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Abstract

In this paper, we investigate linear discriminant analy-
sis (LDA) methods for multiclass classification problems in
hyperspectral imaging. We note that LDA does not con-
sider pairwise relations between different classes, it rather
assumes equal within and between-class scatter matrices.
As a result, we present a pairwise discriminant analysis
algorithm for learning class categories. Our pairwise lin-
ear discriminant analysis measures the separability of two
classes making use of the class centroids and variances.
Our approach is based upon a novel cost function with uni-
tary constraints based on the aggregation of pairwise costs
for binary classes. We view the minimisation of this cost
function as an unconstrained optimisation problem over a
Grassmann manifold and solve using a projected gradient
method. Our approach does not require matrix inversion
operations and, therefore, does not suffer of stability prob-
lems for small training sets. We demonstrate the utility of
our algorithm for purposes of learning material catergories
in hyperspectral images.

1. Introduction

The development of image sensor technology has made
it possible to capture image data in hundreds of bands cov-
ering a broad spectrum of wavelength range. The rich in-
formation available in hyperspectral imagery has posed sig-
nificant opportunities and challenges for feature extraction
and classification. Many algorithms have been proposed for
this purpose, such as Principal Component Analysis, Lin-
ear Discriminant Analysis, Decision Boundary , Projection
Pursuit, and kernel methods[14]. All these algorithms treat
the raw pixel spectra as input vectors in high dimensional
spaces and look for linear or nonlinear mappings to the fea-
ture space, often with reduced dimensionality, by optimiz-
ing certain criterion, leading to statistically optimal solu-
tions to classification.

Linear Discriminant Analysis (LDA) [9] is a classical
method for linear dimensionality reduction and feature ex-
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traction. It can utilise label information for purposes of
learning a lower dimensional space representation suitable
for feature extraction, supervised learning and classifica-
tion. Both LDA and the closely related Fisher’s Linear Dis-
criminant (FDA) [7] are concerned with learning the opti-
mal projection direction for binary classes. The idea is to re-
cover a linear feature transformation which maximises the
variance between two classes while keeping the intraclass
variances small.

These methods can be naturally generalised to handle
multiclass classification tasks by introducing within and
between-class scatter matrices to represent the average vari-
ance of each class and the distance between classes. As
a result, the optimal transformation is obtained so as to
maximise the between-class scatter while minimising the
within-class dispersion. For the within-class scatter, LDA
assumes the same conditional distribution for all the classes
under study. This class conditional distribution is then mod-
elled as a single Gaussian. This, in turn, implies that all
the classes must have identical full rank covariances. Simi-
larly, a single between-class scatter matrix is defined for all
classes, which, hence, assumes each class is equally separa-
ble from the others.

Though effective, the assumptions above ignore the in-
herent inhomogeneities between different classes. This
is particularly apparent in multiclass classification, where
some classes are much harder to discriminate than others.
As a result, well-separated classes can be over emphasised,
whereas overlapping or neighbouring classes may not be
well discriminated against one another. Therefore, the op-
timal feature transformation should aim at preserving the
distances between well separated classes and, at the same
time, place adequate emphasis on classes which are hard to
discriminate upon.

This paper aims at casting the problem of multiclass clas-
sification in terms of a pairwise linear discriminant analy-
sis based upon a measure of separability for every pair of
classes. We call this new formulation of discriminant anal-
ysis Pairwise Discriminant Analysis (PDA). This approach
gives rise to a new cost function for LDA based on the pair-
wise cost of separating any two classes in the feature space.
Furthermore, the optimisation of the cost function can be
approached by a gradient-based method on a Grassmann
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manifold akin to those in [16] and [18]. Moreover, our ap-
proach does not require the inversion of the class scatter
matrix and, therefore, is not prone to instability for under-
sampled feature spaces.

The paper is organised as follows. Related work is pre-
sented in the following section. The cost function for our
PDA method is developed in section 3. In section 4, we
elaborate on the optimisation of the cost function. Exper-
imental results are presented in section 5 and conclusions
are given in section 6.

2. Motivation and Previous Work

To commence, let us define the generic problem of linear
feature extraction for classification as treated in this paper.
Given the sample set X = {x1,x2, . . . ,xN} in RD, the
purpose is to find a transformation matrix A ∈RD×d that
projects the input vector xi onto the point yi = AT xi in a
lower dimensional space Rd(d�D) so as to maximise the
separation between classes and the affinity within classes.

