
TR-CS-98-12

Stable Factorization of
Hankel and Hankel-like Matrices

Vadim Olshevsky and Michael Stewart

December 1998

Joint Computer Science Technical Report Series

Department of Computer Science
Faculty of Engineering and Information Technology

Computer Sciences Laboratory
Research School of Information Sciences and Engineering

This technical report series is published jointly by the Department of
Computer Science, Faculty of Engineering and Information Technology,
and the Computer Sciences Laboratory, Research School of Information
Sciences and Engineering, The Australian National University.

Please direct correspondence regarding this series to:

Technical Reports
Department of Computer Science
Faculty of Engineering and Information Technology
The Australian National University
Canberra ACT 0200
Australia

or send email to:

Technical.Reports@cs.anu.edu.au

A list of technical reports, including some abstracts and copies of some full
reports may be found at:

http://cs.anu.edu.au/techreports/

Recent reports in this series:

TR-CS-98-11 Michael Stewart. An error analysis of a unitary HessenbergQR
algorithm. December 1998.

TR-CS-98-10 Peter Strazdins. Optimal load balancing techniques for
block-cyclic decompositions for matrix factorization. September
1998.

TR-CS-98-09 Jim Grundy, Martin Schwenke, and Trevor Vickers
(editors). International Refinement Workshop & Formal
Methods Pacific ’98 — Work-in-progress papers of IRW/FMP’98,
29 September – 2 October 1998, Canberra, Australia. September
1998.

TR-CS-98-08 Jim Grundy and Malcolm Newey (editors). Theorem
Proving in Higher Order Logics: Emerging Trends —
Proceedings of the 11th International Conference, TPHOLs’98,
Canberra, Australia, September – October 1998, Supplementary
Proceedings. September 1998.

TR-CS-98-07 Peter Strazdins. A comparison of lookahead and algorithmic
blocking techniques for parallel matrix factorization. July 1998.

TR-CS-98-06 M. Manzur Murshed. Optimal computation of the contour of
maximal elements on mesh-connected computers. July 1998.

Stable Factorization of

Hankel and Hankel-like Matrices

Vadim Olshevsky1 and Michael Stewart2

July 16, 1998

ABSTRACT

This paper gives displacement structure algorithms for the factorization positive
de�nite and inde�nite Hankel and Hankel-like matrices. The positive de�nite al-
gorithm uses orthogonal symplectic transformations in place of the �-orthogonal
transformations used in Toeplitz algorithms. The inde�nite algorithm uses a
look-ahead step and is based on the observation that displacement structure al-
gorithms for Hankel factorization have a natural and simple block generalization.
Both algorithms can be applied to Hankel-like matrices of arbitrary displacement
rank.

1 Introduction

For hi with 0 � i � 2n� 2 we de�ne the Hankel matrix

H =

2
666664

h0 h1 h2 � � � hn�1
h1 hn

h2
...

...
...

hn�1 hn � � � � � � h2n�2

3
777775 : (1)

For real hi, such matrices arise often in system theory. Applications in which the elements
hi are taken from a �nite �eld arise in coding theory. The fast O(n2) Berlekamp-Massey
algorithm for solving Hankel systems of equations was developed in the latter context, [1]. It
generalizes to the case in which the hi are real and it is one of the best known fast algorithms
for solving Hankel systems of equations.

Several other authors have developed algorithms for the factorization or inversion of
Hankel matrices, [13, 14, 15]. None of these algorithms incorporate pivoting or look-ahead.
In exact arithmetic they run to completion only if H has non-singular leading principal
submatrices. In
oating point arithmetic, they are unstable when applied to anything other
than a positive de�nite matrix. Further, some of the algorithms explicitly compute triangular
factors of H�1. This suggests that they might not be backward stable, even for positive
de�nite H. An possible exception which computes triangular factors of H is given in [13];
the stability properties of this algorithm are not known.

1Department of Mathematics and Computer Science, Georgia State University, Atlanta GA 30303, email:

volshevsky@cs.gsu.edu
2Computer Sciences Laboratory, RSISE, Australian National University, Canberra ACT 0200, Australia,

email: stewart@discus.anu.edu.au

1

Two O(n log2(n)) algorithms based on Pad�e approximation were given in [4]. One of
them applies to completely general inde�nite Hankel and nonsymmetric Toeplitz matrices.
The numerical properties of this method have not been investigated, though it seems that
there is potential for numerical instability. Other authors have also developed algorithms
based on the connection of structured matrices with Pad�e approximation, [8].

In x3, we propose a new algorithm for the Cholesky factorization of a positive de�nite
Hankel matrix. The algorithm is analogous to the Schur algorithm for the factorization of a
Toeplitz-like matrix. Instead of using hyperbolic rotations or �-orthogonal transformations,
it uses orthogonal symplectic matrices to manipulate generators for a Hankel-like displace-
ment. It is proven to be numerically stable in x4. We generalize the algorithm to matrices of
higher displacement rank in x6. In x6, we also give a condensed error analysis of the general
algorithm using results from x4.

To some extent, investigating the stability properties of a fast solver for positive de�nite
Hankel matrices is a theoretical concern. It was shown in [16] that

�2(H) = kHk2kH�1k2 � 3 � 2n�6

if H is positive de�nite. There are even more discouraging estimates which suggest that for
positive de�nite Hankel matrices the condition number grows asymptotically as 4n. Thus
we do not expect to �nd accurate solutions even for relatively small positive de�nite Hankel
systems of equations. Nevertheless, the stability properties of the algorithm are theoretically
interesting and provide insight into the stability of methods for more general positive de�nite
and inde�nite Hankel-like matrices.

For the inde�nite case, look-ahead algorithms have been proposed to improve the sta-
bilty in the presence of ill-conditioned leading submatrices, [3, 12]. The algorithm of [8] is
also a look-ahead algorithm. Except for [3], most of the applicable algorithms have been
developed using polynomials rather than matrices. A displacement structure approach leads
to a surprisingly simple block factorization step which can be derived in matrix notation in
a few lines. We describe the basic block step in x3 and look-ahead re�nements in x5.

When it is convenient, we use MATLAB notation to indicate submatrices. Thus the
matrix H(i : j; k : l) is the (j� i+1)� (l�k+1) block of H formed by taking only elements
that are in rows i through j and columns k through l. The notation H(:; j) indicates column
j of H.

2 The Displacement

The Hankel matrix H is determined by 2n� 1 parameters. None of the results in this paper
are strictly limited to Hankel matrices; everything will apply to the more general class of
Hankel-like matrices. To de�ne this class, we borrow and adapt an idea used in the study
of Toeplitz matrices by introducing the Hankel displacement rank of a matrix. A symmetric
matrix H is Hankel-like with Hankel displacement rank 2 whenever the displacement

�Z(H) := ZH �HZT

is rank 2. The matrix Z is the downshift matrix de�ned by (Z)ij = 1 when i � j = 1
and (Z)ij = 0 otherwise. The notion of a Hankel-like matrix can be generalized to larger

2

ranks. We will consider such generalizations in x6. For the moment, we deal exclusively with
displacement rank 2 Hankel-like matrices.

For any matrix, the displacement is skew-symmetric. For a Hankel matrix

�Z(H) :=

2
666664

0 �h0 �h1 � � � �hn�2
h0
h1
...

hn�2

3
777775 :

We will represent a Hankel-like matrix by means of its generators, the columns of a matrix
A such that

�Z(H) = AJAT (2)

where

J :=

�
0 �1
1 0

�
:

A real skew-symmetric matrix of rank 2 can always be decomposed as (2). Given �Z(H),
the decomposition can be computed in a stable manner using a single 2� 2 pivot step of a
skew-symmetric elimination procedure, [5]. Further, a real skew-symmetric always has even
rank. Thus if the displacement is nonzero then A has full rank.

The generators are not unique. For a Hankel matrix it is possible to choose generators
with the simple form

AT =

�p
h0 0 0 � � � 0
0
p
h0 h1=

p
h0 � � � hn�2=

p
h0

�
: (3)

A generator matrix A for which the (1; 2) element equals zero is said to be in proper form.
The displacement operator, �Z(�), is di�erent from the better known Toeplitz-like dis-

placements in three algorithmically signi�cant respects.

