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Abstract

Purpose – The purpose of this paper is to develop a heuristic method for topology optimization of a
continuum with bi-modulus material which is frequently occurred in practical engineering.
Design/methodology/approach – The essentials of this model are as follows: First, the original
bi-modulus is replaced with two isotropic materials to simplify structural analysis. Second, the stress
filed is adopted to calculate the effective strain energy densities (SED) of elements. Third, a floating
reference interval of SED is defined and updated by active constraint. Fourth, the elastic modulus of an
element is updated according to its principal stresses. Final, the design variables are updated by
comparing the local effective SEDs and the current reference interval of SED.
Findings – Numerical examples show that the ratio between the tension modulus and the
compression modulus of the bi-modulus material in a structure has a significant effect on the final
topology design, which is different from that in the same structure with isotropic material. In the
optimal structure, it can be found that the material points with the higher modulus are reserved as
much as possible. When the ratio is far more than unity, the material can be considered as tension-only
material. If the ratio is far less than unity, the material can be considered as compression-only material.
As a result, the topology optimization of continuum structures with tension-only or compression-only
materials can also be solved by the proposed method.
Originality/value – The value of this paper is twofold: the bi-modulus material layout optimization in
a continuum can be solved by the method proposed in this paper, and the layout difference between the
structure with bi-modulus material and the same structure but with isotropic material shows that
traditional topology optimization result could not be suitable for a real bi-modulus layout design project.

Keywords Topology optimization, Bi-modulus structures, Bone remodelling, Material replacement,
Reference interval

Paper type Research paper

1. Introduction
Structural optimization of size, shape and topology is becoming essential in the design
process of structures due to the rapid development of computational techniques
(Eschenauer and Olhoff, 2001). Optimizing topology of a continuum structure is one of
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the most challenging tasks in the structural optimization. Topology optimization
consists of a numerical procedure to iteratively re-distribute a given amount of
material, so as to automatically determine the optimal connectivity of material layout
in the reference domain subject to supports and loads. The optimum of the design can
be obtained when the prescribed objective function is minimized or maximized under
specific constraints. Over the past two decades, topology optimization has experienced
considerable development with several typical methods for a broad range of areas,
such as the homogenization method (Bendsøe and Kikuchi, 1988), solid isotropic
microstructures with penalization (SIMP) method (Zhou and Rozvany, 1991; Bendsøe
and Sigmund, 1999; Qin and He, 2005), evolutionary structural optimization (ESO)
method (Xie and Steven, 1993) and level set method (Wang et al., 2003; Allaire et al.,
2004; Luo et al., 2008, 2009).

However, it is found that the structures with bi-modulus materials are relatively
seldom studied in the area of topology optimization. Bi-modulus structures, in which
the tensile modulus is not equal to the compressive one in a given direction, widely
exist in engineering, such as the concrete in civil engineering or cast iron in mechanical
engineering. So far only a limited number of research efforts were applied to structures
consisting of material with different tensile and compressive moduli (Chang et al.,
2007). For most topology optimization methods, mechanical properties of bi-modulus
structures should be considered as nonlinear (Chang et al., 2007), which will make the
computational cost expensive in numerical analysis iteratively in order to find an
acceptable displacement field to update design variables. To reduce the computational
time, a heuristic method is proposed in this paper based on the concept of bone
remodeling technique (Wolff, 1986; Cowin, 1986; Qin and Ye, 2004; Qu et al., 2006;
Cai et al., 2008a, b).

In bone mechanics, Wolff’s Law (Wolff, 1986), proposed by the German physiologist
Julius Wolff in 1892 and now widely accepted in the field of biomedical engineering,
states that bone has an ability to change its size, shape and structure via bone
apposition and absorption to adapt environmental changes, including mechanical
loadings. This phenomenon is called as bone remodeling (Cowin, 1986; Fernandes et al.,
2002; Qin et al., 2005; Qu and Qin, 2006; Qin, 2007). Researchers also considered the
bone remodeling to be a kind of optimization process (Mullender et al., 1994; Fernandes
et al., 1999; Bagge, 2000; Andrade-Campos et al., 2012), as bone distributes in a way
that maximizes its stiffness in nature, while the trabeculae will orient along higher
principal stress lines. As a consequence, the rule of bone remodeling can be used as
a tool for topology optimization of continuum structures (Harrigan and Hamilton, 1994;
Jang and Kim, 2008; Cai et al., 2008a, b). Jang et al. (2009) showed the equivalence
between analogies of strain energy density based bone-remodeling algorithm and
topology optimization of structures. In the work of Cai et al. (2008a), the material in
topology optimization is defined as a bionic material with different reference interval of
strains under tension or compression. But the material is still isotropic. The final
difference of material properties only means the growth condition (remodeling) of
material under tension and is not identical to that under compression. Cai and
Shi (2010) suggested reference interval method to solve layout optimization with
tension/compression only material, which replace the original tension/compression
material with an isotropic material and then the design variables were updated
according to reference interval of the strain energy density.

However, bi-modulus material is stress dependent and different from tension/
compression only material. Using the material replacement method (Cai et al., 2008b) to
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simplify analysis of structures with bi-modulus material, the original bi-modulus
material should be replaced with at least two isotropic materials. Therefore, both of
elastic modulus and relative density of a finite element in the design domain should
be updated, simultaneously. They are the main differences between the present work
and that from Cai et al. (2008b).

In the present method, a heuristic approach is proposed for the topology
optimization of continuum structures with bi-modulus material. The original structural
optimization is considered as a bone remodeling process under the same loading and
boundary conditions. The update of design variables is determined by the comparison
between the local strain energy densities (SED) and the reference interval of SED which
is corresponding to the lazy zone (Huiskes et al., 2000) in bone mechanics. The original
bi-modulus material is replaced with two types of solid isotropic materials, in which the
moduli are equal to the tensile and compressive moduli, respectively. In the optimization
process, elastic modulus of an element is updated according to the principal stresses, and
the relative density is updated according to the effective strain energy density.
The topology will also be expressed as the layout of relative densities of finite elements.
In this work, penalization law between porosity and elasticity of elements is adopted to
reduce the amount of elements with mid-densities to give an approximated binary
design. Therefore, the present method combines the concept of the ESO method to
update design variables and SIMP method to express the relations between porosity
and elasticity.