In computer vision and pattern recognition, this is of-
ten achieved by optimising a cost function over the linear
combination of features which best separates two or more
classes. One of the most popular methods for recover-
ing these linear combinations for feature extraction in su-
pervised learning is LDA. Here, a transformation matrix
A ∈ RD×d is determined so as to maximise the Fisher
criterion given by

JF (A) = tr((AT SwA)−1(AT SbA))

Sw =
c∑

j=1

pjSj =
c∑

j=1

∑
xi∈Cj

pj(xi − mj)(xi − mj)T

Sb =
c∑

j=1

pj(mj − m)(mj − m)T

=
c−1∑
i=1

c∑
j=i+1

pipj(mi − mj)(mi − mj)T (1)

where c is the number of classes, mj and m are the class
mean and sample mean vectors, respectively, and pj is the
prior probability of class j given by the contribution of the
jth class to the sample set X . Also, in the equations above,
Sw and Sb represent the within and between-class scatter
matrices. Note that the matrix Sw can be regarded as the av-
erage class-specific covariance, whereas Sb can be viewed
as the mean distance between all different classes. Thus,
the purpose of Equation 1 is to maximise the between-class
scatter while preserving within-class dispersion in the trans-
formed feature space. This is effected by affine projecting
the inverse intraclass covariance matrix and solving the gen-
eralised eigenvalue problem SbA = λSwA. As the rank of
Sb is c − 1, the solution, for the c classes, is obtained by

taking the eigenvectors corresponding to the largest c − 1
eigenvalues of S−1

w Sb [9].
Various extensions and improvements to LDA have been

proposed in the literature. For instance, nonparametric dis-
criminant analysis (NDA) [9] incorporates boundary infor-
mation into between-class scatter. Mika et al. [19] and
Boudat and Anour [2] have proposed kernel versions of
LDA that can cope with severe non-linearity of the sam-
ple set X . On the numerical stability and tractability of the
LDA solution, there have also been a number of methods
which aim at overcoming the singularity of the inverse in-
traclass covariance matrix inherent to undersampled feature
spaces [8, 3, 4, 23, 22]. In a related development, Max-
imum Margin Criterion (MMC) [15] employs an optimi-
sation procedure whose constraint is not dependent on the
non-singularity of the within-class scatter matrix Sw. Wang
and Tang [21] have used dual subspaces to construct LDA
classifiers which preserve most discriminative information.

Given the renewed interest and the vast work on LDA,
it is somewhat surprising that there has not yet been paid
much attention to the pairwise balance between different
classes when seeking the optimal transformation in multi-
class classification. This is ever more important since LDA
methods maximise a cost function governed by the overall
average class separability and, therefore, are likely to favor
well-separated clusters.

To illustrate this phenomenon, a toy example is shown
in Figure 1. Here, we represent three different classes in
a two-dimensional space. We have denoted these classes
C1, C2 and C3. Note that C1 and C2 are very close to one
another, and are both far away from C3. Recall that the to-
tal between-class scatter matrix is the weighted average of
the pairwise between-class scatters (see Equation 1). In this
case, the distances between C3 and the other two classes are
larger than the distance between C1 and C2. As a result, the
first principal direction, i.e. the direction corresponding to
the eigenvector of the largest eigenvalue of S−1

w Sbis domi-
nated by the distances between C3 and the other two classes,
as indicated by dashed arrow. However, if we project the
samples in this direction, there will be a noticeable overlap
between the classes C1 and C2. It can be shown that the op-
timal projection direction for the three-class problem in the
figure is given by the solid arrow. This is due to the fact that
the projections of C1, C2 and C3 onto the solid arrow di-
rection are such that the interclass scatter is minimum. It is
then clear that the pairwise relations between classes must
be considered in order to achieve optimal class separation.

Moreover, LDA assumes the within-class scatters to be
equal. Heteroscadastic Discriminant Analysis (HDA) [13]
employs a maximum likelihood framework so as to account
for dissimilar intra-class covariances. In a related devel-
opment, Loog et al. [17] have proposed a weighted pair-
wise fisher scheme to balance the scatter between different



Fig. 1. Example of multiclass discriminant analysis. Three classes,
the principal projection directions recovered by LDA (dotted ar-
row) and the desired optimal direction (solid arrow).

classes. A weight, which is derived based on the Maha-
lanobis distance between the class centroids, is applied to
each pairwise between-class scatter matrix. This treatment
has the effect of controlling the balance between pairs of
classes. However, the within-class dispersion matrix Sw is
considered to be equal for all the clusters.