1. The Hankel displacement is skew-symmetric. This fact determines the classes of trans-
formations that we can use in implementing a Schur-type factorization algorithm.

2. The proper form generators of A are not unique, even ignoring sign changes or scaling.
For a Toeplitz matrix, the proper form generators are unique up to sign changes. This
di�erence has implications for the numerical stability of factorizations: for a given
Hankel-like matrix, there exists a generator matrix in proper form with arbitrarily
large norm. Hence to get a stable algorithm, we must be very careful in the choice of
generators. An algorithm that is forced forced to work with generators that are much
larger than the matrix to be factored is likely to be unstable.

3. The linear displacement operator �Z(�) has a non-trivial null space. This means that
it is not possible to reconstruct H given only �Z(H). A factorization algorithm cannot
work solely with the generators of H; it must incorporate some additional information.
We will show that H can be reconstructed from �Z(H) and from the last column of
H.

3

We will elaborate on each of these points in turn.
A matrix S that satis�es SJST = J is a 2�2 symplectic matrix. General r�r symplectic

matrices are de�ned by the relation

S

�
0 �Ir=2
Ir=2 0

�
ST =

�
0 �Ir=2
Ir=2 0

�
:

We will make use of these more general symplectic matrices in x6. We will use 2�2 symplectic
matrices in the factorization of displacement rank 2 Hankel-like matrices. If S is symplectic
then

ASJSTAT = AJAT

and AS is an alternate set of generators for �Z(H) = AJAT. In devising a factorization
algorithm we are free to apply any symplectic transformation to the generator matrix to
compute an alternate set of generators for the same displacement.

Note that �
a b
c d

� �
0 �1
1 0

� �
a c
b d

�
=

�
0 �(ad� bc)

(ad� bc) 0

�
:

In the 2� 2 case, if det(S) = 1 then S is symplectic. Symplectic transformations that will
later be of particular algorithmic interest are the plane rotations

Q =

�
c �s
s c

�

with c2 + s2 = 1 and the diagonal scaling scaling matrices

D =

�
d 0
0 1

d

�

for d 6= 0.
If A 6= 0 so that the displacement rank is exactly 2 and A must have full rank then

AJAT = BJBT

implies that

AT =
�
JTAyBJ

�
BT:

and

J = (JTAyBJ)J(JTAyBJ)T

so that JTAyBJ) = 1 is symplectic. It follows that for a particular �xed choice of generator
matrix A the set of equivalent generator matrices representing �Z(H) can be characterized
by B = AS where S is symplectic.

4

Consider the proper form generators

A =

�
a11 0
a21 a22

�

where a11 is a scalar and a21 and a22 are vectors. In general, if A is in proper form and
a11 6= 0, then the set of equivalent proper form generators representing the displacement has
the form

B =

�
b11 0
b21 b22

�
=

�
a11 0
a21 a22

� �
d 0
l 1

d

�
(4)

for any l and any d 6= 0. The assumption that a11 6= 0 can be justi�ed in the positive de�nite
case by the fact that if a11 = 0 then the (1; 1) element of H must be zero. This is not possible
for a positive de�nite matrix.

To see that (4) captures all proper form generators note that any equivalent generator
matrix can be represented as B = AS for det(S) = 1. Since B is assumed to be in proper
form �

b11 0
�
=
�
a11 0

�
S:

Since a11 6= 0, S(1; 1) = b11=a11 = d and S(1; 2) = 0. The complete form of S follows from
the fact that to get det(S) = 1 for a triangular matrix, we must have

S(2; 2) = 1=S(1; 1) = 1=d:

If d = 1, 1=d or l are very large, then kBk will be much larger than kAk. Putting the
generators in proper form does not directly guarantee a bound on their size. This is in
contrast to the generators of a positive de�nite Toeplitz matrix for which the proper form
generators are unique up to sign changes and can be bounded in a way that is useful for a
numerical stability analysis, [2].

We now consider the null space of �Z(�). De�ne the permutation, P , so that its action
on a vector is to reverse the order of the elements. Thus P (i; j) = 1 if i + j = n + 1 and
P (i; j) = 0 otherwise. Then

PZT = ZP

so that if

N =
n�1X
i=0

niZ
iP

where Z0 = I then

�Z(N) =
n�1X
i=0

ni(ZZ
iP � ZiPZT) =

n�1X
i=0

ni(ZZ
iP � ZiZP) = 0:

5

Considering the form of N , we see that any Hankel matrix of the form (1) for which

h0 = h1 = � � �hn�2 = 0

is in the null space of �Z(�).
To see that this is a complete characterization of the null space, note that the relation

ZN �NZT = 0 implies

N(i; j � 1) = N(i� 1; j)

for 2 � i; j � n. Given the �rst row and last column of N , this recurrence gives the other
elements. If ZN �NZT = 0 then the �rst row of N must be zero except possibly for its last
element. Thus the recurrence implies that if �Z(N) = 0 then

N =
n�1X
i=0

niZ
iP =

2
666664

0 0 0 � � � n1
0 n2

0
...

...
...

n1 n2 � � � � � � nn

3
777775 :

Consequently the null space of �Z(�) is the set of Hankel matrices that are lower triangular
with respect to the cross-diagonal.

Although H cannot be recovered from �Z(H), it is determined uniquely by �Z(H)
together with H(:; n). Since the �rst row of ZH is zero

H(1; 1 : n� 1) = � [�Z(H)] (1; 2 : n): (5)

Thus we have the �rst row and the last column of H. By symmetry we also have the �rst
column and last row. Given these elements, it is easy to see that the other elements can be
obtained uniquely from the relation

[�Z(H)]i;j = H(i� 1; j)�H(i; j � 1); 2 � i; j � n: (6)

This is simply an indexed form of the de�nition �Z(H) = ZH �HZT.
Finally, we note that (5) is algorithmically important. It provides a natural way to obtain

most of the �rst row of H. This is precisely what is needed to obtain a row of the Cholesky
factor in a factorization algorithm. If the generators are in proper form then we get the
particularly simple formula

H(1; 1 : n� 1) = a11a
T
22: (7)

If C is the Cholesky factor of H then

C(1; 1 : n� 1) =

r
a11

a22(1)
aT22: (8)

6

3 Schur Type Algorithms

As with the Toeplitz displacement, the Schur complement of an arbitrary matrix has a
displacement rank with respect to �Z(�) that is no larger than the displacement rank of
the original matrix. Thus Hankel-like structure is preserved under the process of Schur
complementation. This observation forms the basis of a class of fast Schur-type algorithms.
At each stage of the triangular factorization the algorithms work with the generators of the
current Schur complement together with the last column instead of with the full matrix.

Since any symplectic S can be used to transform the generators, many distinct algorithms
are possible. In this section we will explain the basic ideas behind algorithms for both the
positive de�nite and the inde�nite cases. The algorithm for the positive de�nite case is
chosen to be provably stable. More eÆcient variations are possible and it seems that some of
these algorithms are likely to be stable in practice. Nevertheless, some possible algorithms
are clearly unstable; we will illustrate the problem with one such algorithm in this section.

Suppose that H is real, symmetric and Hankel-like with

�Z(H) = AJAT:

Partition H as

H =

�
H11 HT

21

H21 H22

�
(9)

A as

A =

�
A1

A2

�
(10)

and Z as

Z =

�
Z11 0
Z21 Z22

�
:

We consider the Schur complement

HS = H22 �H21H
�1
11 H

T
21

and the elimination matrix

L =

�
I 0

�H21H
�1
11 I

�
:

Clearly

LZL�1(LHLT)� (LHLT)L�TZTLT = LAJATLT (11)

and

LHLT =

�
H11 0
0 HS

�
:

7

The matrix LZL�1 is lower triangular and its (2; 2) block is LZL�1 is just Z22. It follows
that

Z22HS �HSZ
T
22 = (A2 �H21H

�1
11 A1)J(A2 �H21H

�1
11 A1)

T: (12)

Since Z22 is a shift matrix, this shows that HS has the same sort of displacement structure
as H and

AS = A2 �H21H
�1
11 A1: (13)

The formula (13) will be the starting point in deriving a stable algorithm for positive
de�nite matrices. It also forms a direct basis for a look-ahead algorithm for inde�nite ma-
trices. The look-ahead algorithm is recursive and, neglecting details about the computation
of the look-ahead step size that we will cover in x5, it can be described as follows.

