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Abstract:  
 
Current models of the cochlea are almost invariably based on a traveling wave set up on the 

partition by a pressure difference across it, a von Békésy-style picture in which the pressure 

common to both sides – the common-mode pressure – is ignored. But here the speculation is made 

that the sensing elements – the outer hair cells – respond to common-mode pressure in a way that 

creates reverberating wave activity between the cells and produces an active amplifying system 

analogous to a surface acoustic wave (SAW) resonator. In particular, the three rows of outer hair 

cells appear to act like the interdigital electrodes of a SAW resonator so that, through their 

combined motile responses to intracochlear fluid pressure, they impart slow ripples of very short 

wavelength – tens of micrometres – to the undersurface of the gelatinous tectorial membrane 

immediately above. A repeated cycle of sensing ripples and executing motile responses to them 

creates reverberation between the rows, establishing a virtual resonant cavity with inherent positive 

feedback, amplification, and high Q – characteristics that underlie the cochlear amplifier. Also 

emerging naturally from such a local interaction on the partition are spontaneous, evoked, and 

distortion-product emissions, the profile of the cochlear tuning curve, and, perhaps, even musical 

properties. Differential pressure is seen to have an effect, but again it is localised. Oscillating 

differential pressure, at moderate intensities, moves the tectorial membrane up and down, a motion 

that creates a second ripple source at the point where the jelly-like membrane contacts the hard edge 

of the vestibular lip. The slow ripples emanating from this interaction produce cycles of delay at the 

inner hair cell which emulate delays attributed to the conventional traveling wave; moreover, 

interaction between the two sources provides a straightforward account of peak-splitting and 

interference notches. Thus, using some novel but not physically unreasonable assumptions, a 

comprehensive, consistent, and place-specific account of cochlear mechanics – in many ways akin 

to von Helmholtz’s resonance theory of hearing – can be given without recourse to the usual 

traveling wave.  

[2] 



 

I. INTRODUCTION 
 
Notwithstanding the immense diversity of cochlear models that have been put forward, almost all 

current approaches are based on models of a traveling wave as developed by von Békésy (von 

Békésy, 1964; for reviews focusing on the physics involved see de Boer, 1980, 1984, 1991; Allen, 

1980; Patuzzi, 1996).  

 

Traveling wave models have been more or less successful in capturing the major features of 

cochlear behaviour, but they do experience difficulties in accounting for active behaviour at low 

sound pressure levels (Kolston, 2000), a region in which the ‘cochlear amplifier’ (Davis, 1983) is 

called upon to improve gain and tuning. The basis of the cochlear amplifier is clearly connected 

with the active properties of outer hair cells (OHCs), but its mode of operation is still the subject of 

debate. This paper offers a speculative alternative to standard traveling wave theory. Whereas it 

does not seek to give a systematic critique of traveling wave theory, one striking property of the 

cochlea is noted: that zero-crossings of its impulse response stay firmly fixed, in the time domain, 

over almost the entire dynamic range of hearing. On this basis, Shera (2001) concluded that there 

were contradictions in many, if not most, cochlear models. Likewise, de Boer (2003) noted the 

difficulty of formulating a satisfactory time-domain model and suggested that “non-causal” factors 

were at work. 

 

The focus here is to construct a physical interpretation of the cochlear amplifier based on 

cooperative activity of neighbouring OHCs in response to common-mode pressure, an approach that 

puts aside the traveling wave and instead draws on resonance for its operation. In brief, this paper 
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conjectures that the cochlear amplifier functions in a manner analogous to the surface acoustic wave 

(SAW) resonator familiar in solid-state electronics (Campbell, 1998). The rows of OHCs are the 

analogue of the interdigital electrodes, and their complementary fast motile responses to 

intracochlear fluid pressure – alternating rows of in-phase and anti-phase responses – generate slow, 

short-wavelength surface waves on the tectorial membrane (TM) which are then communicated to 

nearby inner hair cells (IHCs). The motile response to pressure results from a supposed primary 

pressure-sensing function of the body of the OHC; their stereocilia are seen as secondary feedback 

elements: when a ripple is generated by one OHC in response to pressure, a neighbouring OHC can 

sense it via deflection of its stereocilia, and again a ripple-generating motile response ensues. The 

process repeats, producing reverberation of ripples between the ‘electrodes’, a scheme which 

provides feedback and amplification.  

 

Most of the conjectural model is specified physically, except that the exact form of the slow wave 

that conveys feedback between the three OHC rows (via the TM) is uncertain, although a surface-

borne shear wave of some kind would be most likely. The mechanical properties of the TM are not 

sufficiently documented to allow exact calculation and mathematical modelling, and this remains a 

major limitation of the model at this point. Nevertheless, the ability of the model to provide an 

alternative, consistent, and reasonably complete account of cochlear mechanics – without use of the 

usual traveling wave – is such as to make an account here worthwhile. 

 

The paper uses as its starting point a marked similarity between the physical construction of the 

cochlea and that of SAW resonators. If the parallel is accepted, then the behaviour of the cochlea 

can be predicted from known physical properties of the electronic device. On this basis, the 
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expected behaviour of the model accords well with the known characteristics of the cochlea, and it 

reproduces, at least at a descriptive level, major features of cochlear functioning such as properties 

of spontaneous and evoked otoacoustic emissions and the shape of the cochlear tuning curve.  

 

An elaboration of the model is developed which describes cochlear behaviour at higher intensities 

(60–80 dB SPL and above), levels where the cochlear amplifier becomes saturated. Here, a second 

speculation is made: that differential forces become sufficiently large that the amplitude of up-and-

down movement of the whole partition exceeds the amplitude of local OHC-generated ripples. 

However, as will be explained, cochlear mechanics can still be well described without calling on the 

conventional traveling wave; instead a second, passive, source of ripples can be identified. 

 

In both cases, the ripples are localised and predominantly radial – that is, orthogonal to the direction 

of the usual von Békésy traveling wave, which is from base to apex. 

 

II. GENERAL DESCRIPTION OF THE MODEL 

 

The model takes as its basis the generally accepted view that OHCs are the underlying active 

elements of the cochlear amplifier (e.g., Patuzzi, 1996). Since the discovery of OHC motility by 

Brownell et al. (1985), the puzzle has been to understand how the cells perform amplification with 

appropriate gain and feedback to produce a sharply tuned system at each point of the cochlear 

partition. The approach taken here is to invert the usually accepted causal chain: instead of motion 

of the partition stimulating OHCs, the suggestion is that OHCs are exquisitely sensitive pressure 
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sensors, so that – through their active pressure-to-movement response to sound-induced 

intracochlear fluid pressure – they cause localised motion of the partition. That is, at sound pressure 

levels near threshold, OHCs require no partition motion – no traveling wave – in order to be 

stimulated. Literature-derived evidence for the pressure-sensing ability of OHCs is presented later.  

 

The model now builds on a remarkable fact: in all higher animals, including humans, OHCs lie in 

three (or more) closely defined rows. An example from a rabbit cochlea is shown in Fig. 1. No 

explanation has been offered for this regular arrangement. This paper provides a rationale, with the 

SAW model relying on the precise geometrical arrangement of OHCs into rows, each row 

effectively forming the interdigital electrode of a SAW resonator. SAW devices are electronic 

signal-processing modules in which finger-like electrodes are interleaved on the surface of a 

piezoelectric substrate to create slow electromechanical ripples of wavelength equal to the 

periodicity of the interdigital electrodes (Fig. 2), and, as will be pointed out, SAW resonators bear a 

number of other structural similarities with the organ of Corti. 

 

The model is most easily conveyed by reference to Fig. 3, which shows a cross-section of the 

cochlear partition. The key components are the three rows of OHCs overlain by the gelatinous TM 

in which the stereociliar tips are embedded. OHCs are motile, and the TM, as a weak gel (Hardesty, 

1908; Steel, 1983), may be expected to show low internal rigidity. Indeed, recent measurements by 

Abnet and Freeman (2000) confirm that the TM is a viscoelastic body with high compliance: point 

stiffness figures of about 0.2 N/m were measured, values in close agreement with a number of 

previous investigators (e.g., Zwislocki and Cefaratti, 1989). They conclude that the TM should 

undergo shear when subject to forces from stereocilia aggregates – although this will depend on 
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adequate stiffness of the stereocilia and OHC body, and here consensus is lacking. Some 

researchers believe that the TM is effectively rigid and its function is to provide shear to stereocilia; 

others believe that the TM is sufficiently soft compared to other cochlear structures that it sustains 

changes in shape from dynamical interactions with them (He and Dallos, 1999). The SAW model 

takes the position that elongation and contraction of the OHCs in response to sound has sufficient 

strength to deform the TM and produce a mechanical wave motion upon its surface. If the response 

polarity of OHC1 and OHC3 is opposite to that of OHC2, waves with a wavelength equal to the 

distance between OHC1 and OHC3 (about 30 µm) will be produced. 