2. Bi-modulus materials
When the tensile modulus (ET) and compression modulus (EC) of a material in
a direction are distinct, the material is called as bi-modulus material. For illustration,
the stress-strain (s-e) curve of a typical bi-modulus material is shown in Figure 1(a).
In particular, the bi-modulus material will be tension-only material when a¼ 0
or compression-only material when b¼ 0. The curve in Figure 1(b) shows an
isotropic bi-modulus material with different tension/compression strength, e.g.
sTasC.

Traditionally, topology optimization is formulated as a material distribution
problem in which solid material and void regions are described by discrete density
values 1 and 0, respectively. To overcome the difficulty of NP-hard problem of discrete

σ 

ET

EC

α
β ε

σ 

σC 

α
β ε

(a) (b)

� ≠ � � = � but �T ≠ �C

σT

Notes: (a) Bi-modulus material; (b) isotropic material with
different tensile/compressive strength

Figure 1.
Two types of stress-strain

(s-e) curves
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optimization (Gao, 2007; Gao and Ruan, 2010), the topology optimization problem is
relaxed to enable discrete density variables take intermediate values as continuous
variables inside the interval [0, 1]. Consequently, the material properties will be
continuously dependent on the local amount of material. In this work, a power-law
relationship based on the standard SIMP is used to penalize intermediate densities
(Bendsøe and Sigmund, 1999).

At any point of the design domain O, the stiffness tensor is given as follows:

Dm; ijkl ¼ rp
mD0; ijkl ð1Þ

where “m” represents any material point in the design domain, rmA[d, 1.0] is the
relative density of the mth material point. d is a very small positive number used
to avoid numerical singularity in the finite element method. The power p is the
penalization factor, to penalize intermediate variables to make the relaxed design close
to the binary (0 and 1) one as much as possible. In this study pX2 is used (Bendsøe
and Sigmund, 1999). Dm,ijkl is the stiffness tensor of the mth material point and D0,ijkl

is the stiffness tensor of the solid material (i.e. the relative density is 1) which is not
limited to isotropic material.

When the solid material is isotropic, D0, ijkl in Equation (1) can be degenerated to the
following:

D0; ijkl ¼ l dijdkl þ m dik djl þ dil djk

� �
ð2Þ

where dij is the Kronecker delta. l and m are two Lame constants of the solid
material.

3. Methods of topology optimization
3.1 Basic equations of linear elasticity problems
For linear elastic structures, the basic equations and boundary conditions are written
as follows:

sij ¼ Dijkl : ekl

eij ¼
1

2
vi;j þ vj;i

� �
sij;i þ fj ¼ 0

ð3Þ

Gs : sij � nj ¼ F�i
Gv : vi ¼ v�i
Gs þ Gv ¼ qO

ð4Þ

where sij is the stress tensor, eij the strain tensor, vi the displacement vector
of a point, fi the body force vector, Fi

* the boundary force on the boundary Gs of
solution domain O, with the normal outward direction n j , vi

* the assigned
displacement on the boundary Gv. In our analysis, the well-established finite element
method (Qin, 2003, 2005; Qin and Wang, 2008) is adopted to solve the boundary value
problems (3) and (4).
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3.2 Optimization model for structural stiffness designs
In the optimization, the concept of relative density of a material point in the design
domain is considered as design variables. The formulation of the heuristic approach
is defined as:

Find rm m 2 Ojf g & u1inf; u1sup
� �

to satisfy

8ueffective
m 2 u1inf ; u1sup

� �

or rm ¼
1; if ueffective

m 4u1sup

d; if ueffective
m ou1inf

8<
:

8>>><
>>>:

subject to fi rmf gð Þp0; i ¼ 1; 2; � � � ; Ið Þ

dprmp1:0

ð5Þ

where rm is the relative density (the design variable at the mth material point in the
design domain). ½ u1inf; u1sup � is the final interval of reference SED. um

effective is the local
effective SED at the mth material point. fi is the constraint function and I is the
maximum number of constraints.

The aim of a stiffness design is to find the optimal material distribution to satisfy
the specified constraints. Therefore, the iteration is controlled by active constraints
in the optimization. For example, if a volume constraint is active, the objective of
optimization can be considered to minimize the structural compliance, or if the active
constraint is a displacement constraint, the objective is equivalent to minimize the
material volume.

3.3 Material replacement and elastic modulus update
In general, FEM is not very efficient for analyzing structures with bi-modulus
material (Medri, 1982). To overcome this, the original material in the design domain is
replaced with two types of isotropic porous materials in which the tensile and
compressive moduli are set to be identical, respectively. In this case, the material
modulus at a point (e.g. m) in the design domain will depend on the stress state at that
point. For example, the isotropic material with tensile modulus is used when all
of the principal stresses are not negative, e.g. s3X0. The isotropic material with
compressive modulus should be adopted when all the principal stresses are not
positive, e.g. s1p0. If the first principal stress is positive and the third is negative,
namely, the material is under complex stress state and the actual elasticity of
bi-modulus material shows orthotropic. It should be mentioned that structural
analysis is required to obtain the accurate stress state and to determine material
modulus. Here the modulus of an element under complex stress state is set to be the
higher one of the two moduli of bi-modulus material. Therefore, the modulus
selection can be operated according to the following scheme:

Em ¼
ET for s3X0
maxðET ; ECÞ for s1 � s3o0
EC for s1p0

8<
: ð6Þ
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3.4 Local effective SED
To simplify structural analysis and reduce computational cost, the original
(bi-modulus) material is replaced with the stiffer isotropic material. Therefore, only
the approximate strain and stress field of the original structure can be found in each
loop of structural analysis. It is known that most material in the final optimal structure
is under simple stress state. So the approximate stress field tends to be identical to the
actual one after several iterations. At the same time, the accurate stress field is
unnecessary for the update of the design variables in iteration process in the present
approach. To reflect the error between the current stress field and the accurate one,
a so-called local effective SED is defined and calculated from the approximate stress
state for the update of design variables.

