
On Qualitative Route Descriptions:
Representation and Computational Complexity

Matthias Westphal,

Stefan Wölfl and Bernhard Nebel

Department of Computer Science
University of Freiburg, Germany

{westpham,woelfl,nebel}@informatik.uni-freiburg.de

Jochen Renz

Research School of Computer Science
The Australian National University

Canberra, Australia
jochen.renz@anu.edu.au

Abstract

The generation of route descriptions is a fundamen-
tal task of navigation systems. A particular problem
in this context is to identify routes that can easily
be described and processed by users. In this work,
we present a framework for representing route net-
works with the qualitative information necessary to
evaluate and optimize route descriptions with re-
gard to ambiguities in them. We identify differ-
ent agent models that differ in how agents are as-
sumed to process route descriptions while navigat-
ing through route networks. Further, we analyze
the computational complexity of matching route
descriptions and paths in route networks in depen-
dency of the agent model. Finally we empirically
evaluate the influence of the agent model on the op-
timization and the processing of route instructions.

1 Introduction

One of the most widely used applications of spatial data in
everyday life is route navigation. Since GPS receivers have
been integrated into many devices, spatial data about routes or
spatial traces of events have become widely available. At the
same time, there is a growing interest in such data for applica-
tions ranging from constructing map information (e.g., Open-
StreetMap1) to sharing GPS traces of biking or hiking tours
(e.g., EveryTrail2). While many of these applications require
metric data to be present at runtime, the evaluation and gen-
eration of qualitative descriptions of routes can be performed
on a qualitative representation of preprocessed metric data.

In the literature several approaches to representing spatial
route information qualitatively have been discussed. For ex-
ample, Kuipers’ Spatial Semantic Hierarchy [2000] provides
a model for the representation of spatial information that inte-
grates qualitative and quantitative levels of description. Based
on ideas of the Spatial Semantic Hierarchy, Krieg-Brückner
et al. [2004] introduce a concept of route graph that is tai-
lored for the semantic representation of route instructions in
the context of human-robot interaction.

1http://www.openstreetmap.org/
2http://www.everytrail.com/

Contrary to such high-level representations of spatial route
information the literature on route descriptions is often based
on rather low-level graph-theoretical notions. The focus is
usually on criteria to evaluate the quality of route descrip-
tions, such as route length, simplicity, description length, and
reliability. The starting point in this research direction is
the work by Mark [1986]. He proposes to utilize A∗ with
a weighted sum of metric length and path complexity. The
complexity of a path is here estimated by a sum of penalty
values assigned to the intersections on a path according to a
“frame and slot” representation. Following this idea, Duck-
ham and Kulik [2003] minimize the complexity of a route
description by a shortest path algorithm, where the cost func-
tion accounts for the amount of information required to ne-
gotiate each street intersection. Several different (cognitive)
cost functions can be used in this context.

Since qualitative route descriptions are often ambiguous,
i.e., an agent processing a description may face situations,
where several options are consistent with the description, it
seems natural to consider cost functions that take ambigui-
ties into account (see, e.g., [Haque et al., 2006]). Further as-
pects discussed in the literature include the role of landmarks
in route descriptions (e.g., [Duckham et al., 2010]) as well
as strategies to generate compact route description by spatial
chunking [Richter and Duckham, 2008].

While most work on route descriptions is motivated by
cognitive aspects of human wayfinding, the focus of this pa-
per is on the computational aspects that arise when route de-
scriptions and paths in the underlying route network are to
be matched. We propose to investigate such matching prob-
lems by an approach that studies different agent models and
hence different execution strategies within a simple graph-
like representation of the route network. Our approach takes
into account the ambiguities when generating or evaluating
route descriptions. This paves the way for many interesting
evaluation and optimization criteria, such as “What are the
chances of reaching the desired destination given a descrip-
tion?” or “What is the expected distance to the destination
after following a description?”

