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Abstract

Irrational numbers can be assigned to physical entities based on iterative processes of geo-
metric objects. It is likely that iterative round trips of vector signals include a geometric
phase component. If so, this component will couple back to the round trip frequency or path
length generating an non-linear feedback loop (i.e. induced by precession). In this paper such
a quantum feedback mechanism is defined including generalized fine structure constants in
accordance with the fundamental gravitomagnetic relation of spin-orbit coupling. Supported
by measurements, the general relativistic and topological background allows to propose, that
the deviation of the fine structure constant from 1/137 could be assigned to Berry’s phase.
The interpretation is straightforward: spacetime curvature effects can be greatly amplified
by non-linear phase-locked feedback-loops adjusted to single-valued phase relationships in
the quantum regime.

Introduction

A quantum mechanics of spin can not be complete without considering the phase evolution of a
wave function including interference phenomena and geometric spin precession. Berry’s phase
[1] can appear in purely classical situations such as round trip excursions on curved surfaces.
Since spatial phases appear in any kind of wave propagation, different manifestations of this
extremely general phenomenon have been found in several branches of physics from the high
energy regime to the low. In addition to a Hamiltonian-induced dynamic phase, a quantum
state evolving in parameter space on a trajectory that returns to the initial state acquires an
extra phase termed geometric phase. This additional phase or angle depends only on the ge-
ometry of the Hamiltonian’s trajectory through parameter space and not on its time evolution.
Various manifestations of geometric phases exist and are connected with names like Aharonov,
Anandan, Berry, Bohm, Pancharatnam, Simon, Thomas, Wilczek and many others, see e.g. [2].
Although there are no widely recognized practical applications of the nonabelian gauge theory,
its experimental observations have been reported in many fields of science. But quantum elec-
trodynamics (QED) was established long before Berry’s phase was discovered. The successful
concept of QED is perturbative and based on powers of the coupling constant α. QED handles
(hyper)fine structure, Lamb shift, an spin anomalies at the most accurate level while ignoring
Berry’s phase. A quick search for Berry in this context over the last 10 years in a physics
archive returns almost now hits. The situation is probably unbalanced regarding the connec-
tions of Dirac’s theory and Berry’s phase. Dirac’s equation and Dirac’s theory of monopoles
[3] are very important for the foundations of QED especially in the atomic range. A magnetic
monopole as a logical consequence of the Dirac theory is necessary to quantize charge. Berry’s
phase is intimately related to Dirac magnetic monopoles and arises naturally in the field of a
monopole [1]. But magnetic monopoles have a similar status like Berry’s phase: an abstract
geometrical and topological feature, where the topological structure of this abstract manifold is
under special circumstances observable and physical. But no monopole has been found, at least
been identified. This fact and the rather exotic status seems to imply for many scientists that
Berry’s phase could have no big impact on the foundations of quantum mechanics manifested,
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i.e. in atomic spectra.

But arguments that support the role of geometric phases in atomic physics can be found
regarding the fine and hyperfine structure, since transitions in this range (GHz, atomic clocks)
depend on exact frequency and phase relationships. These clocks usually depend on phase-locked
loops, where phase factors or phases representing the ‘holonomy’ provide for important boundary
conditions while reducing the degree of redundancy in variables. Usually, controlled by external
fields, the geometric phase has a passive role, but in a phase-locking process the geometric phase
could also couple back to the dynamic phase. Consequently, it is very interesting to consider
round trips of vector signals additionally constrained by an emerging geometric phases.