For the mth material point under complex stress state at the kth iteration, the local
effective SED can be expressed as follows:

ueffective
k;m ¼

X3

i¼1

1

2
SignðsiÞ � si � ei ð7Þ

where:

sign sið Þ ¼
1; if s1p0 or s3X0

Ro
TCE ¼

ET

EC

� �o
if s140 and s3o0

(
ð8aÞ

o ¼
1 if RTCEo1 and si40
0 others
�1 if RTCE41 and sio0

8<
: ð8bÞ

where si and ei ( i¼ 1, 2, 3) are the principal stresses and strains at the mth material
point. ET and EC are the tensile and compressive moduli of the original bi-modulus
material, respectively.

Obviously, Equation (8a) implies that the material shows isotropic when RTCE¼ 1.
If 0oRTCEoo1:0 (far less than unity), the material can be considered (approximately)
as compression-only material. Conversely, the material can be considered as
tension-only material when RTCE441:0. It should be pointed out that the effective
SED at a material point is equal to the actual SED at that point under stress state of
either pure tension (s�t_A circle in Figure 2) or pure compression (s�t_D circle in

� � � �

�3 �2 �1 �

A B C D

Figure 2.
Mohr’s stress circle
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Figure 2). Under complex stress states (See s�t_B or s�t_C circle in Figure 2), the
effective SED are not equal to the actual SED whether the second principal stress,
i.e. s2, is positive or not.

3.5 Update rule of design variables
After obtaining the local effective SED at any material point, design variables (relative
densities) can be updated if the local effective SED falls in the boundaries of the
current interval of the reference SED, i.e. ½ uref ðkÞ

inf ; u
ref ðkÞ
sup � , which corresponds to the

dead zone or lazy zone of bone remodeling (Huiskes et al., 2000). The increment
of the relative density is positive if the local effective SED is greater than the higher
bound of the reference interval or negative if the local effective SED is less than
the lower bound of the reference interval. Otherwise, the increment of the design
variable is set to zero.

Mathematically, the update of relative density at mth material point in the kth step
is expressed as:

Drk;m ¼
g140 if ueffective

k;m 4u
ref ðkÞ
sup

0 others
�g2o0 if ueffective

k;m ou
ref ðkÞ
inf

8<
: ð9Þ

rkþ1;m ¼
1:0; if ðri;k;m þ Drk;mÞX1:0
rk;m þ Drk;m others
d; if ðri;k;m þ Drk;mÞpd

8<
: ð10Þ

where g1 and g2 are named as growth speeds. The new stiffness tensor at the mth
material point for next analysis of the structure is given as follows:

Dkþ1;m; ijkl ¼ rp
kþ1;mD0; ijkl ð11Þ

3.6 Update of SED reference interval
In a stiffness design with volume constraint and/or displacement constraints, it is hard
to accurately provide a fixed interval of reference SED for controlling the material
distribution of the structure, which satisfies most critical constraint(s) in the
optimization process. Therefore, the reference interval of SED changes frequently
during the iteration process until the optimal design is obtained. Generally, the length
of the reference interval is set to zero to avoid the dependence of the optimal material
distribution on the initial parameters. Hence, only the higher bound of the reference
interval needs to be updated. The update rule is expressed as follows:

uref ðkþ1Þ
sup ¼

Rb � uref ðkÞ
sup if RX1:0� Z

Rg � uref ðkÞ
sup if Ro1:0� Z

(

Mod k;Mð Þ ¼ 0

R ¼ H ðkÞ
.

H0

� �a
ð12Þ
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where the exponents bA[1.0, 2.0] and gA[10, 30] are used in the numerical analysis.
The algorithm tolerance is assumed to be Z¼ 1.0 percent and the integer M¼ 4. H(k)

is the current value of the active constraint at kth step and H0 is the critical value
of the corresponding active constraint. a¼ 1 when the active constraint is volume
constraint, and a¼�1 when the active constraint is displacement constraint.

3.7 Optimization procedure
Figure 3 shows the computational procedure of the present algorithm. Generally, the
initial relative densities are set to be a positive scalar no more than unity over the whole
design domain. In our analysis, the initial supremum of the reference interval is set
to be equal to the average SED of the original structure under the specified
loading conditions. In iteration, the relative densities are filtered to avoid checkerboard
patterns (Sigmund, 2001). The convergence in Step 6 is given as:

R � 1:0j jpZ ; R 2 Rj
H ; j ¼ k� N ; � � � ; k� 1; k

n o
ð13Þ

where integer N¼ 15 is adopted. The maximum iteration (kmax) is set to be 100.

4. Results and discussions
In each example, a uniformly fixed finite element mesh is used to describe the
geometry and mechanical response within the design domain. The suggested growth

Analyze structural deformation by FEM

Loop (element number m)

1) Select elastic modulus of element;

2) Calculate effective SED (Eq.(7)) and update �m (Eq.(10))

3) Sum volume of element (if volume constraint exists)

End loop

k>5 and Mod(k/M )=0
No

Yes

Eq.(13) is satisfied or k=kmax k=k+1
No

Yes

Stop

Initiate parameters, e.g.,   u ref (0) , let k=0;sup

Update reference interval   uref (k+1) (Eq.(12))sup

Figure 3.
Flowchart of the present
method
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speeds g1¼ 0.8g2 and g2A[0.1, 0.15] are used for displacement constraint as an
active constraint in the optimization. g1A[0.1, 0.15] and g2¼ 0.8g1 are used for volume
constraint (Cai et al., 2008b; Cai and Shi, 2010). In examples, penalization factor p¼ 3.

