THE AUSTRALIAN NATIONAL UNIVERSITY

TR-CS-98-12

Stable Factorization of
Hankel and Hankel-like Matrices

Vadim Olshevsky and Michael Stewart

December 1998

Joint Computer Science Technical Report Series

Department of Computer Science
Faculty of Engineering and Information Technology

Computer Sciences Laboratory
Research School of Information Sciences and Engineering

This technical report series is published jointly by the Department of
Computer Science, Faculty of Engineering and Information Technology,
and the Computer Sciences Laboratory, Research School of Information
Sciences and Engineering, The Australian National University.

Please direct correspondence regarding this series to:

Technical Reports

Department of Computer Science

Faculty of Engineering and Information Technology
The Australian National University

Canberra ACT 0200

Australia

or send email to:
Technical.Reports@cs.anu.edu.au

A list of technical reports, including some abstracts and copies of some full
reports may be found at:

http://cs.anu.edu.au/techreports/
Recent reports in this series:

TR-CS-98-11 Michael Stewart. An error analysis of a unitary Hessenberg Q R
algorithm. December 1998.

TR-CS-98-10 Peter Strazdins. Optimal load balancing techniques for
block-cyclic decompositions for matrix factorization. September
1998.

TR-CS-98-09 Jim Grundy, Martin Schwenke, and Trevor Vickers
(editors). International Refinement Workshop & Formal
Methods Pacific 98 — Work-in-progress papers of IRW/FMP’98,
29 September — 2 October 1998, Canberra, Australia. September
1998.

TR-CS-98-08 Jim Grundy and Malcolm Newey (editors). Theorem
Proving in Higher Order Logics: Emerging Trends —
Proceedings of the 11th International Conference, TPHOLS'98,
Canberra, Australia, September — October 1998, Supplementary
Proceedings. September 1998.

TR-CS-98-07 Peter Strazdins. A comparison of lookahead and algorithmic
blocking techniques for parallel matrix factorization. July 1998.

TR-CS-98-06 M. Manzur Murshed. Optimal computation of the contour of
maximal elements on mesh-connected computers. July 1998.

Stable Factorization of
Hankel and Hankel-like Matrices

Vadim Olshevsky' and Michael Stewart?
July 16, 1998

ABSTRACT

This paper gives displacement structure algorithms for the factorization positive
definite and indefinite Hankel and Hankel-like matrices. The positive definite al-
gorithm uses orthogonal symplectic transformations in place of the ¥-orthogonal
transformations used in Toeplitz algorithms. The indefinite algorithm uses a
look-ahead step and is based on the observation that displacement structure al-
gorithms for Hankel factorization have a natural and simple block generalization.
Both algorithms can be applied to Hankel-like matrices of arbitrary displacement
rank.

1 Introduction

For h; with 0 <7 < 2n — 2 we define the Hankel matrix

[ho hi hy -+ By
hy . T hy
H=| hy R (1)
hn—l hn v e h2n—2

For real h;, such matrices arise often in system theory. Applications in which the elements
h; are taken from a finite field arise in coding theory. The fast O(n?) Berlekamp-Massey
algorithm for solving Hankel systems of equations was developed in the latter context, [1]. It
generalizes to the case in which the h; are real and it is one of the best known fast algorithms
for solving Hankel systems of equations.

Several other authors have developed algorithms for the factorization or inversion of
Hankel matrices, [13, 14, 15]. None of these algorithms incorporate pivoting or look-ahead.
In exact arithmetic they run to completion only if H has non-singular leading principal
submatrices. In floating point arithmetic, they are unstable when applied to anything other
than a positive definite matrix. Further, some of the algorithms explicitly compute triangular
factors of H . This suggests that they might not be backward stable, even for positive
definite H. An possible exception which computes triangular factors of H is given in [13];
the stability properties of this algorithm are not known.

! Department of Mathematics and Computer Science, Georgia State University, Atlanta GA 30303, email:
volshevsky@cs.gsu.edu

2Computer Sciences Laboratory, RSISE, Australian National University, Canberra ACT 0200, Australia,
email: stewart@discus.anu.edu.au

Two O(nlog®(n)) algorithms based on Padé approximation were given in [4]. One of
them applies to completely general indefinite Hankel and nonsymmetric Toeplitz matrices.
The numerical properties of this method have not been investigated, though it seems that
there is potential for numerical instability. Other authors have also developed algorithms
based on the connection of structured matrices with Padé approximation, [8].

In §3, we propose a new algorithm for the Cholesky factorization of a positive definite
Hankel matrix. The algorithm is analogous to the Schur algorithm for the factorization of a
Toeplitz-like matrix. Instead of using hyperbolic rotations or ¥-orthogonal transformations,
it uses orthogonal symplectic matrices to manipulate generators for a Hankel-like displace-
ment. It is proven to be numerically stable in §4. We generalize the algorithm to matrices of
higher displacement rank in §6. In §6, we also give a condensed error analysis of the general
algorithm using results from §4.

To some extent, investigating the stability properties of a fast solver for positive definite
Hankel matrices is a theoretical concern. It was shown in [16] that

ko(H) = [[H|l2| H]2 >3- 2"7°

if H is positive definite. There are even more discouraging estimates which suggest that for
positive definite Hankel matrices the condition number grows asymptotically as 4”. Thus
we do not expect to find accurate solutions even for relatively small positive definite Hankel
systems of equations. Nevertheless, the stability properties of the algorithm are theoretically
interesting and provide insight into the stability of methods for more general positive definite
and indefinite Hankel-like matrices.

For the indefinite case, look-ahead algorithms have been proposed to improve the sta-
bilty in the presence of ill-conditioned leading submatrices, [3, 12]. The algorithm of [8] is
also a look-ahead algorithm. Except for [3], most of the applicable algorithms have been
developed using polynomials rather than matrices. A displacement structure approach leads
to a surprisingly simple block factorization step which can be derived in matrix notation in
a few lines. We describe the basic block step in §3 and look-ahead refinements in §5.

When it is convenient, we use MATLAB notation to indicate submatrices. Thus the
matrix H (i : j, k : 1) is the (j —i+1) x ({ —k+1) block of H formed by taking only elements
that are in rows i through j and columns & through . The notation H(:, j) indicates column
j of H.

2 The Displacement

The Hankel matrix H is determined by 2n — 1 parameters. None of the results in this paper
are strictly limited to Hankel matrices; everything will apply to the more general class of
Hankel-like matrices. To define this class, we borrow and adapt an idea used in the study
of Toeplitz matrices by introducing the Hankel displacement rank of a matrix. A symmetric
matrix H is Hankel-like with Hankel displacement rank 2 whenever the displacement

Ay(H) = ZH -~ HZ"
is rank 2. The matrix Z is the downshift matrix defined by (Z);; = 1 when ¢ —j =1

and (Z);; = 0 otherwise. The notion of a Hankel-like matrix can be generalized to larger

2

ranks. We will consider such generalizations in §6. For the moment, we deal exclusively with
displacement rank 2 Hankel-like matrices.
For any matrix, the displacement is skew-symmetric. For a Hankel matrix

0 —hy —hy -+ —hy o]
ho
Z&Z(}{) = hl

hn—2

We will represent a Hankel-like matrix by means of its generators, the columns of a matrix
A such that

Az(H) = AJAT (2)

0 —1
I
A real skew-symmetric matrix of rank 2 can always be decomposed as (2). Given Az(H),
the decomposition can be computed in a stable manner using a single 2 x 2 pivot step of a
skew-symmetric elimination procedure, [5]. Further, a real skew-symmetric always has even
rank. Thus if the displacement is nonzero then A has full rank.