Generalized Berry phase

The non-adiabatic generalization of [4] defines a geometric phase factor for any cyclic evolution
of a quantum system (experimentally verified e.g. in [5]). Consider a T -periodic cyclic vector
|ψ(τ) 〉 that evolves on a closed path C according to

|ψ(T ) 〉 = eiϕ(T ) |ψ(0) 〉, (1)

where the total phase ϕ(T ) acquired by the cyclic vector can naturally be decomposed into a
geometric ϕg(T ) and dynamical phase ϕd(T )

ϕ(T ) = ϕg(T ) + ϕd(T ). (2)

The dynamical phase for one loop t ∈ [0;T ] is with the Schrödinger equation given by

ϕd(T ) = −1
~

T∫

0

〈ψ(τ) |H(τ)|ψ(τ) 〉dτ. (3)

The Berry phase or geometric phase depends not on the explicit time dependence of the trajec-
tory and is for one loop given by

ϕg(T ) = i

∮

C
〈ψ(τ) |d|ψ(τ) 〉. (4)

The ‘parallel transported’ spin vector will come back after every loop with a directional change
ϕg(T ) equal to the curvature enclosed by the path C. On the unit sphere the curvature increment
is proportional to the area increment that can be a spherical triangle with area given by

dΩ := [1− cos θ(τ)]dϕ(τ), (5)

the total area enclosed by the closed orbit (loop) is equal to

Ω =
∮

C
dΩ :=

∫ T

0
dτ [1− cos θ(τ)]ϕ̇(τ). (6)

The Berry phase ϕg(T ) = JΩ and the total phase are proportional to spin J . In the standard
case of precession on the sphere

ϕg(T ) = 2πJ(1− cos θ), ϕ(T ) = 2πJ, (7)

2



where θ is the vertex cone semiangle, ϕ(T ) = 2πJ , ϕd(T ) = 2πJ cos θ. With n parameters λi(t),
i = 1, 2, ..., n that span a closed curve C in the T -periodic parameter space λi(0) = λi(T ), the
Berry phase may be represented in terms of the ‘gauge potential’

Ai = i 〈ψ | ∂

∂λi
|ψ 〉, (8)

ϕg(T ) =
∮

C
A =

∫

SC

F, F = dA, (9)

where A can be regarded as a winding number density, SC is an arbitrary surface in the parameter
space bounded by the contour C. For more details regarding monopoles and Wilson loops on the
lattice in non-Abelian gauge theories, see e.g. [6]. Note if the Berry phase contains a string-like
singularity (Dirac string) somewhere on the surface of S, the position of the singularity may be
arbitrary shifted by U(1) gauge transformations. In the first step we will introduce a simple
feedback relation of the geometric phase to the dynamical phase.

Spin-orbit feedback loop

The mostly important question is, what balances both parts of the total phase, what is the
phase boundary condition? It is likely that iterative round trips of vector signals include a
geometric phase component. If so, this component will couple back to the round trip frequency
or path length generating an non-linear feedback loop (i.e. induced by precession). A ‘rolling
cone’ representing a vector state or signal is probably the simplest model of spin-orbit coupling.
Rotated once, the cone will change its orbital orientation by a special angle, rotated M -times
in the quantum case, the cone will return to the initial position with integral M (providing
for single-valuedness). But precession will change the path of the rolling cone such, that the
number of conic sub-loops and the effective orbital frequency and radius are changed. This
is a non-linear feedback situation, since a change in the number of loops couples back to the
geometric and dynamical phase.

Starting with this model, M can divide the total phase range into M sub-loop intervals
4ϕ(T ) = 4ϕd(T ) +4ϕd(T ) where

ϕd(T ) = M4ϕd(T ), ϕg(T ) = M4ϕg(T ). (10)

Precession can be interpreted as a phase modulation of the orbital path length and could couple
to the number of sub-loops by modulating the ‘rolling cone path’. It is very likely, that one or
more extra loops with range 4ϕd(T ) fit by an integral quantum number Mg within one vertex
cone range 2θ providing for the feedback relation

2θ = Mg4ϕd(T ). (11)

This is an orbital resonance condition regarding the dynamical phase and the precession phase,
in the next sections we will analyze also a radial resonance of the geometric phase with the
precession phase, see fig.1. Now it is possible to find with eq.(7), eq.(10), and eq.(11) the
optimum θ for a given M and J , where

Mθ = JMgπ cos θ. (12)

