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Abstract— Pohst and Schnorr-Euchner (SE) are two popular
sphere decoders (SD) to perform near maximum likelihood
(ML) detection in Spatial Multiplexing multiple-input-multiple-
output (MIMO) system. Recent work [1] showed Pohst and SE
are two variants of the well known stack sequential decoding
and proposed modification to each strategy to shown significant
complexity reduction but with near ML performance. This paper
proposed modified Pohst and SE algorithms by taking into
account the a priori information to estimate the maximum a
posteriori (MAP) probability of the received symbol sequence.
Simulation results show that significant performance gain can be
achieved from iterative MAP approach and complexity reduc-
tion can be obtained for SE enumeration strategy with minor
performance loss compared to Phost enumeration algorithm.

I. INTRODUCTION

Sphere Decoding (SD) [2] has attracted much research

attention in performing near maximum likelihood (ML) detec-

tion for Multiple-input-multiple-output (MIMO) spatial mul-

tiplexing system. The ML detection is optimal compared to

the conventional zero forcing (ZF) detector, decision feedback

equalizer (DFE), and minimum mean square error (MMSE)

detector. However, the complexity of ML detection grows

exponentially in terms of the number of antennas. Sphere

decoding provides the approximate ML estimate of the trans-

mitted signal sequence by restricting the search range to a

limited enumeration set rather than on the completed set of

constellation points. It is generally agreed that sphere decoding

technique still has polynomial [3] computational complexity

far below that of the ML detector.

Pohst enumeration [4] is a well known sphere decoding

algorithm to evaluate all the lattice points within a sphere

with certain radius. It consists of spanning the tree search

by defining a admissible interval at each level. All symbol

hypotheses are enumerated at each level between the lower and

upper bounds determined by the interval. Nevertheless, Pohst

algorithm has a prohibitive complexity which is exponential

in the worst case with the dimension of the tree search.

Schnorr-Euchner (SE) enumeration [5] is a variation of the

Pohst algorithm. Instead of enumerating all the lattice points

within the interval, SE algorithm performs the tree node search

in a zig-zag order, starting from the zero forcing solution.

Numerical results in [6] showed that SE enumeration is more

efficient than the Pohst implementation.

The author in [1] looked at the sphere decoding from

the viewpoint of stack sequential decoding algorithm [7] and

developed two new sphere decoding algorithms. Algorithm I

[1]is based on Phost enumeration by updating the the upper

bound at each level to avoid enumerating previously examined

partial paths. Algorithm II [1] is to perform SE enumeration

with preprocessing and ordering. Numerical results shows sig-

nificant reductions in the computational complexity with near

ML detection performance compared to previously proposed

sphere decoding algorithms.

The output of the Phost and SE algorithms in [1] is the

lattice point of minimum Euclidean distance to the received

signal. This paper proposes modified Pohst and SE algorithms

with accumulated a priori information metric to estimate the

maximum a posteriori (MAP) probability of the received

symbol sequence. We extend the Algorithms I and II in

[1] to iterative reception by including accumulated a priori

information metric. For Algorithm II, we propose an improved

tree search to adjust the starting point in a zig-zag fashion to

avoid performing preprocessing and ordering.

This paper is organized as follows. In Section II, the MIMO

spatial multiplexing system is described and the iterative

detection and decoding are introduced. In Section III, the

modified Pohst and SE algorithms employing accumulated

a priori information metric are proposed. Simulation results

are shown in Section IV. Section V concludes the paper.

The notations used in this paper are as follows. Matrices

and vectors are denoted by symbols in bold face and (·)∗,
(·)T and (·)H represent complex conjugate, transpose and

Hermitian transpose. E{·} denotes the statistical expectation.

[X]i,j indicates the (i, j)th elements of a matrix X, and

similarly, [xi] indicates the element i in a vector x. Finally,

{x} represents the sequence x.

II. SYSTEM MODEL

A. MIMO Spatial Multiplexing System

The MIMO spatial multiplexing system considered in this

paper is shown in Fig. 1. There are NT transmitting antennas

and NR receiving antennas. The information bits {b} are first

encoded into coded bits sequences {d}. These coded bits are

interleaved into a new sequence {c}, mapped into a sequence
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Fig. 1. MIMO spatial multiplexing transmitter with iterative receiver

of M -ary complex symbols {x} represented by a vector x =
[x0, x1, · · · , xNT−1]

T .