 

This implies that, for feedback between the rows to operate at acoustic frequencies, the propagation 

speed of these waves must be extremely low: for example, a wave will need to travel 30 µm in 1 ms 

(30 mm/s) to give a 360º phase delay and reverberation at 1 kHz. This speed is not unlike that of 

capillary waves – ripples of surface tension – on the surface of water (about 80 mm/s), or of shear 

waves in soft gels (3 m/s and perhaps lower). A discussion of possible wave modes is given in 

Section VI, but the existence of slow, short-wavelength waves of some sort, herein called ripples, is 

assumed. 

 

Such ripples provide a ready basis for positive mechanical feedback and amplification in the OHC–

TM system. A wavefront expanding circularly from, say, OHC3, can later be sensed by the 

stereocilia of OHC1, again causing a fast motile response – a length change of the cell body – and 

creating another circularly expanding wavefront, part of which will now propagate (with increased 

amplitude) towards the IHCs and another part (similarly amplified) will return to OHC3. 
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The sensing and amplifying process will repeat, resulting in reverberation between the outermost 

rows of OHCs. A standing wave will appear between these cells, while a progressive, but 

attenuating, wave will move towards the IHCs and beyond. It is worth noting that the reverberation 

process is taken to be just that underlying spontaneous otoacoustic emissions (SOAEs; see 

Robinette and Glattke, 1997, for reviews) and represents (if the damping is insufficient) the 

continuous ringing of what could be described as the cochlea’s resonant elements. 

 

The physical mechanism outlined above is conceptual, and the precise electrophysiological and 

force-generating mechanisms are left open at this point. To form a useful hypothesis, however, the 

key assumptions on which the SAW model is based need to be made explicit. These are: 

 

1. That the TM has properties conducive to the propagation of slow transverse waves, either 

shear waves (Rayleigh waves or bending waves) or capillary (surface tension) waves. 

Transverse here means at right angles to the direction of propagation – which is 

predominantly radial – and the waves are called ‘ripples’ as a simple working description of 

general vertical and horizontal displacements at the surface of the TM. If the TM is a 

compliant gel, then ripples of some kind should propagate at low speed. Discussion of 

possible wave modes and their velocities is presented in Section VI, but recent 

measurements of the shear modulus of the TM (Abnet and Freeman, 2000) indicate a shear 

modulus of some 10–20 kPa, from which a bulk shear wave velocity of 3 m/sec or so is 

expected. This is within 1 or 2 orders of magnitude of that required for the SAW model and, 

for reasons given in Section VI, the calculated wave speed is considered an overestimate. 

Nevertheless, the exact wave mode involved is presently unspecified. 
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2. That the speed of the waves varies from base to apex in a systematic way, thereby supplying 

the required tonotopic tuning. As just indicated, midway along the partition, at a 

characteristic frequency (CF) of 1 kHz, the wave will need to have a speed of 30 mm/s. But 

near the base of the cochlea, with a CF of say 10 kHz and a spacing of 20 µm, the necessary 

speed would be 200 mm/s; in contrast, near the apex of the cochlea where the CF is say 

0.1 kHz and the spacing is 50 µm, the corresponding speed would fall to 5 mm/s. Because 

these values are within an order of magnitude or so of the velocity of surface tension waves 

on the surface of water, surface tension could be the controlling variable if it could act in a 

graded way from base to apex. Appreciable surface tension of the TM has already been 

observed (Hardesty, 1908; Olson, 1998). On the other hand, anatomical studies show that 

the thickness of the TM increases systematically from base to apex (e.g., Hardesty, 1908). 

This suggests that bending waves may occur at the base where the thickness is less than one 

wavelength (OHC1–OHC3) and that shear waves may be important at the apex where the 

thickness is greater than a wavelength. A continuous variation in wave velocity may be 

possible if the relevant moduli are suitably graded. 

3. That OHCs are dual sensors, responding instantaneously to both intracochlear fluid 

pressure (via compression of their cell bodies) and TM ripple amplitude (via deflection of 

their stereocilia). Both stimuli cause a change in membrane potential, and this voltage then 

drives the fast motor in the OHC wall (a process known as electromotility (Evans and 

Dallos, 1993) which is based on a motor protein called prestin (Zheng et al., 2000)). The 

pressure sensitivity allows the OHCs to respond virtually instantaneously to common-mode 

pressure – the fast compressional wave passing into the cochlea at the speed of sound in 

water (some 1500 m/s) – and avoids reliance on the complicated mechanics of a slow-
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moving traveling wave. The stereocilia can be taken to be feedback elements which help in 

sensing a ripple, and, by providing ‘kick back’ (Flock, 1988), assist in returning and 

amplifying a ripple. 

4. In proposing that OHCs are pressure sensors (see Bell, 2003), it is recognised that the body 

of the OHC is constructed in some ways like a pressure vessel in that its walls are relatively 

rigid and its contents under pressure (Brownell, 1990). An important additional feature is a 

weak spot – a highly compliant region – in the region of the cuticular pore (Engström et al., 

1962) where, developmentally, the kinocilium originally was (strangely, the kinocilium 

disappears before or soon after birth). This arrangement would, if there were compressible 

material within, afford detection of pressure at a site where the sensing channels associated 

with the kinocilium may still reside. It is proposed that the body-sensed pressure signal is 

actively converted into up-and-down movement of the cells, a motion that creates ripples on 

the overlying TM. Indeed, it is suggested that the TM’s purpose is just this, and its location 

and properties are perfectly suited to support such a process. 

5. To complete the analogy with a SAW resonator, the response of OHC2 is taken to be in 

antiphase to OHC1 and OHC3. This means that when OHC2 elongates (moves up) in 

response to a rising pressure pulse, the hair cells in flanking rows shorten (move down), and 

vice versa. This bi-phasic movement makes the generation of short-wavelength ripples on 

the TM particularly efficient. In keeping with this idea, it is noted that the reticular lamina 

appears more compliant than the basilar membrane in that the former moves 5–10 times 

more than the latter when OHCs are electrically stimulated (Mammano and Ashmore, 1993). 

6. IHCs respond directly to ripple energy delivered across the surface of the TM by the 

combined OHC activity. Below about 60–80 dB SPL, this is where most of the stimulus 
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energy originates. Above that level, IHCs begin to be stimulated by a passive mechanism, 

discussed later, which involves whole-scale movement of the partition induced by 

differential acoustic pressures. This lack of generalised vertical displacement of the partition 

below 60–80 dB SPL translates into a statement that the ease with which a traveling wave 

can be set up, and its role in transferring energy and displacement from base to apex, is less 

than previously supposed. It also implies that perhaps the basilar membrane has less 

longitudinal coupling or is more acoustically transparent and that the short-circuiting action 

of the helicotrema is stronger than has been assumed (Dallos, 1970). 

 

In summary, OHCs are seen as piezoelectrically driven motors, effectively converting the common-

mode intracochlear pressure (not differential pressure across the partition as required by traveling 

wave theory) into surface acoustic waves on the undersurface of the TM. Once generated, the waves 

are sensed by the OHC stereocilia, which act as feedback elements, again causing the OHC to 

lengthen and shorten, amplifying the ripple and leading to reverberation. Together the elements 

form a SAW resonator, and they resonate in sympathy with imposed intracochlear pressure, with 

which they are in continuous hydraulic connection via the spaces of Nuel. To introduce an analogy 

of Hudspeth (1997), the separated OHCs form a distributed amplifier in which, like a pendulum 

clock, the oscillator frequency is determined by physical properties (the length of the SAW cavity 

or the length of the pendulum), while the timed release of energy (from the fast OHC motor — the 

escapement) overcomes damping and sustains activity. 

 

The resemblance of the SAW model to a regenerative receiver is noteworthy, for it was this 

topology which was invoked by Gold (1948) to describe the action of the cochlea. In particular, 
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amplification (by the OHCs) takes place before detection (by the IHCs), a scheme that optimises 

signal-to-noise ratio. Later, in discussing the cochlea’s need to overcome fluid damping and 

generate high Q, Gold drew an analogy to the functioning of an ‘underwater piano’: only by 

introducing a sensor onto each string and supplying positive feedback could such a device be made 

to operate (Gold, 1987). 

 

In the following section the similarities with SAW resonators are more fully examined. The SAW 

model is tested by making general predictions of what properties a SAW topology would confer on 

the cochlea, and these are compared to observations. The topology is able to give a good general 

account of cochlear mechanics, providing descriptions of a wide range of phenomena that are 

currently more or less opaque: the shape of the cochlear tuning curve, the most common ratio 

between SOAEs, bistable linked SOAEs, peak splitting and interference notches, the time-invariant 

responses of the cochlea to clicks of varying intensity, the half-octave shift, the ‘V’ shape of the 

stereociliar arms, and, speculatively but intriguingly, a way by which the cochlea may directly 

perceive musical ratios.  