As a test for J = Mg = 1 and M > 0, eq.(12) can be solved by iteration

θi+1 =
π cos θi

M
. (13)
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After a few steps the algorithm converges (no problem for JMg ¿ M). Since Mg contributes
to the total number of sub-loops units one could write M = Md + Mg = ±1,±2, .... Now M
contains two parts: Md counts the sub-loops that contribute to the dynamical phase for one cir-
cular loop over the phase range 2π, while Mg = ±1,±2, ... counts the extra number of sub-loops
induced by precession at vertex semiangle θ > 0. Consequently, Mg stands for the geometric
contribution or loop/sub-loop interaction. Requiring single-valuedness all three numbers will be
integer.

The criterion for the convergence of the nonlinear affine iterative system or the asymptotic
stability of the fixed point will be visualized in the next sections showing bifurcations and
unstable regimes.

∆ϕg

θ

R

R'

∆ϕd

Figure 1: On the left the orbital resonance of dynamical phase and precession angle (for M = 5 and
Mg = J = 1), in the middle the effective frequency change, and on the right the radial resonance of
geometric phase and precession angle (quantum number N).

Generalized fine structure constants

The coupling must be proportional to the dynamical part of the phase interval 4ϕd(T )/ϕ(T )
and to spin J . Therefore, generalized fine structure constants can be defined by

α(M) =
J4ϕd(T )

ϕ(T )
=

Jϕd(T )
Mϕ(T )

. (14)

With eq.(10) and eq.(14), in eq.(2)

ϕg(T )
2πJ

= 1− Mα

J
, (15)

the dynamical part of eq.(15) with eq.(14) in eq.(7) provides for

Mα = J cos (θ) . (16)

Comparing eq.(12) with eq.(16) the precession cone vertex angle 2θ of eq.(7) equals the dynamical
phase of the spin-orbit interaction part in eq.(10) with

θ = πMgα. (17)
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The two possible signs can be combined to M/Mg > 0

Mα = J cos (πMgα) , (18)

and for M/Mg < 0
Mα = J cos (π − πMgα) . (19)

Results for α with variable M for Mg = J = 1 are shown in table 1 and visualized in fig.1 and
[7]. For a geometric phase contribution 4ϕg(T ) > 0 one can expect α < J/M . This adjusts the
precession cone angle to the M -periodic orbit where (a) the effective radius is changed and (b)
the number of rolling cycles is changed by Mg. The resulting non-linear affine iteration system
can be used to find α by converging towards an optimum or show instabilities and chaotic
behavior with bifurcations.

Table 1:
Convergent fine structure (re)generation constants α for Ze = 1 and variable M > 2. The third row
shows N = |4ϕd(T )/4ϕg(T )| or |N±| (bottom), known as winding number on helical paths.

M J/α N

3 4.13669 2.63924
4 4.96178 4.15896
5 5.82662 6.04873
6 6.72097 8.32214
7 7.6371 10.98727
137 137.03600941164 3804.560912
137 137.03600998817 3804.51

137 137.03600052556 3805.51

137 137.03599106791 3806.51

137 137.03598161523 3807.51

1 The next hypocycloidal or epicycloidal resonances for M = 137 (see fig.2, eq.(26)) instead of free
running ratio N between dynamical and geometric phase.

Gravitomagnetic coupling

The bridge to general relativity has already been built in the previous sections by calculating the
geometric phase via ‘parallel transport’ on a curved surface. Let ωM be the orbital frequency
of a quantum particle on a circular path. The spin-rotation coupling will act on the particle
with mass-energy E and Compton wavenumber k = E/~c = ω/c by generating precession at
frequency ωp = Ep/~ and energy Ep. The fine structure constants eq.(14) and relative dynamical
coupling strengths can be defined by

α =
JωM

ω
, (20)

a typical ratio orbital frequency divided by a Compton frequency with particle spin J . If
precession as a frequency ratio is related to a geometric phase