Algorithm 1 (Block Schur Algorithm) Let nS = n and

�Z(H) = AJAT:

Let r be the last column of H. Start with L = I and D = 0.

1. While nS > 0:

2. Let HS be the current nS � nS Schur complement with generators A and last column
r. Find an appropriate look-ahead step size, m, and let HS and A be partitioned as
(9) and (10) where H11 is m�m.

3. Compute H11 and H21 from A and r using (6).

4. Let

L(n� nS +m : n; n� nS + 1 : n� nS +m) H21H
�1
11

and

D(n� nS + 1 : n� nS +m;n� nS + 1 : n� nS +m) H11:

5. Update A and r by

A A2 �H21H
�1
11 A1; r r(m+ 1 : nS)�H21H

�1
11 r(1 : m)

and let

nS nS �m:

Neglecting numerical errors, the algorithm computes lower triangular L and block diagonal
D such that H = LDLT. The sizes of the diagonal blocks in D are the look-ahead step
sizes m chosen in each iteration of the algorithm. Given (12), it is trivial to prove that the
algorithm correctly computes the decomposition. Consider the �rst step of the algorithm for

8

which HS = H. Step 4 is a block elemination step with an m�m pivot. Step 5 uses (12) a
direct implementation of the formula for a Schur complement to get the generators and last
column of the Schur complement of H. By returning to step 1, the algorithm recursively
computes LS and DS such that

H22 �H21H
�1
11 H

T
21 = LSDSL

T
S :

Thus

LDLT =

�
I 0

H21H
�1
11 LS

� �
H11 0
0 DS

� �
I H�1

11 H
T
21

0 LT
S

�
=

�
H11 HT

21

H21 LSDSL
T
S +H21H

T
11H

T
21

�
= H:

(14)

This is a familiar and natural recursive description of block Gaussian elimination. It is easy
to check from the indices in step 4 that the algorithm �lls in H21H

�1
11 and H11 into the blocks

of L and D in a manner consistent with (14).
For the inde�nite case, we will choose a look-ahead step size with the intent of keeping

kH21H
�1
11 k small to prevent any signi�cant growth in the size of the generators when applying

(12) directly. For reasons of stability, it is necessary to keep this quantity from becoming
too large in the application of any type of block elimination algorithm, [10]. While we do
not give a proof, experimental results suggest that this criterion is also suÆcient to give a
stable algorithm. We give further details on the implementation of the algorithm and its
performance in x5.

For the case in which H is positive de�nite and we wish to compute its Cholesky factor
we consider the paritioning

H =

�
h11 hT21
h21 H22

�
=

�
h0 hT21
h21 H22

�
(15)

where h11 = h0 is a scalar. This corresponds to the case m = 1 and Algorithm 1 will use the
simple update

Â2 = A2 � h21
h0

A1 (16)

where A1 is a row vector. The scalar h0 and the vector h21 can be obtained by using the
relation �

h0
h21(1 : n� 2)

�
= A2JA

T
1

or by using (7) if the generator matrix is in proper form. Thus step 3 of Algorithm 1 is
trivial and we get a simple O(n2) algorithm to generate the rows of the Cholesky factor of
H in sequence.

However, if kh21=h0k is large then (16) could result in signi�cant generator growth. The
following example shows that kh21=h0k can be large for a positive de�nite Hankel-like matrix
and that this can negatively impact the stability of the 1� 1 pivot version of Algorithm 1.

9

Example 1 We construct a 5� 5 Hankel matrix

H = KTK

from a Krylov matrix

K =
�
b Bb B2b B3b B4b

�
formed from B = 4 � diag(1; 2; 3; 4; 5) and

bT = 1� 10�5 � �1 1 1 1 1
�
:

It is easily veri�ed that this Hankel matrix has generators

AT =

�
1 0 0 0 0
1 5� 10�10 4:5� 10�9 4:95� 10�8 6:075� 10�7

�
:

This matrix was formed from the elements of H by multiplying the generator matrix AT

shown in (3) from the left by � 1p
h0

0

0
p
h0

� �
1 1
0 1

�
:

We would hope that a stable algorithm would prevent generator growth and introduce errors
not much larger than the size of the generators. Since kHk1=2 � :55 is not too di�erent from
kAk this would give a small relative backward error.

However, factoring this matrix using a direct implementation of the scalar version of
Algorithm 1 results in substantial generator growth. We get a computed Cholesky factor for
which

kCTC �Hk
kHk = 3:9� 10�5

Although the example might seem somewhat contrived, it is worth noting that even starting
with (3), the generators of the Schur complements would not have any obvious special
structure when computed by (16). We have not found a Hankel matrix for which initial
generators of the form (3) lead to instability in (16).

To deal with this problem we present a more sophisticated algorithm for the positive
de�nite case. It will make use of transformations of the generators AS with S satisfying
SJST = J . As with Algorithm 1, it can be viewed as a recursive process in which we obtain
the �rst row of the Cholesky factor of H from the generators and from the stored last column
of H and then compute the generators and the last column of the Schur complement of H.
The main di�erence is that rather than applying (16) directly, we will use transformations of
the generators of the form AS to get a proper form in which the row of the Cholesky factor
can be retrieved from (8) and in which (16) is guaranteed not to produce any signi�cant
generator growth.

The result of these modi�cations is the following algorithm.

10

Algorithm 2 (Positive De�nite Schur Algorithm) Let nS = n and let

�Z(H) = AJAT:

Let r be the last column of H. Start with C = 0.

1. While nS > 0:

2. Partition the current nS � 2 generator matrix A as

A =

�
a11 a12
a21 a22

�
(17)

where a11 and a12 are scalars.

3. Scale

A A

�
d 0
0 1

d

�
so that kA(:; 1)k2 = kA(:; 2)k2.

4. Put the generators into proper form using an orthogonal transformation

A A

�
c �s
s c

�
so that after the transformation a12 = 0 and a11 > 0.

5. Let

C(n� nS + 1; n� nS + 1 : n� 1)
r

a11
a22(1)

aT22

and

C(n� nS + 1; n) r(1)p
a11a22(1)

:

6. Update A and r by

A
�
a21 � a11

�
a22(2 : nS � 1)=a22(1)

r(1)=(a22(1)a11)

�
a22

�
;

r r(2 : nS)� r(1)

�
a22(2 : nS � 1)=a22(1)

r(1)=(a22(1)a11)

�
and let

nS nS � 1:

11

The fact that the algorithm computes C such that H = CTC is easy to establish. Steps 3
and 4 apply transformations AS such that det(S) = 1 and SJST = J . After step 4, we have
proper form generators for the current Schur complement. Thus (8) holds. Step 5 uses
this relation and the �rst element of r in an obvious way to get the complete �rst row
of the Cholesky factor of the current Schur complement. The update for A in step 6 is
just (16) applied to generators in proper form. The update for r is a direct application of
the expression for the last column of the Schur complement of H. The process proceeds
recursively on the Schur complement of H in the usual manner.

In practice, the complexity of the algorithm can be reduced by replacing the plane rotation
with �

1 0
l 1

�
;

�
0 �1
1 0

� �
1 0
l 1

�

where the pivoting is done as needed to ensure that jlj < 1. The analysis of x4 suggests the
potential for an imbalance in the scaling of the columns of the generators, thus making the
normalization in step 3 necessary to ensure the stability of the plane rotation. However, in
practice this does not seem to occur very often if at all. The scaling does not seem to be
necessary for stability in most cases.

As presented, Algorithm 2 requires about 8:5n2
ops. Neglecting the norm computation
of Step 3, it requires approximately 6:5n2
ops. If k � k1 is used rather than k � k2 for
the normalization, then the algorithm really can be implemented in 6:5n2
ops, although
searches are required to �nd the largest element in each column of A. Replacing the plane
rotation with a pivoted lower triangular transformation reduces the computation further
to 4:5n2
ops. Eliminating step 3 altogether gives an algorithm that runs in 3:5n2
ops.
While all of these variations seem to have robust stability properties, none of them suggest
a means for deriving the simple and natural backward error bounds that can be found for
Algorithm 2.