 

III  BASICS OF SAW RESONATORS 

 

SAW resonators are solid-state devices that generate slow electromechanical waves – commonly 

ripple-like Rayleigh waves – between two sets of interdigital electrodes on the surface of a 

piezoelectric substrate (Bell and Li, 1976; Smith, 1981). They are used in analog signal-processing 

applications where a number of cycles of signal need to be stored and operated on, such as in 
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spread-spectrum mobile phones. The easiest way to see how the device operates is to see it as a 

variation of the SAW delay line in which one set of electrodes launches the ripples, and a 

neighbouring set senses them (Fig. 2). Feeding the output back to the input creates a high-Q 

resonance typically in the megahertz range. The resonator is simply a degenerate case of the delay 

line in which the two sets of fingers are merged into one combined set of sensors and effectors. 

Ripples now reverberate back and forth between the fingers. 

 

A key feature of all SAW devices is that the interdigital electrodes alternate in polarity. The 

minimum number of fingers required is three. 

 

IV  A SAW RESONATOR IN THE COCHLEA 

 

In the mammalian cochlea we find at least three rows of OHCs, and it is proposed that each row 

acts as the interdigital electrode of a SAW device, alternating in the polarity of their cycle-by-cycle 

length changes in response to intracochlear pressure. Effectively, the cells are piezoelectric 

transducers, turning pressure signals into electrically mediated length changes. In this connection, 

Dong et al. (2002) found that the cell wall material responsible for OHC motility has a piezoelectric 

coefficient of 20 µC/N, 40 000 times larger than Rochelle salt. The transduction process, it is 

supposed, causes cells in OHC2 to quickly lengthen, and those in OHC1 and 3 shorten, in response 

to an increase in pressure; half a cycle later, the situation is reversed as the pressure cycle reaches a 

minimum. Figure 3 illustrates the process, with a standing wave produced between OHC1 and 

OHC3.  
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In other words, a cavity is formed between the outermost rows, and wave energy escapes the cavity 

in the same way as a laser beam emerges from the cavity between its reflective ends. Wave energy 

escaping the ‘acoustic laser’ is communicated to the nearby IHCs.  

 

There are a number of major structural analogies between a SAW resonator and the anatomy of the 

cochlea. 

 

1. The three rows of OHCs are the interdigital electrodes. It is significant that the required 

minimum number of fingers is three, and in all vertebrate animals there are three or more 

rows of OHCs (Bredberg, 1968). Additional rows are usually found at the low-frequency 

apex where additional gain may be needed to counteract middle ear transmission losses. 

2. The TM is the uniform substrate upon which ripples are generated. Whereas the gelatinous 

body of the TM is embedded with multidirectional collagen fibres, high magnification views 

of the lower surface of the TM show a thin, almost homogeneous, layer (Kimura, 1966) in 

which the fibres run largely parallel. This base layer, only about 1 µm thick, has been called 

Hardesty’s membrane and its uniformity is assumed crucial in channeling and propagating 

surface waves. 

3. Wave energy propagating on the surface of a SAW resonator is absorbed and/or reflected by 

impedance discontinuities, and this is normally done by etching grooves or placing strips of 

material on the surface of the device. The TM possesses a peculiar dense stripe known as 

Hensens stripe, which is placed strategically next to the stereocilia of the IHCs (Hardesty, 
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1908). Hensens stripe is ideally placed to intercept the wave energy emerging from the OHC 

cavity and direct it to the IHC stereocilia. 

4. Energy escaping the OHC cavity towards the outer edge of the TM is not useful and – to 

avoid unwanted propagation modes – needs to be either absorbed or reflected so as to re-

enter the cavity with appropriate phase delay. At the outer edge of the TM another 

aggregation of material is found, a rounded thickening known as the marginal band 

(Hardesty, 1908), and this may perform one or other of these functions. 

5. To absorb and disperse unwanted bulk propagation modes, the back of a SAW resonator is 

either roughened or waxed. In the cochlea the top of the TM is covered with a covering net 

(Hardesty, 1908) which appears suited to this purpose. 

6. The speed of electromechanical ripples in a solid-state SAW resonator is about 5 orders of 

magnitude lower than the speed of the electrical signal applied to it, a reduction which 

makes it possible to compactly store many cycles for correlation and other signal analysis 

(Maines and Paige, 1976). In the same way, the speed of the hypothetical ripple on the TM 

is 4–5 orders of magnitude lower than the speed of the input signal (sound) in the 

surrounding cochlear fluids, some 1500 m/s. As shown below (section VII), the pea-sized 

cochlea should in this way be able to store and analyse up to 10 cycles of acoustic signal. 

 

V  KEY EVIDENCE SUPPORTING THE MODEL 

 

There are four main strands of evidence supporting the SAW model, and these are set out below.  
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A. OHCs respond directly to oscillating acoustic pressure 

 

Experiments by a number of workers extending over several years have found that OHCs react not 

just to stimulation of their stereocilia but to water-jet stimulation of their cell body as well (Canlon 

et al., 1988; Canlon and Brundin, 1991; Brundin and Russell, 1993, 1994). A synthesis of this 

evidence was assembled by Bell (2003) who conjectured that the common underlying effective 

stimulus in these experiments was pressure. The conjecture is supported by Tolomeo and Steele 

(1998), who successfully modelled some of the findings of these experiments by using a 

piezoelectric model of the OHC wall and assuming that the effective stimulus was external 

pressure. 

 

Canlon et al. (1988) placed isolated OHCs on a microscope slide and directed oscillating water jets 

(from a nearby fluid-filled pipette connected to a 200-Hz vibrating source) at the body of the cells, 

and 80% of them responded with a lengthening or a shortening. Similar results were reported in 

Brundin et al. (1989) over a wide frequency of stimulation and they found that the responses were 

tuned, with the shorter cells responding best to higher frequencies. 

 

Canlon and Brundin (1991) performed experiments along the same lines, and found that the 

response of the cells was the same whether the cells were held by the pipette at the base or whether 

the pipette enclosed (and protected) the stereocilia. Indeed, direct stimulation of the stereocilia did 

not induce a response.  
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Brundin and Russell (1993) took the fluid-jet experiments a stage further by finding that the length 

changes were not just tonic (d.c. shifts) but, to the limit of their experimental technique (15 nm 

resolution), were phasic (a.c.) as well, and surmise that the d.c. changes were in fact due to non-

linear rectification and amplification of the a.c. responses. They put forward the idea that a similar 

behaviour may occur in vivo, and calculate that, allowing for middle-ear pressure gain of 30 dB, the 

observed threshold of response corresponds to 19–34 dB above hearing threshold. But here the 

SAW model introduces a significant factor. The single-cell experiments are studying open-loop 

gain – that is, the activity of a single OHC before the feedback action of the cochlear amplifier 

comes into play. When the rows of OHCs build up the signal through the conjectured reverberation 

process, the sensitivity is multiplied by the closed-loop gain. Since the gain of the cochlear 

amplifier – the closed-loop gain – can exceed 40–60 dB, the sensitivity figure quoted above is 

sufficient to see detectable responses at 0 dB SPL.  

 

Brundin and Russell (1994) studied the phasic response in more detail, and observed that a single 

OHC was able to respond in phase or 180º out of phase, depending on stimulation level. A 

responsiveness that can either be in phase or out of phase, depending on row number (possibly 

controlled by turgor pressure and/or polarization voltage), is central to the SAW hypothesis and is 

discussed in the following section. 

 

It is noted that biphasic responses have only been observed for water-jet stimulation of electrically 

isolated OHCs. It has not been seen when the cells are voltage-clamped and electrically stimulated 

(e.g., Frank et al., 1999, and references therein). 
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B. Two populations of OHCs with opposite response polarities 

 

It appears that no measurements have been done to distinguish the properties of cells in OHC2 from 

those in other rows. Nevertheless, there are clear results, largely in the same water-jet experiments 

described above, that show that OHCs do not all behave alike – an isolated cell (of unknown row 

number) will sometimes respond in antiphase to others under test. 

 

The dual responses can be seen in Fig. 2 of Canlon et al. (1988), where cells from the mid-

frequency region of the cochlea were equally likely to expand or contract by a small amount 

(meaning that underlying a.c. responses were either in phase or out of phase with the pressure 

stimulus). 

 

Fig. 3 of Brundin et al. (1989) shows tuning curves for 6 OHCs that lengthened after water-jet 

stimulation, and for one that shortened, results generally confirmed in Canlon and Brundin (1991). 

