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Abstract

Valgrind is a dynamic binary translation and instrumen-
tation framework. It is suited to analysing memory usage. It
is used in memory validation and profiling tools. Currently,
Valgrind is restricted to executing a guest with serialised
thread scheduling. This results in lost opportunity for per-
formance when analysing highly parallel applications on
parallel architectures.

We have extended the framework to allow parallel execu-
tion of guest threads. Code caching mechanisms have been
made thread-safe, by delaying flushing of translated code,
while preserving critical areas of performance.

Three methods which preserve atomicity of instructions
are implemented and evaluated with respect to speed, re-
liability and instrumentation effects. Serialising both store
and atomic operations preserves atomicity in the strongest
sense, but suffers unacceptable performance overhead. Se-
rialising only atomic instructions or utilising host atomic
instructions provides speedup in line with native execution.
These methods show average slowdowns of only 2.6 X and
2.2X over native parallel execution respectively.

1 Introduction

Binary translation forms a crucial component of many
validation [12], simulation [2, 3] and software performance
[7] tools. This involves translating instructions from their
target Instruction Set Architecture (ISA) to a secondary ISA,
perhaps through intermediate modification stages'. The
translation process provides an opportunity to modify the
semantics of instructions, or add instrumentation.

Performance evaluation tools may use features of the un-
derlying code, such as memory references, which are passed
to analysis routines as part of modified execution. This
allows for an in depth view of an application’s execution
while maintaining reasonable performance. We are primar-
ily interested in analysis of large, parallel, scientific work-

lOriginal, final and intermediate ISA used in translation need not be
unique.
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loads due to their strong reliance on CPU and memory per-
formance.

Valgrind [9] is a dynamic binary translation and instru-
mentation framework which is suited to analysing memory
usage on x86, AMD-64 and PPC architectures. It provides
facilities for loading, translating and executing an applica-
tion (the guest) without linking or source modification re-
quirements. For a tool developer, it provides a layer ex-
posing code instrumentation and event notification mecha-
nisms.

However the current implementation prevents parallel
execution of guest threads. As many scientific workloads
are designed for large numbers of processors, serialisation
represents a lost opportunity in execution speed as com-
pared with native parallel execution. Additionally, seriali-
sation makes applying timing sensitive instrumentation dif-
ficult.

We have modified the Valgrind framework, described in
detail in section 2, to operate with multiple concurrent guest
threads (referred to as pValgrind), with the AMD-64 archi-
tecture of chief interest. In order to facilitate multithreaded
execution, two key deficiencies were addressed.

In section 3, we describe modifications to translation
caching and flushing required to retain safety and perfor-
mance. In section 4, we describe three modifications to dis-
assembly and execution of atomic instructions which retain
atomic semantics and instrumentation capabilities. The per-
formance of each method is discussed in section 5.

Two tools have been extended to operate concur-
rently, Lackey and Cachegrind (referred to as pLackey and
pCachegrind respectively), which we describe in section 6.
Both show increased performance with multiple CPU sys-
tems.

Section 7 relates our approach to existing work while
section 8 concludes.

2 Background

The Valgrind framework is divided into three main areas:
core and guest maintenance (coregrind), translation and in-
strumentation (LibVEX), and user instrumentation libraries.
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computer
psouety

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 23, 2009 at 00:09 from IEEE Xplore. Restrictions apply.



0x4001D5E: subg 2199099 (%rip), $rax

IMark (0x4001D5E,

PUT (168) = 0x4001D5E:I64

t22 = Add64(0x4001D65:164, 0x218E3B: 164)
t21 = GET:164(0)

t20 = LDle:I164(t22)

t19 = Sub64 (t21,t20)

PUT (128) = 0x8:164

PUT (136) = t21

PUT (144) = t20

PUT (0) = t19

Figure 1. Components of an AMD-64 to
UCode translation of a subtraction from in-
dexed memory

All three elements work in conjunction to load, instrument,
and execute a guest binary. The combination of these ele-
ments is referred to as a Valgrind tool.