4 Error Analysis

In this section we will give a proof of the numerical stability of Algorithm 2. We will show
that if C is the computed Cholesky factor of H then

kCTC �Hk � �f(n)kHk

where � is the machine precision and f(n) is a polynomial in n. Rather than specifying f(n)
exactly, we will simply verify the existence of such a bound.

We work with partitionings of the form

A =
�
a1 a2

�
=

�
a11 a12
a21 a22

�
(18)

where a11 and a12 are scalars. More generally let A(0) = A be the generator matrix for
H(0) = H and let A(k) be the generator matrix for the Schur complement of H corresponding

12

to the partitioning (9) where H11 is k � k. We assume that this Schur complement is a
computed quantity determined by the computed generators and last column produced by
Algorithm 2. We also assume that A(k) is the generator matrix at the start of the iteration
prior to the application of the scaling in step 3. Thus A(0) is the initial unscaled generator
matrix with which the algorithm starts the factorization.

We will use superscripts to denote subvectors of A(k) according to (18) so that

A(k) =
h
a
(k)
1 a

(k)
2

i
=

"
a
(k)
11 a

(k)
12

a
(k)
21 a

(k)
22

#
: (19)

We also partition the last column of the Schur complement as

r =

�
r1
r2

�
; r(k) =

"
r
(k)
1

r
(k)
2

#
:

The greater part of the work is in the analysis of a single generic iteration of the factorization.
The errors produced during this iteration can be bounded independent of k. Consequently,
through much of this section we will be able to drop the superscript (k).

The �nal bounds will be in terms of the norm

kHkm = max
i;j
jH(i; j)j:

Unless otherwise noted, variables will refer to computed quantities. Exact versions of the
generators, a row of the Cholesky factor and the last column of the current Schur complement
will be written as �A, �c and �r. We will freely ignore O(�2) terms without noting the fact in each
equation. Subscripted variables �i always satisfy j�ij � � where � is the machine precision. A
subscripted matrix Di will represent a diagonal matrix with elements satisfying

jDi(j; j)j � 1:

Let HZ(A; r) be the operator taking A and r to the Hankel-like matrix de�ned uniquely
by the generator matrix A and the last column r. Thus

ZHZ(A; r)�HZ(A; r)Z
T = AJAT

and [HZ(A; r)](1 : n; n) = r. The relation (6) which suÆces to compute H from the dis-
placement, last column and �rst row shows that HZ(A; r) is uniquely de�ned.

An outline of the analysis is as follows.

1. We use an inductive argument to show that it is suÆcient to analyze the stability of a
single step of the algorithm.

2. We give a suitable bound on the generators produced by each iteration of the algorithm.
If we are not too worried about achieving the tightest possible backward error bound,
we can write the generator bound in a way that does not depend on k. This makes it
possible to give bounds on a single step of elimination that are independent of k. To
simplify the notation by dropping k as an index and consider a generic, unspeci�ed
iteration of the algorithm.

13

3. We show that small errors in the displacment and the last column correspond to small
errors in the Hankel-like matrices.

4. We show that the transformations in steps 3 and 4 produce proper form generators
corresponding to a Hankel-like matrix that is close to the Hankel-like matrix with which
the current iteration started.

5. We show that the computed generators of the Schur complement of H and the com-
puted row of the Cholesky factor are part of a stable factorization step. This completes
the induction, proving the stability of the algorithm.

4.1 Induction

Let cT be the computed �rst row of the Cholesky factor of H = HZ(A; r) and let AS and rS
be the computed generators and last column of the Schur complement of H. For the moment
we assume without proof that a single step of Algorithm 2 on a positive de�nite Hankel-like
matrix of size n gives

ccT +

�
0 0
0 HZ(AS; rS)

�
�H = E (20)

where kEkm � �f1(n)kHkm for some polynomial f1(n) and where AS and rS are the com-
puted generators and last column of the Schur complement of H. If Algorithm 2 continues
recursively to compute CS such that

CT
SCS �HZ(AS; rS) = ES

then

ccT +

�
0 0
0 CT

SCS

�
�H = E +

�
0 0
0 ES

�
:

Since

C =

�
c(1) c(2 : n)T

0 CS

�
we have

CTC �H = E +

�
0 0
0 ES

�
:

De�ne

f(n) = f(n� 1) + f1(n); f(1) = 2 (21)

so that

f(n) = 2 +
nX

j=2

f1(j)

14

and f(n) is a polynomial in n. Note that if H is 1� 1 then r(1) = H and c = (1 + �1)
p
H.

Thus for the 1� 1 case

kCTC �Hkm = jc2 �Hj = 2�1jHj
or

kCTC �Hkm � �f(1)kHkm:
Inductively, if

kESkm � �f(n� 1)kHZ(AS; rS)km � �f(n� 1)kHkm
then

kCTC �Hkm � kEkm +

�
0 0
0 ES

�

m

� �f1(n)kHkm + �f(n� 1)kHkm = �f(n)kHkm:

Thus to show that Algorithm 2 is stable, it suÆces to show that (20) holds for some poly-
nomial f1(n).

4.2 Bounding the Generators

We have already seen with Example 1 that generator growth has the potential to cause
instability in a Schur-type algorithm. Neither the scaling in step 3 nor the plane rotation in
step 4 can cause a problem. There is potential for growth only in step 6. However, we will
show that if it does occur it will be harmless. While there is no obvious and direct way to
bound kAk produced by step 6, it is easy to show that if we do get a large value for kAk, it
will be purely a result of poor scaling. The rescaling in step 3 will always reduce kAk to a
managable size in the next iteration without harming the stability of the factorization.

To make this more precise, we will show that none of the transformations in Algorithm 2
can signi�cantly increase

ka1k2 � ka2k2:
If this quantity is not very large, then the scaling in step 3 will reduce kAk to a reasonable
magnitude.

The following lemma refers to exact rather than computed quantities.

Lemma 1 For A(k) at the beginning of an iteration in Algorithm 2

ka(k)1 k2 � ka(k)2 k2 � ka(0)1 k2 � ka(0)2 k2 + kC(1 : k; :)k2F
where CTC = H is the Cholesky factorization of H.

Proof: The proof is by induction. Trivially, we see that the inequality holds for k = 0 at
the start of the �rst iteration of the algorithm. Assume that

ka(k�1)1 k2 � ka(k�1)2 k2 � ka(0)1 k2 � ka(0)2 k2 + kC(1 : k � 1; :)k2F :

15

The scaling in step 3 does not change this quantity. After the scaling

ka(k�1)1 k2 = ka(k�1)2 k2:
If â

(k�1)
1 and â

(k�1)
2 denote the generator vectors after the application of the rotation in step 4

then

kâ(k�1)1 k22 � kâ(k�1)2 k22 =
�
ca

(k�1)
1 + sa

(k�1)
2

�T �
ca

(k�1)
1 + sa

(k�1)
2

�
��

�sa(k�1)1 + ca
(k�1)
2

�T �
�sa(k�1)1 + ca

(k�1)
2

�
=

�
ka(k�1)1 k22 + 2cs

�
a
(k�1)
1

�T
a
(k�1)
2

�
��

ka(k�1)1 k22 � 2cs
�
a
(k�1)
1

�T
a
(k�1)
2

�

= ka(k�1)1 k42 � 4c2s2
��

a
(k�1)
1

�T
a
(k�1)
2

�2

� ka(k�1)1 k22 � ka(k�1)2 k22:
Finally, we consider the update to compute A(k). We have

a
(k)
2 = â

(k�1)
22

and

a
(k)
1 = â

(k�1)
21 � â

(k�1)
11

"
â
(k�1)
22 (2 : n� k)=â

(k�1)
22 (1)

r
(k�1)
1 =(â

(k�1)
11 â

(k�1)
22 (1))

#
:

Thus

ka(k)1 k2 � ka(k)2 k2 � kâ(k�1)21 k2 � kâ(k�1)22 k2 + â
(k�1)
11

â
(k�1)
22 (1)

"
â(k�1)22 (2 : n� k)

r
(k�1)
1 =â

(k�1)
11

#

2

2

:

However since the plane rotation puts the generators in proper form

H(k�1)(1; 1) = â
(k�1)
11 â

(k�1)
22 (1)

and

C(k; k + 1 : n) =

s
1

â
(k�1)
11 â

(k�1)
22 (1)

h
â
(k�1)
11 â

(k�1)
22 (2 : n� k) r

(k�1)
1

i
so that

ka(k)1 k2 � ka(k)2 k2 � kâ(k�1)21 k2 � kâ(k�1)22 k2 + kC(k; k + 1 : n)k22
� ka(k�1)21 k2 � ka(k�1)22 k2 + kC(k; k + 1 : n)k22
� ka(0)1 k2 � ka(0)2 k2 + kC(1 : k � 1; :)k2F + kC(k; k + 1 : n)k22
= ka(0)1 k2 � ka(0)2 k2 + kC(1 : k; :)k2F :

16

As we have noted, strictly speaking these bounds hold only in the absence of numerical
errors. However, since our interest in bounding the generators is to bound terms that are
O(�kAk), the di�erence caused by neglecting numerical errors in a bound on kAk is O(�2)
in the �nal backward error bound. We will apply the bound to the computed generators
without further comment on these second order errors.