3. Pairwise Discriminant Analysis

Hence, in order to gain over other LDA approaches for
multiclass classification, we must learn a transformation
to a subspace making use of a pairwise framework which
accumulates the combination of costs for pairs of binary
classes. Any multiclass classification problem can be con-
verted to a number of binary ones by using a pairwise fusion
framework [11]. This hinges in training a classifier for ev-
ery two classes and making the final prediction based upon
the combination of the decisions yield by the binary classi-
fiers. Following this rationale, for multiclass discriminant
analysis, we can also define costs for every pair of classes
and combine them into a final target function in a cumula-
tive fashion.

To do this, we require a criterion to measure the separa-
bility between two classes in the transformed feature space.
The choice here is not unique. A straightforward way would
be to use the same objective function as in Equation 1 with
different between and within-class scatter matrices defined
for every pair of classes. However, this involves a matrix
inversion operation for each pairwise within-class scatter
matrix. This is undesirable since it can result in numer-
ical instability when small training datasets are available
for any of the classes or categories under consideration.
Another way would be to assume an underlying Gaussian
distribution for each of the classes under study and em-
ploy information theoretic divergence measures, such as the
Kullback-Leibler divergence or the Bhattacharyya distance
with closed form solutions [5]. Unfortunately, this would
still require matrix inversion operations and hence may be
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Fig. 2. Illustration of our proposed measure of class separation.
“*”s, “+”s and “o”s denote features of classes 1, 2 and 3. Ji,j de-
notes the separation measure for class i and class j.The larger Ji,j ,
the better separability for the two classes. In the sake of clarity, we
have omitted the distances between class centroids.

unstable for applications with small training sets.
To overcome these problems, we propose a new mea-

sure of class distance which takes into account both, the
centroid information and class variances in the transformed
feature space. Our separation measure Ji,j(A) is composed

of three ingredients. The first of these is the term t
(1)
i,j , which

denotes the L2 distance between the class centroids in the
transformed subspace. The other two terms, t

(2)
i,j and t

(3)
i,j ,

denote the variances of classes indexed i and j mapped onto
the subspace projection matrix A. That is, the projection
of the scatters along the direction AT mi,j , which can be
viewed as the line in the subspace connecting the centroids
of classes i and j. Our class-distance measure Ji,j(A) is
then given by the distance between centroids minus the vari-
ances of the two classes along the line across them. To ex-
press Ji,j(A) in matrix notation, let the mean vector and
covariance matrix for class i be mi and Si respectively. We
can then write

Ji,j(A) = t
(1)
i,j − t

(2)
i,j − t

(3)
i,j (2)

t
(1)
i,j = ||AT mi,j || = ||AT (mi − mj)||

t
(2)
i,j =

s
(2)
i

t
(1)
i,j

=

√
mT

i,jAAT SiAAT mi,j

||AT mi,j ||

t
(3)
i,j =

s
(2)
j

t
(1)
i,j

=

√
mT

i,jAAT SjAAT mi,j

||AT mi,j ||

where have used the shorthand mi,j = mi − mj and si

denotes the projection of the ith class scatter on the line
connecting the class centroids.

In Figure 2 we illustrate the behaviour of our class sep-
arability measure making use of a 3-class dataset in a two-
dimensional feature space. Here, we have denoted the sam-
ples for each class using a different marker. The corre-
sponding terms, as given in Equation 2, are labelled for



all pairs of classes. From the figure, the physical mean-
ings of the terms t

(1)
i,j , t

(2)
i,j and t

(3)
i,j become evident. Fur-

thermore, the class separation Ji,j(A) has a clear relation
with respect to the margin between classes and, hence, has
properties akin to those of margin-based classifiers, such as
Support Vector Machines (SVMs) [20]. If the principal axes
of the underlying distributions for both classes are aligned
with the line through their centroids, our measure becomes
equivalent to the class-margin. It is also worth noting that
the proposed measure of separation does not involve any
matrix inversion and is, thus, numerically more stable than
other alternatives elsewhere in the literature. Note, however,
that Ji,j(A) is not a metric in the sense that it can be nega-
tive. Nonetheless, this is not a problem as we are not using
it directly for optimisation purposes, rather it is treated as a
variable in the objective function.