Coregrind contains OS specific routines emulating the
normal system image loading and startup methods. Using
these, a tool will load and position a guest within its own ad-
dress space. As a guest runs, all code is passed through Lib-
VEX binary translation prior to execution. With the careful
manipulation of a guest’s translation, all scenarios where
a guest could regain direct control of execution are elimi-
nated.

A tool may dynamically modify the instructions of
a guest at translation time. Manipulation is performed
through a specialised RISC-like intermediary ISA, UCode.
The original ISA is translated to UCode, modified and in-
strumented, and subsequently translated to the host ISA.
UCode is designed for simple access of memory addresses
and instruction sub-operations, avoiding details that may be
complex to decode and account for in a CISC architecture.

Each guest instruction may be potentially broken into a
number of UCode operations, such as calculating addresses
or intermediate steps of the instruction. Figure 1 illustrates
the operations performing a subtraction on memory. After
tool instrumentation, an instruction could consist of an ar-
bitrary number of operations, typically involving a call to a
tool function which records statistics or modifies a model of
state.

Translation and execution of a guest is performed at the
basic block scope’. Each basic block executes from its
start address through to a terminating jump to a predefined
Valgrind supplied function, the dispatcher. This small, as-
sembly function is responsible for calculating and jumping

2 A single run of instructions which contain a single entry and possibly
multiple exit points.
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Begin quantum
Find block

Execute block

| End quantum |<---

Convert to Host

Instrument UCode

Convert to UCode

Figure 2. Valgrind translation, instrumenta-
tion and dispatch loop

to the next basic block; iterating through each guest basic
block in turn, as outlined in figure 2.

Each translated block is cached in a large global struc-
ture so as to reduce re-translation overhead. As basic blocks
do not directly jump to their successor, the overhead of
block lookup must be minimized to ensure adequate per-
formance’. As the global cache is optimised for efficient
address range flushing and management, performing this
lookup on the global cache is expensive. Instead, a fast di-
rect mapped table of addresses to translated block pointers
is used, exploiting locality of reference.

The current scheduling of guest threads is designed to
simplify the architecture of Valgrind and execution of guest
code. Only a single thread is permitted to execute userspace
code at a time; a single global lock must be held to execute
any userspace code, whether in Valgrind or guest. Each
thread will execute a maximum quantum of basic blocks
(currently 10,000) within the dispatcher before deferring to
other threads.

Threads yield their quantum prior to executing syscalls,
when requiring untranslated code blocks or when a variety
of guest faults occur. After dropping out of the dispatcher
to yield, a thread will perform some routine guest main-
tenance: execution of queued signals and periodic sanity
checks. When a syscall is requested the thread will poten-
tially execute in parallel with userspace code, re-acquiring
the execution lock prior immediately it returns from kernel-
space.

There is no attempt to synchronise thread execution
based on notions of time or fairness. Complete usage of
execution quantum is not guaranteed and will vary consid-
erably due to placement of syscalls, efficiency of transla-
tion caches and other execution characteristics. Due to vari-
able length translation and code instrumentation for each
instruction, even a single thread’s execution in isolation can
not be guaranteed to reflect the corresponding native tim-

3The performance of the Strata dynamic binary translation framework
increased 5 fold when block chaining was introduced, due to a 250 cycle
block lookup [9, 11]
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ings.
3 Parallelisation issues in translation caching

A key difficulty in efficient guest execution within Val-
grind’s translation infrastructure is to ensure that the lookup
and execution of a translated block are performed suffi-
ciently quickly. The dispatcher inner loop for the AMD-64
architecture consists of 14 instructions, with the fast table
lookup accounting for half. As there is typically 5-30 guest
instructions per basic block?, these operations must be per-
formed quite frequently.

The global translation cache is of finite size and flushes
can occur under a number of scenarios: when the cache
becomes greater than 80% full, when a tool requests an
address range flush, and when self modifying code is ex-
ecuted.

This presents a problem when a thread is currently ex-
ecuting a block to be flushed. In serial Valgrind only the
single executing thread has the ability to delete blocks. This
thread could not be in a translated block as all cache manip-
ulation occurs outside of guest execution. With multiple ex-
ecuting threads, the block cannot necessarily be freed in this
scenario as its code could potentially be in use. As record-
ing whether a block is being executed or locking table en-
tries would cause prohibitive performance penalties, there
is no efficient mechanism to determine whether a block is
being executed.