4.3 Errors on the Generators

We start with a simple lemma relating errors in the displacement �Z(H) and the last column
r to errors in H.

Lemma 2 If

BJBT � AJAT = E; s� r = f

then

kHZ(B; s)�HZ(A; r)km � n

2
kEkm + kfkm:

Proof: We have already noted that HZ(A; r) is well de�ned and gives a unique Hankel-like
matrix. The �rst row and last column of the Hankel-like matrix H are determined uniquely
by its generators A and its last column r. Let

G := HZ(B; s); H = HZ(A; r):

If

� := AJAT = �Z(H); � := BJBT = �Z(G)

then

Hi;j�1 = Hi�1;j ��ij (22)

implies that H is determined by A and r and �H is determined by �A and �r. We have
j�ij � �ijj � kEkm for each i and j and jsi � rij � kfkm for each i. From (22), we have

Gi;j�1 �Hi;j�1 = Gi�1;j �Hi�1;j � �ij +�ij

so that

jGi;j�1 �Hi;j�1j � jGi�1;j �Hi�1;jj+ kEkm
and

jGi�1;j �Hi�1;jj � jGi;j�1 �Hi;j�1j+ kEkm
These relations together with

kG(1; 1 : n� 1)�H(1; 1 : n� 1)km = kG(1 : n� 1; 1)�H(1 : n� 1; 1)km � kEkm

17

and

kG(1 : n; n)�H(1 : n; n)km = kG(n; 1 : n)�H(n; 1 : n)km � kfkm:

show that

kG�Hkm � n

2
kEkm + kfkm:

The proof of this is simply a matter of using the bounds on the last row and column and
�rst row and column of G � H as boundary conditions and applying the worst case of the
above inequality recurrences by assuming that they turn out to be equalities. The factor n=2
comes from using the recurrence that gives the lowest bound for a given element of G�H.
The element with the largest bound appears roughly in the center of the matrix (depending
on whether n is even or odd).

4.4 Backward Error Analysis of the Transformations

For any iteration k of Algorithm 2

ka(k)1 k2 � ka(k)2 k2 � ka(0)1 k2 � ka(0)2 k2 + kCk2F : (23)

This bound is independent of k. Since our goal is to prove a bound of the form (20) without
worrying too much about constants, we analyze a generic iteration of the algorithm for some
k using (23). We drop the superscripts by letting generators A = A(k) and r = r(k). We let
H = HZ(A; r).

In particular, in this section, we will analyze the stability of steps 3 and 4. We will
show that these steps result in generators Â (after step 3) and ~A (after step 4) for which
kHZ(Â; r)�Hkm and kHZ(~A; r)�Hkm are small.

For step 3

Â =

��
da1

1
d
a2
��

=
�
(I + �D1)a1d (I + �D2)

1
d
a2
�

where d is the computed quantity. Thus

ÂJÂT = AJAT � �D1a1a
T
2 + �a2a

T
1D1 � �a1a

T
2D2 + �D2a2a

T
1 :

Using Lemma 1

ÂJÂT � AJAT

F
� 4�

�
ka(0)1 k2ka(0)2 k2 + kCk2F

�
: (24)

Lemma 2 implies that

kHZ(Â; r)�Hkm � n

2

ÂJÂT � AJAT

m

� n

2

ÂJÂT � AJAT

F

� 2n�
�
ka(0)1 k2ka(0)2 k2 + kCk2F

�
:

18

From basic results on the application of plane rotations, [17], we have�
~a11 0
~a21 ~a22

�
=

�
â11 â12
â21 â22

� �
c �s
s c

�
+ E (25)

for some c and s satisfying c2 + s2 = 1 and with E satisfying

kEkF � 6�kÂkF :

Consequently

~AJ ~AT = ÂJÂT + EJ ~AT + ~AJET +O(�2)

and

 ~AJ ~AT � ÂJÂT

F
� 12�kÂk2F :

Thus

kHZ(Â; r)�HZ(~A; r)km � n

2

ÂJÂT � ~AJ ~AT

m

� n

2

ÂJÂT � AJAT

F

� 6n�kÂk2F
� 12n�

�
ka(0)1 k2ka(0)2 k2 + kCk2F

�
:

The last inequality follows from the fact that after step 3

kâ1k2 = kâ2k+O(�):

Combining these inequalities we get

kHZ(~A; r)�Hkm � 14n�
�
ka(0)1 k2ka(0)2 k2 + kCk2F

�
: (26)

4.5 Computing the Schur Complement

After step 4 we have proper form generators

~A =

�
~a11 0
~a21 ~a22

�

where ~a11 is a scalar. Consider the exact �rst row �c of the Cholesky factor of HZ(~A; r) and
the corresponding computed quantity c. We have

c =

2
4(I + 3�D3)~a22

q
~a11

~a22(1)

(1 + 3�1)
r1p

~a11~a22(1)

3
5 = �c+ 3�D4c:

19

Thus

HZ(~A; r)� ccT =

�
0 0

0 �HS

�
+ E1 (27)

where kE1kF � 6�kck22 and where �HS is the exact Schur complement of HZ(~A; r).
Given computed AS and rS de�ned by

AS =

��
~a21 � ~a11

�
~a22(2 : n� 1)=~a22(1)

r1=(~a22(1)~a11)

�
~a22

��

=

�
(I + �D5)

�
~a21 � ~a11(I + 2�D6)

�
~a22(2 : n� 1)=~a22(1)

r1=(~a22(1)~a11)

��
~a22

�
and

rS =

�
r2 � r1

�
~a22(2 : n� 1)=~a22(1)

r1=(~a22(1)~a11)

��

= (I + �D7)

�
r2 � r1(I + 2�D8)

�
~a22(2 : n� 1)=~a22(1)

r1=(~a22(1)~a11)

��
we seek a bound on k �HS � HZ(AS; rS)k. If �AS and �rS are the exact quantities computed
from ~A and r then

ASJA
T
S = �ASJ �AT

S � �D5AS(:; 1)~a
T
22 + �~a22AS(:; 1)

TD5 �
2�D6c(2 : n)c(1 : n� 1)T + 2�c(1 : n� 1)c(2 : n)TD6:

Consequently using Lemma 1

kASJA
T
S � �ASJ �AT

SkF � 6�
�
ka(0)1 k2 � ka(0)2 k2 + kCk2F

�
: (28)

Turning to the computation of rS we have

rS = �rS + �D7rS � 2r1�D8c(2 : n)=c(1)

= �rS + �D7rS + 2�D8(rS � r2)

so that

krS � �rSk2 � 3�krSk2 + 2�krk � 5�kHk2 � 5�kCk2F : (29)

Thus from Lemma 2 we get

k �HS �HZ(AS; rS)km � n

2
k �ASJ �AT

S � ASJA
T
Skm + k�rS � rSkm

� 3n�ka(0)1 k2 � ka(0)2 k2 + (3n+ 5)�kCk2F : (30)

We can write

ccT +

�
0 0
0 HZ(AS; rS)

�
�H

m

� kHZ(~A; ~r)�Hkm + k �HS �HZ(AS; rS)km +

ccT +

�
0 0

0 �HS

�
�HZ(~A; ~r)

m

20

to get a bound for (20) in terms of quantities that we have already bounded. Using (26),
(27) and (30) we get

ccT +

�
0 0
0 HZ(AS; rS)

�
�H

 � (17n+ 8)�kCk2F + 17n�ka(0)1 k2ka(0)2 k2

� (17n+ 8)n3=2�kHkm + 17n�ka(0)1 k2ka(0)2 k2
� �

17n5=2 + 8n3=2 + 17n
�
�kHkm

where the last inequality follows by assuming that a
(0)
1 and a

(0)
2 are chosen according to (3).