Assuming that each transmitting and receiving antenna link

undergoes independent flat fading, the system model can be

expressed as:

y = hx + n, (1)

where y is the received signal arranged as NR × 1 vector

y = [y0, y1, · · · , yNR−1]
T . h is NR ×NT channel matrix. n

is NR×1 additive white Gaussian noise (AWGN) vector with

covariance σ2INR
. It is convenient to reformulate the system

model from a complex value domain to a real value domain

by defining the 2NR×1 vector Y, 2NT×1 vector X, 2NR×1
vector N as:

Y =
[

ℜ(y)
T

ℑ(y)
T

]T

X =
[

ℜ(x)
T

ℑ(x)
T

]T

N =
[

ℜ(n)
T

ℑ(n)
T

]T

and 2NR × 2NT matrix H as:

H =

[

ℜ(h) −ℑ(h)
ℑ(h) ℜ(h)

]

,

where ℜ(·) and ℑ(·) denote the real and imaginary parts of

the argument. Then the system can be expressed in as:

Y = HX + N (2)

B. Iterative Detection and Decoding with Sphere Decoding

The MIMO detector based on the original Pohst and SE

algorithms try to maximize the likelihood of the transmitted

signal being detected, that is, to minimize the Euclidian

Distance to the received signal given that the channel is known,

which is given as:

X̂ = arg max
X∈A

p(Y|X) = arg min
X∈A

‖Y −HX‖2, (3)

where A is the signal set of dimension 2NT . In this paper, the

modified Phost and SE algorithms aim to estimate the MAP

probability of transmitted signal sequence given by:

X̂ = arg max
X∈A

p(X|Y) = arg max
X∈A

p(Y|X)p(X)

p(Y)
. (4)

In the iterative detection and decoding, p(X) is considered

as the a priori information, which is fed back from channel

decoder. Because the a priori is not available in the first

iteration, sphere decoding based on the ML metric (3) is

employed in the MIMO detector in Fig. 1. From the second

iteration onwards, MAP detection metric (4) is employed. In

each iteration, the MIMO detector selects most reliable points

{X̂} from the completed signal constellation set to form a list

U to compute the extrinsic log likelihood ratio (LLR) of the

coded bit as:

λe
1(dk(X̂)) =

1

2

∑

X̂∈U+

k

(−
1

σ2
‖Y −HX̂‖2 + dT

−kλe

2,−k
)

−
1

2

∑

X̂∈U−
k

(−
1

σ2
‖Y −HX̂‖2 + dT

−kλe

2,−k
), (5)

where dk(X̂) is the kth coded bit in sequence d representing

the sphere decoder enumerated transmitted symbol vector X̂.

U+

k and U−k denote the subset of U for which dk(X̂) is

+1 and −1 respectively. d−k is obtained from sequence d

by removing the kth coded bit. λe
2,−k is the extrinsic LLR

of sequence d−k from the channel decoder. After MIMO

detection, the sequence of extrinsic LLR {λe
1} of coded bits

is deinterleaved and passed through the channel decoder to

complete one iteration.

III. ITERATIVE POHST AND SE SPHERE DECODER

Assuming that the transmitted symbols X0, X1 . . . , X2NT−1

are independent, p(X) can be expressed as:

p(X) =

2NT−1
∏

k=0

p(Xk) = exp(

2NT−1
∑

k=0

ln p(Xk)). (6)

Hence, (4) can be reformulated as:

X̂ ≈ arg max
X∈A

p(Y|X)p(X)

≈ arg max
X∈A

exp(−
‖Y −HX‖2

2σ2
+

2NT−1
∑

k=0

ln p(Xk))

≈ arg min
X∈A

(‖Y −HX‖2 − 2σ2

2NT−1
∑

k=0

ln p(Xk)). (7)

The modified Pohst and SE algorithms narrow down the search

region as:

‖Y −HX‖2 − 2σ2

2NT−1
∑

k=0

ln p(Xk) ≤ C. (8)