ωp

γω
=

ϕg(T )
2πJ

, (21)
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and the coupling part to a dynamical phase according to eq.(15) and eq.(20), the general ex-
pression for spin-rotation coupling observed in the laboratory frame (relativistic correction γ)
can be assumed to be

ωp

γω
= 1−M

ωM

ω
, (22)

or
Ep = γ(E −M~ωM ), (23)

a form that corresponds exactly to the gravitomagnetic spin-rotation coupling of Mashhoon [8],
a Lense - Thirring effect [9] (also in [10, 11]), where an integer M covers scalar and vector
fields. Usually, the gravitomagnetic effect can be hardly observed because of its tiny magnitude
(tests with orbiting gyroscopes are on the way, see gravity probe B news [12]). But the tiny
magnitude of the gravitomagnetic field in a classical measurement does not necessarily mean,
that the magnitude of the emerging geometric phase and related quantum mass–energy currents
in feedback loops must be tiny. Recently, [13] discussed coupling gravitomagnetism-spin and
Berry’s phase and pointed out, that the geometric phase changes should depend exclusively
upon the solid angle of a field, and not on the strength of the field. If gravitomagnetic spin-
rotation coupling eq.(23) controls the feedback loop in combination with eq.(18), the mass-energy
current could increase to a level that is only limited by damping and (multipole) radiation effects,
probably a level characterized by electromagnetism.
In this context there are some noteworthy comments from Mashhoon:

θ θ

Figure 2: The geometric and dynamic phase evolution at resonance: on the left hypocycloids N+ = 4.5
(N = 4), in the middle epicycloids with N− = −3.5 (N = 4). On the right both are adjusted with
N+ = 4.5 (N = 4) and N− = −4.5 (N = 5), but in this case epicycloids and hypocycloids have different
radii.

The coupling of intrinsic spin with rotation reveals the rotational inertia of intrinsic spin. The
phase perturbation arising from spin-rotation coupling can be developed as a natural extension
of the celebrated Sagnac effect [10]. Spin-rotation coupling, however, violates the underlying
assumption of locality in special relativity: that the results of any measurement performed by
an accelerating observer (in this case the measurement of frequency) are locally equivalent to
those of a momentarily comoving inertial observer, but agrees with an extended form of the
locality hypothesis. This is a nontrivial axiom since there exist definite acceleration scales of
time and length that are associated with an accelerated observer [10].

Note, that orbital precession of the geometrical phase provides for a change in the frequency
ratio

ω

MωM
=

1
cos θ

=
ϕd(T ) + ϕg(T )

ϕd(T )
. (24)
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Because of the additional geometric phase ϕg(T ) leading to precession, the Compton frequency
ω is a little more than M = 137 times the orbital Bohr frequency ωM of the electron. In the
rolling cone picture, the ‘rolling’ Compton wave number or cone base radius rolling at distance
R is given by λ = R′J/M = RJωM/ω.

Hypocycloidal and epicycloidal dynamics

Additionally to the coupling of dynamical phase and precession a radial resonance of geometric
phase and precession angle could be induced, see fig.1. These resonances can be projected to a
planetary gear model in plane showing hypocycloidal and epicycloidal dynamics with equivalent
phase evolution, see fig.2. A counter-rotating hypocycloidal geometric phase (+) generates more
dynamical sub-loops on the total loop than in the epicycloidal case (−). In the most simple case
the total phase rotates by ±4πN while the geometric phase rotates by 2π. Subtracting Berry’s
phase from the total phase of one closed loop gives |N±| = N ± 1

2 , the total dynamical phase in
the hypocycloidal and epicycloidal paths shows N+ > 0 and N− < 0 sub-loops, respectively. The
correspondent quantum number N± includes two cases labelled by the ± sign of the geometric
phase evolution with respect to the dynamical phase evolution with

−N± = M
γωM

ωp
=

ϕd(T )
ϕg±(T )

=
ϕ(T )

ϕg±(T )
+ 1. (25)