The generators are not unique. For a Hankel matrix it is possible to choose generators
with the simple form

where

T Vhe 0 0 0
R i &)

A generator matrix A for which the (1,2) element equals zero is said to be in proper form.
The displacement operator, Az(-), is different from the better known Toeplitz-like dis-
placements in three algorithmically significant respects.

1. The Hankel displacement is skew-symmetric. This fact determines the classes of trans-
formations that we can use in implementing a Schur-type factorization algorithm.

2. The proper form generators of A are not unique, even ignoring sign changes or scaling.
For a Toeplitz matrix, the proper form generators are unique up to sign changes. This
difference has implications for the numerical stability of factorizations: for a given
Hankel-like matrix, there exists a generator matrix in proper form with arbitrarily
large norm. Hence to get a stable algorithm, we must be very careful in the choice of
generators. An algorithm that is forced forced to work with generators that are much
larger than the matrix to be factored is likely to be unstable.

3. The linear displacement operator Az(-) has a non-trivial null space. This means that
it is not possible to reconstruct H given only Ay (H). A factorization algorithm cannot
work solely with the generators of H; it must incorporate some additional information.
We will show that H can be reconstructed from Az(H) and from the last column of
H.

We will elaborate on each of these points in turn.
A matrix S that satisfies SJST = J is a 2 x 2 symplectic matrix. General r x r symplectic
matrices are defined by the relation

0 —I,«/Q T 0 _Ir/2
S{fm 0]5 _Lr/Z 0]

We will make use of these more general symplectic matrices in §6. We will use 2 x 2 symplectic
matrices in the factorization of displacement rank 2 Hankel-like matrices. If S is symplectic
then

ASTSTAT = ATAT

and AS is an alternate set of generators for Az(H) = AJAT. In devising a factorization
algorithm we are free to apply any symplectic transformation to the generator matrix to
compute an alternate set of generators for the same displacement.

Note that
R -t

In the 2 x 2 case, if det(S) = 1 then S is symplectic. Symplectic transformations that will
later be of particular algorithmic interest are the plane rotations

c —s
=[]
with ¢2 + 52 = 1 and the diagonal scaling scaling matrices
d 0
o=y 3]

for d # 0.
If A # 0 so that the displacement rank is exactly 2 and A must have full rank then

AJAT = BJB"
implies that
A" = (JTA'BJ) B".
and
J=(JTATBJ)J(JTATBJ)T

so that JTA'B.J) = 1 is symplectic. It follows that for a particular fixed choice of generator
matrix A the set of equivalent generator matrices representing Az (H) can be characterized
by B = AS where S is symplectic.

Consider the proper form generators

A _ a1 0

21 G322
where ay; is a scalar and as; and asgs are vectors. In general, if A is in proper form and
ayp # 0, then the set of equivalent proper form generators representing the displacement has

the form
b11 0 a1l 0 :| |:d 0:|
B = = 4
[521 522] le az| |l é ()
for any [and any d # 0. The assumption that a;; # 0 can be justified in the positive definite
case by the fact that if a;; = 0 then the (1, 1) element of H must be zero. This is not possible
for a positive definite matrix.
To see that (4) captures all proper form generators note that any equivalent generator

matrix can be represented as B = AS for det(S) = 1. Since B is assumed to be in proper
form

(b1 0] = [an, 0] S.

Since ay; # 0, S(1,1) = by;/a;; = d and S(1,2) = 0. The complete form of S follows from
the fact that to get det(S) =1 for a triangular matrix, we must have

S(2,2) =1/S(1,1) = 1/d.

If d =1, 1/d or | are very large, then ||B]|| will be much larger than ||A||. Putting the
generators in proper form does not directly guarantee a bound on their size. This is in
contrast to the generators of a positive definite Toeplitz matrix for which the proper form
generators are unique up to sign changes and can be bounded in a way that is useful for a
numerical stability analysis, [2].

We now consider the null space of Az(-). Define the permutation, P, so that its action
on a vector is to reverse the order of the elements. Thus P(i,j) = 1if i+ j =n+ 1 and
P(i,j) = 0 otherwise. Then

pPzt=7p

so that if
n—1
N = Z n; 7' P
i=0

where Z° = I then

n—1 n—1
Az(N) =Y ni(2Z'P - Z'PZ") = ni(2Z'P - Z'ZP) = 0.
i=0 1=0

Considering the form of N, we see that any Hankel matrix of the form (1) for which

is in the null space of Az(-).
To see that this is a complete characterization of the null space, note that the relation
ZN — NZ"' = 0 implies

for 2 < 4,7 < n. Given the first row and last column of N, this recurrence gives the other
elements. If ZN — NZT = 0 then the first row of N must be zero except possibly for its last
element. Thus the recurrence implies that if Az(/N) = 0 then

00 0 .- ny
n—1 0 a T
N = Z n, Z7'P = | 0 :
=0 .
nl /”L2)) nn

Consequently the null space of Az(-) is the set of Hankel matrices that are lower triangular
with respect to the cross-diagonal.

Although H cannot be recovered from Ay (H), it is determined uniquely by Az(H)
together with H(:,n). Since the first row of ZH is zero

H(1,1:n—-1)=—[Az(H)](1,2:n). (5)

Thus we have the first row and the last column of H. By symmetry we also have the first
column and last row. Given these elements, it is easy to see that the other elements can be
obtained uniquely from the relation

[AZ(H)L,]:H(Z_laj)_H(Zaj_l)a 2<13,5<n. (6)

This is simply an indexed form of the definition Ay (H) = ZH — HZ".

Finally, we note that (5) is algorithmically important. It provides a natural way to obtain
most of the first row of H. This is precisely what is needed to obtain a row of the Cholesky
factor in a factorization algorithm. If the generators are in proper form then we get the
particularly simple formula

H(1,1:n—1) = ay a4, (7)

If C' is the Cholesky factor of H then

C(1,1:n—1)= [-BL gL (8)

3 Schur Type Algorithms

As with the Toeplitz displacement, the Schur complement of an arbitrary matrix has a
displacement rank with respect to Az(-) that is no larger than the displacement rank of
the original matrix. Thus Hankel-like structure is preserved under the process of Schur
complementation. This observation forms the basis of a class of fast Schur-type algorithms.
At each stage of the triangular factorization the algorithms work with the generators of the
current Schur complement together with the last column instead of with the full matrix.
Since any symplectic S can be used to transform the generators, many distinct algorithms
are possible. In this section we will explain the basic ideas behind algorithms for both the
positive definite and the indefinite cases. The algorithm for the positive definite case is
chosen to be provably stable. More efficient variations are possible and it seems that some of
these algorithms are likely to be stable in practice. Nevertheless, some possible algorithms
are clearly unstable; we will illustrate the problem with one such algorithm in this section.
Suppose that H is real, symmetric and Hankel-like with