The contribution of this paper is twofold. Firstly, we in-
troduce a concept of decision frame that is adapted from a
more general notion of route graph presented in [Renz and
Wölfl, 2010]. Decision frames are tailored towards a com-
pact representation of qualitative route information that al-

1120

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

straight

right
back

left

right

sharp right

back

sharp left

left

slightly left
straight

slightly right

Figure 1: Two different qualitative schemata used to define
turn actions at a street intersection.

lows for evaluating and optimizing qualitative route descrip-
tions. Secondly, we focus on ambiguities in route descrip-
tions, i.e., descriptions that leave several alternatives to the
agents processing them. To this end, we discuss properties of
agents processing route descriptions that influence the poten-
tial paths taken in a route network. We distinguish different
types of agents and analyze the computational complexity for
generating and for processing route descriptions with respect
to these agent types. Finally, we present empirical results that
demonstrate the practical differences between the agent types.

In the following section we discuss how a qualitative rep-
resentation of an agent’s decisions can be extracted from the
layout of a route network. Then, in Section 3 we present dif-
ferent agent models for interpreting route descriptions. In
Section 4, the computational complexity of evaluating and
optimizing route descriptions, in dependency of the agent
model, is discussed. We report on first empirical results on
the effects of the agent model in Section 5. Section 6 summa-
rizes our results.

2 Representation and Decision Frames

2.1 Qualitative Relations

Simple route descriptions typically use a rather restricted set
of action terms such as “turn north”, “turn right”, etc. In the
situations depicted in Figure 1, for example, one may describe
the turn actions at the intersections by “straight on” and “turn
sharp left”, respectively.

Such egocentric relations can be defined in the Euclidean
plane if one considers, for example, oriented points. An ori-
ented point is a pair (p, o), where p represents the location of
the point and o its absolute orientation. In geometrical terms,
o is a half-line in the Euclidean plane that starts at point p (in
our context the half-line corresponds to the line of sight of an
agent). Relative to the oriented point, the plane can then be
divided into different non-overlapping sectors each of which
is labeled with an egocentric directional relation representing
a turn action. More precisely, let L be a set of turn labels and
let sec be a mapping that assigns to each oriented point (p, o)
and each turn label d ∈ L a sector sec(p,o)(d) of the plane.
Each such sector is spanned by two half-lines starting in p.
We require only that the set of all sectors sec(p,o)(d) (with
d ∈ L) forms a partition of R2 \ {p}.

Interestingly, cognitive studies indicate that human con-
ceptualizations of space are not based on equally sized sec-
tors, not on symmetries with respect to front and back, and

surprisingly not even on symmetries with respect to left and
right (see, e.g., [Klippel and Montello, 2007]). This means
that human conceptual schemes are often more irregular than
the relational partition schemes that are usually considered
in formalisms discussed in the Qualitative Spatial Reason-
ing field (see, e.g., [Renz and Nebel, 2007]). Nevertheless,
our evaluation in Section 5 is based on egocentric variants
of revised STARr calculi [Renz and Mitra, 2004], namely
STARr

2 (depicted left in Fig. 1), and STARr
4 (right in Fig. 1),

which takes into account empirical findings presented by
Klippel and Montello [2007].

2.2 A Representation of Route Networks

In order to derive a qualitative representation of a route net-
work, we assume that the metric information describing the
layout of the network is given as a directed graph. Each ver-
tex in the graph is associated with a position in the plane such
that paths can accurately describe the shape of routes. We
refer to such a graph as a metric route network.
Definition 1. A metric route network is an ordered triple
N = 〈V,A, ϕ〉, where 〈V,A〉 is a directed graph without
loops and ϕ : V → R

2 is a function that assigns to each vertex
v a point vN := ϕ(v) in the plane.

In what follows we assume that N has no isolated vertices,
i.e., each vertex occurs in at least one arc. Note that a met-
ric route network is not necessarily planar or strongly con-
nected. Metric route networks can be extracted from corpora
of geodata that represent some kind of map, e.g., automati-
cally recorded GPS traces [Edelkamp and Schrödl, 2003] or
OpenStreetMap data. Further semantic annotations may pro-
vide additional information, for example, on the road type,
the type of the point (e.g., intersection, landmark), and possi-
ble or permitted turn actions at an intersection.