The sign convention is adjusted to the sign of the charge and to |N+| = |N−| + 1 for a given
ratio of loop/sup-loop radius, by definition, the sign of N± is opposite to the sign of M in
eq.(10). Half integral values of the quantum number |N±| in eq.(25) indicate an interference
of the precession frequency with both, the orbital rotation and particle Compton frequency.
−ϕ(T )/ϕg(T ) = N± − 1 is known as the winding number on helical photon paths, note that
according to eq.(9) Berry’s potential A is a winding number density. The number characterizes
both, a standing wave in radial and orbital dimension. The ratio dynamical to total phase
evolution is given by

cos(θ) =
2N± ∓ 1
2N± ± 1

, (26)

where N0 = |N±|∓ 1
2 > 0 is in the case of hypocycloidal and epicycloidal phase-locking the next

higher available integral number with respect to the free running irrational number N based on
M and Mg where −|N±| > N0, see table 1. The dynamical coupling strength for any N provides
for the ratio

∣∣∣∣
ϕd+(T )
ϕd−(T )

∣∣∣∣ =
2N + 1
2N − 1

=
ra + rb

ra − rb
, (27)

where the circle of radius rb rolls on or in the circle of radius ra. Now there are two principle
integral parameters M and N providing for single-valuedness on the closed loop, where N is a
consequence of M in the case of hypocycloid/epicycloidal resonances.

Charge

The modern interpretation of the fine-structure constant defines α as the coupling constant for
the electromagnetic force. Solving eq.(18) or eq.(19) by iteration provides for the balance of
dynamical and geometric phase given by α subject to a given number of sub-loops M , coupling
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Figure 3: The N± hypocycloidal or epicycloidal levels for the relevant N -values in the case M = 137
where N0 = 3806.

loops Mg, sub-loop spin J , and eventually N characterizing a hypocycloidal or epicycloidal res-
onance. The coupling is polar since a positive and negative M/Mg corresponds to the repulsive
and attractive case, respectively, in the negative case the coupling phase interval and precession
of eq.(17) is negative with respect to the total phase in eq.(10). Consequently, the hypocycloidal
and epicycloidal character with negative and positive curvature can be assigned to a negative
and positive coupling sign, respectively, see fig.2. In fig.2 it is shown how both types must be
combined in circular symmetry: the positive charge must ‘roll’ inside as a hypocycloidal with
N , and the negative charge outside as a epicycloidal with N +1 sub-loops. This could be helpful
for an interpretation of natures symmetry breaking regarding positive and negative charges,
especially ‘charged’ fine structure measurements with a shift based on |N−| + 1 = |N+|. Since
Mg is a spin-independent coupling number and the effective coupling should be proportional
to spin, it is straightforward to introduce Ze = JMg as a charge number. This enables to
determine the same α/J in eq.(18) for different Ze since M/Ze is α-scale invariant and counts
the sub-loops necessary to generate one basic coupling loop. As shown by Berry, a geometric
phase is produced in the field of a magnetic monopole [1]. The geometrical phase in quantum
mechanics is ultimately related to the construction of an Abelian monopole since this is the only
topologically non trivial object which arises when the structure group is U(1)[6]. For electro-
dynamics, the gauge group is U(1) which has the topology of a circle, on which the homotopy
classes of closed curves are labelled by their winding or loop numbers, and where the magnetic
charge is quantized taking integral values [3]. The topological nature of the monopole charge
is by definition discrete and invariant under continuous deformations. Dirac [3] showed that
the existence of magnetic monopoles can explain the quantization of electric charge and that
a monopole must carry a magnetic charge which is an integral multiple of 68.5. According to
these monopole properties and the U(1) relation to the Berry phase for J = 1