Ay(H) = AJAT.
Partition H as
Hy HZTI}
H = 9
[Hm Hyy 9)
A as
_ |4
4= 4] w0
and Z as
Zi1 0
7 =)
{221 Zm]

We consider the Schur complement
Hgs = Hy, — Ho H;'Hy,

and the elimination matrix

I 0
L= B .
{—Hﬂﬂul I]

Clearly
LZL YLHL") — (LHLYL Y ZTLT = LAJAT LY (11)
and
Hy 0
T _ 11
LHLT = { 0 Hs}

The matrix LZL ™! is lower triangular and its (2,2) block is LZL ™! is just Zyy. It follows
that

ZQQHS - HS'Z;FQ - (A2 - Hlel_llAl)J(Az - HQIHI_IIAI)T. (12)

Since Zyy is a shift matrix, this shows that Hg has the same sort of displacement structure
as H and

AS - A2 - H21H1_11A1. (13)

The formula (13) will be the starting point in deriving a stable algorithm for positive
definite matrices. It also forms a direct basis for a look-ahead algorithm for indefinite ma-
trices. The look-ahead algorithm is recursive and, neglecting details about the computation
of the look-ahead step size that we will cover in §5, it can be described as follows.

Algorithm 1 (Block Schur Algorithm) Let ng = n and
Ay(H) = AJA".
Let r be the last column of H. Start with L =1 and D = 0.
1. While ng > 0:

2. Let Hg be the current ng x ng Schur complement with generators A and last column
r. Find an appropriate look-ahead step size, m, and let Hg and A be partitioned as
(9) and (10) where Hy; is m x m.

3. Compute Hy; and Hoy from A and r using (6).
4. Let

Lin—ns+m:nn—ng+1:n—ng+m) < HyH'
and

Dn—ns+1:n—ng+m,n—ns+1:n—ng+m)<+ Hy.

5. Update A and r by
A(-AZ—HQIH;IIAl, r <—7“(m—|—1 : 7’LS) —Hng;lIT(l :m)
and let

ng < ng —m. N

Neglecting numerical errors, the algorithm computes lower triangular L and block diagonal
D such that H = LDL™. The sizes of the diagonal blocks in D are the look-ahead step
sizes m chosen in each iteration of the algorithm. Given (12), it is trivial to prove that the
algorithm correctly computes the decomposition. Consider the first step of the algorithm for

8

which Hg = H. Step 4 is a block elemination step with an m x m pivot. Step 5 uses (12) a
direct implementation of the formula for a Schur complement to get the generators and last
column of the Schur complement of H. By returning to step 1, the algorithm recursively
computes Lg and Dg such that

Hyy — Hy H'Hy, = LsDsLy.
Thus

H.

LDLT — { I 0} {HH 0} [I H;HQTI} _ {HH H}

HuyHi' Ls|| 0 Dg||0 L% Hy LgDgLT + HyHEHE| —
(14)

This is a familiar and natural recursive description of block Gaussian elimination. It is easy
to check from the indices in step 4 that the algorithm fills in Hngfll and Hy; into the blocks
of L and D in a manner consistent with (14).

For the indefinite case, we will choose a look-ahead step size with the intent of keeping
||Hay H7'|| small to prevent any significant growth in the size of the generators when applying
(12) directly. For reasons of stability, it is necessary to keep this quantity from becoming
too large in the application of any type of block elimination algorithm, [10]. While we do
not give a proof, experimental results suggest that this criterion is also sufficient to give a
stable algorithm. We give further details on the implementation of the algorithm and its
performance in §5.

For the case in which H is positive definite and we wish to compute its Cholesky factor
we consider the paritioning

hi Dy } { ho hy }
H= = 15
|:h,21 H22 h21 H22 ()

where hi; = hg is a scalar. This corresponds to the case m = 1 and Algorithm 1 will use the
simple update

. h
A2 - A2 - ﬂfll (16)
hyo
where A; is a row vector. The scalar hy and the vector hy; can be obtained by using the
relation
ho _ T
|:h21(1 n— 2):| o AzJAI
or by using (7) if the generator matrix is in proper form. Thus step 3 of Algorithm 1 is
trivial and we get a simple O(n?) algorithm to generate the rows of the Cholesky factor of
H in sequence.
However, if ||ha1/hol| is large then (16) could result in significant generator growth. The
following example shows that ||ha1 /hg|| can be large for a positive definite Hankel-like matrix
and that this can negatively impact the stability of the 1 x 1 pivot version of Algorithm 1.

Example 1 We construct a 5 x 5 Hankel matrix
H=K'K
from a Krylov matrix
K = [b Bb B?b B3b B4b]
formed from B =4 - diag(1,2,3,4,5) and
bp'=1x10"-[1 1 1 1 1].
It is easily verified that this Hankel matrix has generators

AT = 1 0 0 0 0
11 5x10719 45%x107? 495x10°% 6.075x 1077 "

This matrix was formed from the elements of H by multiplying the generator matrix AT
shown in (3) from the left by

T vl
0 +Vhol| [0 1]°
We would hope that a stable algorithm would prevent generator growth and introduce errors
not much larger than the size of the generators. Since ||H||'/? ~ .55 is not too different from
||A]| this would give a small relative backward error.

However, factoring this matrix using a direct implementation of the scalar version of

Algorithm 1 results in substantial generator growth. We get a computed Cholesky factor for
which

|ChC — H||

=39x107°
| Hl

Although the example might seem somewhat contrived, it is worth noting that even starting
with (3), the generators of the Schur complements would not have any obvious special
structure when computed by (16). We have not found a Hankel matrix for which initial
generators of the form (3) lead to instability in (16). m

To deal with this problem we present a more sophisticated algorithm for the positive
definite case. It will make use of transformations of the generators AS with S satisfying
SJST = J. As with Algorithm 1, it can be viewed as a recursive process in which we obtain
the first row of the Cholesky factor of H from the generators and from the stored last column
of H and then compute the generators and the last column of the Schur complement of H.
The main difference is that rather than applying (16) directly, we will use transformations of
the generators of the form AS to get a proper form in which the row of the Cholesky factor
can be retrieved from (8) and in which (16) is guaranteed not to produce any significant
generator growth.

The result of these modifications is the following algorithm.

10

Algorithm 2 (Positive Definite Schur Algorithm) Let ng = n and let
Ay(H) = AJAT.
Let r be the last column of H. Start with C = 0.
1. While ng > 0:

2. Partition the current ng x 2 generator matrix A as

A— {an a12:|
Qo1 Q22
where aq; and aj are scalars.
3. Scale
AeAV?]
0 3

so that [AC, Dll = [AG, 2)|l.

4. Put the generators into proper form using an orthogonal transformation
AeAF_j
s ¢
so that after the transformation a;5 = 0 and a;; > 0.

5. Let

and

6. Update A and r by

R R e e A

a2 (2 : ng — 1) /ag(1)]

r(1)/(as2(1)an)

r%m@;mg—mn[

and let

ng4+ng—1. M

11

The fact that the algorithm computes C' such that H = CTC is easy to establish. Steps 3
and 4 apply transformations AS such that det(S) = 1 and SJS" = J. After step 4, we have
proper form generators for the current Schur complement. Thus (8) holds. Step 5 uses
this relation and the first element of r in an obvious way to get the complete first row
of the Cholesky factor of the current Schur complement. The update for A in step 6 is
just (16) applied to generators in proper form. The update for r is a direct application of
the expression for the last column of the Schur complement of H. The process proceeds
recursively on the Schur complement of H in the usual manner.