While a metric route network represents a rich body of
quantitative information, in order to generate or answer
queries about route descriptions this level of detail is not
needed. Firstly, depending on the application context not all
parts of the metric route network are relevant for route de-
scriptions, e.g., for car navigation only those parts of the met-
ric route network are relevant that are accessible by cars due
to width or traffic regulations. Secondly, for route descrip-
tions the important vertices in the metric route network are
those at which a decision has to be made by an agent travers-
ing the network, i.e., these vertices have at least two outgoing
arcs with regard to the application context.

Given a metric route network N , we define: A decision
node in N is a vertex with out-degree ≥ 2.3 The set of deci-
sion nodes of N is denoted by DN . We assume that a subset
of application-relevant decision nodes and paths is selected
from N . For D ⊆ DN , a D-path is a path v1 . . . vn in N
with v1, vn ∈ D and vi /∈ D for each 1 < i < n [Diestel,
2010]. Π(D) denotes the set of all D-paths in N .

We now define a qualitative representation of a metric route
network that takes into account the egocentric perspective of
an agent traversing the route network. The key idea is to ex-
plicitly represent the different ways in which the agent might

3In applications it can be useful to count also dead-ends as deci-
sion nodes.

1121

a

b

c

d

ef

a,b

e,b

b,e d,e

f,e

bab
bcde

be

bab

be

bcde

efe

eb

efe

eb

efe

eb

Figure 2: A metric route network and a decision frame de-
picted as multigraph (arcs are annotated with the paths they
represent).

approach a decision node while traversing the route network.
We refer to these ways as states. In each state the agent has
options how it continues to traverse the network, i.e., there is
a (potentially empty) set of possible decisions.

Given a fixed set of decision nodes D, each decision is
associated with a unique D-path in the metric route network.

Since states model orientation, each decision can be prop-
erly labeled qualitatively: Given an arc (u, v0) and a path
π = v0 v1 . . . vn in the metric route network N , the turn di-
rection for π with respect to (u, v0) is the sector in which
the path π continues relative to the incoming arc (u, v0).
More precisely, we set: turn(u,v0)(π) = d if and only if
p1 ∈ sec(p0,o(q,p0))(d), where q = uN , pi = vNi (i = 0, 1),
and o(q, p0) denotes that half-line starting in p0 that can be
extended to a straight line through q.
Definition 2. For a metric route network N =
〈VN , AN , ϕN 〉, a decision frame on N is an ordered
tuple S = 〈S,A〉, where

• S is a nonempty set of arcs (u, v) ∈ AN with v ∈ DN
(elements of S are called states). DS := {v : (u, v) ∈
S} denotes the set of decision nodes of S.

• A : S → 2Π(DS) is a function that assigns to each
(u, v) ∈ S a set of DS -paths π starting in v.

The elements of A are referred to as decisions and those of
A(s) as decisions in state s. We write ‖A‖ := maxs∈S |A(s)|
for the maximal number of decisions in any state of S. For
π = v . . . u′ v′ ∈ A(s), the arc (u′, v′) is in S (since π is a
DS -path) and called the successor state of s under π.

Given a set of turn labels L, a labeled decision frame
〈S,A, l〉 is a decision frame 〈S,A〉 augmented by a partial
function l : S × A → L that assigns to each state s ∈ S and
each DS -path π ∈ A(s) the turn direction for π relative to s,
i.e., l(s, π) = turns(π). A path in S is a sequence of states
σ = s0 . . . sn in S such that for each 1 ≤ i ≤ n, si is a suc-
cessor state of si−1. A walk in D is an alternating sequence
s0 d1 s1 . . . dn sn of states and turn directions such that for
each 1 ≤ i ≤ n, si is a successor state of si−1 under some
decision πi with l(si−1, πi) = di.

Each walk can be described by the sequence of its turn la-
bels. Correspondingly, we define route descriptions.
Definition 3. A route description Δ = d1 . . . dn is a se-
quence of labels from L.