Having defined the separation measure for binary
classes, we can now define the objective function for our
multiclass PDA algorithm as the aggregation of the pairwise
costs. As a result, our objective function becomes

arg min
AT A=I

f(A) =
c−1∑
i=1

c∑
j=i+1

pi,jg (Ji,j(A)) (3)

g(x) =
1

1 + exp(γ(x − µ))

Here Ji,j(A) is defined as in Equation 2, g(x) is a nonlin-
ear function which maps the class separability measures to
pairwise costs and pi,j ∝ ni +nj is the weight for the class
pair i, j governed by the sizes ni and nj for the two classes.

Our choice of g(x) has several desirable properties.
First, it is monotonically decreasing so that larger separa-
bility values are always associated with lower costs. More
importantly, g(x) takes values in the range (−∞,∞) to the
bounded interval [0, 1] in a nonlinear way such that the cost
changes rapidly only for moderate values of Ji,j(A). Note
that, for extreme values of Ji,j(A), the rate of change of
g(x) is small. Consider the case of well-separated classes
or significantly overlapping ones which are de facto insep-
arable. For these classes, the function g(x) will yield pair-
wise costs that approximate its asymptotic values. In the
other hand, for neighbouring classes which are separable,
the cost varies rapidly with respect to the measure Ji,j(A).
This, in turn, implies that the parameters µ and γ control
the bandwidth of the function g(x) and the position of its
inflexion point. This is exemplified in Figure 3. Thus, the
cost function can be fine-tuned to the application vehicle
under consideration. In this paper, we choose these two pa-
rameters via cross validation through a grid-search over a
discrete set of values.

For optimisation purposes, we have imposed the unitary
constraint AT A = I on the matrix A. This is to ensure
that the discriminant vectors are orthonormal. This has the
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Fig. 3. Mapping from class separability to pairwise cost

effect of minimising the correlations between them while
preserving the scale of the input space. Note that, although
conventional LDA does not require A to be orthogonal,
many alternatives in the literature [16, 22] assume orthog-
onality of the transformation matrix. From a more general
perspective, both the unitary constraint and the nonlinear
mapping g(x) can be viewed as regularisers that prevent
overfitting when optimising our objective function.

4. Optimisation of the Cost Function

Equation 3 is a hard optimisation problem which is de-
fined on a Grassmann manifold [10]. In addition to the uni-
tary constraint, the objective function is invariant to any
rotations in the transformed feature space, i.e. f(A) =
f(AQ) for an arbitrary orthogonal matrix Q ∈ Rd×d.
Thus, we can build on recent developments in optimisa-
tion theory which have made possible the extension of un-
constrained optimisation methods in the Euclidean space to
Grassmann manifolds [6, 18]. In this paper, for optimi-
sation on the Grassmann manifold, we use a projection-
based, steepest descent method with backtracking line
search based upon those proposed in [18, 16].

4.1. Projection-based Steepest Descent

Before introducing the optimisation algorithm, we re-
quire some formalism. In the manifold optimisation algo-
rithm presented here, each point is only allowed to move
along the descent direction within the tangent space. This
is, the optimisation is governed by the tangent space defined
at each point on a differentiable manifold embedded in the
ambient Euclidean space. This tangent space is the natu-
ral generalisation of the tangent line in R2 and the tangent
plane in R3 to the case of Rn. Moreover, following [6], for
any matrix X ∈ RD×d, its projection onto the tangent space
is given by

PT (X) = P⊥(X) + P‖(X) (4)



Fig. 4. Illustration of the steepest descent direction and various
projections.

where P⊥(X) =
1
2
A(AT X − XT A) and P‖(X) = (I −

AAT )X are the the projections onto the so called vertical
and horizontal spaces. In Figure 4, we show the geometry
of these spaces on the manifold. Considering the rotation
invariant condition, not all variations on the tangent space
will contribute to the change of the objective function value.
It can be shown that, on the Grassmann manifold, only the
directions in the horizontal space will change the value of
the objective function [6]. Hence, by substituting the gradi-
ent ∇f(A) of our objective function for X into Equation 4,
the steepest descent direction on the Grassmann manifold
becomes