4.1 Example 1
A 1.0 m � 1.0 m square plate with thickness of 0.005 m is considered in this example
(Figure 4(a)). All four sides of the square plate are fixed. A concentrated moment
MZ¼ 1.0 kN.m is applied at the center of the plate which includes bi-modulus material.
The higher modulus of the material is 100 GPa and the Poisson’s ratio is 0.2.
The structure is modeled with 3,600 shell-type finite elements. In the optimization
process, the objective is to minimize the structural compliance and the constraint is the
final structural volume ratio (the ratio between the current volume and that of the solid
structure) is 20 percent. To find the effects of the difference between the tension
and compression moduli on the optimal topology designs, three cases are considered:
RTCE¼ 0.5; RTCE¼ 1.0; RTCE¼ 2.0.

RTCE¼ 0.5 indicates that the compression modulus equals 100 GPa, while the tension
one is 50 GPa. Figure 3(b) displays the final material distribution of the structure in this
case. Four arms of the structure are under compression. Near the center of the structure,
most material points are under complex stress state, which results in compression
modulus of material points. Therefore, the material under compression is used as
much as possible in the final structure. RTCE¼ 1.0 implies the material in the initial
design exhibiting isotropic, in which the tension modulus is equal to the compression

MZ

MN MN

zz

MN

z

(a)

(c) (d)

(b)

Notes: (a) Initial design; (b) RTCE = 0.5; (c) RTCE = 1.0
(i.e. isotropic); (d) RTCE = 2.0

Figure 4.
Initial and optimal designs

under different cases

1369

Topology
optimization

of bi-modulus
structures

D
ow

nl
oa

de
d 

by
 q

in
gh

ua
 q

in
 A

t 0
2:

55
 0

7 
O

ct
ob

er
 2

01
4 

(P
T

)

http://emerald-prod.literatumonline.com/action/showImage?doi=10.1108/EC-05-2013-0128&iName=master.img-008.jpg&w=103&h=102
http://emerald-prod.literatumonline.com/action/showImage?doi=10.1108/EC-05-2013-0128&iName=master.img-009.jpg&w=102&h=102


one. The final topology is given in Figure 4(c), which is both mirror and rotating
symmetry. In the optimal structure, the material under compression must be equal to
that under tension. RTCE¼ 2.0 means that the tension modulus is higher than the
compression modulus (i.e. 50 GPa). Four “arms” of the structure (Figure 4(d)) are under
tension, which shows the material with higher modulus is preferable. It can also be fund
that the designs in Figure 4(b) and 4(d) show rotating symmetry, which is different from
that in Figure 4(c). The structures in Figure 4(b) and 4(d) are identical to each other, i.e.
any one of them can be obtained by reflecting the other about x-z or y-z plane.
The conclusion is that the materials with higher modulus are remained as much as
possible in the final structures.

Figure 5 shows the histories of structural compliance over iterations for all three
cases. For Case 2, the final material distribution is obtained after 49 iterations, and the
structural compliance is minimized to 8.63 N.m. For Cases 1 and 3, the optimization
process terminated after 45 iterations and their compliances are 8.57 N.m, which is
slightly less than that of Case 2. Especially, the structural compliances for Cases 1 and
3 are identical in terms of iterations. The reason is that the structure in the optimization
process always shows rotational symmetry.

4.2 Example 2
A MBB beam with size of 3 � 1 shown in Figure 6 is subjected to a normal
concentrated force F at the center of its upper side. The objective is to maximize the
stiffness of structure. Volume constraint is considered, e.g. the critical volume ratio is
25 percent. To show the effects of bi-modulus material on final material distribution,
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Notes: (a) Iterations of structural compliance; (b) iteration from step 18

Figure 5.
Iterations of structural
compliance for different
cases

F

Figure 6.
Initial design of beam
and SIMP result
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three cases are considered: RTCE¼ 1.0 (isotropic material); RTCE¼ 0.01 (nearly
compression only); RTCE¼ 100 (nearly tension only).

Figure 7 shows the final material distribution in structure. Figure 7b shows the
isotropic material distribution, which is lightly different from the result (Figure 7(a))
given by SIMP method. Figure 7(c) gives the final bi-modulus material distribution with
RTCE¼ 0.01, which implies the compression modulus is far greater than the tension
modulus. More material is layout far away from the position with force F. Especially, the
two ends of the bottom are not connected with straight line (see Figure 7(a), (b)).
Figure 7(d) demonstrates the final material distribution when the tension modulus is far
greater than the compression one, e.g. RTCE¼ 100. The structure has two layers of
material to bear tension and the two layers are not connected directly. As the load
position is far away from the supports, most material are still under compression. From
above, the three layouts of bi-modulus materials are different in structure.

4.3 Example 3
The design domain is given in Figure 8(a), which is a 60 m � 71 m rectangular
structure with unit thickness (Chang et al., 2007). All four corners of the structure are

(a)

(c)

(b)

(d)

Notes: (a) Material distribution by SIMP method; (b) result of case (RTCE =1.0), i.e.
material shows isotropic; (c) result of case (RTCE =0.01), i.e. 0.01ET EC ; (d) result of case
(RTCE =100), i.e. ET = 100 EC

Figure 7.
Optimal topologies of

structure with different
type of bi-modulus

material

Y Y

XZX

60

71

non-design domain

(a) (b) (c)

Z

Notes: (a) Initial design; (b) ET> EC; (c) ET< EC

Figure 8.
Initial design domain
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the final material

distributions for two cases

1371

Topology
optimization

of bi-modulus
structures

D
ow

nl
oa

de
d 

by
 q

in
gh

ua
 q

in
 A

t 0
2:

55
 0

7 
O

ct
ob

er
 2

01
4 

(P
T

)

http://emerald-prod.literatumonline.com/action/showImage?doi=10.1108/EC-05-2013-0128&iName=master.img-011.jpg&w=157&h=53
http://emerald-prod.literatumonline.com/action/showImage?doi=10.1108/EC-05-2013-0128&iName=master.img-012.jpg&w=156&h=53
http://emerald-prod.literatumonline.com/action/showImage?doi=10.1108/EC-05-2013-0128&iName=master.img-013.jpg&w=157&h=54
http://emerald-prod.literatumonline.com/action/showImage?doi=10.1108/EC-05-2013-0128&iName=master.img-014.jpg&w=156&h=53
http://emerald-prod.literatumonline.com/action/showImage?doi=10.1108/EC-05-2013-0128&iName=master.img-015.jpg&w=95&h=113
http://emerald-prod.literatumonline.com/action/showImage?doi=10.1108/EC-05-2013-0128&iName=master.img-016.jpg&w=95&h=111


fixed. A non-design domain at the middle of the structure is assumed and its upper
surface is subjected to a uniform pressure of 1,000 Pa. Considering the symmetry of
structure, only half of the structure is modeled with 30 � 71 plane stress elements.
The bi-modulus material has two moduli 20 and 0.02 GPa, respectively. The Poisson’s
ratio of the bi-modulus material is assumed to be 0.2. The objective is to minimize the
amount of material in the structure, while the maximum deflection of the loading surface
is less than or equal to 0.6 mm. Two numerical cases are considered for investigating
effects of the difference between the two moduli on the final material distribution of the
structure: the tension modulus is 1,000 times of the compression modulus (RTCE¼ 1,000);
the compression modulus is 1,000 times of tension modulus (RTCE¼ 0.001).

Figure 8(b) displays the material distribution of the optimal structure. The design is
symmetry and there is no material in the lower part of the structure. Clearly, all the
material in the design domain is subject to tension, and the components like cables to
support the non-design domain. The structure more looks like a cable-supported
bridge. Figure 8(c) shows the final topology of the structure, in which the material is
under compression and the structure is symmetry. The topology is different from
that shown in Figure 8(b). The structure looks like an arch bridge. Figure 10 gives the
iterative histories of the volume ratios with respect to different types of material from
the seventh step. The volume ratio of the final structure, as shown in Figure 8(b),
reaches 10.9 percent after 41 iterations. The volume ratio of the structure in Figure 8(c)
reaches 7.9 percent after 52 iterations.

The topologies of the structure shown in Figure 9 were given by Chang et al. (2007).
In their design, the objective is to minimize the structural compliance considering
volume constraint, and the material shows tension/compression only. The topologies in
Figure 8 are similar to those in Figure 9, which shows the present algorithm is valid.
The difference between the proposed results and those by Chang et al. (2007) still
exists, which is caused by two reasons: first, the optimization models are different, e.g.
the present method is to minimize the structural volume with displacement constraint,
and second, the other is that the present method to update design variables is heuristic
while the method in Chang et al. (2007) is sensitivity-based.

Half of the structure has 30 � 71 square elements. Along vertical direction, there
are 71 layers and the mid-layer (the 36th layer) is defined as “non-design domain”

(a) (b)

Notes: (a) Tension only design; (b) compression only design
Source: Chang et al. (2007)

Figure 9.
The tension/compression
only design
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(see Figure 8(a)). The uniform pressure is applied on the upper boundary of the layer.
Therefore, the model has only vertical mirror symmetry. The difference between
Figure 8(b) and 8(c) is caused by the position of the load. One can also find that the
difference between Figure 9(a) and 9(b), which is caused by the same reason.

4.4 Example 4
Consider a cube with unit side-length (Figure 11(a)), subjected to a uniform pressure of
1.0 kPa on its top surface. Four corners and four mid-side points on the bottom surface
of the structure are fixed along z-direction (which is parallel to the normal of the
bottom surface). Considering the symmetry, only a quarter of the structure is modeled
in FEM and the component is uniformly divided into 25 � 25 � 50 (X � Y � Z)
brick elements, with the bi-modulus material in the design domain (RTCE¼ 0.001).
The compression modulus and Poisson’s ratio of the material are 20 GPa and 0.2,
respectively. The objective is to minimize the amount of material in the structure
provided the maximum displacement of the upper surface is less than or equal to
0.02 m. At the same time, the topology optimization of the structure with the isotropic
material (E¼ 20 GPa) is analyzed to enable a comparison with the material distribution
of the structure with the bi-modulus material.

Figure 11(b) lists the results with isotropic material (RTCE¼ 1.0) after topology
optimization. Although the eight points on the bottom surface of the structure are

X
Z

Y

X
Z

Y
X

Z

Y

p

(a) (b) (c)

Notes: (a) Initial design; (b) RTCE =1.0; (c) RTCE = 0.001

Figure 11.
Initial and optimal

topologies of the structure
with different values of
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different cases
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fixed, it is found from Figure 11(b) that there are only four legs under the “desktop,”
i.e. the non-design domain. These legs are not vertical to the “desktop,” and their feet
are connected as a whole, which will enhance the global stability of the structure.
Obviously, the material connecting these legs is under tension while the legs
themselves are under compression. When the ratio RTCE is far less than unity, the
material can be approximately considered as compression-only one. Figure 11(c) is the
final material distribution of the structure when RTCE¼ 0.001. There are four “legs” of
the structure and all the materials in the legs are adjacent to vertical sides. There are
mutual connections between legs, which are different from the result in Figure 11(b).
So, there is no material under tension in the structure.

4.5 Example 5
A cantilever beam with thickness of 0.01 m shown in Figure 12 is subjected to three
concentrated force (100 N) on the upper side. The objective is to maximize the stiffness
of structure. Volume constraint is considered, e.g. the critical volume ratio is 40 percent.
To show the effects of bi-modulus material on final material distribution, two cases are
considered: RTCE¼ 1.0 (isotropic material); RTCEa1.0. Although the values of initial
growth speeds have been suggested, the effects of growth speeds, i.e. g1 and g2 and
initial designs (r(1) is the initial value of the relative densities of all elements in
design domain), on the final distribution of material in structure are discussed in this
section, either.