Decision frames as introduced here can also be cast as di-
rected multigraphs in which each arc is annotated with a de-

cision (cf. Figure 2). They are abstractions of the line graph
[Diestel, 2010] of the metric route network (cf. the notion
of evaluation mapping used in [Duckham and Kulik, 2003]).
Moreover, it can be shown that labeled decision frames are an
egocentric variant of the qualitative route graphs presented in
[Renz and Wölfl, 2010].

In the following we require an agent model that defines
how route descriptions are interpreted.

3 Agent Models

In many approaches the quality of a route description is deter-
mined as some sum of the values for the individual instruction
primitives occurring in the description. The value of prim-
itives in turn may depend on the particular location within
the route network, but is otherwise independent of the overall
graph. Obviously this has benefits for the computational cost
of generating and evaluating descriptions. For such measures
an optimal route can be found by a shortest path algorithm
with an appropriate cost function. Haque et al. [2006] fur-
ther evaluate route descriptions by measuring the success of
an agent following it. We propose to generalize this idea by
taking into account different types of agents that interpret in-
structions differently. In what follows we define a model that
makes explicit how an agent interprets descriptions.

It is clear that there is wide range of agent models that
could be defined, e.g., agents that use landmark information
or that learn the route network they traverse. Here, we focus
on some agent models with the following basic assumptions,
namely: (i) the agent can follow a description regardless of
its length, i.e., it does not forget or confuse parts of the in-
struction; (ii) the agent’s interpretation of the turn direction
coincides with the intended meaning of the direction; in case
of ambiguities the agent is indifferent between the options
associated with the same turn label; (iii) the environment is
unknown to the agent and hence wrong turns cannot be rec-
ognized; (iv) the agent processes a route description step-by-
step from the beginning, i.e., the agent tries to follow the first
unprocessed label in the description (as long as there is one
left) at the current state in the decision frame.

In order to model different types of simple agents, we con-
sider the following features. We say that an agent (a) strictly
processes a route description if it stops at the first state in
which the next unprocessed instruction is not executable;
(b) processes a route description with default straight actions
if in case the current action cannot be executed, it tries to
continue on some arc in straight direction, deferring the exe-
cution of the current action (if no path continues straight it has
to stop); (c) recognizes the destination if it stops once a de-
sired destination has been visited; (d) learns the visited states
if it stops once a state is revisited, i.e., the agent performs loop
checking.

Condition (b) expresses that a turn instruction is interpreted
as “turn at the next opportunity”, (c) expresses that an agent
has some knowledge about the goal destination that allows
him to stop processing a route description in goal states,
and (d) expresses that an agent accumulates some knowledge
about the traversed network such that it is certain to be lost
if it arrives at a known place with the same previous orienta-

1122

tion. These different features can be formalized using push-
down automata, but for the sake of simplicity we stick to the
informal characterization of agents presented here.

Given an agent and some start state, a (partial) execution
trace for a route description is a path in the decision frame tra-
versed by the agent following a prefix of the description. An
execution trace is said to be complete if the agent processes
each instruction in the route description until it stops. The
stop set of a route description, then, is the set of last visited
states in all complete execution traces.

Lemma 1. Let S = 〈S,A, l〉 be a labeled decision frame,
σ = s0 . . . sn a path in S, Δ = d1 . . . dm a route description,
and S� a set of goal states in S.

(a) σ is an execution trace for an agent processing Δ strictly
iff n ≤ m and s0 d1 s1 . . . dn sn is a walk in S.

(b) σ is an execution trace of Δ for an agent with default
straight actions iff there exists a walk s0 d

′
1 s1 . . . d

′
nsn

in S, m′ ≤ m, and 1 ≤ i1 < · · · < im′ ≤ n such that
d′ij = dj for all 1 ≤ j ≤ m′ and for each 1 ≤ i ≤ n with
i
= i1, . . . , im′ , d′i = straight and there is no decision
π ∈ A(si) with l(si, π) = djnext , where jnext = min{j :
ij > i}.

(c) σ is an execution trace for an agent with goal recognition
iff si
∈ S�, 0 ≤ i < n.

(d) σ is an execution trace for an agent with learning iff
s0 . . . sn−1 is a simple path.