We have introduced a list of blocks pending deletion.
This allows threads to continue executing currently refer-
enced blocks while permitting efficient block flushing and
guest execution.

As the cache manipulation routines potentially use the
LibVEX translation library, which is not thread-safe, we in-
troduced a lock to protect all access to these routines. The
only operation on the translated cache which does not re-
quire a lock is a read from the fast table.

There are two locations which could contain pointers to
translated code blocks: the global cache and the fast trans-
lation tables. The translation to be flushed is first removed
from the global cache, so that it cannot be reintroduced into
the fast table. Any thread requesting a mapping to this ad-
dress will trigger a re-translation.

The thread performing the flush then atomically substi-
tutes a null pointer into the fast table if it contains this block.
A null pointer in a fast table is interpreted as having no
known translation and triggers a translation request when
next accessed. As we are not modifying the block’s data, a
thread currently executing this block can continue safely.

The flushed translation is placed in the list of blocks
pending deletion until we can safely determine it is not in
use. A bitmap indicating which threads currently executing

4We have observed 19 guest instructions per block on average in the
NPB W class
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‘ Time ‘ Thread ‘ Thread B ‘
1 t5 = LDle:I32(t6)
2 t7 = Sub32(t5,0x1:I132)
3 t5 = LDle:I32(t6)
4 STle(t6) = t7
5 t7 = Sub32(t5,0x1:132)
6 STle(t6) = t7

Figure 3. Overlapping atomic decrement in
UCode with two threads

at the time of flushing is created and stored with the block.
As part of normal thread maintenance at the end of the ex-
ecution quantum, each thread iterates through all flushed
translations and zeroes their corresponding flag. This indi-
cates that a thread has no live reference to this translation
and is not capable of re-acquiring access to it. When the
entire bitmap is cleared, the block is finally freed.

4 Preservation of instruction atomicity

With any system which breaks instructions into multiple
operations, care must be taken to avoid introducing memory
ordering problems, particularly with atomic instructions.
As shown in figure 3, there is a possibility of overlapping
instruction (sub-) operations. In the case of Valgrind, these
operations are translated into multiple host instructions, de-
stroying their atomicity if executed in parallel. The problem
is compounded by the possibility that a tool could modify
the disassembled instruction in an arbitrary manner, typi-
cally adding further instructions and creating a larger win-
dow for errors.

Valgrind’s serialised thread scheduling of userspace
guest code avoids the issue of instruction atomicity. All
threads execute basic blocks to completion before attend-
ing to any pending events, and any signals received are
queued for later delivery. This ensures no thread can be
interrupted during the execution of a basic block, and hence
of an atomic instruction. Combined with thread serialisa-
tion, all atomicity hazards are eliminated, at the cost of par-
allelism.

Methods used to preserve instruction atomicity must im-
pose minimal overhead when the majority of instructions
are executed (it should be noted that atomic instructions
generally constitute a small fraction of the total executed).
Owing to the nature of instruction disassembly and re-
assembly, it is difficult to retain both the expressive power
of UCode and functional semantics of atomic instructions
at the instruction level. An ideal method would preserve all
generated UCode.

We have developed three methods of atomicity preserva-
tion. Each has various safety and performance character-
istics with differing impact on tool development and main-
tenance. The implementation of each method is compared
with the original thread serialisation approach. The perfor-
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mance of each is outlined in section 5.
4.1 Store and atomic serialisation by locking

By acquiring a lock before performing a store or atomic
instruction, we can enforce the atomicity of all store oper-
ations. This provides substantially stronger atomicity guar-
antees within the guest than native execution.

Our implementation uses an array of 2"*! spinlocks
padded to cacheline length. Bits [n+ 6 : 6] of the atomic in-
struction’s virtual address are used to index this array. Dur-
ing the initial translation of each guest instruction, pVal-
grind scans for store operations. Immediately prior to each
store operation, a function call to acquire the appropriate
lock is introduced, together with a corresponding call to re-
lease the lock at the end of translation. If any load operation
to the same address was found within the translation prior
to the store, the lock acquisition call is placed immediately
before the load instead. This ensures the serialization of
potential atomic instructions.