Z = −(I − AAT )∇f(A) (5)

With the steepest descent direction at hand, we can turn
our attention to the line search method on the Grassmannn
manifold. This is quite different from that in the Euclidean
space, as line search must be made on the manifold it-
self. Hence, instead of searching along the line in the de-
scent direction, we search along the geodesics on the man-
ifold. This can be achieved by back-projecting the points
on the line onto the geodesics. For the Grassmann mani-
fold, let X ∈ RD×d be a rank-d matrix as before. Specif-
ically, if the QR decomposition of X is X = QR, then
π(X) = �QID,d�. It can be shown that π(X) = �X� =
�arg minQT Q=I ||X−Q||2�, where �Q� represents the sub-
space spanned by the columns of Q [18]. Therefore, the
advantage of the treatment above is that we can use Q to
represent π(X) as an alternative to X. This is due to the
fact that the subspace spanned by the columns of X is the
same subspace spanned by the first d columns of Q for the
QR decomposition of X.

4.2. Algorithm

With the theory above, we now proceed to introduce the
optimisation algorithm used in this paper. The steps for the
steepest descent method on the Grassmann manifold are de-
scribed in Figure 5. Similarly to conventional gradient de-

scent methods, the algorithm used here employs interleaved
steps of gradient calculation and line search along the steep-
est descent direction until convergence.

1. t=0. Initialise A(0)∈RD×d with A(0)TA(0) = I.

2. Compute the gradient ∇f(A(t)) of the objective func-
tion f(·) at A(t) via Equation 6 and set the descent
direction Z(t) = −(I − A(t)T A(t))∇f(A(t)).

3. Evaluate ||Z(t)|| = tr(Z(t)T Z(t)). Stop if ||Z(t)|| is
sufficiently small or the maximum number of iterations
is reached.

4. Otherwise, perform line search along the direction of
Z(t) making use of the following rules

• Repeat λ = 2λ while f(A(t)) − f(π(A(t) +
2λZ(t))) ≥ λ||Z(t)||.

• Repeat λ = 1
2λ while f(A(t)) − f(π(A(t) +

λZ(t))) < 1
2λ||Z(t)||.

5. Do A(t+1) = π(A(t) + λZ(t))

6. Stop if
||f(A(t+1) − f(A(t)||

||f(A(t)|| is small enough. Other-

wise do t = t + 1 and go to Step 2.

Fig. 5. Steepest Descent algorithm with Backtracking Line Search
on the Grassmann Manifold

Several points deserve further elaboration here. First, the
gradient ∇f(A) of the cost function f(A) in Equation 3 is
needed at each iteration, which can be expressedin closed
form as follows

∇f(A) = −
∑

i

∑
j

γpi,j(Ji,j(A) − µ)g2(Ji,j(A))∇Ji,j

∇Ji,j = ∇t
(1)
i,j − (sj + sj)∇t

(1)
i,j

t
(1)2

i,j

− t
(1)
i,j (∇si + ∇sj)

t
(1)2

i,j

∇t
(1)
i,j =

1

t
(1)
i,j

mi,jmT
i,jA

∇si =
2
si

sym(mi,jmT
i,jAAT Si)A

∇sj =
2
sj

sym(mi,jmT
i,jAAT Sj)A (6)

where sym(X) denotes the symmetry inducing operator
X + XT

2
for the matrix X. The other terms are the same as

they were first defined in Equation 2.
The line search in step 4 is adapted from the Armijo

step size rule [1] for approximate search of the minimum



point along the geodesics on the manifold. Also, in our
implementation we have employed conventional LDA [9],
so as to initialise the algorithm. To this end, we compute
the transformation matrix yield by LDA and impose unitary
constraints. Recall that a unitary transformation matrix A
is not a necessarily condition for LDA, thus, we use instead
A(0) = π(A), where π(A) is the subspace presented in the
previous section.

5. Experimental Results

In this section, we present results of our pairwise dis-
criminant analysis algorithm for material identification and
mapping on two hyperspectral images. The first of these
is an image captured by the AVIRIS sensor system over an
agricultural area in West Indiana, USA. Each pixel in the
image is comprised of 220 bands in the range 375−2200nm.
The second data set was gathered over the Washington DC
mall by a HYDICE system with the same number of spec-
tral bands and similar spectral range. For both images, we
have removed the water and atmospheric absorption bands
in each pixel spectra and used the spectral values at the re-
maining 191 bands to form the feature vectors. We used a
total of 9345 pixels from 9 classes in the first image data set
and a total of 14311 pixels from 5 classes in the second im-
age for our experiments. The pseudo-color images and the
ground truth maps alongside with legends for both data sets
are shown in Figure 6. Different colors indicate different
terrain material types in the ground truth images.