4.5.1 Effects of growth speeds and initial designs on final design. Figure 13 shows
the final material distributions in structure with different algorithm parameters.
r(1) means the initial value of the relative density of an element in design domain.

100 N 100 N 100 N

0.5m 0.25m 0.25m

0.
5m

Figure 12.
Initial design of beam

x
Y
MN

(a) (b) (c)

Notes: (a) g1=0.12, �(1)=0.05; (b) g1=0.20, �(1)=0.4; (c) g1=0.25,  �(1)=1.0 

Figure 13.
Optimal topologies of
structure with isotropic
material but different
growth speeds
(g2¼ 1.25g1) and initial
designs (r(1))
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The growth speeds are different for the three cases, and the initial designs are also
different. But the differences among the three final material layouts are slight.
Therefore, the growth speeds influence the final material layout is slight and the
similar conclusion can be found in the work by Cai et al. (2008b).

To assess effects of initial design on the final topologies of structure, three typical
initial designs are involved in the present study. First, As r(1)¼ 0.05, the volume of
solid material is only 5 percent of total volume of design domain. After 49 times of
iteration, the compliance convergences at 0.02546 N.m (see Figure 14). And the final
material layout is shown in Figure 13(a). Second, when the initial design with r(1)¼ 0.4,
which is equal to the critical value of volume constraint, is specified, the final topology
of structure is given in Figure 13(b). The structural compliance approaches
0.02559 N.m after 33 iterations. Third, the initial design can also be specified as the
structure filled with solid material, i.e. r(1)¼ 1.0. After 31 iterations, the final structural
compliance (Figure 13(c)) tends to be 0.02547 N.m. The biggest relative error among
the three structural compliances is less than 1 percent. Therefore, the initial design
influences the final results slightly, too.

4.5.2 Effect of bi-modulus behavior on final design. In this section, the growth speeds
are g1¼ 0.2, g2¼ 0.25 and the initial design satisfies r(1)¼ 1.0.

Figure 15 demonstrates the final bi-modulus material layout in structure by the
present method. Clearly, the difference between the two topologies in Figure 15 is
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Figure 15.
The final bi-modulus

material layouts in
structure
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obvious. As RTCE¼ 0.1, then tension modulus is only 10 percent of the compressive
modulus, therefore, the amount of material under tension in Figure 15(a) is greater
than that in Figure 15(b) with RTCE¼ 10. Both material layouts in Figure 15 are not
similar with those in Figure 13.

5. Conclusions
This paper proposes a bio-inspired topology optimization method for bi-modulus
structures using bone remodeling method. Several typical numerical examples are
used to show the validity and efficiency of the material-replacement method for the
topology optimization of bi-modulus structures. In particular:

(1) The ratio between the tension modulus and the compression modulus of the
bi-modulus material in a structure generally has a significant effect on the final
topology design, which is different from that in the same structure with
isotropic material.

(2) In the optimal structure, it can be found that the material points with the
higher modulus are reserved as much as possible.

(3) When the ratio is far more than unity, the material can be considered as
tension-only material. If the rate is far less than unity, the material can be
considered as compression-only material. As a result, the topology
optimization of continuum structures with tension-only or compression-only
materials can also be solved by the proposed method.

(4) Algorithm parameters, e.g. growth speeds and initial design, have slight effect
on final bi-modulus material layout.

References

Allaire, G., Jouve, F. and Toader, A.M. (2004), “Structural optimization using sensitivity
analysis and a level-set method”, Journal of Computational Physics, Vol. 194 No. 1,
pp. 363-393.

Andrade-Campos, A., Ramos, A. and Simões, J. (2012), “A model of bone adaptation as a topology
optimization process with contact”, Journal of Biomedical Science and Engineering, Vol. 5
No. 5, pp. 229-244.

Bagge, M. (2000), “A model of bone adaptation as an optimization process”, Journal of
Biomechanics, Vol. 33 No. 11, pp. 1349-1357.

Bendsøe, M.P. and Kikuchi, N. (1988), “Generating optimal topologies in structural design using
a homogenization method”, Computer Methods in Applied Mechanics and Engineering,
Vol. 71 No. 2, pp. 197-224.

Bendsøe, M.P. and Sigmund, O. (1999), “Material interpolation schemes in topology
optimization”, Archive of Applied Mechanics, Vol. 69 Nos 9/10, pp. 635-654.

Cai, K., Chen, B.S. and Zhang, H.W. (2008a), “Topology optimization of continuum structures with
materials exhibiting different tensile and compressive properties”, Chinese Journal of
Theoretical and Applied Mechanics, Vol. 40, pp. 646-653.

Cai, K., Chen, B.S., Zhang, H.W. and Shi, J. (2008b), “Stiffness design of continuum structures by a
bionics topology optimization method”, Journal of Applied Mechanics – Transactions of the
ASME, Vol. 75, pp. 051001-051011.

Cai, K. and Shi, J. (2010), “A bionic approach for topology optimization for tension-only or
compression-only design”, Journal of Bionic Engineering, Vol. 7 No. 4, pp. 397-404.