 

In Brundin and Russell (1993), the phases of the a.c. responses of OHCs were always independent 

of the amplitude of the water-jet, but in Brundin and Russell (1994) the authors report – as 

mentioned above – that the phase of the responses could alter with level of stimulation, changing by 

180º at a certain (uncalibrated) threshold. Whereas the piezoelectric model of Tolomeo and Steele 

(1998) explains certain features of the OHC response, in particular a response to external pressure, 

it does not predict this sudden change of phase. 
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Zenner et al. (1988) placed isolated OHCs within an alternating electric field (1–502 Hz) and 

observed that the cuticular plate of 62% of motile OHCs tilted when the plate was closest to the 

ground electrode and 38% tilted when the plate was closest to the active electrode. Although not 

demonstrating different response polarities, it does point to the existence of two distinct classes of 

OHCs, at least for low-frequency stimulation. 

 

Electrical stimulation of an isolated gerbil cochlea showed that the nuclei of OHC1 and 3 moved 

out of phase to OHC2 (Karavitaki and Mountain, 2000). 

 

Recent experiments with cochlear explants have observed rapid phase reversals between OHC2 and 

OHC3 (Scherer et al., 2003), and these may be relevant here. 

 

A vital clue to what may be underlying this anomalous behaviour can be found in Kakehata and 

Santos-Sacchi (1995), where the authors demonstrate that the peak non-linear capacitance of an 

OHC – the electrical signature of electromotility – shifts with polarization level (and turgor 

pressure). Moreover, the polarity of a current through the cell wall will be positive or negative 

depending on whether the voltage is less than or more than the peak. This crucial property is 

illustrated in Fig. 4. A unifying hypothesis, therefore, is that cells in OHC2 are relatively 

depolarised (resting potential of say –50 mV) and/or have lower turgor pressure compared to cells 

in OHC1/3 (where the resting potential is more like –80 mV). In this way, the required antiphasic 

response to pressure can be readily produced. In the experiments above, the polarization of the cells 

under investigation could be either high or low. Control of polarization by efferent activity would 
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be a simple way of adjusting the sensitivity of the cochlear amplifier – for if all the rows of OHCs 

should be driven to the same level of polarization, the gain of the amplifier would fall to zero. 

 

C. Radial wave motion on the partition 

 

The SAW model calls for transverse wave motion in the cochlea’s ‘radial’ direction (inside to 

outside of its spiral coil as illustrated in Fig. 3), and so it predicts that there will be rapid phase 

changes in this direction amounting to 5 or 6 complete cycles between the vestibular lip and the 

marginal band. Nilsen and Russell (1999) have observed rapid phase changes on the basilar 

membrane of a guinea pig using a 5 µm detecting spot from a laser diode, and results for one animal 

are shown in Fig. 5. The phase excursions, which measure up to 180º, are nearly those expected 

from a wave emerging from the OHC cavity towards the IHC, as shown in Fig. 3: OHC1 and 3 in 

phase with IHC, with an out of phase response surrounding these points. There is also an indication 

of a dip below OHC2. The SAW model predicts a dip down to 0º here (dotted line in Fig. 5), but it 

is difficult to experimentally resolve such rapid phase changes because the laser spot is directed 

onto the basilar membrane and this surface will tend to spatially integrate the response of the three 

OHCs some distance above. 

 

Other workers have seen hints of phase variations across the partition (e.g., Nuttall et al., 1997; 

Cooper and Rhode, 1996; Recio et al., 1998), but never as large or as rapid as Nilsen and Russell 

(1999), while others have reported virtually none (e.g., Cooper, 2000; Ren et al., 2003). The phase 

measurements are difficult, and results appear to depend on experimental technique – such as 
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whether or not reflecting beads were used, spot size of the laser beam, and so on. This question is 

far from settled, but note that absolute phase measurements showing several cycles of change – not 

just relative measures within ±180º as reported by Nilsen and Russell (1999) – would offer 

powerful evidence in favour of the SAW model. 

 

D. Second harmonic generation and detection 

 

Finally, one piece of evidence derives from echolocating bats. Certain species use the second 

harmonic of their call for echolocation, and this characteristic leads to a special configuration of the 

SAW resonator in their cochleas. 

 

First, consider the configuration of a SAW device intended to generate harmonics. Such 

harmonically operated devices can generate higher frequencies and can overcome certain 

limitations of devices that operate at the fundamental. For example, a device excited at 200 MHz 

can be made to resonate successfully at 2.2 GHz (the 11th harmonic) using a substrate and electrode 

dimensions appropriate for the 200-MHz fundamental (Campbell, 1998, Ch 6.8, pp. 184–191).  

 

To operate at a harmonic, special disposition of the interdigital electrodes is required. A normal 

SAW device has the fingers equally spaced, so that an electrode of one polarity sits in the middle of 

oppositely polarized electrodes flanking it. The result is that even harmonics are impossible, as 

Fourier analysis will show. (In this context, it is noteworthy that in humans, where OHC rows are 

equally spaced, frequencies of multiple SOAEs are never found at precisely octave intervals.) To be 
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able to produce strong even harmonics, a SAW device must be configured with the electrodes off-

centre, and the ideal spacing is a ratio of 2:1 (Campbell, 1998, Fig. 6.16). Figure 6 (reproduced 

from Kössl and Vater, 2000) shows the reticular lamina of a second-harmonic detecting bat, 

Pteronotus parnellii, and inspection shows that the spacing OHC1–OHC2 to OHC2–OHC3 is close 

to 2:1, as required. This 2:1 spacing has also been observed in other second-harmonic detecting bats 

(e.g., Rhinolophus ferrumequinum, Bruns and Goldbach, 1980). Since in all other species examined 

OHC2 is closely aligned in the middle of OHC1 and OHC3, this micrograph and others like it 

suggest that the three rows are working together as a SAW resonator. 

 

VI  WHAT IS THE WAVE PROPAGATION MODE? 

 

SAW devices can operate using a wide range of wave propagation modes: Rayleigh waves are the 

most common, but Lamb, Love, Bleustein–Gulyaev–Shimizu, Stonely, Sezawa, and other wave 

modes are employed (Ballantine et al., 1997, Ch 3; Campbell, 1998, Ch 2). Which mode may 

operate in the cochlea is difficult to decide, particularly when the TM is a fibre-reinforced 

viscoelastic gel covered with a thin surface layer (Hardesty’s membrane) and immersed in an 

electrolyte (endolymph) and an electrical field.  

 

Simple capillary (surface tension) waves, with their characteristically slow speed, are a first 

consideration. The speed, c, of a surface tension wave of wavelength λ is (Lighthill, 1978): 

 

c = (2πT/λρ)½       (1) 
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where T is the surface tension and ρ is the density. Surface tension may have a role, but it is difficult 

to see how this parameter can be made to vary systematically from base to apex by a factor of 104 or 

more in order to tune the partition over a frequency range of at least 2 decades. Note that capillary 

waves are dispersive. 

 

A shear wave of some type is a strong possibility because the shear moduli of gels are small, very 

much smaller than their compressional moduli. In its most basic form, the speed, ν, of a bulk shear 

wave is given by 

 

ν = (µ/ρ)½      (2) 

 

where µ is the shear modulus and ρ is the density. These waves are non-dispersive (speed 

independent of frequency); a Rayleigh wave, a shear wave on the surface, travels at about 90% of 

this speed. Acoustic measurements of one soft gel, a so-called “ringing gel” (showing the peculiar 

property of ringing like a bell when struck), gave a shear modulus of 14 kPa and a shear-wave 

velocity of 4.1 m/s (Sinn, 2000). 

 

Recent measurements of the mammalian TM show that its shear moduli are comparably low. Using 

20-µm–diameter magnetic beads placed on the surface of a 50-µm–thick mouse TM, Abnet and 

Freeman (2000) measured the tangential point stiffness of the TM to be about 0.2 N/m in the radial 

direction, a figure that equates to a shear modulus of 20 kPa. Using Eq. (2), this figure produces a 
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bulk shear wave velocity of about 4.5 m/s. At this speed, resonance between OHC rows 30µm apart 

would occur at a frequency of 150 kHz. The hearing range of mice extends up to 100 kHz, so this 

value is broadly in keeping with the theory. 

 

Unfortunately, the Abnet and Freeman measurements were made on sections of the TM whose 

distance from the apex (and hence operating frequency) was unknown, although it seems samples 

were taken from the whole length of the TM. They measured radial stiffnesses ranging from 0.07–1 

N/m, values which correspond to shear moduli of 7–100 kPa and wave velocities of 2.6–10 m/s. 

The lowest velocity still gives a frequency of 87 kHz, which is still too high, as half-way along the 

mouse’s partition, which was presumably sampled, the animal has its most sensitive hearing at a 

frequency of 15 kHz, and resonance between the OHC rows at this point would require a wave 

velocity of about 0.5 m/s, an order of magnitude lower than measurements indicate. 