In practice, the complexity of the algorithm can be reduced by replacing the plane rotation

with

10 0 —1]|1 O

s
where the pivoting is done as needed to ensure that |I| < 1. The analysis of §4 suggests the
potential for an imbalance in the scaling of the columns of the generators, thus making the
normalization in step 3 necessary to ensure the stability of the plane rotation. However, in
practice this does not seem to occur very often if at all. The scaling does not seem to be
necessary for stability in most cases.

As presented, Algorithm 2 requires about 8.5n2 flops. Neglecting the norm computation
of Step 3, it requires approximately 6.5n% flops. If || - || is used rather than || - ||o for
the normalization, then the algorithm really can be implemented in 6.5n% flops, although
searches are required to find the largest element in each column of A. Replacing the plane
rotation with a pivoted lower triangular transformation reduces the computation further
to 4.5n? flops. Eliminating step 3 altogether gives an algorithm that runs in 3.5n? flops.
While all of these variations seem to have robust stability properties, none of them suggest
a means for deriving the simple and natural backward error bounds that can be found for
Algorithm 2.

4 Error Analysis

In this section we will give a proof of the numerical stability of Algorithm 2. We will show
that if C' is the computed Cholesky factor of H then

ICTC — H|| < ef (n)||H]|

where € is the machine precision and f(n) is a polynomial in n. Rather than specifying f(n)
exactly, we will simply verify the existence of such a bound.
We work with partitionings of the form

A= a] = [} (18)

Q21 A22

where ay; and a5 are scalars. More generally let A = A be the generator matrix for
H© = H and let A®) be the generator matrix for the Schur complement of H corresponding

12

to the partitioning (9) where Hi; is k x k. We assume that this Schur complement is a
computed quantity determined by the computed generators and last column produced by
Algorithm 2. We also assume that A®) is the generator matrix at the start of the iteration
prior to the application of the scaling in step 3. Thus A® is the initial unscaled generator
matrix with which the algorithm starts the factorization.

We will use superscripts to denote subvectors of A%®) according to (18) so that

w_[w w_ |a) af
AW = [al s] B FOREGIE (19)
Q91" Qg9

We also partition the last column of the Schur complement as

T (k) Tgk)
r = r) r — (k) .
2 To
The greater part of the work is in the analysis of a single generic iteration of the factorization.
The errors produced during this iteration can be bounded independent of k. Consequently,

through much of this section we will be able to drop the superscript (k).
The final bounds will be in terms of the norm

|l = mace [H (7,).

Unless otherwise noted, variables will refer to computed quantities. Exact versions of the
generators, a row of the Cholesky factor and the last column of the current Schur complement
will be written as A, ¢ and #. We will freely ignore O(€?) terms without noting the fact in each
equation. Subscripted variables €; always satisfy |¢;| < € where € is the machine precision. A
subscripted matrix D; will represent a diagonal matrix with elements satisfying

Let H;(A,r) be the operator taking A and r to the Hankel-like matrix defined uniquely
by the generator matrix A and the last column r. Thus

ZHy(Ar) — Hy(A,r)Z7 = AJAT

and [Hz(A,r)](1 : n,n) = r. The relation (6) which suffices to compute H from the dis-
placement, last column and first row shows that Hz(A,r) is uniquely defined.
An outline of the analysis is as follows.

1. We use an inductive argument to show that it is sufficient to analyze the stability of a
single step of the algorithm.

2. We give a suitable bound on the generators produced by each iteration of the algorithm.
If we are not too worried about achieving the tightest possible backward error bound,
we can write the generator bound in a way that does not depend on k. This makes it
possible to give bounds on a single step of elimination that are independent of k. To
simplify the notation by dropping k£ as an index and consider a generic, unspecified
iteration of the algorithm.

13

3. We show that small errors in the displacment and the last column correspond to small
errors in the Hankel-like matrices.

4. We show that the transformations in steps 3 and 4 produce proper form generators
corresponding to a Hankel-like matrix that is close to the Hankel-like matrix with which
the current iteration started.

5. We show that the computed generators of the Schur complement of H and the com-
puted row of the Cholesky factor are part of a stable factorization step. This completes
the induction, proving the stability of the algorithm.

4.1 Induction

Let ¢ be the computed first row of the Cholesky factor of H = Hz(A,r) and let Ag and g
be the computed generators and last column of the Schur complement of H. For the moment
we assume without proof that a single step of Algorithm 2 on a positive definite Hankel-like
matrix of size n gives

T 0 0 g
cct + [O HZ(AS,TS)] H=F (20)

where [|E||,, < efi(n)||H||» for some polynomial f;(n) and where Ag and rg are the com-
puted generators and last column of the Schur complement of H. If Algorithm 2 continues
recursively to compute Cyg such that

OSTOS - Hz(AS,TS) == ES

then
T 0 0 T 0 0
cc + [0 CECS] H=F+ [0 Es]'
Since
fe(1) e(2:n)T
o= | B
we have
T 0 0
c c H—E+{0 ES]'
Define
fn)=fn—=1+ fi(n), f(1)=2 (21)
so that

and f(n) is a polynomial in n. Note that if H is 1 x 1 then r(1) = H and ¢ = (1 + ¢,)vVH.
Thus for the 1 x 1 case

ICTC = Hllm = |¢* — H| = 26, |H]
or
ICTC = Hll < ef(1)|[Hllm.
Inductively, if
|Es|lm < €f(n = D[[Hz(As,r5)|lm < €f(n = 1)[[H||m

then

0 0
o= <
67 = < 181+ | [0 5]

< efi()|[H|[m +ef(n = DI[H|[m = ef (0)[[H||m-

m

Thus to show that Algorithm 2 is stable, it suffices to show that (20) holds for some poly-
nomial fi(n).

4.2 Bounding the Generators

We have already seen with Example 1 that generator growth has the potential to cause
instability in a Schur-type algorithm. Neither the scaling in step 3 nor the plane rotation in
step 4 can cause a problem. There is potential for growth only in step 6. However, we will
show that if it does occur it will be harmless. While there is no obvious and direct way to
bound ||A]| produced by step 6, it is easy to show that if we do get a large value for ||A]|, it
will be purely a result of poor scaling. The rescaling in step 3 will always reduce ||A]| to a
managable size in the next iteration without harming the stability of the factorization.

To make this more precise, we will show that none of the transformations in Algorithm 2
can significantly increase

laill2 - ||az|l2-

If this quantity is not very large, then the scaling in step 3 will reduce ||A|| to a reasonable
magnitude.
The following lemma refers to exact rather than computed quantities.

Lemma 1 For A®) at the beginning of an iteration in Algorithm 2
k k 0 0
1l - las™ e < llai” Iz - lag” la + 1C(L < &,)15
where CTC = H is the Cholesky factorization of H.

Proof: The proof is by induction. Trivially, we see that the inequality holds for £ = 0 at
the start of the first iteration of the algorithm. Assume that

k—1 k—1 0 0
1a o - lad Nl < a2 - la |2 + [|C(1 : k = 1,2)]2.