4.2 Atomic serialisation by locking

A potential drawback of the above approach is that it im-
poses overhead on all store operations. Because of this, we
examined two methods involving only the serialisation of
atomic instructions. The first is based on the supposition
that if a ‘well behaved” application manipulates a memory
location with an atomic instruction, it is likely that only
atomic instructions would be writing to that address at that
time. This method is described below, with the second
method being described in section 4.3.

Known implementations of synchronisation primitives
which utilise atomic instructions (e.g. a barrier with an
atomic decrement) manipulate their data exclusively with
atomic instructions. If a thread was waiting on a barrier
variable to be (atomically) decremented to 0, and another
thread wrote with a non-atomic operation, the synchronisa-
tion could be lost. Thus standard synchronisation methods
can be performed safely when atomic instructions are seri-
alised.

A single globally accessible spinlock was introduced
which must be held for the duration of any atomic instruc-
tion. Functionally, this method is equivalent to the method
of section 4.1 with a single lock, but applied only to atomic
instructions. Thus, its implementation, portability and pro-
tection concerns have similar characteristics, with a poten-
tial reduction in overhead.

4.3 Atomic serialisation with host atomics

To support precise atomic instruction semantics, a final
method was developed which utilises the guest instruction
in question, or a functionally equivalent host instruction.
The initial conversion from guest instructions to UCode was
modified to emit a call to a function; address calculation op-
erations were still emitted.
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Given the host
* information we

register and state
are to increment

* address ‘addr’ of size ‘ty’ for the
* guest. No side effects other than

* memory

*/

static

void atomic_c_INC(
VexGuestAMD64State * guest,
IRType ty,
HWord addr) {
ULong flags;

switch (ty) {

case Ity_I8:
asm__ __volatile__ (
"LOCK incb (%%rax);\n"
"pushf; \n"
"popq %$%rbx;\n"

"=b" (flags)

"a" (addr)
); break;

// Similarly for other sizes...

Figure 4. Host atomic execution of an atomic
increment

The instruction’s operands are passed to the function in
addition to the current thread state (which includes all regis-
ter and CPU state). This function contains inline assembler
for the instruction in question, in the style of figure 4. Af-
ter the instruction has been executed, the relevant CPU flags
are saved into the guest state and results are returned if ap-
propriate.

This method is implemented for the AMD-64 architec-
ture only, which has 19 atomic instructions.

4.4 Discussion

All methods solve instruction atomicity issues, each with
various implementation and reliability concerns. Some
methods are potentially sensitive to UCode transformation,
some provide more UCode detail and there are different lev-
els of reliability.

While all methods preserve atomic semantics within
the guest’s userspace components, guest memory accesses
made by the kernel or other external agents need not follow
the same protocol. This can result in the loss of atomicity
when using the locking based methods, but not with the host
atomics method. Note that this problem is present in current
versions of Valgrind, but is not known to have caused sub-
stantial problems so far.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 23, 2009 at 00:09 from IEEE Xplore. Restrictions apply.



Time ‘ Thread A (atomic) ‘ Thread B (non-atomic)
1 READ [m1], rl

2 WRITE [m1], 12
3 INC rl
4

WRITE [m1], r1 Lost previous write

Figure 5. Serialised atomics: Write loss with
atomic increment and parallel non-atomic
store

All methods place some limitations on LibVEX’s op-
timisation phases, as embedded function calls marked as
touching guest state or memory require cached guest state
(i.e. registers) to be written out prior to the call. This en-
sures a coherent view of guest state, but limits the location
and duration of block level optimisations. This problem is
exacerbated within the host atomic method, when CPU flags
must be saved. This requires additional memory operations
that lessen LibVEX’s capacity to cache flag values.

The methods presented can be applied to any architec-
ture. Serialised stores and serialised atomics are most read-
ily transferable due to the fact that all instruction opera-
tions are expressed in UCode. However, as both methods
rely on strict positioning of locks, they have the potential to
fail under certain patterns of UCode transformation or re-
ordering’. This does not apply to the host atomics method,
which, due to the fact that all crucial guest state updates are
carried out as a single atomic operation, is inherently more
robust to UCode transformations.