2 , M = 137 is the
topological candidate to generate the quantum monopole charges of magnetism and electrostat-
ics. All-in-all, it suggests to take α0 = α(M = 137) = 1/137.036009412... as a candidate for
the free or neutral Sommerfeld-Dirac fine structure constant, see tables 1 and 2. Variations are
likely since external fields could force hypocycloidal or epicycloidal resonances depending on the
polarity of the coupling. Spin-orbit coupling based on linear phase relations suggests to visualize
precession by cones rolling in or on cones.
Visualizing Thomas precession and aberration (angle θ obtained by infinitesimal Lorentz boosts)
[14] already pointed out, that the geometric phase can be found in classical mechanics with a
gyroscope or point-like compass as a solid-body turn during conical movement [15].
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Figure 4: Chaotic occupation density of geometric phase space for a variable coupling number Mg =
Ze/J . Stable regions with one fixed ϕg(T )-value and bifurcations occur periodically. Stable regions for
J = 1

2 and M = 137 exist with Mg values 1-114, 260-310, 541-568. Feigenbaum’s number ≈ 4.669
characterizes the branching sequence of bifurcations. The dashed blue rectangle shows Mg ≤ 137 for
J = 1

2 .

Increasing |Mg/M | will increase the precession semiangle |θ| for a given dynamical phase
of the sub-loop 4ϕd(T ). With variable Mg, eq.(18) and eq.(19) characterize a complex one-
dimensional system that can show chaotic dynamics and quasiperiodicity [16]. It is a cosine
map related to the circle and sine map [17] and as an iterative system it shows asymptotic
stable and converging regimes but also bifurcations and unstable regimes for special feedback
coupling strengths Mg. The geometric part and precession will become more and more dominant
with increasing Mg, blocking or occupying phase space as a charge-dependent screening effect,
see fig.4. If the nonlinear system characterizes Coulomb coupling and fine structure, the chaotic
dynamics should be found in charged nuclei where Mg reaches the critical value. Since the
production cross section was found to be rapidly decreasing with the atomic number near 114
[18], it was concluded that it would be very difficult to reach still heavier elements. In fig.4 the
first stable regions with one fixed ϕg(T )-value end s near Mg = 114, the next bifurcations occur
periodically. This indicates, that the Coulomb coupling generating chaotic electrodynamics
could to some extend be responsible for the instability of the nucleus.

Measurement

Over the years there was a discussion about the value of the fine structure constant. Different
values measured with comparable accuracy disagree in different directions by several standard
deviations. The additional quantum condition eq.(26) selecting the hypocycloid or epicycloid
character could force extra shifts ≈ N−2, for M = 137 about 3806−2 ≈ 6.9 · 10−8 (see table 1
and fig.3). Such shifts are likely to be observed in the charged case if the Compton wavelength
couples to the precession frequency with asymmetry N ± 1

2 in eq.(26). So it remains to check if
measurements based on externally forced loops in modulated fields or internal forced loops due
to mass-to-charge coupling could favor the correspondent resonances leading to hypocycloidal or
epicycloidal phase evolutions. And there is a strong evidence regarding the probably most often
cited and accurate measurements of the fine structure constant over the last years. It seems,
that measurements can be grouped into three α-categories: α0, α−, and α+, see fig.5:
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Figure 5: Regarding the most accurate measurements of the last years there is almost no overlap between
the three different setups given by neutron (free running α0), electronic (epicycloidal α−), and protonic
(hypocycloidal α+) couplings. Dashed are combined values of different measurements.

• The free running value α0 fits very well to h/mn neutron experiments [19, 20]. The value
is also supported by a CODATA h/mn evaluation α−1

0 = 137.0360084(33) [19] that is
a combination of the PTB, IMGC, and NRLM results. Over the years this range was
confirmed by repeated PTB experiments providing for α−1

0 = 137.03601144(498) [20, 21,
22, 23], see table 3. The neutron values have been obtained by measuring the de Broglie
wave length of a beam of neutrons and the Bragg reflection in a perfect silicon crystal.

• The epicycloidal α− corresponds to measurement based on single electrons. The prominent
electron g − 2 value α−1

− = 137.03599958(52) in [24] fit’s within 5 ppb (relies on extensive
QED calculations and does strongly contribute to the 1998 CODATA evaluation [25, 19,
26]), see table 3. To this type also fits the mean value α−1

− = 137.0360008(30) of two well
known experiments obtained by the quantum Hall effect with α−1

− = 137.03599790(320)
in [27] and α−1

− = 137.0360037(27) in [28]. The von Klitzing NIST-97 value RK α−1
− =

137.0360037(33) [19] fits also to the electronic value.

