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Abstract. We show that the reflectivity of laser-excited solid relates to phonons, driven by 

thermal forces, through the electron-phonon coupling rate. Controlled excitation of phonons is available by 
the optimum combination of laser and material parameters. 
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 The experimental and theoretical studies of the reflectivity oscillations of the probe beam from 

the single-crystal of bismuth excited at the deposited energy density 2.7mJ/cm2- 6.7mJ/cm2 are presented. 
The reflectivity was measured by the pump-probe technique with the accuracy 10-5 and with time-
resolution of 35 fs that allowed observing a novel feature - the initial sharp drop of the reflectivity. The 
reflectivity oscillates with the frequency of A1g phonon in Bi in agreement with earlier findings [1,3-7].  

Our analysis establishes the direct link between reflectivity oscillations and atomic vibrations 
through the electron-phonon coupling rate that is proportional to the phonon’s amplitude. The major force 
driving atomic motion in a laser-excited solid is thermal force proportional to the temperature gradients. It 
is demonstrated that DECP [1] and strain-dependent polarisation [2-4] are lesser parts of the external field 
effect on a solid than the thermal force in opaque medium. The proposed theory explains all experimentally 
observed features of transient reflectivity without any ad hoc assumptions. The response of a medium on 
the laser action describes by the dielectric function that depends on atomic displacement, q, on electron 
density, ne, and on the electron-phonon momentum exchange rate, νe-ph: 
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Reflectivity variations are calculated through the Fresnel formulae and the Drude-like dielectric function as 
follows: 
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Here A1 , A2, A3 are constant coefficients expressed through known optical data for Bi [8-9]. A1 and A3 are 
negative for Bi, while A2 is positive. The polarization-related term estimates in the Placzek approximation 
[2]. The absorbed energy density [10] comprises, 
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2A " F tp( ) / ls= (0.48-1.19) x103J/cm3 for the laser 

fluence of 
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F tp( )=(2.7-6.7) mJ/cm2 (absorption, A=0.258, skin depth ls=2.984x10-6 cm). The number 
density of electrons, excited to conduction band by the avalanche-like process, reaches to the end of the 
pulse 
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. The perturbation in electron-phonon 

collision rate is presented with the help of kinetic theory [11] as function of lattice temperature and 
phonon’s amplitude. The time-dependent electron, Te, and lattice temperature, TL, in the skin-layer has been 
calculated using 2-temperature approximation [12] and material parameters from [8,9]. Time-dependent 
amplitude of atomic vibrations has been obtained as solution of thermal force-driven equation for damped 
(γ is damping) harmonic oscillations. Time-dependent reflectivity is determined by laser and laser-excited 
material parameters without ad hoc assumptions as the following: 
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The calculated ΔR/R function at 6.7 mJ/cm2 is presented at Fig. 1in a good fit to the experiments. 
Summary: We show that the reflectivity of laser-excited solid relates to phonons, driven by thermal 

forces, through the electron-phonon coupling rate. Controlled excitation of phonons is available by the 
optimum combination of laser and material parameters.  
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Fig.1The reflectivity variations as function of time-delay between pump and probe pulses 
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