and often networked databases are making huge changes to the science information
base. However there are serious potential problems with quality, relevance, and access to
key background information.  In addition, the emergence of charging systems which treat
data as a commercial commodity may place serious restrictions on access.

Data mining, although oversold, emphasizes the new problems and opportunities that
arise from data warehousing, and from the creation of new, often large, databases.  It may
be seen as an attempt to automate the processes by which statistical analysts often
encounter unexpected information that is aside from the main purpose of the analysis.
There are strong connections with Exploratory Data Analysis (EDA).

The history of the use of evidence from databases in clinical medicine gives insight into
the sorts of problems that can be expected in other areas when such databases are ‘mined’
for their information.  Insights gained by practical statisticians remain highly important.
Data must be ‘good’ for its intended use.

In the past ten years there have been large changes in the methodology for data analysis,
taking advantage of advances in computer software and hardware.  Effective data mining
must build on these methods and insights.

The biological sciences, and allied research areas, have been dramatically affected by the
huge advances of molecular biology.  There are demands for a new type of molecular
biologist, with strong mathematical and computing science skills. The challenge is to find
ways to respond quickly to the new training demands.

Reward systems are required that will encourage academic researchers to co-operate across
disciplinary boundaries.

Graduates will benefit from a broader training in research methodology, both because it
will improve training in their main area of research and because it will better prepare
them to tackle other types of research problem.

Graduate students should have, as a component of their training, experience of working
co-operatively. Often, there will be problems on which a group of students who are drawn
from different institutions can work co-operatively, communicating by electronic mail. It
may often be appropriate to extend the literature into a co-operative data-based overview
exercise.

There are several ‘information technology’ areas where short courses, additional to
current Statistical Consulting Unit courses, may be desirable.  These include specialized



internet searching and database use.  There is room for more visionary courses that take
up such themes as machine learning and knowledge engineering.



9. Appendix

Definitions

Biological Informatics:

“Biological informatics, then, is concerned with developing and using computer,
statistical, and other tools in the collection, organization, dissemination, and use
of information to solve problems in the life sciences.”

[From the Centre for Biological Informatics home page:
http://biology.usgs.gov/cbi/aboutcbi/informatics.html]

This seems little different from the way I would define statistics.

Bioinformatics:

This name seems largely restricted to the discourse of molecular biology.  It is used as a
general term for applications of the mathematical and computing sciences in molecular
biology.

Cost-Benefit Analysis:

In a comparison of two or more courses of action, cost-benefit analysis attempts to
account for financial costs and financial benefits that accrue to all parties.  Spillover
effects which do not incur a direct financial cost or benefit – damage to the environment
or increased noise as a result of a new motorway, are typically not included.  Cost-
effectiveness analysis is a more limited form of comparison, used when it is appropriate to
express the outcome in terms of a single variable, e. g. number of cures per $10,000
expenditure.

Data mining:

“The computer automated exploratory data analysis of (usually) large complex
data sets.”
[Friedman 1998]

“Data mining is a set of methods used in the knowledge discovery process to
distinguish previously unknown relationships and patterns within data.”
[Ferruza, quoted in Friedman 1998].

Definitions vary widely.

Evidence-Based Medicine:

“Evidence-based medicine is the conscientious, explicit and judicious use of
current best evidence in making decisions about the care of individual patients.”
[Sackett et al. 1998.]

Informatics:

“Informatics: Research on, development of, and use of technological,
sociological, and organizational tools and approaches for the dynamic acquisition,
indexing, dissemination, storage, querying, retrieval, visualization, integration,
analysis, synthesis, sharing (which includes electronic means of collaboration),
and publication of data such that economic and other benefits may be derived
from the information by users of all sections of society.”

[From the US President’s Committee of Advisors on Science and Technology:
http://www.whitehouse.gov/WH/EOP/OSTP/NSTC/PCAST/pcast.html]

Knowledge Discovery In Databases:



This is sometimes identified with data mining.  Or KDD may be described as the
overall process of discovering useful knowledge from data, while data mining may
be identified as the initial step of extracting patterns.

Machine Learning:

“Machine Learning is the study of computer algorithms that improve
automatically through experience. Applications range from datamining programs
that discover general rules in large data sets, to information filtering systems that
automatically learn users' interests.”
[Mitchell 1997.]

Fayyad (1996) finds an overlap between machine learning and data mining, in the interest
in the study of theories and algorithms for extracting patterns and models from data.
From this point of view, KDD is concerned to know which of these patterns are useful or
interesting.  However, it seems hard to claim that there has been meaningful learning,
unless the machine is somehow able to detect which patterns are useful.  Lecture slides to
accompany Mitchell (1997) summarize issues for machine learning thus:

• What algorithms can approximate functions well (and when)?
• How does number of training examples influence accuracy?
• How does complexity of hypothesis representation impact it?
• How does noisy data influence accuracy?
• What are the theoretical limits of learnability?
• How can prior knowledge of learner help?
• What clues can we get from biological learning systems?
• How can systems alter their own representations?

The first six seem statistical issues.

Statistics:

The science of collecting, organizing, analyzing and presenting data.