• The protonic hypocycloidal α+ was found with measurement error smaller 40 ppb [19]
by the NIST-89 shielded proton gyromagnetic ratio Γ′p−90(lo) α−1

+ = 137.0359880(51). A
recent Penning trap value obtained with Cs+ α−1

+ = 137.0359922(40) [29] fits also very
well, see table 3, but does not contribute to the CODATA recommended value [19].

Conclusion

The probably most prominent fundamental constant can be within measurement uncertainty
reproduced by iterative phase relationships that obey the single-valuedness requirement. If this
paper provides for a correct approach to the nature of fine structure and charge, the strength
and sign of coupling is controlled by Berry’s phase. Especially the effect generated by the
coupling sign is highly interesting, Berry’s phase can evolve against or with the dynamical phase
depending on the sign of curvature. Measuring the correspondent shifts could play a crucial role
since they would indirectly confirm (a) the existence of magnetic monopoles and (b) the coupling
of dynamical and geometric phase. The present experimental situation supports the proposals
of this work, especially the relevance of hypocycloidal or epicycloidal resonances. There is a
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Table 2:
A simple comparison matrix in standard deviation units σi comparing three different types of the most
relevant measurements [24] based on neutron 1, electron g − 2 2, proton Cs+ 3 measurements, see fig.5.
The diagonal values indicate a significant correlation to the calculated values.

137.03601144(498)1 137.03599976(50)2 137.03599220(400)3

137.036009411644 -0.4σ1/-1.5 ·10−8 +19 σ2/+7.0 ·10−8 +4.3 σ3/+13 ·10−8

137.036000525565 -2.2 σ1/-8.0 ·10−8 +1.5 σ2/+5.6 ·10−9 +2.1 σ3/+6.0 ·10−8

137.035991067916 -4.1 σ1/-15 ·10−8 -17 σ2/-6.3 ·10−8 -0.3 σ3/-8.3 ·10−9

1 1998 Neutron value [20], 2 1999 Codata approx. electron g − 2 [19, 26], 3 Penning trap [29],
4 free running solution of table 1, 5 3805.5 resonance of table 1, 6 3806.5 resonance of table 1

strong evidence that α0 = α(M = 137) is a candidate for the Sommerfeld-Dirac fine structure
constant. Without knowing the driving mechanism that leads to coupling and curvature beyond
general relativity, single-valuedness of M on the closed path (and N subject to external fields)
can guide to exact results governed by a number of physics relations that are:

• α0 is based on a plausible connection between the geometric and dynamical phase,

• the Berry phase screening 1−Mα0/J of electrodynamic coupling provides the necessary
magnetic monopole component to quantize charge,

• α0 is perfectly compatible with gravitomagnetic coupling,

• the correspondence principle is satisfied by ‘classical’ counterparts,

• chaotic dynamics and instability could fit to known instabilities of superheavy charged nu-
clei, see fig.4, outside the chaotic regime the coupling mechanism is flexible, self-consistent,
regenerative, and self-balancing subject to external distortions,

• positive and negative curvatures and related sign in Berry’s phase requires to introduce
α+ and α− based on the hypocycloidal and epicycloidal character, respectively,

• based on N0 = 3806 the shifts ≈ 3806−2 ≈ 6.9 · 10−8 are supported by highly rated
measurements, see fig.5, where the epicycloidal α− ≈ 1/137.03600052556 with N− =
3805.5 fits within a view ppb to the indirect QED electron g − 2 determination, the ‘free’
neutron measurements with α0 ≈ 1/137.03600941164 to N ≈ 3804.56, and the proton
dominated measurements to N+ = 3806.5 with α+ ≈ 1/137.03599106791.