Given the previous discussion of the induction step this is suÆcient to prove the stability of
the algorithm. By de�ning

f1(n) =
�
17n5=2 + 8n3=2 + 17n

�
and

f(n) = 2 +
nX

j=2

f1(j) � 2 +
nX

j=2

17j3 + 8j2 + 17j =
17

4
n4 +

67

6
n3 +

67

4
n� 40

we immediately get the following theorem.

Theorem 1 Let C be computed by Algorithm 2 from initial generators of the form (3). Then

kCTC �Hkm �
�
17

4
n4 +

67

6
n3 +

67

4
n� 40

�
�kHkm:

5 More on the Look-Ahead Algorithm

When implemented with a stable method for inverting H11, Algorithm 1 forms the basis
of a look-ahead algorithm. However, it is not complete. Further re�nements are necessary
for eÆcient implementation. To see why let H represent a Schur complement at some
generic iteration of Algorithm 1 and consider the block partitioning (9). To determine an
appropriate look-ahead step we try to choose H11 to be m�m with kH�1

11 H
T
21k of moderate

size. Estimating this norm for each possible size of H11 until an appropriate look-ahead step
size is found can be costly. If the search were implemented in a naive manner the algorithm
would have to invert H11 for each tested step size. If the algorithm required look-ahead step
sizes that were some signi�cant fraction of n, the resulting algorithm could require O(n4)

ops.

Fortunately, it is possible to guarantee that even in the worst case the number of required
computations is O(n3) with O(n2) being more typical if the look-ahead step size can be
bounded independent of n. The method uses the fact that for a displacement rank 2 Hankel-
like matrix, H�1

11 H
T
21 is Toeplitz-like with displacement rank 3. To demonstrate and exploit

this fact, we use a general theorem describing a single step of a Schur algorithm for a
rectangular matrix containing both Toeplitz-like and Hankel-like blocks.

21

Theorem 2 For

K =

�
H
T

�
consider the mixed Toeplitz-Hankel displacement equation�

Zn 0
0 Im

�
K �

�
In 0
0 Zm

�
KZT

n =

�
B
D

�
JHT Ĝ

T

where all the matrices are real, H is n�n and symmetric, T is m�n, Zn and Zm are n�n
and m � m shift matrices and JHT is a general matrix that may include both a symmetric
and a skew-symmetric component. Assume that H(1; 1) 6= 0. Let

H =

�
h11 hT21
h21 H22

�
;

T =
�
t1 T2

�
;

B =

�
bT1
B2

�
and

G =

�
gT1
G2

�
where bT1 and dT1 are row vectors. Also let

KS =

�
H22

T2

�
� 1

h11

�
h21
t1

�
hT21

so that KS is the Schur complement of K. If

BS = B2 � 1

h11
h21b

T
1 ; (31)

DS = D � 1

h11
Zmt1b

T
1 (32)

and

GS = G2 � 1

h11
h21g

T
1 ; (33)

then �
Zn�1 0
0 I

�
KS �

�
In�1 0
0 Zm

�
KSZ

T
n�1 =

�
BS

DS

�
JHTG

T
S

where Zn�1 is a (n� 1)� (n� 1) shift matrix.

22

Proof: The proof is by direct verifcation that the displacement of KS has the required
factorization. Note that H is Hankel-like. If we start with the factorization ZnH �HZn =
BJHTG

T instead of ZnH �HZn = AJAT then as before (11) shows that

Zn�1

�
H22 � 1

h11
h21h

T
21

�
�
�
H22 � 1

h11
h21h

T
21

�
Zn�1 = BSJHTG

T
S

whatever the choice of JHT . Thus if we de�ne

TS = T2 � 1

h11
t1h

T
21;

it is suÆcient to verify that

TS � ZmTSZ
T
n�1 = DSJHTG

T
S :

Since

DJHTG
T =

�
t1 T2

�� Zm

�
t1 T2

� �0 eT1
0 ZT

n�1

�
=
�
t1 T2 � ZmT2Z

T
n�1 � Zmt1e

T
1

�
we have

T2 � ZmT2Z
T
n�1 = DJHTG

T
2 + Zmt1e

T
1 :

Consequently

TS � ZmTSZ
T
n�1 = DJHTG

T
2 + Zmt1e

T
1 +

1

h11
Zmt1h

T
21Z

T
n�1 �

1

h11
t1h

T
21

= DJHTG
T
2 +

1

h11

�
Zmt1

�
h11 h21(1 : n� 2)T

��� 1

h11
t1h

T
21:

From the displacement equation t1 = DJHTg1. Since the �rst row of ZnH is zero the
displacement also gives

bT1 JHTG
T
2 = � �h11 h21(1 : n� 2)T

�
:

Thus

TS � ZmTSZ
T
n�1 = DJHTG

T
2 �

1

h11
Zmt1b

T
1 JHTG

T
2 �

1

h11
DJHTg1h

T
21

=

�
D � 1

h11
Zmt1b

T
1

�
JHT

�
GT

2 �
1

h11
g1h

T
21

�
where the last equality follows because the skew-symmetry of ZnH � HZT

n implies that
bT1 JHTg1 = 0.

Given a Hankel-like matrix H obtained as a Schur complement at some iteration in
Algorithm 1 and partitioned as in (9), Theorem 2 gives a Schur algorithm for the matrix

K :=

2
4H11 HT

21

H21 H22

Im 0

3
5 =

�
H
T

�
:

23

If H11 is m�m then after m steps of elimination on this matrix we have a Schur complement

KS =

�
H22 �H21H

�1
11 H

T
21

�H�1
11 H

T
21

�
: (34)

Suppose that

ZnH �HZT
n = AJAT

for

A =

�
A1

A2

�
where A1 has m rows. Then the matrix K satis�es

�
Zn 0
0 Im

�
K �

�
In 0
0 Zm

�
KZT

n =

2
4A1JA

T
1 A1JA

T
2

A2JA
T
1 A2JA

T
2

e1e
T
1 0

3
5 =

�
B
D

�
JHTG

T

where

B =
�
A 0n;1

�
; D =

�
0m;2 e1

�
; G =

�
A e1

�
and

JHT =

2
40 �1 0
1 0 0
0 0 1

3
5 :

Although the KS shown in (34) is not the same as the one in Theorem 2 in which H11 is
assumed to be 1� 1, we can obtain generators for (34) by recursive application of (31), (32)
and (33). This gives generators BS, DS and GS for the displacement�

BS

DS

�
JHTG

T
S =

�
Zn�m 0
0 Im

� �
H22 �H21H

�1
11 H

T
21

�H�1
11 H

T
21

�
��

In�m 0
0 Zm

� �
H22 �H21H

�1
11 H

T
21

�H�1
11 H

T
21

�
ZT
n�m

Thus

H�1
11 H

T
21 � ZmH

�1
11 H

T
21Z

T
n�m = �DSJHTG

T
S (35)

and clearly H�1
11 H

T
21 is a Toeplitz like matrix with displacement rank 3. The displacement

operator is invertible with the inverse given by the formula

H�1
11 H

T
21 =

min(m�1;n�m�1)X
j=0

�(Zj
m)DSJHTG

T
S (Z

j
n�m)

T: (36)

The following algorithm computes generators for H�1
11 H21.