1376

EC
31,7

D
ow

nl
oa

de
d 

by
 q

in
gh

ua
 q

in
 A

t 0
2:

55
 0

7 
O

ct
ob

er
 2

01
4 

(P
T

)

http://emerald-prod.literatumonline.com/action/showLinks?crossref=10.1115%2F1.2936929&isi=000257895100007
http://emerald-prod.literatumonline.com/action/showLinks?crossref=10.1115%2F1.2936929&isi=000257895100007
http://emerald-prod.literatumonline.com/action/showLinks?crossref=10.4236%2Fjbise.2012.55030
http://emerald-prod.literatumonline.com/action/showLinks?crossref=10.1016%2F0045-7825%2888%2990086-2&isi=A1988R098500006
http://emerald-prod.literatumonline.com/action/showLinks?crossref=10.1016%2Fj.jcp.2003.09.032&isi=000189117600017
http://emerald-prod.literatumonline.com/action/showLinks?crossref=10.1016%2FS1672-6529%2810%2960272-7&isi=000286353100012
http://emerald-prod.literatumonline.com/action/showLinks?crossref=10.1016%2FS0021-9290%2800%2900124-X&isi=000089948900002
http://emerald-prod.literatumonline.com/action/showLinks?crossref=10.1016%2FS0021-9290%2800%2900124-X&isi=000089948900002
http://emerald-prod.literatumonline.com/action/showLinks?isi=000084089100003


Chang, C.J., Zheng, B. and Gea, H.C. (2007), “Topology optimization for tension/compression only
design”, Proceedings of the 7th World Congress on Structural and Multidisciplinary
Optimization, COEX, Seoul, pp. 2488-2495.

Cowin, S.C. (1986), “Wolff’s law of trabecular architecture at remodeling equilibrium”, Journal of
Biomechanical Engineering-Transactions of the Asme, Vol. 108 No. 1, pp. 83-88.

Eschenauer, H.A. and Olhoff, N. (2001), “Topology optimization of continuum structures:
a review”, Applied Mechanics Reviews, Vol. 54 No. 4, pp. 331-390.

Fernandes, P., Rodrigues, H. and Jacobs, C. (1999), “A model of bone adaptation using a global
optimisation criterion based on the trajectorial theory of Wolff”, Computer Methods in
Biomechanics and Biomedical Engineering, Vol. 2 No. 2, pp. 125-138.

Fernandes, P.R., Folgado, J., Jacobs, C. and Pellegrini, V. (2002), “A contact model with ingrowth
control for bone remodelling around cementless stems”, Journal of Biomechanics, Vol. 35
No. 2, pp. 167-176.

Gao, D.Y. (2007), “Solutions and optimality criteria to box constrained nonconvex minimization
problems”, J. Industrial and Management Optimization., Vol. 3 No. 2, pp. 293-304.

Gao, D.Y. and Ruan, N. (2010), “Solutions to quadratic minimization problems with box and
integer constraints”, J. Global Optimization, Vol. 47 No. 3, pp. 463-484.

Harrigan, T.P. and Hamilton, J.J. (1994), “Bone remodeling and structural optimization”, Journal
of Biomechanics, Vol. 27 No. 3, pp. 323-328.

Huiskes, R., Ruimerman, R., van Lenthe G.H. and Janssen, J.D. (2000), “Effects of mechanical forces
on maintenance and adaptation of form in trabecular bone”, Nature, Vol. 405 No. 6787,
pp. 704-706.

Jang, I.G. and Kim, I.Y. (2008), “Computational study of Wolff’s law with trabecular architecture
in the human proximal femur using topology optimization”, Journal of Biomechanics,
Vol. 41 No. 11, pp. 2353-2361.

Jang, I.G., Kim, I.Y. and Kwak, B.M. (2009), “Analogy of strain energy density based
bone-remodeling algorithm and structural topology optimization”, Journal of
Biomechanical Engineering, Vol. 131 No. 1, p. 011012.

Luo, Z., Tong, L.Y., Wei, P. and Wang, M.Y. (2009), “Design of piezoelectric actuators using a
multiphase level set method of piecewise constants”, Journal of Computational Physics,
Vol. 228 No. 7, pp. 2643-2659.

Luo, Z., Wang, M.Y., Wang, S. and Wei, P. (2008), “A level set-based parameterization method for
structural shape and topology optimization”, International Journal for Numerical Methods
in Engineering, Vol. 76 No. 1, pp. 1-26.

Medri, G. (1982), “A non-linear elastic model for isotropic materials with different behavior in
tension and compression”, Journal of Engineering Materials and Technology, Vol. 104 No. 1,
pp. 26-28.

Mullender, M.G., Huiskes, R. and Weinans, H. (1994), “A physiological approach to the simulation
of bone remodeling as a self-organizational control process”, Journal of Biomechanics,
Vol. 27 No. 11, pp. 1389-1394.

Qin, Q.H. (2003), “Variational formulations for TFEM of piezoelectricity”, International Journal of
Solids and Structures, Vol. 40, pp. 6335-6346.

Qin, Q.H. (2005), “Trefftz finite element method and its applications”, Applied Mechanics Reviews,
Vol. 58 No. 5, pp. 316-337.

Qin, Q.H. (2007), “Multi-field bone remodeling under axial and transverse loads”, in Boomington, D.R.
(Ed.), New Research on Biomaterials, Nova Science Publishers, New York, NY, pp. 49-91.

Qin, Q.H. and He, X.Q. (2005), “Variational principles, FE and MPT for analysis of nonlinear
impact contact problems”, Computer Methods in Applied Mechanics and Engineering,
Vol. 122 Nos 3/4, pp. 205-222.

1377

Topology
optimization

of bi-modulus
structures

D
ow

nl
oa

de
d 

by
 q

in
gh

ua
 q

in
 A

t 0
2:

55
 0

7 
O

ct
ob

er
 2

01
4 

(P
T

)