15

The scaling in step 3 does not change this quantity. After the scaling
ot Plle = flas" VL2

If dgkil) and dékil) denote the generator vectors after the application of the rotation in step 4
then

(k=1 (k=1 D\ " k-1 k—1
laf "3 afNE = (cal) (cal ™+ saf V) -

(sagk_

) -1\ " (k=1) | a(k=1)
+ cay —say + cay
= (a2 (a0) a0
(et = 205 (7))

- ||a§’“>||3—4c282((a5’“ ”))

< a3 SV

Finally, we consider the update to compute A*). We have
(k) _ ~(k—1)

1)
_Sagkq
(k

Qg " = Qg9
and
~(k—1 ~(k—1
o) = alf) a2 e)
™ [(ay; “asy (1))
Thus
S(b=1) || [ak=1) (o . ?
k k (k=1 a a 2:n—k
a1l - o < e - o™l + - | %2, 2 2 1)
22 (1) Ty aqq)

However since the plane rotation puts the generators in proper form
k—1 ~(k—1) A (k=1
H*D(1,1) = a4y Vag, ™" (1)

and

1 ~(k—1) ~(k—1 k—1
C(k,k+1:n):\/A(k_1)A(k_1) ; a! ValkV@ . n— k) Y

ap Qg9 (1
so that

laSs Iz - llass Iz + 1O (k,k + 1 n)]13

la%s V2 - lla%s Vlls + [1C (kb + 12 n) |3

1a”[lo - la |, + CQ k=1,)|% + 1Ok, k +1 2 n)|[3
1ai” 12 - fla$” |, + €1 &,)3 m

k k
a2 - las” 2

VAN VAN VAN

16

As we have noted, strictly speaking these bounds hold only in the absence of numerical
errors. However, since our interest in bounding the generators is to bound terms that are
O(e||A||), the difference caused by neglecting numerical errors in a bound on || 4] is O(€?)
in the final backward error bound. We will apply the bound to the computed generators
without further comment on these second order errors.

4.3 Errors on the Generators

We start with a simple lemma relating errors in the displacement Az (H) and the last column
r to errors in H.

Lemma 2 If
BJBT — AJAT = E, s—r=f
then

n
1H2(B, 5) = Hz(A, 1) lm < S| Ellm + || fllm-

Proof: We have already noted that Hz(A,r) is well defined and gives a unique Hankel-like
matrix. The first row and last column of the Hankel-like matrix H are determined uniquely
by its generators A and its last column r. Let

G = Hz(B,s), H = Hz(A,r).
If
A = AJAT = Ay(H), T := BJBT = Ay(G)
then
Hi;jo1n=Hi_1;— A (22)

implies that H is determined by A and r and H is determined by A and #. We have
|A;; — Tyj| < ||E||sm for each i and j and |s; — 75| <||f]|m for each i. From (22), we have

Gijo1—Hij1=Gio1;— Hij;—Uij+ Ay
so that

|Gij1 — Hija| <1Giay — Hiogl + | Ellm
and

|Gi—1j — Hiz1] <Gijor — Hijoa| + | Ellm
These relations together with

IGL1:in—1)—HLlin— D= GA:n—1,1)— HL:n—1,1)|n < |E|m

17

and
IG(1:n,n) — H(L:n,n)|lm = [|G(n,1:n) — H(n,1:n)||ln < || flln-
show that

n
|G = Hllm < SI1Elm + 11 llm-

The proof of this is simply a matter of using the bounds on the last row and column and
first row and column of G — H as boundary conditions and applying the worst case of the
above inequality recurrences by assuming that they turn out to be equalities. The factor n/2
comes from using the recurrence that gives the lowest bound for a given element of G — H.
The element with the largest bound appears roughly in the center of the matrix (depending
on whether n is even or odd). m

4.4 Backward Error Analysis of the Transformations
For any iteration k of Algorithm 2
k k 0 0
a2l - llas”lle < llai™ 12 - llas” 1o + 113 (23)

This bound is independent of k. Since our goal is to prove a bound of the form (20) without
worrying too much about constants, we analyze a generic iteration of the algorithm for some
k using (23). We drop the superscripts by letting generators A = A®) and r = r*). We let
H = HZ (A, 7”).

In particular, in this section, we will analyze the stability of steps 3 and 4. We will
show that these steps result in generators A (after step 3) and A (after step 4) for which
|Hz(A,7) — H|| and ||Hz (A, r) — H||, are small.

For step 3

A=1([dai 1as]) = [(I+eDi)ard (I+ eDy)kas]
where d is the computed quantity. Thus
AJAT = AJAT — eDlalag + eagalTDl — eala;FDg + eDzagalT.
Using Lemma 1
P 0 0
|A7AT — 4747 < de (11al” alla” 2 + 1C1E) - (24)

Lemma 2 implies that

A
| 3Io| S

1Hz(A,7) = Hllm

AJAT - AJATH

IN

AJAT - AJATH
F

IN

0 0
2ne (|laf” 2 lla$” 12 + C1%) -

18

From basic results on the application of plane rotations, [17], we have

R O

Q21 Q22 Q21 QAz2| |S C

for some ¢ and s satisfying ¢? + s> = 1 and with E satisfying

1E]|r < 6¢l|Al|p.
Consequently
AJAT = AJAT + EJAT + AJET + O(¢?)
and
HAJAT - AJATHF < 12¢|| A
Thus
IHy (A, 1) — Hy(A, 1)l < g HAJAT - AJATHm
< 2 asa],
< 6nel| Al
< 12n¢ (Jlol” lofjafll2 + [IC13)

The last inequality follows from the fact that after step 3
la1]l2 = llaz]| + O(e).
Combining these inequalities we get

| (A,7) = Hllm < 14ne ([0 [al]a8” > + IC113) (26)

4.5 Computing the Schur Complement

After step 4 we have proper form generators

e
Q21 Q22

where @, is a scalar. Consider the exact first row ¢ of the Cholesky factor of Hz(fl, r) and
the corresponding computed quantity c¢. We have

(I + 3€D3)&22 &il(ll) o
c= (1+ 3¢,) 2 = ¢+ 3eDye.
1) ——

a11a22(1)

19

Thus

~ 0 0
Hz (A1) —cc' = [f‘v[s] + Ey (27)

where || Ey||r < 6€||c||2 and where Hyg is the exact Schur complement of H(A,r).
Given computed Ag and rg defined by

o= ([on - [0)

_ [(I +€Ds) <&21 — @ (I + 2¢Ds) {622(7“21/:(22;(32?12)2(1)]> d”]

and

O Tt ial)

= ey (mnr2emy) (0007])

we seek a bound on |Hs — Hy(Ag,rs)||. If Ag and g are the exact quantities computed
from A and r then

AgJAL = AgJAL — eDsAg(:,1)ad, + et As(:, 1) D5 —
2¢Dgc(2:n)e(l:n — 1) +2ec(1:n —1)c(2 : n)" Ds.