Let tr(s0,Δ) denote the set of execution traces starting in
s0 given Δ. It will be clear from the context which agent
model the set is based on. In the remainder of the paper,
we consider only agents based on Lemma 1 that are either
processing strictly or perform default straight actions, where
points (c) and (d) are optional further conditions. The next
lemma follows from Lemma 1.

Lemma 2. Given a path σ in S, a route description Δ, and
start state s0, the decision problem whether σ ∈ tr(s0,Δ) can
be decided in time O(|σ| · ‖A‖) for each considered agent
model.

Naturally, all execution traces and the stop set can be de-
rived by a recursive evaluation. The next section gives com-
putational complexity bounds for several decision problems.

4 Queries on Decision Frames

We are interested in queries on decision frames that relate
route descriptions and paths. To this end, we investigate
the computational complexity in dependency of the agent
model. For polynomial-time reductions, we construct S di-
rectly, since for any such frame we can find a suitable metric
route graph N as a basis for S.

4.1 Relating Route Descriptions to Paths

Theorem 1. The decision problem whether for given states
s0, sn ∈ S and route description Δ, there exists an execu-
tion trace σ ∈ tr(s0,Δ) ending in sn can be decided in time
O(|S| · |Δ| · ‖A‖) for any considered agent without learning.
For any of our learning agents the problem is NP-complete.

Proof Sketch. For agents without learning, one can apply
a dynamic programming approach based on a table with
|S| · |Δ| entries. In case of a strict agent, one needs to check
O(‖A‖) decisions in S for each entry. In case of an agent
with default straight actions, possible deferred actions need
to be evaluated as well. However, this can be handled by a
table of double size, where each entry also exists with a pre-
fixed straight action – the bound of O(‖A‖) still applies.

For agents with learning, the proof idea can be sketched as
follows: NP membership follows immediately from the fact
that n is bounded by |S| and Lemma 2. NP-hardness can be
obtained by a polynomial-time reduction of the Hamiltonian
path problem, which is NP-complete even in cases of planar
graphs [Garey et al., 1976]. We construct for a given undi-
rected graph G a suitable S. For this we insert a state for
each vertex and add an extra start and goal state such that the
start state has a decision leading to any state except the goal
state. Each undirected arc is represented with two (directed)
decisions. These decisions are labeled with a non-straight ac-
tion d1. We further add decisions from each state to the goal
state, but label them with a different action d2. A fixed route
description Δ = d1 . . . d1 d2 with as many d1 instructions as
nodes in G forces an agent to visit all nodes (otherwise it has
to stop early). Hence Δ leads from start to goal state iff there
is a Hamiltonian path in G.

Theorem 1 gives the complexity of testing whether a given
description and initial state can lead to a given destination.
The natural extension is to derive the entire stop set.

Theorem 2. Let stop(s0,Δ) be the stop set of route descrip-
tion Δ starting in state s0 ∈ S. Given initial state s0 ∈
S and route description Δ, the decision problem whether
{s1, . . . , sn} = stop(s0,Δ), is (1) polynomial-time for our
non-learning agents, and (2) DP -complete (= BH2-complete
[Cai et al., 1988]) for our learning agents.

Proof Sketch. (1) follows from Theorem 1, since the stop set
can be derived in the same manner. For (2), note that testing
{s1, . . . , sn} ⊆ stop(s0,Δ) is trivially NP-complete, and
thus its complement is co-NP-complete. Therefore the de-
cision problem is in DP = BH2. For hardness, consider the
SAT–UNSAT problem (a tuple of formulas (ϕ1, ϕ2): is ϕ1 SAT
and ϕ2 UNSAT?) which is DP -complete [Papadimitriou and
Yannakakis, 1984]. We can equivalently think of such a tuple
as two undirected graphs and the Hamiltonian path problem.
From Theorem 1 it follows that for both we can construct a
decision frame and a route description such that a descrip-
tion leads to the goal state iff there is a Hamiltonian path.
Given two such labeled decision frames S1,S2 and Δ1,Δ2

we can combine the decision frames using suitable padding
(i.e., a simple path) before S1 and starting in the S2 goal state
such that we obtain S ′