Host atomics require an implementation of each guest
atomic instruction with a corresponding host atomic in-
struction, for each combination of host and guest ISA to
be supported, resulting in a programming burden. Despite
the reduction in UCode detail in host atomics, we do not be-
lieve that tool functionality will suffer with this mechanism,
as the relevant memory references are still made available.

It is unclear whether the serialised atomics method
would result in reliability problems for practical applica-
tions. There are potential issues with simultaneous non-
atomic write loss, as in figure 5. We have not observed
any instances where this causes problems, particularly in
benchmarks used in section 5. From a practical standpoint,
if this mechanism proved problematic for a specific appli-
cation, other atomic preservation methods could be utilised,
including reverting to thread serialisation.

5 Performance

To establish the efficiency of our approaches we have
analysed the performance of the NAS Parallel Benchmarks,
NPB [1]; a set of 5 kernels and 3 applications constructed
from computational fluid dynamics applications. We have

SWe are not aware of any existing tools which modify instruction or
UCode ordering in such a manner.
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Relative performance of pValgrind compared to Valgrind
across NPB W class using no instrumentation
6 T T

Speedup
w
T
Slowdown over native execution

0 L 1
1 2 4 8
CPU count
Host atomics, speedup over serial Valgrind —+—
Atomic serialisation, speedup over serial Valgrind ---<---
Native, speedup over single thread ------
Atomic serialisation, native slowdown —+—
Host atomics, native slowdown ---x---

Figure 6. Geometric mean of multiprocessing
performance of atomic serialisation methods
on NPB (W class) with no instrumentation.

chosen to analyse version 3.0 of the OpenMP reference im-
plementation. Each benchmark of the W class was run 5
times; the average execution time of the benchmark’s com-
putational phase for further analysis. A geometric mean on
these results was used to get an overall result for the NAS.

Valgrind, pValgrind and NPB were all compiled with
GCC 4.2.3 for all tests. Valgrind and pValgrind were built
with only 64 bit support using the standard configure/make
procedure; the process implicitly builds all default tools,
e.g. Lackey and Cachegrind. NPB was compiled with level
1 optimisations enabled.

All performance tests were conducted on a SunFire
X4600 M2 unless otherwise noted; an eight-socket, dual-
core Opteron 8128 system operating at 2.67 GHz, with a
total 32 GiB of system RAM. The system was running Red-
Hat Linux, kernel 2.6.18.

All comparisons to serial Valgrind were conducted with
version 3.3.0. Comparisons of workload times were per-
formed without instrumentation, using the Nullgrind tool,
to determine the basic performance penalty of each paral-
lelisation method. Similar comparisons for instrumented
execution are given in section 6.3. All analysis of native,
pValgrind and Valgrind timings were compared against con-
figurations utilising the same number of threads.

The performance of pValgrind using the Valgrind’s seri-
alised threads scheduling compared with Valgrind is almost
identical. The overhead of storing additional state such as
TIDs and locking of cache structures shows less than 1%
performance difference. In both cases there is a linear slow-
down of execution with the addition of hardware supported
threads as compared to the native execution.

Both atomic serialisation and host atomics, in all tools,
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see a clear performance improvement with multiple CPUs,
as compared with serial Valgrind (running with the same
number of threads), as illustrated by figure 6. This indicates
the performance gains achieved by utilizing pValgrind.

A geometric mean slowdown over native execution of
between 3.45 and 2.36 x for serialised atomics and 3.43 and
2.22x for host atomics was observed when tested over 1
to 8 CPUs. The fact that the slowdown decreases with the
number of CPU indicates that pValgrind scales correspond-
ingly better than does native execution. This is primarily
due to the fact that the overheads introduced by pValgrind
(i.e. the maintenance of guest processor state) dilutes the
strain on the memory system of the original application.

The serialised store and atomic method was observed to
have substantial performance loss, with slowdowns between
1.63x and 60x (with a geometric mean of 9x) over Val-
grind. For this reason, it could not be plotted on figure 6.