Consequently using Lemma 1
|4s7A4% — AsJ A%llp < 6e (lal” 2 - a2 + ICII3) (28)
Turning to the computation of rg we have

rs = ’FS + €D77”S — 27”16DSC(2 . n)/c(l)
= 7\’{5 + 6D7T5’ + 2€D8(T5' — Tg)

so that
Irs — Fslla < 3el|rslz + 2€l|r|| < 5el|H]|» < 5€||C|7. (29)

Thus from Lemma 2 we get

|fs = Hz(As,rs)llm < Sl AsTAS = AsAG]l + s = 75lm
< 3nel|la” |l - [|a]2 + 3n + 5)e[|C[2. (30)
We can write
v [0 0 B o .
« *[0 Ho(Ag,rs)] ~H| S MH2AD) = Hll + 1 Hs = Hz(As,r5)lln +
0 0 .
cc’ + [O ﬁs] — Hz(A,7) i

20

to get a bound for (20) in terms of quantities that we have already bounded. Using (26),
(27) and (30) we get

0 0 0 0
e + [0 HZ(AS,TSJ ‘HH < (1T +8)d|C; + 17nel|ay” |||y’ |
< (170 + 8)n® ¢l H]|m + 17n¢]|at” |22
< (1702 + 802+ 17n) €||H ||

where the last inequality follows by assuming that a§°) and ag]) are chosen according to (3).

Given the previous discussion of the induction step this is sufficient to prove the stability of
the algorithm. By defining

fin) = (1702 4 80/ + 17n)
and

a . o , B 67 67

j=2 J=2
we immediately get the following theorem.

Theorem 1 Let C' be computed by Algorithm 2 from initial generators of the form (8). Then

17 67 67
|CTC — H||,, < (anl + an - 40) €|l H||m-

5 More on the Look-Ahead Algorithm

When implemented with a stable method for inverting H;;, Algorithm 1 forms the basis
of a look-ahead algorithm. However, it is not complete. Further refinements are necessary
for efficient implementation. To see why let H represent a Schur complement at some
generic iteration of Algorithm 1 and consider the block partitioning (9). To determine an
appropriate look-ahead step we try to choose Hy; to be m x m with ||H;' H3; || of moderate
size. Estimating this norm for each possible size of Hy; until an appropriate look-ahead step
size is found can be costly. If the search were implemented in a naive manner the algorithm
would have to invert H;; for each tested step size. If the algorithm required look-ahead step
sizes that were some significant fraction of n, the resulting algorithm could require O(n?)
flops.

Fortunately, it is possible to guarantee that even in the worst case the number of required
computations is O(n?) with O(n?) being more typical if the look-ahead step size can be
bounded independent of n. The method uses the fact that for a displacement rank 2 Hankel-
like matrix, H;;' Hy, is Toeplitz-like with displacement rank 3. To demonstrate and exploit
this fact, we use a general theorem describing a single step of a Schur algorithm for a
rectangular matrix containing both Toeplitz-like and Hankel-like blocks.

21

Theorem 2 For
H
K- _T]
consider the mixed Toeplitz-Hankel displacement equation

ZTL 0 [TL 0- T B T
AL A L e

where all the matrices are real, H is n X n and symmetric, T is m Xn, Z, and Z,, are n X n
and m X m shift matrices and Jyr is a general matriz that may include both a symmetric

and a skew-symmetric component. Assume that H(1,1) # 0. Let

hiy h%}
H=
{hm Hy |’

T: [tl TQ] 3

by
2=

and

where b and d are row vectors. Also let

Hy L thot| 1
Kg = - — h
S [T5] hi1 [| H
so that Kg is the Schur complement of K. If
1

BS:BQ—h
11

hZIbFlI‘a

1
Dg =D — —Znt,bl

hiy
and
1 T
Gg =Gy — h—h2191 ’
11
then

Zn1 0 I,, 0 B
{ . 1 [] Ko — { 01 Zm] KeZ' | = {Dﬂ JurGe

where Z, 1 is a (n — 1) x (n — 1) shift matriz.

22

(31)

(32)

(33)

Proof: The proof is by direct verifcation that the displacement of Kg has the required
factorization. Note that H is Hankel-like. If we start with the factorization Z,H — HZ, =
BJgrG" instead of Z,H — HZ,, = AJA" then as before (11) shows that

1 1
Zn—1 (H22 - h—nh21h51> - <H22 - h—nh21h51> Zn-1 = BsJurGy

whatever the choice of Jgr. Thus if we define

1
TS — T2 - h—tlh;17
11

it is sufficient to verify that

Ts — ZnTsZ) | = DsJprGe.

Since
DIgrGY = [ty]~ Zu[t T] | o = [t Tp— ZnTaZE_| = Zntie]]
HT 1 42 m |11 QOZE_I 1 12 mlady, 4 ml1€y
we have
Ty — ZpToZ) | = DJyrGy + Zptiel .
Consequently
1 1
Ts — ZnTsZ' | = DJgpGy + Zntie] + —Zntihg Zr | — —t1ha,
hi1 hiy
1 1
= DJHTGE + — (thl [hu hgl(]_ . n— 2)T]) - —t1h31-
hll hll
From the displacement equation ¢; = DJyrg,. Since the first row of Z,H is zero the

displacement also gives

b;FJHTGT = — [hu h21(1 n— 2)T] .

Thus
1 1
Ts — ZnTsZ' | = DJgpGy — h—thlblTJHTGQT — h—DJHTgthTl
11 11
1 1
= <D — —th1b1T> Jur (Gg — —glh’;)
hll hll

where the last equality follows because the skew-symmetry of Z,H — HZ! implies that
bFlI‘JHTgl =0.m

Given a Hankel-like matrix H obtained as a Schur complement at some iteration in
Algorithm 1 and partitioned as in (9), Theorem 2 gives a Schur algorithm for the matrix

H,, Hy 17
K = H21 H22 = |:T:| .
I, 0

23

If Hq; is m x m then after m steps of elimination on this matrix we have a Schur complement

(34)

KS _ |:H22 - HQIHHIHZTI] .

—Hiy Hj
Suppose that
Z,H—-HZI = AJAT

_ A
2= 3]
where A; has m rows. Then the matrix K satisfies

7 0 o A JAT A JAT
{" }K— {" }KZEZ Ao JAT AyJAT| = {—} JurG’

for

0 I, 0 Zn, ereT 0 D
where
B = [A On,l] y D = [Om,g 61] y G = [A 61]
and
0 -1 0
Jgr=11 0 0
0 0 1

Although the Kg shown in (34) is not the same as the one in Theorem 2 in which Hy; is
assumed to be 1 x 1, we can obtain generators for (34) by recursive application of (31), (32)
and (33). This gives generators Bg, Dgs and Gg for the displacement

Bs] o v _ [Zow O] [Hz—HuH,'HY]
Dg| 7HTH'S 0 Iy —H{'Hj;

I, O Hyy — H21Hﬂ1H2T1 T
2147 /i
0 Zm —H, Hy n-m

Thus
H'H}, — 7, H'Hy 7" = —DgJyrGe (35)

and clearly H;,'HJ, is a Toeplitz like matrix with displacement rank 3. The displacement
operator is invertible with the inverse given by the formula

min(m—1,n—m—1)
Hi'Hy = Y —(Zh)DsunGi(Zim)". (36)

=0

The following algorithm computes generators for H,," Hy;.