1 and S ′
2, where the execution traces

of the concatenation of Δ2 and Δ1 are the same as in Δ1 in
S1 and Δ2 in S2. Using two new states and a new action
label d, we can combine the decision frames such that the de-
scription prefix d d allows the agent to terminate in any state
except the goal states of S ′

1,S ′
2 (denoted S�) or leads it to

the start states of S ′
1,S ′

2. Thus, (ϕ1, ϕ2) is in SAT–UNSAT iff
S \ {S�} = stop(s0, d dΔ2 Δ1) on the decision frame.

1123

4.2 Relating Paths to Descriptions

We are further interested in finding a description of a given
path in S. We show the stronger result for bounded length.
Theorem 3. The decision problem whether for a given path
σ = s0 . . . sn and bound k ∈ N, there exists a description Δ
of σ with |Δ| ≤ k is polynomial-time for all our agents.

Proof. For learning agents we can first establish whether σ
is simple. We cast σ as a graph and add arcs corresponding
to the effect of decisions and, if applicable, default straight
actions (restrictions by σ and Lemma 1 apply). A shortest
path search for sn yields the desired result.

4.3 Shortest Descriptions

As our last formal result, we show that optimizing descrip-
tion length for a given start and destination state is a non-
trivial task for agents featuring learning combined with de-
fault straight actions.
Theorem 4. The decision problem whether for given states
s0, sn ∈ S and bound k ∈ N, there exists a route description
Δ with |Δ| ≤ k such that sn is in the stop set stop(s0,Δ)
is (1) polynomial-time for all our agents without learning
in combination with default straight actions, and (2) NP-
complete for all our other agents.

Proof Sketch. In case (1), we can cast S as a graph, aug-
ment it with straight actions if applicable, and perform short-
est path search to find the shortest description. It induces
a simple path if no default straight actions are used. With
such default actions, a shortest description might induce only
non-simple paths in the decision frame, which is not a prob-
lem since the agent is not learning. In case (2), we can eas-
ily observe that the problem is in NP, since we can trivially
guess (and describe) a suitable path adhering to the bound
(cf. Theorem 3). For hardness, MinimumSetCover [Karp,
1972] can be encoded as a suitable decision frame. Due to
space limitations, we can only roughly sketch the construc-
tion. Given B = {b1, . . . , bl}, Bi ⊆ B, and the decision
problem ∃I :

⋃
i∈I Bi = B, |I| ≤ k, the bound on descrip-

tion length can be used to capture the original bound on the
number of sets, and the learning property can be exploited to
guarantee the cover. Essentially, we have as subframes trees
for every Bi with two leaves (one include, one reject). De-
fault straight actions can be exploited such that the cost of
reject is low and that of include rather high. Reject leaves
lead to paths with “bi ∈ Bj”-states for all i with bi ∈ Bj .
Note, these will be blocked if the reject leaf is traversed. We
connect the trees sequentially and add at the end an evalua-
tion matrix over i, j such that it can only be traversed along
i if there is at least one path through “bi ∈ Bj”-states. Note,
that this corresponds to the cover condition, as there is a path
iff for each bi there is some unblocked “bi ∈ Bj”-state. Fi-
nally, we add between each reject leaf and the next subframe
a path of dummy states such that the path can be traversed
cheaply with a default action, but leads from all states to a
dead end with action d. The same d is used in the evaluation
matrix such that any path through S that exits a Bj-tree di-
rectly from a “bi ∈ Bj”-state into the evaluation matrix has
high cost.

STARr
2 STARr

4

as 17.83 (7.14) 17.83 (7.14)
adg 10.06 (4.04) 9.96 (4.19)
adgl 10.05 (4.04) 9.96 (4.19)

Table 1: Average and standard deviation of the length of route
descriptions optimized for different agent models in different
qualitative representations.