Performance results for 16 CPUs as not discussed, as the
NAS benchmarks did not scale beyond 8 CPUs under na-
tive execution. This even includes the EP benchmark which
generates no coherency traffic. This effect is due to the fact
that the memory-intensive nature of these applications satu-
rated the memory system, coupled with the fact that the un-
modified benchmarks do not try to optimize memory place-
ment on a host with strong NUMA effects.

5.1 Store and atomic serialisation by locking

Figure 7 indicates the performance of the store and
atomic serialisation method when varying the number of
locks within 8 < n < 4096, with four threads on four CPUs
without instrumentation. The analysis was performed on
a quad-core Intel Q6700 (clocked at 2.67 GHz) with 4
GiB RAM running Linux 2.6.24. All results showed per-
formance decreased as the number of locks dropped from
1024, as in figure 7. Lock contention had significant impact
with n < 128, where slowdowns reached over 3.2 x with the
BT benchmark.

There were diminishing returns for increased numbers of
locks where n > 1024, with a maximum of 4% difference
in performance beyond this point. All further performance
evaluations were performed with 1024 locks.

A geometric mean slowdown of 9x for the NPB was
observed over all other Valgrind implementations in the
single threaded case, including thread serialisation. With
increased processors, the slowdown over serial Valgrind
dipped to 7.5 x.

5.2 Discussion

Modifying many operations in a translation shows seri-
ous performance drawbacks. While serialising stores satis-
fies goals for preserving atomicity, the performance hit is
typically significantly above any observed useful functional
gain, with less performance than serialised threading solu-
tions utilised by serial Valgrind.
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pValgrind serialised store performance against Valgrind,
using NPB W class with variable lock counts

45 T T T T T T T T

_.3
2]
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5o

35

ssss3s=5%

£0Q =0

sf,

—00

Slowdown over serial execution

8 16 32 64

128 256
Lock count

512 1024 2048 4096

Figure 7. Performance of store serialisation
without instrumentation on the NAS Bench-
marks, relative to 4096 locks. Executed with
4 threads on 4 CPUs.

The performance of atomic serialisation and host atom-
ics show the benefit of modifying only atomic instructions,
which occur infrequently in typical applications. Both
methods show speedups at least in line with native and are
bound primarily by the efficiency of generated code.

Host atomics scale slightly better than atomic serialisa-
tion. Both methods use a function call and at least one
atomic operation and conditional jump. However serialised
atomics has lower worst case performance for the case
where many threads compete for the lock, potentially in-
troducing many more coherency events. This contributes to
reduced performance with 8 or greater CPUs.

6 Tool parallelisation

To establish the utility of our approach, we need to
demonstrate that performance analysis tools can be easily
adapted for pValgrind, and show similar performance ben-
efits. We chose to parallelise two tools distributed and built
with Valgrind, Lackey and Cachegrind, to this effect. In
developing these extensions, we discovered some common
implementation considerations in addition to those of serial
Valgrind.

Many tools incorporate structures which are updated di-
rectly by the current thread. Modifying these structures with
multiple threads can cause heavy cacheline contention on
the host, as updates are typically performed very frequently.
A default quantum of 10,000 basic blocks hides contention
problems from serialized tools. Where feasible, extending
data structures such that statistics are kept per-thread and
merged at finalisation can solve this problem.

Indexing state for thread parallel data structures by
thread ID caused some performance degradation as there
was no efficient mechanism to query the thread context. Se-
rial Valgrind contained the notion of a currently executing
thread, which was stored in a globally accessible variable.
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Using a syscall to get the thread ID in every event to in-
dex state was too slow. As this is commonly required data,
we introduced an additional element into the Valgrind/Lib-
VEX thread-state structures. A tool can request the TID at
any point in precisely the same manner as examining any
register, typically adding it as a parameter to a tool func-
tion call. The only penalty when the element is not used
is that of storing its value immediately prior to entering the
dispatcher.

A substantial amount of consideration has gone into
making Valgrind an effective shadow memory tool [9]. Un-
der pValgrind, a guest’s memory space can potentially be
manipulated by any other running thread, making a coher-
ent shadow memory implementation difficult. Parallelising
shadow memory tools thus remains an open problem, with
Memcheck still requiring serialised scheduling.