This definition, which closely represents the point of view of practitioners, is broader
than the view of statistics that is presented in much academic teaching of statistics.
Academic statistics is often limited to the mathematical theory and computing tools that
address the design of experiments, sampling design, and data analysis.



Web Sites

Bioinformatics and Genomics

AGIC (Australian Genomic Information Centre):
http://www.angis.org.au/AboutANGIS/AGIC/

ANGIS (Australian National Genomic Information Service): http://www.angis.org.au/

Bioinformatics Servers: http://www.ii.uib.no/~inge/list.html

Biotechnology Newswatch (published by the McGraw-Hill companies):
http://www.mhenergy.com/demos/biotech/

Course summary for a course on mathematical biology:
http://cs.nyu.edu/cs/faculty/mishra/COURSES/COBIO/cobio.html
[This has interesting discussion on central issues in computational genomics.]

Pharmaceutical Research and Manufacturers of America web page on genomics:
http://www.phrma.org/genomics/

Biological and Medical Informatics

Australian National University Bioinformatics Group:
http://life.anu.edu.au:80/index.html

Biological Informatics (USGS Biological Resources):
http://biology.usgs.gov/aboutcbi/informatics.html

CMIS Bioinformatics: http://www.cmis.csiro.au/sis/bio.htm

Delta – Descriptive Language for Taxonomy: http://osprey.erin.gov.au/delta/delta.html

European Centre for Medical Informatics, Statistics, Statistics and Epidemiology of
Charles University and Academy of Sciences of Czech Republic:
http://test.euromise.cz/english

International Journal of Medical Informatics:
http://emlinux.uivt.cas.cz/english/material/elsivier/index.html

Medical Informatics Links: http://medschl-www.mc.duke/dukemi/misc/links.html

MSc/Diploma in Medical Informatics (City University, London):
http://www.city.ac.uk/mim/mscmi.htm (This has a link to the City University
‘School of Informatics”)

Health Informatics Sites and Companies:  http://info.ex.ac.uk/cimh/ssites.html

There are a large number of sites devoted to medical informatics.

Data Mining, Decision Trees, and Neural Nets

CART and Salford Systems Consulting Group: http://www.salford-systems.com

Data Mining and Knowledge Discovery (web page for journal):
http://www.research.microsoft.com/research/datamine/jdmkd-cfp2.htm

Data Mining Frequently Asked Questions: http://www.kdnuggets.com/references.html

Decision Trees: http://www.stat.wisc.edu/p/stat/ftp/pub/loh/treeprogs/quest1.7/techrep.zip

Neural Net Frequently Asked Questions: http://cvor.pe.wvu.edu/faq/nnfaq.htm

Data Archives and Issues
(ANU) Social Science Data Archives (SSDA):

http://www.ssda.anu.edu.au/SSDA/about-the-ssda.html

CODATA interdisciplinary committee of the International Council of Scientific Unions:

Global Change Related Data Sets; Federal Committee on Environment and Natural
Resources (CENR)’s Subcommittee on Global Change Research:
http://www.gcdis.usgcrp.gov/lsm.html



International Survey Centre (data archive):  http://www.international-
survey.org/index.html

International Social Survey Programme (data archive): http://www.isp.org

The Data Archive (UK): http://dawww.essex.ac.uk

Evidence-Based Medicine and the Cochrane Collaboration

These activities provide interesting and suggestive models for making the results of
research more accessible, and for improving the quality of research, in other
areas.

Bandolier (online journal of evidence-based medicine; can be downloaded without charge):
http://www.jr2.ox.ac.uk:80/Bandolier/

Cochrane Collaboration (Systematic Overview in Medicine & Health):
http://www.cochrane.de/

Evidence-Based Medicine: http://cebm.jr2.ox.ac.uk/index.extras

Evidence-Based Health; various links: http://cebm.jr2.ox.ac.uk/docs/otherebmgen.html

Evidence-Based Practice on the Internet: http://www.shef.ac.uk/~scharr/ir/netting.html

Financial Mathematics

Online resources, commentary, and advice: http://www.contingencyanalysis.com/

Machine Learning

Online machine learning resources, and pointers to machine learning sites:
http://www.ai.univie.ac.at/oefai/ml/ml-resources.html

Public Domain Statistical Language – R

R (Public Domain Statistical Language):  http://www.ci.tuwien.ac.at/~hornik/R/R-
FAQ.html

Research on the Careers of Graduate Students

FASEB (Federation of American Societies for Experimental Biology) Consensus
Conference on Graduate Education
http://www.faseb.org/opar/educrpt.html

Study of US graduate students conducted at the University of California at Berkeley
http://amber.berkeley.edu:5900/publications/NEWS/Fall97/F7STUDY.htm

Workshop on employment outcomes of doctorates in science and engineering
http://www.cpst.org/PAGES/cpst/site/pr012.htm

Statistics Courses Available to ANU Researchers

Australian Consortium for Social and Political Research Incorporated (ACSPRI):
http://ssda.anu.edu.au/ACSPRI/COURSES/index.html

Statistical Consulting Unit of the Graduate School (1998):
http://www.anu.edu.au/graduate/scu/course98_s2.html
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