 

However, as Abnet and Freeman suggest, their measurement technique is likely to give larger 

stiffnesses than in situ. First, of course, there is the geometrical consideration that the point stiffness 

derived from samples no bigger than their beads will be lower than for the larger samples they used, 

where the bead has to deform a larger area of TM. The intrinsic shear modulus may be about half 

that measured on a larger sample. Second, the reverse side of the TM was firmly cemented to a 

glass dish, preventing bending modes (Lamb waves) that would possess much lower stiffness and 

slower propagation speeds. Third, the retarding effect of the surrounding fluid mass on propagation 

speeds needs to be taken into account in calculating wave speeds. Finally, the TM is multilayered, 

with its underside covered with a very thin layer called Hardesty’s membrane, and it is possible that 
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this relatively homogeneous layer, about 1 µm thick, is even more compliant than the fibrous bulk 

on which it sits (since the bulk would dominate measurements when using 20-µm beads). 

 

Hardesty’s membrane resembles the soft overlayer used in some SAW devices to slow the shear 

wave and trap acoustic energy near its interface with surrounding liquid (Ballantine et al., 1997, p. 

89 ff.). This configuration, therefore, may be a desirable one for the cochlea to have. If Hardesty’s 

layer is softer than the body of the TM, then the SAW theory would predict that its stiffness would 

be no more than that of the OHCs (for in this way power transfer from one to the other would be 

maximised). Figures for the axial stiffness of individual OHCs range from 0.5–10 mN/m (Brownell 

et al., 2001), some 2 or 3 orders of magnitude less than the point stiffness of the TM measured by 

Abnet and Freeman (2000). Logic alone says that if OHC axial stiffness is really orders of 

magnitude less than that of both the TM and the basilar membrane, as current measurements 

indicate (He and Dallos, 2000, discuss this disparity), then OHC motility would be ineffective and 

pointless. Either the OHC is stiffer in vivo, or the TM or basilar membrane is softer. If the TM’s 

shear modulus matched the stiffness of the in vitro OHC (say 1 mN/m), Eq. (2) indicates that shear 

wave velocities well below 1 m/s would be possible. 

 

Clearly, at this point more measurements are needed. Other possible wave modes include bending 

waves (Lamb waves or, if immersed in a liquid, Scholte waves) which travel very much slower than 

shear waves, although in a dispersive manner. But whatever the actual wave mode may be, one 

particular constraint is worth noting. The unequal row spacing evident in Fig. 6 was used as 

evidence in favour of the SAW model. However, it also indicates that the waves involved are non-

dispersive – that is, their speed is independent of frequency. For if the second harmonic traveled at a 
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speed different to the fundamental (i.e., the waves were dispersive), there would be no need to 

displace OHC2 away from the centre in order for the second harmonic to be able to excite the cavity 

and be detected. This suggests that, whatever wave mode is at work here, it is non-dispersive. This 

conclusion is attractive in the sense that it simplifies the analysis of OHC geometrical patterns: it 

means that calculated resonant frequencies are simply inversely proportional to the indicated length. 

 

As already indicated, the wave speed will need to vary over a range of at least 100:1 from base to 

apex in order to tune the system. This means that, for a non-dispersive wave, the elastic modulus 

will need to change by 4 orders of magnitude; alternatively, for a bending wave, the thickness will 

need to change by 10-fold or more (since for a bending wave the stiffness will vary as the cube of 

the thickness). The TM is sometimes seen to vary in thickness by about 10 times (Hardesty, 1908), 

although apparently not in the mouse (Abnet and Freeman, 2000). With numbers for many relevant 

dimensions and physical properties lacking, detailed comparison of the cochlea with particular 

SAW analogs is not possible at this stage. 

 

When considering possible modes for low frequency resonance, a prime candidate is the Lamb 

wave detector, a SAW device that uses a thin piezoelectric membrane. Its flexural modes permit 

voltages to be efficiently converted into mechanical deformations and vice versa (Ballantine et al., 

1997, p. 111 ff.), and its wave speed is the slowest of all types. 

 

VII  REINTERPRETING EVOKED OTOACOUSTIC EMISSIONS 
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Evoked otoacoustic emissions (EOAEs) have become a mainstay of diagnostic testing for intact 

cochlear function, yet the mechanism underlying these cochlear echoes is far from clear. If a pulse 

of sound is projected into the cochlea, a faint echo of that sound can be detected in the ear canal 

some time later (Kemp, 1978). The long latency of the sound – several milliseconds or about 10 

cycles (Wilson, 1980a) – is an indication that the sound has a cochlear origin. Conventionally, the 

long delay has been attributed to forward and reverse travel times of a traveling wave, but various 

studies suggest that such an interpretation is inconsistent with measurements (e.g., O’Mahoney and 

Kemp, 1995). 

 

The SAW model offers a fresh interpretation of EOAEs, one which provides the necessary long 

delays but which avoids calling on the von Békésy traveling wave. The mechanism does in fact 

involve a progressive wave, but one which is much more localised, and it is best illustrated by 

reference to Fig. 3. A brief sound pulse activates the OHC cavity, which causes a wave train to 

travel towards the IHCs. Here, a proportion of the energy is captured by Hensens stripe and passed 

to the IHCs below, but some energy will continue on towards the vestibular lip, a remarkably sharp 

edge which forms the upper part of the inner spiral sulcus. Here the wave will encounter a sudden 

impedance discontinuity and undergo reflection. It will then return towards the OHCs, where it will 

re-enter the cavity, exciting it once more. The time delay will be about 10 cycles, a number derived 

by simple observation of a cochlear cross-section. The distance from OHC1 to OHC3 is regarded as 

1 wavelength, so that the distance from OHC1 to the vestibular lip will be about 5 wavelengths and 

therefore the round trip will provide a time delay of about 10 cycles, as required. 
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The excitation process can repeat, and an example of this can be seen in Fig. 4 of Wit and Ritsma 

(1980) in which the process repeats indefinitely every 7.4 cycles of the evoked emission frequency. 

 

The model relies on the OHC-swelling model of Wilson (1980b) which was developed to explain 

observations that in some cases the echo was almost simultaneous with cochlear microphonic 

signals. Wilson supposed that when the sound interacted with an OHC it caused a small volume 

change (as well as a microphonic signal), and therefore a compressional wave could almost 

instantly travel back to the ear canal, outpacing any reverse traveling wave, where it could be 

detected. Wilson calculated the volume change required need only be small: an oscillating volume 

change of less than 0.01% over a 1-mm segment of the partition is sufficient to give a sound 

pressure level of 20 dB in the ear canal. 

 

VIII  SETS OF COCHLEAR RESONATORS 

 

Unlike the impression conveyed by the cross-section of Fig. 3, the cochlear resonators do not only 

lie in the radial direction. Instead, the majority of micrographs of the organ of Corti (such as Fig. 1), 

show that OHCs generally line up in various oblique directions as well. Typically, the cells lie in a 

regular, quasi-crystalline array as shown in Fig. 7A. The arrangement of cells can be considered as 

a two-dimensional rectangular lattice in which OHC2 sits in the centre of the unit cell. The 

dimensions of the unit cell are a and b, where the longitudinal distance between the cells (along the 

rows) is a and the distance between the first and third rows, the defining cavity length, is b.  
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The radial direction is an alignment of only two cells, and hence the efficient SAW resonator 

mechanism is not available in this direction. Conceivably, two cells acting together may be able to 

generate some reverberating activity, but this aspect can only be resolved with further modeling. 

 

Note, however, that the diagonal of the unit cell is an alignment of three cells that could act like a 

single SAW resonator element; this resonator appears at an angle θ to the radial, where θ = arctan 

a/b.  

 

Given the unit cell as described above, it follows that there will be further alignments of two and 

three cells at other oblique orientations as shown in Fig. 7B. This scheme is an explanation of why 

OHC stereocilia appear in a ‘V’ configuration, for it allows each arm to act independently of the 

other in forming simultaneously active cavities angled towards the base and the apex. Note that the 

arms in one row often sit parallel to arms in neighbouring rows which are displaced longitudinally 

by two or three cells, in this way strongly defining an oblique cavity. For example, in Fig. 1 one 

favoured alignment (L–3) lies at an angle of about 50º from the radial direction.  