6.1 Instruction profiler

An advanced instruction profiler, Lackey, is provided
with the Valgrind distribution. It is capable of keeping tal-
lies of all instructions, branches and memory accesses at-
tributable to various classes of guest instructions. Lackey
was chosen to parallelise as its simple tasks allow for an
easy implementation and should result in reasonable per-
formance increases.

Parallelisation was achieved through a simple modifica-
tion to use per-thread event counter structures which were
summed at tool finalisation. An initial naive implemen-
tation involving shared counters and atomic modification
highlighted the severity of poorly chosen data structures,
with over 100X lower performance over serialised threads
with four CPUs.

6.2 Cache profiler

A cache profiler, Cachegrind, forms part of the default
Valgrind tools. It contains a model of a single two-level
cache with parametrised capacity, associativity and line
size. As there is a single cache, each thread takes turns
updating the model during their quantum. While not mod-
elling a multiprocessor system, it serves as a useful approx-
imation, particularly of an n-core shared L2 design.

A simple modification to Cachegrind was performed
which provided a separate simulated two-level cache for
each thread. A thread thus becomes an approximation of a
processor without shared caches, such as the AMD Opteron.
To simplify implementation, the model does not account for
coherency operations. This does not affect functional opera-
tion. However for applications with frequently shared data,
results will be optimistic due to the same lines existing in
multiple caches simultaneously.

The cache configuration modelled for performance com-
parison was that of the benchmark host: 64 KiB L1, 2-way
associative with 64B lines and a 1 MiB L2, §-way associa-
tive with 64B lines.
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Relative performance of atomic methods with pValgrind,
across NPB W class using Cachegrind
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Store serialisation, pValgrind —+—

Thread serialisation, Valgrind ---x---
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Figure 8. Geometric mean of pCachegrind
performance on NPB W class compared to
serialised tools

6.3 Performance

Figure 8 shows slowdowns over native execution for
both pCachegrind®. Again, the fact that the slowdown does
not increase with CPUs indicates that the host atomics and
atomic serialization methods scale well. In fact, the slow-
downs are reduced by half as CPUs increase from one to
eight, even more than in the uninstrumented case (figure 6).
This indicates a speedup at 8 CPUs of twice that of native
execution for the NAS.

As with the no-instrumentation case, this effect can be
explained by the even greater degree of overhead of the tool
diluting the memory system load of the original application.
It should be noted that within the tool, the communication
between threads is limited to the finalisation of an applica-
tion.

A comparison of the 1 CPU performance on figure 8 in-
dicates that here Valgrind is slightly faster. This reflects
the overheads of using arrays of guest state models, which
necessitates indexing and hence additional memory indirec-
tion.

Both serialised threads and serialised stores saw an in-
creasing slowdown with the number of CPU, indicating
poor scaling behavior. As the latter method fails to attain
performance improvement of serial Valgind even in the in-
strumented case, it looks doubtful whether it is likely to be
worthwhile in any context.

7 Related work

While a number of parallelised frameworks exist which
perform similar operations to Valgrind, there is a lack of dis-
cussion on the techniques utilised or problems encountered

pLackey shows extremely similar performance, with relative 8 CPU
performance of 160x for store serialisation
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on parallelization. The frameworks mentioned below lack
this and also do not offer any analysis of parallel execution.

Embra [13] pioneered the usage of parallel execution of
translated code, with both serialised round-robin and par-
allel execution. Its caching and dispatch method is simi-
lar to that of serial Valgrind, while also implementing block
chaining. Valgrind differs with its focus on providing a base
to perform instrumentation rather than simulation, and as
such must provide far more general methods for instrumen-
tation and instruction modification.

The Embra authors do not discuss the implementation
of atomic instructions or many parallelisation issues. The
instruction sets targetted by Embra, the MIPS R3000 and
R4000, include fewer atomic instructions than the AMD-
64. Inspection of the Embra source code shows they use
a method similar to our host atomics instructions method
when using parallel execution, while decomposing atomic
instructions when using serial execution.

There are a number of dynamic instrumentation frame-
works available for similar platforms to Valgrind. Pin [8]
and DynamoRIO [4] are popular JIT based systems with
parallel execution. As both utilise a copy-and-annotate
approach, where most instructions are copied unmodified
to cache, they avoid atomicity concerns in re-assembly.
They are more efficient than Valgrind when performing
lightweight analysis.