http://emerald-prod.literatumonline.com/action/showLinks?crossref=10.1002%2Fnme.2092&isi=000260239000001
http://emerald-prod.literatumonline.com/action/showLinks?crossref=10.1002%2Fnme.2092&isi=000260239000001
http://emerald-prod.literatumonline.com/action/showLinks?crossref=10.1115%2F1.1388075
http://emerald-prod.literatumonline.com/action/showLinks?crossref=10.1016%2Fj.jbiomech.2008.05.037&isi=000259129000003
http://emerald-prod.literatumonline.com/action/showLinks?crossref=10.1016%2F0021-9290%2894%2990049-3&isi=A1994PJ29200011
http://emerald-prod.literatumonline.com/action/showLinks?crossref=10.1016%2FS0021-9290%2801%2900204-4&isi=000173610100003
http://emerald-prod.literatumonline.com/action/showLinks?crossref=10.1115%2F1.1995716
http://emerald-prod.literatumonline.com/action/showLinks?crossref=10.1007%2Fs10898-009-9469-0&isi=000278739400010
http://emerald-prod.literatumonline.com/action/showLinks?crossref=10.1016%2Fj.jcp.2008.12.019&isi=000264291900020
http://emerald-prod.literatumonline.com/action/showLinks?crossref=10.1115%2F1.3138584&isi=A1986A215400012
http://emerald-prod.literatumonline.com/action/showLinks?crossref=10.1115%2F1.3138584&isi=A1986A215400012
http://emerald-prod.literatumonline.com/action/showLinks?crossref=10.1038%2F35015116&isi=000087465800052
http://emerald-prod.literatumonline.com/action/showLinks?crossref=10.1115%2F1.3225031&isi=A1982MZ37500004
http://emerald-prod.literatumonline.com/action/showLinks?crossref=10.1080%2F10255849908907982
http://emerald-prod.literatumonline.com/action/showLinks?crossref=10.1080%2F10255849908907982
http://emerald-prod.literatumonline.com/action/showLinks?crossref=10.1115%2F1.3005202&isi=000265137700012
http://emerald-prod.literatumonline.com/action/showLinks?crossref=10.1115%2F1.3005202&isi=000265137700012
http://emerald-prod.literatumonline.com/action/showLinks?crossref=10.1016%2FS0020-7683%2803%2900411-6&isi=000185820400006
http://emerald-prod.literatumonline.com/action/showLinks?crossref=10.1016%2FS0020-7683%2803%2900411-6&isi=000185820400006
http://emerald-prod.literatumonline.com/action/showLinks?crossref=10.3934%2Fjimo.2007.3.293&isi=000246552400010
http://emerald-prod.literatumonline.com/action/showLinks?crossref=10.1016%2F0021-9290%2894%2990008-6&isi=A1994MX06000008
http://emerald-prod.literatumonline.com/action/showLinks?crossref=10.1016%2F0021-9290%2894%2990008-6&isi=A1994MX06000008


Qin, Q.H. and Ye, J.Q. (2004), “Thermoelectroelastic solutions for internal bone remodeling
under axial and transverse loads”, International Journal of Solids and Structures, Vol. 41,
pp. 2447-2460.

Qin, Q.H., Qu, C.Y. and Ye, J.Q. (2005), “Thermo electroelastic solutions for surface bone
remodeling under axial and transverse loads”, Biomaterials, Vol. 26 No. 33, pp. 6798-6810.

Qu, C.Y. and Qin, Q.H. (2006), “Evolution of bone structure under axial and transverse loads”,
Structural Engineering and Mechanics, Vol. 24 No. 1, pp. 19-29.

Qin, Q.H. and Wang, H. (2008), Matlab and C Programming for Trefftz finite Element Methods,
Taylor & Francis, Boca Raton, FL.

Qu, C.Y., Qin, Q.H. and Kang, Y.L. (2006), “A hypothetical mechanism of bone remodeling and
modeling under electromagnetic loads”, Biomaterials, Vol. 27 No. 21, pp. 4050-4057.

Sigmund, O. (2001), “A 99 line topology optimization code written in Matlab”, Structural and
Multidisciplinary Optimization, Vol. 21 pp. 120-127.

Wang, M.Y., Wang, X.M. and Guo, D.M. (2003), “A level set method for structural topology
optimization”, Computer Methods in Applied Mechanics and Engineering, Vol. 192
pp. 227-246.

Wolff, J. (1986), “The law of bone remodeling”, (Edited and Trans by P. Maquet and R. Furlong),
Das Gesetz der Transformation der Knochen, Springer, Berlin, Heidelberg, New York, NY.

Xie, Y.M. and Steven, G.P. (1993), “A simple evolutionary procedure for structural optimization”,
Computers and Structures, Vol. 49 No. 5, pp. 885-896.

Zhou, M. and Rozvany, G.I.N. (1991), “The COC algorithm, Part II: topological, geometry
and generalized shape optimization”, Computer Methods in Applied Mechanics and
Engineering, Vol. 89 Nos 1/3, pp. 197-224.

Corresponding author
Professor Qing H. Qin can be contacted at: qinghua.qin@anu.edu.au

To purchase reprints of this article please e-mail: reprints@emeraldinsight.com
Or visit our web site for further details: www.emeraldinsight.com/reprints

1378

EC
31,7

D
ow

nl
oa

de
d 

by
 q

in
gh

ua
 q

in
 A

t 0
2:

55
 0

7 
O

ct
ob

er
 2

01
4 

(P
T

)

http://emerald-prod.literatumonline.com/action/showLinks?crossref=10.1016%2Fj.ijsolstr.2003.12.026&isi=000220670600013
http://emerald-prod.literatumonline.com/action/showLinks?crossref=10.1007%2Fs001580050176
http://emerald-prod.literatumonline.com/action/showLinks?crossref=10.1007%2Fs001580050176
http://emerald-prod.literatumonline.com/action/showLinks?crossref=10.1007%2F978-3-642-71031-5
http://emerald-prod.literatumonline.com/action/showLinks?crossref=10.12989%2Fsem.2006.24.1.019&isi=000240455900002
http://emerald-prod.literatumonline.com/action/showLinks?crossref=10.1016%2Fj.biomaterials.2006.03.015&isi=000237467200022
http://emerald-prod.literatumonline.com/action/showLinks?crossref=10.1016%2Fj.biomaterials.2005.03.042&isi=000231189800043
http://emerald-prod.literatumonline.com/action/showLinks?crossref=10.1016%2FS0045-7825%2802%2900559-5&isi=000180348100012
http://emerald-prod.literatumonline.com/action/showLinks?crossref=10.1016%2F0045-7949%2893%2990035-C&isi=A1993MX00900012
http://emerald-prod.literatumonline.com/action/showLinks?crossref=10.1201%2F9781420072761