24

Algorithm 3 For n� n H satisfying ZnH �HZT
n = AJAT, start with

B =
�
A 0n;1

�
; D =

�
0m;2 e1

�
; G =

�
A e1

�
and let r be the last column of H. For j = 1; 2; : : : ; m:

1. For B, D and G partitioned as in Theorem 2, compute h11 and h21 from

h11 = �bT1 JHTG2(2; :)
T

and

h21(1 : n� j � 1) = �bT1 JHTG2(3 : n� j + 1; :)T; h21(n� j) = r(1):

Thus h21 is a vector of length n� j. Compute t1 from

t1 = DSJHTg1:

2. Update B, D and G using (31), (32) and (33).

3. Update r using

r r(2 : n� j + 1)� 1

h11
h21r(1):

4. Let j j + 1 and go to 1.

At the end of this process we have D and G satisfying (35). The matrix H�1
11 H

T
21 can be

obtained from (36).

To estimate a step size for which kH�1
11 H

T
21k is suitably small, we can apply Algorithm 3

until a suitable step size is found. Clearly each element of � := DJHTG
T can be computed

in a number of
ops that depends on the displacement rank and not on n or m. At each
iteration of Algorithm 3, the matrix T := H�1

11 H
T
21 can be computed in O(mn)
ops using

the relation

Ti;j = �i;j + Ti;j

which is satis�ed by any matrix T such that

T � ZmTZ
T
n�m = �:

Thus, even if the �nal look-ahead step size is m = n� 1, the extra computation involved in
computing T for each iteration of Algorithm 3 is O(n3).

25

6 General Hankel-like Matrices

Consider the case in which the displacement �Z(H) = ZH �HZT has higher rank. In x2,
we veri�ed that if �Z(H) has rank equal to 2 then it has a decompositon of the form (2).
The following theorem shows that a similar decomposition is possible in the more general
case.

Theorem 3 Let � be a real, skew-symmetric n� n matrix with r = rank(�) > 0. Then �
has the following factorization.

� =
�
B1 B2 � � � Br=2

�
2
6664
J

J
. . .

J

3
7775
2
6664
BT
1

BT
2
...

BT
r=2

3
7775 (37)

where the Bi are real n� 2 matrices.

Proof: The decomposition can be constructed using a skew-symmetric Gaussian elimination
procedure with 2� 2 pivots of the form �

0 �Æ1
Æ1 0

�
:

Further details may be found in [5].
If the displacement �Z(H) is available, it is possible to use r=2 steps of the skew-

symmetric elimination procedure of [5] to get a low rank factorization of this form. However,
because of potential sensitivity in the Schur complement to be truncated, [9], it is important
to use a complete pivoting strategy.

It is easy to show that there exists a permutation P such that

P

2
6664
J

J
. . .

J

3
7775PT =

�
0 �Ir=2
Ir=2 0

�
= Jr

Thus Theorem 3 implies that for any real skew-symmetric � of rank r there exists a matrix

A :=
�
A1 A2

�
where A1 and A2 are n� r

2
matrices satisfying

�Z(H) = AJrA
T:

Note that this notation is di�erent from the notation of (10).

26

6.1 Factorization Algorithms

We partition H as (9) and let

�
A1 A2

�
=

�
A11 A12

A21 A22

�
:

If HS = H22 �H21H
�1
11 H

T
21 then the arguments from x3 show that

�Z(HS) = ASJrA
T
S

where

AS =
�
A21 �H21H

�1
11 A11 A22 �H21H

�1
11 A11

�
: (38)

It is possible to compute H11 and H21 from A using (6). Thus Algorithm 1 can be adapted
to an arbitrary displacement rank by using (38) in step 5 instead of (13). As before, this is
potentially unstable; a small perturbation to the matrix from Example 1 can be chosen to
give a displacement rank 4 Hankel-like matrix for which the modi�ed version of Algorithm 1
fails. All of the results of x5 apply to the larger displacement rank case by adding extra J
blocks to JHT . Consequently a completely general look-ahead algorithm is not signi�cantly
di�erent from the displacement rank 2 version.

As before, it is possible to get a provably stable algorithm for the positive de�nite case.
In extending Algorithm 2, we note that any transformation S for which SJrS

T = Jr may
be applied to A to get an equivalent set of generators Â = AS such that �Z(H) = ÂJrÂ

T.
The set of matrices satisfying SJrS

T = Jr are known as symplectic matrices. In order to
prevent any possibility of generator growth, we will make use of the group of real orthogonal
symplectic transformations�

Q 2 Rr�r jQ =

�
Q11 Q12

�Q12 Q11

�
; QTQ = Ir; Q11; Q12 2 R r

2
� r

2

�
:

It is trivial to verify that any matrix of the speci�ed form is both orthogonal and symplectic.
Such matrices have applications in the study of Hamiltonian eigenvalue problems [11, 6].

Following [11], we introduce two types of elementary orthogonal symplectic matrices.
The �rst is the Householder symplectic matrix of the form

RH =

�
R1 0
0 R1

�
where

R1 = Ir � 2uuT

uTu
:

The second is the Jacobi symplectic rotation of the form

RJ =

�
C1 S1
�S1 C1

�

27

where C1 and S1 are
r
2
� r

2
diagonal matrices of the form

C1 = diag(1; : : : ; 1| {z }
k�1

; c; 1; : : : ; 1); S1 = diag(0; : : : ; 0| {z }
k�1

; s; 0 : : : 0)

with real c and s satisfying c2+s2 = 1. These elementary transformations may be computed
to zero elements in a vector. In particular

�
xT yT

� �R1 0
0 R1

� �
C1 S1
�S1 C1

�
=
�
x̂T 0

�
if yTR1 = kykeT1 and

�
xTR1(:; r=2) kyk

� � c s
�s c

�
=
hq

(xTR1(:; r=2))
2 + kyk2 0

i
:

If x̂TR2 = kx̂keT1 then

p
kxk2 + kyk2 �eT1 0

�
=
�
xT yT

� �R1 0
0 R1

� �
C1 S1
�S1 C1

� �
R2 0
0 R2

�
:

The usual methods for computing plane rotations and Householder transformations, [7],
ensure that these relations hold and that the transformations are numerically stable in a
sense that is a direct generalization of (25). We will shortly have more to say on the stability
of the transformations.

By substituting this combination of transformations for the single rotation of Algorithm 2,
we get the following algorithm.

Algorithm 4 (Positive de�nite Hankel-like Schur Algorithm) Start with A1 and A2

such that

�Z(H) =
�
A1 A2

�
Jr

�
AT
1

AT
2

�
:

Let r be the last column of H. Let nS = n and C = 0.

1. While nS > 0:

2. Let the current nS � r generator matrix A be partitioned as

�
A1 A2

�
=

�
a11 aT12 a13 aT14
a21 A22 a23 A24

�

where a11 and a13 are scalars and aT12 and aT14 are both length r=2� 1 row vectors.

3. Scale

A1(:; 1) dA1(:; 1); A2(:; 1) 1

d
A2(:; 1)

where d is chosen so that kA1(:; 1)k2 = kA2(:; 1)k2.

28

4. Put the generators into proper form using a symplectic orthogonal transformation of
the form

A A

�
P1 0
0 P1

� �
C S
�S C

� �
P2 0
0 P2

�
:

so that after the transformation

A =

�
a11 0 0 0
a21 A22 A23 A24

�

with a11 > 0.

5. Let

C(n� nS + 1; n� nS + 1 : n� 1)
r

a11
a23(1)

aT23

and

C(n� nS + 1; n) r(1)p
a11a23(1)

:

6. Update A and r by

A
�
a21 � a11

�
a23(2 : nS � 1)=a23(1)

r(1)=(a23(1)a11)

�
A22 a23 A24

�
;

r r(2 : nS)� r(1)

�
a23(2 : nS � 1)=a23(1)

r(1)=(a23(1)a11)

�

and let

nS nS � 1:

Verifying that Algorithm 4 computes C such that CTC = H is not substantially di�erent
from the veri�cation of Algorithm 2. Steps 3 and 4 apply orthogonal symplectic transforma-
tions AS such that SJrS

T = Jr. After step 4, the generators are in proper form. Using the
obvious generalization of (7)

H(1; 1 : n� 1) = �a11aT23
and the �rst element of r we get the expressions for the �rst row of the Cholesky factor of
the current Schur complement. The update for A in step 6 is just (38) applied to generators
in proper form. The update for r is the same as in Algorithm 2. The process then proceeds
recursively on the Schur complement of H in the usual manner.