STARr
2

Opt.\Eval. as adg adgl

as 0.41 (0.38) 0.41 (0.38) 0.41 (0.38)
adg 0.01 (0.11) 0.25 (0.33) 0.24 (0.33)
adgl 0.02 (0.12) 0.29 (0.35) 0.29 (0.35)

STARr
4

Opt.\Eval. as adg adgl

as 0.62 (0.36) 0.62 (0.36) 0.62 (0.36)
adg 0.01 (0.11) 0.56 (0.39) 0.56 (0.39)
adgl 0.01 (0.11) 0.61 (0.38) 0.61 (0.38)

Table 2: Probabilities (in [0, 1]) for reaching the destination
with respect to different agent models used for optimizing
description length (rows optimized for, column evaluated on).

5 Evaluation

We report on a first empirical evaluation of the agent mod-
els based on a metric route network of Canberra taken from
OpenStreetMap covering approximately 20 km2 with 14 837
vertices and 4 445 arcs. The decision frame takes into account
all streets and decision nodes in the map. It has 1 719 states
and 4 934 decisions. The aim of the study is to measure the
influence of the chosen agent model and the qualitative repre-
sentation on evaluation and generation of route descriptions.

In the following we use the STARr
2 and STARr

4 represen-
tation schemes as outlined in Section 2.1. As agent models we
consider: (a) only strict (as), (b) default straight actions and
goal recognition (adg), and (c) default straight actions, goal
recognition and learning (adgl). Based on a fixed randomly
generated set of 1 000 distinct start-destination pairs, we gen-
erated shortest route descriptions for these agent models and
evaluated each such description on all agent models. Despite
the computational complexity of the evaluation for some of
these models, it was feasible in all cases – most likely due to
the low average degree of real-world route networks. In the
case of adgl we had to resort to a common branch-and-bound
search for shortest descriptions. The search took less than
half a second for any pair.

Our results show that with regard to description length,
there are only small differences between the considered qual-
itative representations and also between routes optimized for
adg and adgl (cf. Table 1). Naturally the shortest path without
default actions is unaffected by the qualitative representation.

As a second test, we consider the probability of reaching
the destination when an agent (with agent model a) follows
a description that has been optimized for an agent model a′
Note that the agent model imposes a uniform distribution
on decision choices, which induces a probability distribution
over paths. Table 2 shows that assuming default straight ac-
tions for the generation of route descriptions usually reduces
the probability of reaching the destination. This is plausible

1124

because descriptions can rely on many (potentially ambigu-
ous) implicit straight actions. However, it can also be seen
that the more refined qualitative representation with a smaller
“straight” sector mitigates this effect. We observed that the
average number of distinct paths to the goal for adgl is about
1.14-1.38 for STARr

2 and 1.04-1.064 for STARr
4. For adg ,

infinitely many paths to the destination might exists in cases
where loops in the network may be traversed arbitrarily often.

Further, we found that optimized descriptions for adg can
also be reasonably used by adgl-agents. For only 6.9% of the
descriptions in STARr

2 (1.9% for STARr
4) no simple path

was induced.

6 Conclusion and Future Work

In this paper we have introduced a simple qualitative rep-
resentation useful for evaluating and optimizing qualitative
route descriptions. Further, we have identified several natural
features of agents interpreting such descriptions, which play a
crucial role for the analysis which paths agents traverse given
a description. Identifying such paths enables a number of in-
teresting criteria that can be used to evaluate and optimize
route descriptions: Examples include the chance of reaching
the destination, the expected distance to the destination, or
the set of possible places where agents could end up.

For elementary queries about relations between paths and
descriptions and also for optimizing description length, we
have provided computational complexity bounds in depen-
dency of the agent model. Several of our results indicate that
it is (theoretically) infeasible to find optimal descriptions for
certain criteria. Especially the identification of possible end
states of routes under a fixed description is already hard for
some simple agent models. If future evaluations show that for
specific agent models the generation of optimal descriptions
is in fact not practically feasible (e.g., optimizing the chance
of reaching the destination), it will be necessary to analyze
possible approximations. The results of our work indicate
that it is important to balance a number of criteria when op-
timizing routes in order to guarantee robust descriptions for
different underlying route networks and different agents pro-
cessing them.