 

For a unit rectangular cell of angle θ, it follows that alignments will appear at a series of angles 

given by arctan (n tan θ), where n = 0, 1, 2, 3, 4, 5, …. For the 19º unit cell, simple trigonometry 

shows that these alignments occur at 0º, 19º, 35º, 46º, 54º, 60º…, with lengths of 1.00, 1.06, 1.22, 

1.44, 1.71, 2.00… If simple ray theory is used to predict acoustic behaviour, then this associates 

frequencies of 1.00, 0.94, 0.82, 0.69, 0.59, 0.50… times the fundamental with these propagation 

directions.  
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IX  COCHLEAR PROPERTIES DERIVING FROM RESONATOR SETS 

 

The idea set out in the previous section of a linked set of oblique cochlear resonators makes sense of 

observations that a point on the partition may carry frequencies other than the CF. The frequency of 

the strongest-resonating cavity, normally the shortest, can be associated with the CF or tuning tip at 

that point, but there are other contributing resonators too, longer and lower in frequency.  

A. Ratios between SOAEs 

 

It is a well known result that the most common ratio between adjacent SOAE frequencies is close to 

1.06 (Braun, 1997). This result fits well with the observed arrangement of OHCs, where, referring 

to Fig. 7, if the radial cavity has a given length, then the neighbouring oblique cavity will be longer 

by a factor 1/cos θ. 

 

Measurement of a large number of published micrographs (set out in Table 1 of the paper at 

footnote 1) reveals that the most common value for θ, the angle of the first oblique, is 19 ± 2º, 

although the angle varies systematically along the partition. The angle is smallest at the apex, where 

values as narrow as 16º (a/b = 0.3) are seen; at the base angles as wide as 30º (a/b = 0.6) are 

evident.  

 

The most common value of 19º is found midway along the partition corresponding to CFs of 1–

3 kHz, the region devoted to detection of speech and from which SOAEs are most common. 

Focusing on this region gives the following results. An angle of 19º means that, if b ≡ 1, a = tan θ = 
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0.35, and the length of this resonator will be 1/cos 19º times the length of the radial alignment. The 

frequency of this oblique cavity will therefore be 1.06 times lower than the radial cavity, suggesting 

that SOAEs frequently arise from simultaneous activity in these neighbouring cavities. 

B. The shape of the cochlear tuning curve 

 

If the responses of all the resonators at a point on the partition are summed, the result resembles the 

typical cochlear response curve. That is, take, for illustrative purposes, a single high-Q resonator at 

L0 with high- and low-frequency slopes of 100 dB/octave – reflecting the presumed resonance of a 

single SAW cavity due to reverberation of ripples within it – and add to it the responses of all the 

other similar cavities at that point on the partition. Assume that the intensity of a ripple wavefront 

attenuates as a simple exponential and is further weakened because of circular expansion by a 1/r 

factor. Longer resonators will therefore make successively weaker contributions at frequencies the 

inverse of their length. In this elementary model, alignments of both two and three OHCs have, for 

the sake of simplicity, been treated (unrealistically) as making equal contributions to the response. 

Similarly, the orientation of the stereociliar arms has been ignored (so that the cells are treated as 

point sources and detectors of ripples), but the intent is to convey the underlying principle. The 

summation, shown in Fig. 8, exhibits a sharply tuned tip flanked by a very steep high-frequency 

slope and a more gently sloping low-frequency tail – like the cochlear tuning curve. Note that 

notches between the points may well appear. 

 

An instance of a tuning curve in which the contributions of the individual resonators can be seen is 

an investigation of the vibration of the guinea pig cochlea (Nuttall et al., 1997). In this study, tiny 
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glass beads were placed on the basilar membrane and their movement detected with a laser doppler 

velocimeter. The response of the bead to broad-band noise is shown in Fig. 9, and it is clear that the 

typical shape of the cochlea’s mechanical response is generated. Note the distinct peaks, 

reproducible between the 80 and 90 dB curves. The relative frequency of these peaks is consistent 

with alignments of hair cells based on a/b of 0.383 and, in this case, a slight tilt of the lattice by 4º 

(the tilt improves the match and is a feature seen in some micrographs). 

 

If the orientation of stereociliar arms is such as to favour an oblique cavity (a feature often seen in 

micrographs taken near the apex), this cavity may become the strongest resonator (and hence 

represent CF). The result is that shorter resonators contribute to responses above CF, reducing the 

steepness of the high-frequency flank of the tuning curve, another feature often seen at apical 

locations. On the other hand, near the base OHCs are seen to enclose obtuse angles (the arms are 

almost collinear), and so there are no contributions from oblique resonators, eliminating the low-

frequency tail. In this way, the general variation of cochlear tuning curves between base and apex 

can be explained. 

 

C. Distortion in the cochlea 

 

An arrangement of resonator sets sharing a common hair cell renders the cochlea naturally liable to 

high levels of intermodulation distortion. The ‘essential non-linearity’ of the cochlea, in which 

distortion between the two tones can be detected even at the lowest stimulus levels (Goldstein, 
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1967), may be seen as distortion remaining at the intrinsic idling levels of the virtual resonators (if 

the OHCs lack activity, there can be no virtual resonator). 

 

Distortion product emissions can therefore arise from interactions of resonators at a single point on 

the partition – not by overlapping of traveling wave envelopes as standard accounts suggest. 

 

It is significant that interactions between two stimulating sounds take place via resonators that are 

always longer (lower in frequency) than the CF. Audiological texts describe how combination tones 

(involving non-linear interaction of two primary tones in the cochlea) are audible as difference 

frequencies (such as 2f1–f2) but sum tones (f1+f2, for example) are never heard; the paradox is that 

a non-linearity should generate both types (de Boer, 1984). The explanation lies in seeing that 

interaction between two primary tones at one point on the partition can only occur via longer (lower 

frequency) cavities, which allows the difference tones to physically excite a resonator, but there are 

no equivalent shorter resonators (higher in frequency than CF) to carry the sum tones. 

 

D. Ratio detection and musical possibilities 

 

Given the most common values of OHC unit cells, the ratios of the lengths (frequencies) of the 

resulting resonators can give a remarkable set of musically significant intervals (Bell, 2001, 2002a). 

The ratios appear for certain values of spacings between neighbouring OHCs. These selected values 

are not atypical, but are idealisations of measurements made on published micrographs from 

specimens that have probably suffered shrinkage and distortion during preparation. Possible 
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frequency dispersion of the wave carrying the ripple is another complication, and so the derived 

ratios are only suggestive of how musical perception may arise; given the uncertainty, this aspect is 

not discussed here, although the potential link is worth noting.  

 

X  DOVETAILING WITH EXISTING TRAVELING WAVE THEORY 

 

The SAW model specifies a way by which cochlear behaviour can be explained without recourse to 

a conventional traveling wave. And yet, traveling wave–like behaviour has been observed: at each 

point on the partition one sees, as frequency increases, displacements with steadily accumulating 

phase until, in the region of CF, a plateau of typically 4 or 5 cycles is reached (e.g., Olson, 2001, 

where the displacements were registered with a nearby pressure sensor). How can these 

observations be reconciled? The suggested answer involves differential forces across the partition 

and the role of the vestibular lip. 

 

As traveling wave theory assumes, forces on either side of the partition will cause it to move up and 

down; the SAW hypothesis agrees that vertical movement will occur, but it need not induce a 

traveling wave and it will only begin to have a stimulatory effect on the IHCs at sound pressure 

levels of about 60 dB when a second ripple source comes into play. Below that level, the cochlear 

amplifier, deriving from OHC activity, is the primary source of drive to the IHCs. The differentially 

driven motion will be broadly tuned in accordance with the passive mechanical properties of the 

partition, and it is assumed that, at a given point on the partition, the passive tuning is about half an 

octave lower than the tuning of the SAW cavity. However, the differential movement need not 
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cause a traveling wave to begin propagating longitudinally along the partition towards the apex (as 

the conventional picture has it); rather, what it might do is create a very localised ripple at the 

passively tuned location as follows. 

 

As the partition moves up and down, let us focus on what might happen at the vestibular lip. It was 

noted above, in connection with evoked emissions, that this sharp edge is important in reflecting 

ripples propagating beyond the IHCs. But what is the purpose of these reflections? Perhaps it would 

be useful from an information-processing view if they provided the cochlea with a way of 

generating a 10-cycle delay in the acoustic signal, which will then meet with a similar non-delayed 

signal emerging from the OHC cavity. The two wavefronts will be traveling in opposite directions 

above a detector (the IHCs), an arrangement that constitutes a signal correlator. SAW devices are 

configured as correlators (or convolvers) in just this way (Campbell, 1998, Ch 17), and such a 

signal processing arrangement in the cochlea could, for example, be useful for detecting, or 

compensating for, ambient echoes.  