24

Algorithm 3 For n x n H satisfying Z,H — HZ! = AJA", start with
B=[4 0], D=[0ns e], G=[A ¢]
and let r be the last column of H. For j =1,2,... ,m:
1. For B, D and G partitioned as in Theorem 2, compute hy; and hoy from
hi = —bi JurGo(2,:)"
and
hor(Lin—j —1) = =b JurGo(3:n—j+1,)", ha(n—j) =r(1).
Thus hs; is a vector of length n — 5. Compute ¢, from

t1 = DsJurg:.

2. Update B, D and G using (31), (32) and (33).

3. Update r using

1
r<r(2:n—j+1)— h—hng(l).
1

4. Let j <~ j+ 1 and go to 1.

At the end of this process we have D and G satisfying (35). The matrix H,,' H}, can be
obtained from (36). m

To estimate a step size for which ||H,,' H}|| is suitably small, we can apply Algorithm 3
until a suitable step size is found. Clearly each element of A := DJy7G' can be computed
in a number of flops that depends on the displacement rank and not on n or m. At each
iteration of Algorithm 3, the matrix T := H;;' H}, can be computed in O(mn) flops using
the relation

Tij=Ai+Tiy
which is satisfied by any matrix 7" such that
T-7,TZ' = =A.

Thus, even if the final look-ahead step size is m = n — 1, the extra computation involved in
computing T for each iteration of Algorithm 3 is O(n?).

25

6 General Hankel-like Matrices

Consider the case in which the displacement Az (H) = ZH — HZ" has higher rank. In §2,
we verified that if Az(H) has rank equal to 2 then it has a decompositon of the form (2).
The following theorem shows that a similar decomposition is possible in the more general
case.

Theorem 3 Let A be a real, skew-symmetric n x n matriz with r = rank(A) > 0. Then A
has the following factorization.

A=[B;y By -+ By . : (37)

where the B; are real n X 2 matrices.

Proof: The decomposition can be constructed using a skew-symmetric Gaussian elimination
procedure with 2 x 2 pivots of the form

0 —d
b 0]

Further details may be found in [5]. m

If the displacement Ay (H) is available, it is possible to use r/2 steps of the skew-
symmetric elimination procedure of [5] to get a low rank factorization of this form. However,
because of potential sensitivity in the Schur complement to be truncated, [9], it is important
to use a complete pivoting strategy.

It is easy to show that there exists a permutation P such that

J
pl 7 pr=| 0 “hel_y
T Ir/? 0 '
J
Thus Theorem 3 implies that for any real skew-symmetric A of rank r there exists a matrix
A= [Al AQ]
where A; and A, are n X 7 matrices satisfying

Ay (H) = AJ AT,

Note that this notation is different from the notation of (10).

26

6.1 Factorization Algorithms

We partition H as (9) and let

Ay A
=[]

If Hg = Hyy — HyyH;' H), then the arguments from §3 show that
Ay (Hs) = AgJ, AS
where
As = [A21 — Hy Hy ' Ay Agy — Hy Hiy Ay] . (38)

It is possible to compute Hy; and Hy; from A using (6). Thus Algorithm 1 can be adapted
to an arbitrary displacement rank by using (38) in step 5 instead of (13). As before, this is
potentially unstable; a small perturbation to the matrix from Example 1 can be chosen to
give a displacement rank 4 Hankel-like matrix for which the modified version of Algorithm 1
fails. All of the results of §5 apply to the larger displacement rank case by adding extra .J
blocks to Jyr. Consequently a completely general look-ahead algorithm is not significantly
different from the displacement rank 2 version.

As before, it is possible to get a provably stable algorithm for the positive definite case.
In extending Algorithm 2, we note that any transformation S for which S.J,ST = .J, may
be applied to A to get an equivalent set of generators A = AS such that Az (H) = AJ AT
The set of matrices satisfying S.J,ST = J, are known as symplectic matrices. In order to
prevent any possibility of generator growth, we will make use of the group of real orthogonal
symplectic transformations

_QIZ Qll

It is trivial to verify that any matrix of the specified form is both orthogonal and symplectic.
Such matrices have applications in the study of Hamiltonian eigenvalue problems [11, 6].

Following [11], we introduce two types of elementary orthogonal symplectic matrices.
The first is the Householder symplectic matrix of the form

{aerrio=| % 32 070-1.uQueri).

R’ 0
mu= {5
where
2uut
R, =1 — .
! uTu

The second is the Jacobi symplectic rotation of the form

G S
nel el

27

where €7 and S are 5 X 5 diagonal matrices of the form
Cy =diag(l,...,1,¢1,...,1), S1 = diag(0,...,0,s,0...0)
SN—— N——
k—1 k—1

with real ¢ and s satisfying ¢ +s? = 1. These elementary transformations may be computed
to zero elements in a vector. In particular

‘R, O c, S R
[JST yT] _01 R1:| [_51'1 C'll] = [SUT 0]

if y"Ry = |lylle] and

C S

[xTRl(:,T/Q) ||y||] s c] = [\/(xTRl(:,r/Q))2+||y||2 0].

If 2"Ry = ||Z||e] then
R, 0 Ci S| |R: O
I+ [€F 0] = [T 47 ' St I e
[+ lyl* [ei 0] = [«7 o] [0 R1] [—Sl 01] [0 Rz]'

The usual methods for computing plane rotations and Householder transformations, [7],
ensure that these relations hold and that the transformations are numerically stable in a
sense that is a direct generalization of (25). We will shortly have more to say on the stability
of the transformations.

By substituting this combination of transformations for the single rotation of Algorithm 2,
we get the following algorithm.

Algorithm 4 (Positive definite Hankel-like Schur Algorithm) Start with A; and A,
such that

AT
2
Let r be the last column of H. Let ng =n and C' = 0.
1. While ng > 0:

2. Let the current ng X r generator matrix A be partitioned as

T T

Al A1 = 11 Q9 | A13 Ay
1 2| = A A
21 22 | Q23 24

where a;; and a3 are scalars and al, and a}, are both length 7/2 — 1 row vectors.

3. Scale
1
AI(I,]_) %dAl(I,]_), Ag(l,l) — aAQ(l,].)
where d is chosen so that ||A1(:, 1)]|2 = [|42(:,1)]]2-

28

4. Put the generators into proper form using a symplectic orthogonal transformation of
the form

P o][C S][P 0
vealld o] 1S el [0 al

so that after the transformation

A= a1l 0 0 0
ag1 Agg | A Ag
with ap > 0.
5. Let
Cn—ns+1l,n—ng+1:n—-1)« aal(ll)ag?,
23
and
1
C(n—ng+1,n) rd)
011023(1)
6. Update A and r by
Cl23(2 ‘Ng — 1)/@23(1)] :|
A« - A A
{am a11 [r(l)/(agg,(l)au) 22 | A23 24

: az3(2 : ns — 1)/az(1)
r«r(2:ng)—r(l) [r(1)/(azs(1)ar)]

and let

ng < ng—1. 1

Verifying that Algorithm 4 computes C such that CTC = H is not substantially different
from the verification of Algorithm 2. Steps 3 and 4 apply orthogonal symplectic transforma-
tions AS such that S.J,ST = J,. After step 4, the generators are in proper form. Using the
obvious generalization of (7)

H(1,1:n—1) = —ajja9,

and the first element of r we get the expressions for the first row of the Cholesky factor of
the current Schur complement. The update for A in step 6 is just (38) applied to generators
in proper form. The update for r is the same as in Algorithm 2. The process then proceeds
recursively on the Schur complement of H in the usual manner.