Acknowledgments

The authors thank the anonymous reviewers for helpful feed-
back on earlier drafts of this paper and Robert Mattmüller
for fruitful discussions on complexity issues. This work was
supported by DFG (SFB/TR 8 Spatial Cognition, project R4-
[LogoSpace]), an ARC Future Fellowship (FT0990811), and
a joint Go8/DAAD project (D/08/13855).

References

[Cai et al., 1988] Jin-Yi Cai, Thomas Gundermann, Juris
Hartmanis, Lane A. Hemachandra, Vivian Sewelson,
Klaus Wagner, and Gerd Wechsung. The Boolean hierar-
chy I: Structural properties. SIAM Journal on Computing,
17(6), 1988.

[Diestel, 2010] Reinhard Diestel. Graph Theory (Fourth
Edition). Springer, 2010.

[Duckham and Kulik, 2003] Matt Duckham and Lars Kulik.
“Simplest” paths: Automated route selection for naviga-
tion. In COSIT, LNCS 2825, pages 169–185. Springer,
2003.

[Duckham et al., 2010] Matt Duckham, Stephan Winter, and
Michelle Robinson. Including landmarks in routing in-
structions. J. Location Based Services, 4(1):28–52, 2010.

[Edelkamp and Schrödl, 2003] Stefan Edelkamp and Stefan
Schrödl. Route planning and map inference with global
positioning traces. In Computer Science in Perspective,
LNCS 2598, pages 128–151. Springer, 2003.

[Garey et al., 1976] M. R. Garey, D. S. Johnson, and
L. Stockmeyer. Some simplified NP-complete graph prob-
lems. Theoretical Computer Science, 1(3):237–267, 1976.

[Haque et al., 2006] Shazia Haque, Lars Kulik, and Alexan-
der Klippel. Algorithms for reliable navigation and
wayfinding. In Spatial Cognition, LNCS 4387, pages 308–
326. Springer, 2006.

[Karp, 1972] Richard M. Karp. Reducibility among combi-
natorial problems. In Complexity of Computer Computa-
tions, pages 85–103. Plenum Press, 1972.

[Klippel and Montello, 2007] Alexander Klippel and
Daniel R. Montello. Linguistic and nonlinguistic turn di-
rection concepts. In COSIT, LNCS 4736, pages 354–372.
Springer, 2007.

[Krieg-Brückner et al., 2004] Bernd Krieg-Brückner, Udo
Frese, Klaus Lüttich, Christian Mandel, Till Mossakowski,
and Robert J. Ross. Specification of an ontology for route
graphs. In Spatial Cognition, LNCS 3343, pages 390–412.
Springer, 2004.

[Kuipers, 2000] Benjamin Kuipers. The spatial semantic hi-
erarchy. Artificial Intelligence, 119(1-2):191–233, 2000.

[Mark, 1986] David M. Mark. Automated route selection for
navigation. Aerospace and Electronic Systems Magazine,
1(9):2–5, 1986.

[Papadimitriou and Yannakakis, 1984] Christos H. Papadim-
itriou and Mihalis Yannakakis. The complexity of facets
(and some facets of complexity). Journal of Computer and
System Sciences, 28(2):244–259, 1984.

[Renz and Mitra, 2004] Jochen Renz and Debasis Mitra.
Qualitative direction calculi with arbitrary granularity. In
PRICAI, LNCS 3157, pages 65–74. Springer, 2004.

[Renz and Nebel, 2007] Jochen Renz and Bernhard Nebel.
Qualitative spatial reasoning using constraint calculi. In
Handbook of Spatial Logics, pages 161–215. Springer,
2007.

[Renz and Wölfl, 2010] Jochen Renz and Stefan Wölfl. A
qualitative representation of route networks. In ECAI,
Frontiers in Artificial Intelligence and Applications 215,
pages 1091–1092. IOS Press, 2010.

[Richter and Duckham, 2008] Kai-Florian Richter and Matt
Duckham. Simplest instructions: Finding easy-to-describe
routes for navigation. In GIScience, LNCS 5266, pages
274–289. Springer, 2008.

1125