29

6.2 Stability

The analysis of Algorithm 4 is a straightforward generalization of the analysis in x4. In
particular if HZ(A; r) is the inverse displacement operator in the higher displacement rank
case, the same inductive argument shows that if (20) holds then the algorithm is stable.

Lemma 1 can also be adapted to Algorithm 4.

Lemma 3 Let A(k) be the generator matrix after the scaling of step 3 in iteration k of
Algorithm 4. (i.e. the initial generator matrix is A(0) and the matrix generated by application
k of step 3 is A(k)). Then

kA(k)k2F � kA(1)k2F + 2kC(1 : k � 1; :)k2F
� kA(0)k2F + 2kC(1 : k � 1; :)k2F

where CTC = H is the Cholesky factorization of H.

Proof: We consider the e�ects of steps 3, 4 and 6 on kAkF . We have de�ned A(k) as being
the matrix occuring after the scaling of step 3. Let Â(k) be the generator matrix after step 4
and ~A(k) be the shorter generator matrix after step 6. Since the algorithm uses an orthogonal
symplectic transformation, step 4 does not change the norm. Thus

kÂ(k)kF = kA(k)kF :

We consider the combination of step 6 with the scaling of step 3 in the next iteration. After
step 4, the generators are in proper form. The arguments from Lemma 1 show that

k ~A(k)
1 (:; 1)k2k ~A(k)

2 (:; 1)k2 � kÂ(k)
1 (:; 1)k2 � kÂ(k)

2 (:; 1)k2 + kC(k; :)k22
� 1

2
(kÂ(k)

1 (:; 1)k22 + kÂ(k)
2 (:; 1)k22) + kC(k; :)k22:

Since kA(k+1)
1 (:; 1)k2 = kA(k+1)

2 (:; 1)k2 this implies that

kA(k+1)
1 (:; 1)k22 + kA(k+1)

2 (:; 1)k22 = 2kA(k+1)
1 (:; 1)k2 � kA(k+1)

2 (:; 1)k2
= 2k ~A(k)

1 (:; 1)k2 � k ~A(k)
2 (:; 1)k2

� kÂ(k)
1 (:; 1)k22 + kÂ(k)

2 (:; 1)k22 + 2kC(k; :)k22:

Since steps 3 and 6 act only on these two columns

kA(k+1)k2F � kÂ(k)k2F + 2kC(k; :)k22
� kA(k)k2F + 2kC(k; :)k22:

The second inequality follows from the easily veri�ed fact that step 3 cannot increase the
Frobenius norm of the generator matrix. The lemma follows inductively.

We keep the notation Â and ~A de�ned in the proof of the lemma and letting r and ~r
be the last column of the matrix de�ned at the corresponding steps of the algorithm. Since

30

step 3 operates on only two columns of A, it can be shown using the error expansion used
to show (24) that

A(k+1)Jr

�
A(k+1)

�T � ~A(k)Jr

�
~A(k)

�T

F

� 4�

A(k+1)

1 (:; 1)

2
�

A(k+1)

2 (:; 1)

2

� 4�kA(k+1)k2F
� 4�

�kA(0)k2F + 2kC(1 : k; :)k2F
�
:

Lemma 2 implies that

HZ

�
A(k+1); r(k+1)

��HZ

�
~A(k); ~r(k+1)

�

m
� 2n�

�kA(0)k2F + 2kCk2F
�
: (39)

Basic results on the application of plane rotations and Householder transformations from
[17] give

Â(k+1)Jr

�
Â(k+1)

�T
� A(k+1)Jr

�
A(k+1)

�T

F

� c�kA(k+1)k2F

where c is a constant. Thus

HZ

�
Â(k+1); r(k+1)

�
�HZ

�
A(k+1); r(k+1)

�

m
� c

2
�
�kA(0)k2F + 2kCk2F

�
: (40)

Step 6 changes only two vectors, r and A. Further, the update only uses information
from three vectors: A1(:; 1), A2(:; 1) and r. This is identical to the computation analyzed in
x4.5. The arguments apply without modi�cation to show that

 �HS �HZ

�
~A(k+1); ~r(k+1)

�

m
� 3n�kA(0)k2F + (3n+ 5)�kCk2F (41)

where �HS is the exact Schur complement of HZ(Â
(k+1); r(k+1)). Since the generators are in

proper form after step 4, (27) applies with Â(k+1) taking the place of ~A. Using (39), (40),
(41) and (27) and assuming that kA(0)k2F is not too much larger than kHk gives an inequality
of the form (20). The inductive argument of x4.1 then applies to show that Algorithm 4 is
stable.

7 Conclusions

We have described displacement structure algorithms for the factorization of Hankel-like
matrices. The algorithms for positive de�nite matrices use orthogonal symplectic transfor-
mations and admit a reasonably straightforward error analysis when a scaling step is used
to prevent a potential imbalance in the scaling of the generator column vectors. We have
not been able to show that this scaling step is necessary for stability; in practice it can often
be skipped without introducing excessive backward errors.

The algorithm for inde�nite matrices uses a very simple look-ahead step that follows
easily from the displacement formulation. The approach is much simpler than others that

31

have been proposed in the literature. We have also suggested the size of kH�1
11 H

T
21k as

a criterion for choosing a look-ahead step size and shown how to estimate this quantity
eÆciently using a Schur algorithm for a mixed Hankel-Toeplitz displacement. Experiments
suggest that controlling the size of this quantity is suÆcient to get stability. Results on block
Gaussian elimination suggest that this is also likely to be necessary for stability.

References

[1] E. R. Berlekamp. Algebraic Coding Theory. McGraw-Hill, New York, 1968.

[2] A. W. Bojanczyk, R. P. Brent, F. R. De Hoog, and D. R. Sweet. On the stability of
the Bareiss and related Toeplitz factorization algorithms. SIAM J. Matrix Anal. Appl.,
16:40{57, 1995.

[3] A. W. Bojanczyk and G. Heinig. A multi-step algorithm for Hankel matrices. Journal
of Complexity, 10:142{164, 1994.

[4] R. P. Brent, F. G. Gustavson, and D. Y. Y. Yun. Fast solution of Toeplitz systems of
equations and computation of Pad�e approximants. Journal of Algorithms, 1:259{295,
1980.

[5] J. R. Bunch. A note on the stable decomposition of skew symmetric matrices. Mathe-
matics of Computation, 158:475{480, 1982.

[6] R. Byers. A Hamiltonian QR algorithm. SIAM Journal on Scienti�c and Statistical
Computing, 7:212{229, 1986.

[7] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University
Press, Baltimore, Maryland, 3nd edition, 1996.

[8] M. H. Gutknecht. Stable row recurrences for the Pad�e table and generically superfast
look-ahead solvers for non-hermitian Toeplitz systems. Research Report 92-14, Inter-
disciplinary Project Center for Supercomputing, Eidgen�ossische Technische Hochschule
Z�uich, 1992.

[9] N. J. Higham. Analysis of the Cholesky decomposition of a semi-de�nite matrix. In
M. G. Cox and S. J. Hammarling, editors, Reliable Numerical Computation. Oxford
University Press, 1989.

[10] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia,
1996.

[11] C. C. Paige and C. Van Loan. A Schur decomposition for Hamiltonian matrices. Linear
Algebra and its Applications, 41:11{32, 1981.

[12] D. Pal and T. Kailath. Fast triangular factorization and inversion of Hankel and related
matrices with arbitrary rank pro�le. SIAM Journal on Matrix Analysis and Applica-
tions, 15:451{478, 1994.

32

[13] J. L. Phillips. The triangular decomposition of Hankel matrices. Mathematics of Com-
putation, 25:599{602, 1971.

[14] J. Rissanen. Algorithms for triangular decomposition of block Hankel and Toeplitz
matrices with application to factoring positive matrix polynomials. Mathematics of
Computation, 27:147{154, 1973.

[15] W. F. Trench. An algorithm for inversion of �nite Hankel matrices. J. SIAM, 13:1102{
1107, 1965.

[16] E. Tyrtyshnikov. How bad are Hankel matrices? Numerische Mathematik, 67:261{269,
1994.

[17] J. H. Wilkinson. The Algebraic Eigenvalue Problem. Clarendon Press, Oxford, England,
1965.

33