Spin-orbit coupling with coupled phase conditions (e.g. between a global and a local phase)
can be found in many cyclic quantum systems, especially in highly symmetric or degenerated
mesoscopic systems showing helical or regular M -polygonal structure. Spin precession of elec-
trons in cyclic motion can lead to various interference phenomena such as oscillating persistent
current and conductance [30]. For solids, atoms, or in nuclear physics it should be possible to
define more complex and generalized fine structure constants that characterize the back reac-
tion of the geometric phase to the dynamical phase for more complex paths, probably involving
lattice interaction, especially in situations where interaction between vibrational and electronic
states happens in the degenerate state (i.e. Jahn-Teller effect). In this case the phenomena of
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superconductivity and bose-einstein condensates could probably also benefit from special feed-
back relationships between the geometric and dynamical phase, supported by regeneration and
revival processes characterized by generalized fine structure constants. I suspect that the type
of fine structure constants tabulated in table 1 could appear only in the simplest cases of one-
dimensional systems, i.e. in fullerene rings or tubes or in Heisenberg spin chains, especially if
neighboring units generate cooperative spin resonance phenomena. Although, the mathematics
that leads to the number M = 137 is open, topology and geometry in the α-theory part of this
work could guide experimentalists and theorists to new connections between electrodynamics
and (loop-)gravity. Regarding the identical coupling relation predicted by gravitomagnetism,
the tiny magnitude of the gravitomagnetic field in a classical measurement does not necessarily
mean, that the magnitude of the emerging geometric phase and related quantum mass–energy
currents in feedback loops must be tiny. A loop-gravitational gravitomagnetic field magnitude
reaching the electromagnetic level would shift the Planck scale to the nuclear range. Regarding
the α-powers produced with N2

α2 ≈ 2
π2N

, (28)

the Berry contribution with coupling change 4α/α proportional to 1/N2 has lowest order α4-
terms. It should be interesting to note, that hyperfine, fine structure, and Lamb shift are usually
assigned to the same α-power dependency. But geometric phase contributions are totally missing
in almost all QED evaluations of the atomic spectra.

Summary

This article starts by a quick evaluation of the role and status of Berry’s phase. Although,
Berry’s phase especially the Aharonov-Bohm phase can be related to a gauge potential that is
very similar to a magnetic monopole potential, (hyper)fine structure and Lamb shift theories
handling the most accurate measurements seem to ignore Berry’s phase. The rather exotic status
seems to imply for many scientists that Berry’s phase could have no big impact on the quantum
mechanics of atomic energy spectra. This is quite normal, since Berry’s phase is quite young. To
provide for examples that support the proposal of this article, Sommerfeld fine structure constant
α is successfully defined based on Berry’s geometric phase coupling back to the hamiltonian-
induced dynamical phase in a phase-locked spin-orbit system. α identified as the ratio of orbital
to Compton wave number fits exactly to gravitomagnetic interaction (general relativity). More-
over, the resulting nonlinear affine iteration α = cos(πα)/M provides for a free running solution
outside the chaotic regime, where the Berry phase screening component 1 −Mα of electrody-
namic coupling can be assigned to magnetic monopoles on SU(2)/U(1) = S2 with M = 137 as
required by Dirac. In the chaotic regime the onset of bifurcations could fit to known instabilities
of superheavy charged nuclei. A sub-quantization of α based on a integral winding number
shows three basic cartegories of solutions: the free neutral value 1/α=137.03600941164, and
the next protonic (hypocycloidal) and electronic (epicycloidal) resonances at 137.03599106791
and 137.03600052556, respectively. This could resolve the disagreement of α-values obtained by
different measurements using neutrons, electronic, and protonic interactions. Almost all of the
current available, most accurate, and most often cited measurements and evaluations of α fit
within standard deviation (a view ppb’s) to the correspondent values. The results of this article
shows, that it possible to built a bridge via Berry’s phase between classical physics, quantum
electrodynamics, and general relativity and that the exotic status of Berry’s phase has to be
replaced by the probably most fundamental status of mathematical physics.
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