Average Accuracy for Data Set 1
5% 10% 20%

PCA 75.60 ± 18.33 79.51 ± 16.15 83.18 ± 13.06

LDA 76.32 ± 18.14 80.20 ± 15.94 83.94 ± 12.72

MMC 71.82 ± 21.94 74.23 ± 20.73 75.92 ± 19.77

PDA 84.28 ± 11.47 87.83 ± 9.02 89.95 ± 7.43

Average Accuracy for Data Set 2
5% 10% 20%

PCA 78.25 ± 8.94 79.92 ± 6.94 82.06 ± 6.63

LDA 83.93 ± 7.64 86.73 ± 6.21 87.78 ± 5.93

MMC 81.75 ± 8.19 83.65 ± 6.78 84.53 ± 6.20

PDA 87.03 ± 6.27 87.98 ± 5.27 89.28 ± 4.36

Tab. 1. Average Within-class Accuracy for Both Data Sets

For both data sets, we have compared our results with
those yield by Principal Component Analysis (PCA) [12],
Linear Discriminant Analysis (LDA) [9] and the Maximum
Margin Criterion (MMC) [15]. Throughout our experi-
ments, we have used the same 1-nearest-neighbour classi-
fier [5] and set the maximum number of iterations to 20. For
our algorithm, as outlined in Figure 5, the error tolerance is
10−3. For purposes of quantitative analysis, we are mainly
interested in two criteria. The first of these is the overall

testing error, defined by the total number of misclassified
samples over the total number of testing samples. This mea-
sures the overall performance of the methods in the compar-
ison group. Note that, however, in some cases the features
tend to have good overall performance with very good re-
sults for most classes but poor results for the remaining few.
Hence, the second criterion, the average within-class accu-
racy, is used here to measure the balance of classification
results between different classes. The within-class accuracy
is defined as the classification accuracy for each class over
the number of classes. The larger its value, the lower the
bias.

We have examined the cases where 5%, 10% and 20% of
the samples are used for training and the remainder of the
dataset is used for testing. For each case, we have repeated
our experiment 10 times with different, randomly selected
training pixels so as to recover the mean and standard devi-
ation values for the error and the accuracy rates. In Figures
7(a) and 7(b), we show the overall testing errors of both data
sets for the algorithms under study w.r.t. different training
data sizes. The dark green, light green and yellow bars show
the results for those cases in which 5%, 10% and 20% of the
data has been used for training. The error bars indicate the
standard deviation. The average within-class accuracies for
both data sets are reported in Table 1.

From the results, we can see that the proposed PDA al-
gorithm achieves better results than the alternatives, both in
terms of lower overall error rates and higher within-class
accuracy. The improvement in performance is much more
significant for smaller training sample sizes. The second-
best result is achieved using traditional LDA, which gives
a margin of improvement over PCA and MMC. This can
be attributed to the fact that similar materials are hard to
separate and, therefore, their corresponding classes show
a high degree of overlap whereas different materials have
very different spectra and are easy to classify. Our method
balances differences between classes and favours discrim-
inability between hard-to-classify materials. This is espe-
cially the case with the first data set, where classes formed
by different vegetations have similar spectral profiles and
are easily confused with one another with conventional ap-
proaches. Thus, despite the confusion caused by similar
materials, our method achieves a significant improvement
over the alternatives.

6. Conclusions

We have proposed a novel discriminant analysis algo-
rithm for learning material class categories. The algorithm
considers the pairwise relations between the classes and im-
proves on the classification accuracy for different classes
based on a nonlinear pairwise cost function. It does not re-
quire matrix inversion operations and is, hence, stable in
dealing with small-sized training sets. The proposed algo-



(a) Image Data Set 1 (b) Image Data Set 2
Fig. 6. Example images for the datasets used in our experiments
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Fig. 7. Testing errors for different algorithms and training data sizes.

rithm compares favourably with respect to traditional linear
feature extraction methods in our experiments on a number
of datasets.
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