29

6.2 Stability

The analysis of Algorithm 4 is a straightforward generalization of the analysis in §4. In

particular if Hz(A,r) is the inverse displacement operator in the higher displacement rank

case, the same inductive argument shows that if (20) holds then the algorithm is stable.
Lemma 1 can also be adapted to Algorithm 4.

Lemma 3 Let A% be the generator matriz after the scaling of step 3 in iteration k of
Algorithm 4. (i.e. the initial generator matriz is A and the matriz generated by application

k of step 8 is A®)). Then

IA®NE < AW + 2ll0(

IAQ)E +2]C(1

— 1)l

<
< — 1,95

where CTC = H is the Cholesky factorization of H.

Proof: We consider the effects of steps 3, 4 and 6 on ||A||F We have defined A®) as being
the matrix occuring after the scaling of step 3. Let A® be the generator matrix after step 4
and A® be the shorter generator matrix after step 6. Since the algorithm uses an orthogonal
symplectic transformation, step 4 does not change the norm. Thus

1AW | = [| AW .

We consider the combination of step 6 with the scaling of step 3 in the next iteration. After
step 4, the generators are in proper form. The arguments from Lemma 1 show that

1A D LIAR G)]l < qﬁ G2 - AL G)2 + IO (K,)12
< SUAPE DI+ 1A C DIE) + 105

Since [|AFTV (1)l = |AY TV (:,1)||2 this implies that

AT DI+ 145V DIE = 2||Ak“(Dl - ||Ak“(Dll2
= 2 AP G Dl - 1457 ¢ D)2
< AP DI+ 1A G DI + 210 R, 23

Since steps 3 and 6 act only on these two columns

[A®DIE < NAP)E + 20K,)3

<
< [JAWNE + 21Ok,) 5.
The second inequality follows from the easily verified fact that step 3 cannot increase the
Frobenius norm of the generator matrix. The lemma follows inductively. =

We keep the notation A and A defined in the proof of the lemma and letting r and 7
be the last column of the matrix defined at the corresponding steps of the algorithm. Since

30

step 3 operates on only two columns of A, it can be shown using the error expansion used
to show (24) that

HA(’““)JT (A" f0) (A<k>)T < e Al)| [l
F 2 2
< el ARV
< e (JAQYE + 2101k)1E) -
Lemma 2 implies that
HHZ (AG+D)y _ pp, (A(k),f(kJrl)) H < 2ne (JAQ|2 + 2| C)I2) . (39)

Basic results on the application of plane rotations and Householder transformations from
[17] give

< cef AT
F

HA(kJrl)JT (A(kJrl))T _ AU g (A(k+1))T

where ¢ is a constant. Thus

~ Cc
| Fz (A0, p640) = py (4040 60) | < Ze (JAQIE 4 2IC3) . (40)

m

Step 6 changes only two vectors, » and A. Further, the update only uses information
from three vectors: A;(:,1), As(:,1) and r. This is identical to the computation analyzed in
§4.5. The arguments apply without modification to show that

| s = 7 (A0, 7)) < 3nel AOYE + (30 + 5)el| 1 (41)

where Hy is the exact Schur complement of HZ(A(’““), r(k“)). Since the generators are in
proper form after step 4, (27) applies with A®+D) taking the place of A. Using (39), (40),
(41) and (27) and assuming that ||A®]2 is not too much larger than || H|| gives an inequality
of the form (20). The inductive argument of §4.1 then applies to show that Algorithm 4 is
stable.

7 Conclusions

We have described displacement structure algorithms for the factorization of Hankel-like
matrices. The algorithms for positive definite matrices use orthogonal symplectic transfor-
mations and admit a reasonably straightforward error analysis when a scaling step is used
to prevent a potential imbalance in the scaling of the generator column vectors. We have
not been able to show that this scaling step is necessary for stability; in practice it can often
be skipped without introducing excessive backward errors.

The algorithm for indefinite matrices uses a very simple look-ahead step that follows
easily from the displacement formulation. The approach is much simpler than others that

31

have been proposed in the literature. We have also suggested the size of |[Hj'Hy|| as
a criterion for choosing a look-ahead step size and shown how to estimate this quantity
efficiently using a Schur algorithm for a mixed Hankel-Toeplitz displacement. Experiments
suggest that controlling the size of this quantity is sufficient to get stability. Results on block
Gaussian elimination suggest that this is also likely to be necessary for stability.

References

1]
2]

[10]

[11]

[12]

E. R. Berlekamp. Algebraic Coding Theory. McGraw-Hill, New York, 1968.

A. W. Bojanczyk, R. P. Brent, F. R. De Hoog, and D. R. Sweet. On the stability of
the Bareiss and related Toeplitz factorization algorithms. SIAM J. Matriz Anal. Appl.,
16:40-57, 1995.

A. W. Bojanczyk and G. Heinig. A multi-step algorithm for Hankel matrices. Journal
of Complezity, 10:142—-164, 1994.

R. P. Brent, F. G. Gustavson, and D. Y. Y. Yun. Fast solution of Toeplitz systems of
equations and computation of Padé approximants. Journal of Algorithms, 1:259-295,
1980.

J. R. Bunch. A note on the stable decomposition of skew symmetric matrices. Mathe-
matics of Computation, 158:475—-480, 1982.

R. Byers. A Hamiltonian QR algorithm. SIAM Journal on Scientific and Statistical
Computing, 7:212-229, 1986.

G. H. Golub and C. F. Van Loan. Matrixz Computations. Johns Hopkins University
Press, Baltimore, Maryland, 3nd edition, 1996.

M. H. Gutknecht. Stable row recurrences for the Padé table and generically superfast
look-ahead solvers for non-hermitian Toeplitz systems. Research Report 92-14, Inter-
disciplinary Project Center for Supercomputing, Eidgendossische Technische Hochschule
Ziiich, 1992.

N. J. Higham. Analysis of the Cholesky decomposition of a semi-definite matrix. In
M. G. Cox and S. J. Hammarling, editors, Reliable Numerical Computation. Oxford
University Press, 1989.

N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia,
1996.

C. C. Paige and C. Van Loan. A Schur decomposition for Hamiltonian matrices. Linear
Algebra and its Applications, 41:11-32, 1981.

D. Pal and T. Kailath. Fast triangular factorization and inversion of Hankel and related
matrices with arbitrary rank profile. SIAM Journal on Matriz Analysis and Applica-
tions, 15:451-478, 1994.

32

[13] J. L. Phillips. The triangular decomposition of Hankel matrices. Mathematics of Com-
putation, 25:599-602, 1971.

[14] J. Rissanen. Algorithms for triangular decomposition of block Hankel and Toeplitz

matrices with application to factoring positive matrix polynomials. Mathematics of
Computation, 27:147-154, 1973.

[15] W. F. Trench. An algorithm for inversion of finite Hankel matrices. J. STAM, 13:1102—
1107, 1965.

[16] E. Tyrtyshnikov. How bad are Hankel matrices? Numerische Mathematik, 67:261-269,
1994.

[17] J. H. Wilkinson. The Algebraic Eigenvalue Problem. Clarendon Press, Oxford, England,
1965.

33