 

But any such signal correlation scheme would not be of much use if it were confined to low sound 

intensities (since the cochlear amplifier saturates at about 60–80 dB SPL). How could the 

correlation scheme work with a saturated cochlear amplifier? Again, the sharp edge of the 

vestibular lip could still play a central role at higher intensities (above about 60 dB SPL) if the lip 

were to become a source of ripples in its own right. This could happen, it is conjectured, if the 

partition were moving up and down under the influence of differential pressure. With the TM 

vibrating against the stationary lip, ripples would be generated at this point and they would 

propagate towards the IHCs.  
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There are now two ripple sources traveling in opposite directions towards the IHCs: one arriving 

with a delay of about 1 cycle from an active source, and the other with a delay of some 4 or 5 cycles 

from a passive source (taking the distance OHC1–OHC3 as 1 wavelength and comparing it with the 

distance seen in micrographs from the vestibular lip to the IHCs). Herein is the source of the 

apparent traveling wave delay: at CF, IHCs will sense a 4–5 cycle delay as the ripples propagate 

radially towards them. 

 

The ripple sources are comparable in intensity at about 60–80 dB SPL, the level where the cochlear 

amplifier saturates. The lip therefore becomes relatively less important in reflecting ripples as sound 

levels increase, and instead becomes a significant source of its own. Provided the SAW cavity 

continues to put out ripples, correlation information will still be available at the IHC (although with 

a maximum of 4 or 5 cycles of delay). In summary, the ripple from the vestibular lip becomes the 

dominant source of stimulation for the IHCs at high sound pressure levels whereas at low levels the 

reverse is true. 

 

These two identified sources of ripples – the OHC cavity and the vestibular lip – can provide an 

understanding of a striking interference phenomenon in the cochlea called peak splitting. Since the 

SAW cavity is sending waves towards the IHCs in one direction and the vestibular lip is sending 

waves from the other, then interference of those waves is expected. Destructive interference 

explains ‘peak splitting’ and interference notches found in recordings from the auditory nerve, 

where at 60 dB SPL or so we see virtual cancellation (Lin and Guinan, 2000; Rhode and Recio, 

2000). 
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Lin and Guinan note that the responses near this level waxed and waned, as if the response were 

due to the mixing of two excitatory drives of slightly different frequencies, and the authors suppose 

that ‘tip drive’ produces the low-level, long-latency click responses, while ‘tail-drive’ produces the 

high-level, short latency click responses, a picture which well describes the situation modeled here. 

The authors go on to deduce that the excitation drives represent mechanical drives that are carried 

over separate physical paths and add at some point. 

 

In a strict sense, of course, the ripple propagating from the vestibular lip to the IHCs is a traveling 

wave, although it is not the same entity – a von Békésy-style wave traveling in the longitudinal 

direction – that is usually meant by the word. To avoid confusion it may be better to use the term 

propagating ripple with the implication that this ripple is propagating in the cochlea’s radial 

direction. The major difference between the two is that the propagating ripple is local to a specific 

broadly tuned region of the partition (and does not travel more than the width of the TM), whereas 

the classical traveling wave begins at the base and moves towards the apex.  

 

The half-octave difference between the sensitive and highly tuned active resonance of the OHCs 

and the less-sensitive, broadly tuned passive resonance of the partition explains the ‘half-octave 

shift’ which takes place in partition tuning as intensity rises (McFadden, 1986).  

 

The vestibular lip mechanism gives an alternative explanation of apparent traveling wave delays, 

and in particular, why measurements of the delay (either from direct sensing of partition 

displacement or from nerve-fibre recordings) reach a plateau at a fixed number of cycles. The 
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reason is a simple physical one: there are no more cycles of delay available than what the width of 

the TM can provide. To date, no other explanation of the functional significance of the vestibular lip 

and its remarkably sharp edge has been proposed. 

 

Of course, even at low sound pressures traveling wave–like behaviour is seen, but in this case the 

delays can be seen as a 1-cycle delay between the OHC cavity and the IHC (again, based on 

distances seen in partition cross-sections), in addition to which is the unavoidable delay (roughly Q 

cycles) involved in increasing the amplitude of a high-Q resonance by 10 dB. However, in this case 

it is predicted that no distinctive phase plateaus would be evident. 

 

The new model also gives a reason for why recent measurements of the spatial extent of the 

traveling wave displacement show it to be so narrow. Basalward of a resonance region, there does 

not appear to be appreciable displacement. Thus, Russell and Nilsen (1997) estimate that a region of 

the partition only 0.15 mm long (53 OHCs) is responding to a tone at 15 dB SPL, and similarly Ren 

et al. (2003) noted that the traveling wave at 40 dB SPL appeared to be confined to a region near the 

CF that extended no more than 600 µm longitudinally. 

 

Recently, pressure-probe recordings (Olson 1999, 2001) give an additional insight into the nature of 

the traveling wave, and provide further results that can be interpreted from a SAW perspective. 

 

Olson (2001) used miniature pressure transducers to record pressure on both sides of the partition, 

and found appreciable common-mode pressures. She points to indications, from phase data, that a 

resonance appears to be occurring in some test animals, although strangely there is no evidence of 
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this in the magnitude of the displacement signal, which peaks about half an octave lower than where 

the phase plateau begins. Her suggestion that the signature of peak amplification may be occurring 

radially – and hence invisible to her sensors – agrees with the SAW picture. It predicts a sharply 

tuned radial resonance driven by common-mode pressure (and unaccompanied by bodily vertical 

motion of the partition, although there will be some interchange between these two motion types), 

and a broadly tuned up and down motion of the partition driven by differential pressure.  

 

Similar results were reported in Olson (1999), but a key finding was that the fluid layer associated 

with the presumed traveling wave was minute, having a penetration depth of only 15 µm, and was, 

surprisingly, independent of frequency. Detailed discussion is not possible here, but the suggestion 

is made that the OHC activity is causing small fluid displacements (detected as near-field pressure – 

Bergeijk, 1964), not that the minute fluid layer is causing the entire basilar membrane to execute a 

traveling wave. 

 

XI  DISCUSSION 

 

By formulating a model of the cochlea as a pressure-driven SAW resonator, this paper reintroduces 

a resonance theory of hearing not unlike that advocated by von Helmholtz more than 100 years ago 

(von Helmholtz, 1885). The major difference is that the resonance frequency here derives not from 

combined mass and compliance of individual elements (as Helmholtz supposed) but from a 

distributed arrangement of minute delay lines. The present hypothesis speculates that the cochlea is 

more sensitive to common-mode pressure than it is to differential pressure, which is normally 
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considered the source of the classical traveling wave. However, by considering the action of 

differential pressure in moving the partition up and down – and producing ripples from the 

vestibular lip that mimic the phase delays ascribed to the conventionally understood traveling wave 

– no such entity taking energy from base to apex is required.  

 

Resonance theories have periodically resurfaced after being supplanted by the traveling wave theory 

early last century. Of most interest, Gold (1948) observed the ‘phase memory’ of the ear and 

concluded that only a resonance theory could accommodate his findings, and for the first time 

postulated an active cochlea. This latter concept was ahead of its time when introduced, but has 

since been vindicated. However, his ‘regenerative receiver’ notion, and his advocacy of von 

Helmholtz-like resonance, has still not been accepted. The SAW topology proposed here satisfies 

both of Gold’s requirements. It was some years before Naftalin (1965) attempted to revive the 

resonance theory by calling for resonant biochemical/electrical activity in the TM. Soon after, 

Huxley (1969) raised the possibility that the spiral geometry of the cochlea may allow some form of 

resonance to occur. More recently, Dancer and colleagues (Dancer and Franke, 1989; Dancer et al., 

1997) have suggested resonance, although no mechanism has been proposed. 

 

Relying on resonance – a recurring theme in theories of hearing (Wever, 1949) – has the advantage 

of providing a ready understanding of how the sensitivity of the cochlea can be brought close to its 

theoretical limits (Wit and Ritsma, 1983). Another potentially fruitful avenue is the natural 

introduction of signal-processing functions, such as correlation, of which SAW devices are capable. 

The model also raises the possibility of the ear having built-in ratio-detection abilities, an aspect 

that should be of considerable interest to music theory (Bell, 2002a).  
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Because this model seeks to reinterpret how the cochlea transduces sound at a fundamental level, it 

impinges on a vast literature, which is beyond consideration here. More detailed treatments of the 

SAW model, and consideration of some potential counter-arguments, can be found on the Web2. 

Traveling waves may be apt for describing the behaviour of a passive cochlea at extremely high 

sound pressure levels, as investigated by von Békésy, but this paper proposes that the active cochlea 

can be described without reference to them. The von Békésy-style traveling wave has never been 

observed in a living cochlea – in the sense of basal activity causing apical activity with increasingly 

long phase delays (of course, both accounts will give correlations between base and apex). 

Experimentally, at a particular observing location, the general finding is of sharply circumscribed 

activity and accumulating phase delays as a function of frequency (e.g., Russell and Nilsen, 1997; 

Ren et al., 2003).  