Dynlnst [5] and DTrace [6] are popular probe based sys-
tems with parallel execution, which are not intended to be
utilised for extremely fine grained instrumentation. They
permit function calls to be inserted and only modify suffi-
cient guest state to gain control of execution at the appropri-
ate time. This class of tool typically patch guest instructions
at runtime, making caching and atomicity concerns irrele-
vant.

Valgrind’s primary advantages lie in the use of UCode.
UCode is substantially easier to analyse than complex in-
struction sets like AMD-64, and provides a platform neu-
tral abstraction layer over all instruction sets’. This assists
tools, such as Memcheck, which rely on analysing implicit
operations and values in complex instructions. As UCode is
necessarily as expressive as host code, both tool and analy-
sis code is similarly as expressive.

Valgrind’s code optimisation routines treat guest and tool
codes equally and can thus more tightly optimise host code
generation, increasing the performance of a complex instru-
mentation. In comparison, Pin attempts to inline instrumen-
tation code, but is prevented from doing so if any flow con-
trol statements are present.

7At time of writing Valgrind supports bi-directional conversion be-
tween UCode and the x86, AMD-64 and PPC instruction sets
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8 Conclusions

With a small number of additions to the core Valgrind
framework, we are able to efficiently parallelize the in-
strumented execution of threaded applications. We have
demonstrated a practical method of parallelisation of the
Valgrind framework.

The use of a list of blocks for delayed flushing retains the
performance of the critical dispatcher loop, with only min-
imal additional per-quantum overhead. While we made no
effort to support fine grained locking of the translation in-
frastructure, as only a small number of routines modify the
translation cache state, the benefits of increased parallelism
in this region compared to the simplicity of global locking
are not compelling.

While the first naive approach of locking all store
and atomic instructions preserves atomicity, performance
suffers tremendously in any store-intensive application.
Thread serialisation approaches offer better performance in
tools observed thus far, and it is questionable whether per-
formance will ever scale sufficiently to be of practical value.

Serialisation of atomics and insertion of host atomic in-
structions are shown to provide adequate safety and min-
imal overhead, allowing performance to scale better than
native execution. As performance of both methods is quite
close, the additional safety of host atomics outweighs the
minimal amount of information potentially lost to instru-
mentation tools. Simultaneous memory manipulation by
the kernel or other external agents is supported only in this
atomicity, a problem which serial Valgrind currently ig-
nores.

Performance analysis tools, such an instructions and
cache profilers, can easily be extended for the parallel
framework. Care must be taken however in data layout, with
a separate data structure for each thread being required to
avoid host false cacheline sharing overheads. While prob-
lems for shadow memory based tools remain, memory pro-
filing tools such as Cachegrind have been shown to scale
effectively for highly parallel applications.

Serial Valgrind’s scheduling poses analysis problems for
performance analysis tool. Over et. al. discuss accuracy
tradeoffs with parallel simulators, noting a larger quantum
tends to produce results which deviate from native execu-
tion [10]. This calls into question the accuracy of any anal-
ysis which depends on relative thread timing, including that
of multiple cache behavior with shared data. While pVal-
grind does not provide timing guarantees, it allows the in-
terleaving of thread memory effects and forward progress
of live threads.

The source code for pValgrind, associated tools and
support documentation will be made available from
http://ccnuma.anu.edu.au/pvalgrind/.
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9 Future Work

pValgrind will form the basis of further work evaluating
scientific compute workloads. As with serial Valgrind, this
can be used to directly analyse cache usage for an execution
of a given application.

As pCachegrind cannot model data sharing we aim to
extend our model to include cache coherency, to investigate
inter-processor cache effects. This will capture events relat-
ing to cache sharing and performance for parallel applica-
tion developers.

Coherency models could be further extended to drive
models of NUMA platforms and interconnects, such as
AMD Opteron systems. This will enable analysis of mem-
ory placement algorithms, topology selection and intercon-
nect performance.

With the introduction of a timing model, parallel
scheduling will be developed so that realistic thread timings
may be simulated.
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