 

The SAW hypothesis proposes that all the effects attributed to a traveling wave are only the result 

of local effects generated at a single point on the partition. Dispensing with the traditional traveling 

wave has the advantage of circumventing a number of lingering problems in cochlear mechanics; 

the disadvantage is that the traveling wave meshes easily with the notion that OHCs are 

displacement sensors stimulated solely through their stereocilia. The new model calls on OHCs to 

be dual sensors that respond most sensitively to pressure via their cell body, a conjecture that 

requires reinterpretation of previous work and additional experiments. 

 

The SAW model introduces the notion that at each point along the partition there exist a set of 

widely tuned resonators extending over more than an octave. The best frequency is normally 
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associated with a short resonator, but sometimes (particularly at the apex) the OHC stereociliar 

arms are angled to make longer, oblique resonators the strongest ones. This supposition explains, at 

least conceptually, the different shape of low-frequency and high-frequency tuning curves and ties 

together a wide body of literature in which additional frequency mappings have been observed (e.g., 

Allen and Fahey, 1993). In this respect, the model again resembles a piano in that each note, when 

struck, excites a number of strings, the difference being that here the multiple strings vary widely in 

tuning.  

 

XII  CONCLUSION 

 

This paper has sought to provide an alternative to standard traveling wave theory. The TM has been 

presented as a central structure for supporting slow, short-wavelength ripples. Its physical properties 

– a highly compliant gel – and placement within the cochlea – in contact with motile OHCs – make 

it perfectly suited to perform this task, allowing frequency analysis and information processing to 

be done in very much the same way as solid-state SAW devices are able to do. 

 

The revised cochlear mechanics appears to be comprehensive and consistent, albeit speculative. 

Two ripple-generating mechanisms have been postulated. One, an active source identified with the 

cochlear amplifier, is generated between the rows of OHCs – an arrangement likened to a SAW 

resonator – and acts only at low sound pressure levels. But once this model is accepted, another 

source of ripples on the TM can be readily envisioned. This second source originates from the 
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vestibular lip and results from vibration of the TM against it. Together, these two localised ripple 

sources provide the energy that eventually stimulates the IHCs.  

 

In this picture, the basilar membrane is not a major element in cochlear mechanics; it is there mostly 

to support the sensing structures and help in tuning the partition at high levels. In particular, the 

basilar membrane does not need to support a traveling wave. The SAW theory supposes that the 

OHCs create movement on the basilar membrane that looks like a traveling wave, but the point of 

difference is that the traveling wave appears as a by-product of the initial motion – an 

epiphenomenon – and not its cause. 

 

Clearly, the gel-like properties of the TM are crucial to the operation of the model, and more 

investigation of these is needed. In addition, although the conjectured model has good explanatory 

power, additional exploration using detailed mathematical modelling is called for. 

 

Several suggestions for experimental confirmation of the SAW model are implicit in the picture as 

put forward above3. However, it is worth explicitly listing the following. 

 

• Isolated OHCs, as pressure sensors, should show a response to a pure pressure stimulus and 

should therefore possess some degree of compressibility (Bell, 2003). 

 

• Physical measurements of shear moduli and wave velocities in TMs should reveal suitably low 

values. 
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• Close study of linked bistable emissions should confirm the proposed unit cell geometry 

underlying their occurrence. 

 

• Long latency studies of cochlear echoes using pure tone stimuli (in the manner of Wilson, 

1980a) should show that the delays involved provide appropriate dimensions for the TM from 

the vestibular lip to the OHCs.  

 

It is hoped that the ideas raised here will promote further investigation and understanding. 
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FIGURE CAPTIONS 
 

  
FIG. 1.  Precise arrangement of the hair cells of a rabbit, showing three rows (below) of outer hair 

cells, with their characteristic sawtooth arrangement of stereocilia,  and one row (top) of inner hair 

cells. It is conjectured that the three rows of outer hair cells function like the interdigital electrodes 

of a surface acoustic wave resonator. [Micrograph courtesy of Allen Counter and the Karolinska 

Institute and used with the permission of Elsevier Science Ireland Ltd. Reprinted from Counter, S. 

A., Borg, E., and Löfqvist, L. (1991), “Acoustic trauma in extracranial magnetic brain stimulation”, 

Electroencephalography Clin. Neurophys. 78, 173–184.] 

 
 
 
 
 
 
 
 
FIG. 2.  Basic elements of a surface acoustic wave device. Surface acoustic waves are launched 

when an electrical signal is applied to an interdigital electrode on the polished surface of a 

piezoelectric crystal; detection is done with a similar electrode set. A resonator is formed by feeding 

the output back to the input; alternatively, driving and sensing functions can be combined into a 

single set of electrodes in which the period of the interdigital transducer matches the wavelength of 

the surface acoustic wave. [After Smith, 1981]. 
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FIG. 3.  Visual representations of the SAW model, with a three-dimensional rendition (above) and 

labelled cross-section (below). Both show how ripples are formed on the undersurface of the 

gelatinous tectorial membrane (TM) when piezoelectric outer hair cells move in response to 

common-mode fluid pressure in the cochlea. Feedback between the rows of cells produces a 

standing wave; energy emerges from the cavity, like light from a laser cavity, and propagates to the 

IHC, where it is detected. The arrows indicate how, in response to pressure, the middle row of cells 

moves in opposite directions to that of its flanking rows; the vertical marks indicate the boundaries 

of a “cavity” in which the standing wave forms. [Top illustration after Lim (1980) J. Acoust. Soc. 

Am. 67, p. 1686; used with permission of the author and the Acoustical Society of America.] 

 

FIG. 4.  Non-linear capacitance of an isolated outer hair cell varies with membrane potential (from 

Kakehata and Santos-Sacchi, 1995). The inset waveforms are gating currents derived by applying 

fixed voltage steps to the cell at various holding potentials; note the reversal of the gating current on 

either side of the peak; such opposite responses, controlled by polarization and turgor pressure, are 

conjectured to be key differences between OHC row 1/3 and row 2. 

 

 

FIG. 5.  Rapid phase variations across the basilar membrane of a guinea pig observed by Nilsen and 

Russell (1999). The phase excursions, which measure up to 180º in this animal, are close to those 

expected from the SAW resonator model except that a sharp dip above OHC2 (additional dotted 

lines) is predicted. [From Nilsen and Russell, 1999, and used with permission of Nature 

Neuroscience.] 
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FIG. 6. Reticular laminar of the mustached bat, Pteronotus parnellii, an animal which detects the 

second harmonic from its call for echolocation. Note that, unlike almost every other vertebrate 

cochlea, OHC2 is not equidistant from OHC1 and OHC3. Instead, the inter-row spacing is 2:1, a 

ratio required by a SAW device when operating in a harmonic mode. [Adapted from Kössl and 

Vater, 2000, and used with the permission of J. Assoc. Res. Otolaryngol.] 

 

FIG. 7. Geometrical arrangement of outer hair cells. (A) Typically, OHCs are found to occupy a 

regular rectangular arrangement in which a is the longitudinal distance between cells (along the 

length of the cochlea), and b is the distance between the first and third rows. The diagonal of the 

unit cell then appears at an angle θ given by arctan a/b. Elaboration of this scheme over a number of 

unit cells, (B), shows that multiple alignments of hair cells occur at increasingly oblique angles. For 

typical parameters a = 0.35 and b = 1, a set of alignments occurs as shown. Simple trigonometry 

shows that the cavity lengths are 1.00, 1.06, 1.22, 1.44, 1.71, 2.00, …  
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FIG. 8. Summing the response of each of the cochlear resonators produces, using simple 

assumptions, a curve that resembles the mechanical response of the cochlear partition. Here, each 

resonator L0, L1, L2, L3, …L11 of a set similar to that in Fig. 7 (a = 0.3, b = 1, tilt of 2.9°) is 

arbitrarily assigned a Q of 20 derived from multiple reflections between hair cells. Each member of 

the set (• ) produces a peaked response (like that shown dotted for one representative member). The 

X-axis is simply the inverse of the normalised cavity length (shortest cavity = 1). The Y-axis 

response is given as (k/L) exp(–L), where k is 2.73 and L is the normalised cavity length. The 

exponential term is a simple expression of wave attenuation with distance, and the other term 

accounts for intensity decreasing inversely with distance as a circular wavefront expands.  

 

 

FIG. 9.  Peaks in the mechanical response of a guinea pig cochlea match the expected response 

from an outer hair cell array with a/b = 0.383 and tilt of 4º, a value consistent with measurements of 

micrographs. The response of glass beads to wide-band noise was measured with a laser doppler 

velocimeter (Nutall et al., 1997). A number of peaks, marked with vertical lines, recur between 

levels of 90 dB SPL (top) and 80 dB (bottom) and can be matched with certain alignments of the 

specified outer hair cell array. [Adapted from Fig. 5 of Nuttall et al., 1997, and used with 

permission of the author and Elsevier Science.] 

 

 

[57]
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