By performing QR decomposition, the channel matrix H can

be expressed as:

H =
[

Q Q′
]

[

R

0

]

. (9)

where Q is a 2NR×2NT unitary matrix, Q′ is 2NR×(2NR−
2NT ) unitary matrix, R is a 2NT × 2NT upper triangular

matrix, and 0 is (2NR − 2NT ) × 2NT zero matrix. Known

that:
[

Q Q′
]H [

Q Q′
]

= I2NR
, (10)

2008 5th International Symposium on Turbo Codes and Related Topics

114

Authorized licensed use limited to: Australian National University. Downloaded on February 17, 2009 at 21:39 from IEEE Xplore.  Restrictions apply.



Take (9) into (8), we have:

‖
[

Q Q′
]

(Y −HX)‖2 − 2σ2

2NT−1
∑

k=0

ln p(Xk) ≤ C

‖QHY −RX‖2 − 2σ2

2NT−1
∑

k=0

ln p(Xk) ≤ C

‖Y′ −RX‖2 − 2σ2

2NT−1
∑

k=0

ln p(Xk) ≤ C − ‖Q′
H
Y‖2, (11)

where Y′ = QHY.

By expanding the term ‖Y′ − RX‖2, we can further

simplify (11) as follows:

2NT−1
∑

k=i

|Y
′

k −

2NT−1
∑

j=k

Rk,jXj |
2 − 2σ2

2NT−1
∑

k=0

ln p(Xk) ≤ C
′

,

(12)

where C
′

is the newly defined sphere radius.

A. MIMO detector with modified Pohst algorithm

Given Y′, R, the a priori information p(X̂), and the radius

C
′

, the modified Pohst algorithm can be outlined as follows:

1) Set tree search level index i := 2NT − 1, path metric

ϑi := 0, branch metric ζi := 0, accumulated a priori

information metric δi := 0, constellation index λj :=
0, j ∈ [0, 2NT − 1], constellation set Φ, and current

radius d := C
′

.

2) If (d < ϑi)
go to step 4.

Else {

compute the lower bound Li := 〈
Y
′

i −ζi−
√

d−ϑi

Ri,i
〉,

compute the upper bound Vi := 〈
Y
′

i −ζi+
√

d−ϑi

Ri,i
〉,

λi := idx(Li,Φ)− 1, idx(·) is the operator that finds

the index in constellation set Φ, and 〈·〉 is operator

that finds the nearest constellation point.}
3) λi := λi + 1, X̂i := Φ(λi)

If (X̂i ≤ Vi)

X̂i within the interval, go to step 5.

Else

X̂i outside the interval, go to step 4.

4) If (i == 2NT − 1)

go to step 7.

Else

i := i + 1, go to step 3.

5) If (i > 0) {

update branch metric ζi−1 :=
2NT−1

∑

k=i

Ri−1,kX̂k,

update accumulate a priori information metric:

δi := δi−1 + 2σ2 ln p(X̂i)
update path metric:

ϑi−1 := ϑi + ‖Y
′

i − ζi −Ri,iX̂i‖
2 − δi,

i := i− 1, go to step 2. }
Else if(i == 0)

go to step 6.

6) If (d > ϑi + ‖Y
′

i − ζi −Ri,iX̂i‖
2 − δi) {

updating the radius d := ϑi+‖Y
′

i −ζi−Ri,iX̂i‖
2−δi,

save X̂ in candidate list U ,

go one level up i := i + 1, go to step 7.}
7) If (C

′

is within Upper bound)

If(List has less points as required)

Increase the radius C
′

, go to step 1.

Else

Terminate.

The proposed algorithm differs from the original Pohst

algorithm in that it includes a priori information metric δi

accumulated along the way of tree search. If the visited nodes

diverge from the transmitted signal, δi is likely to tend large,

which in turn leads to an increasing path metric ϑi and a

dramatically reduced search radius in (i + 1)th level. This

is because the lower bound Li and upper bound Vi in step

2 are adjusted to a smaller admissible interval such that

further search will be limited within a much smaller interval.

Therefore, the resultant search path from ith level will be

identified and pruned at an early stage, and the number of

tree nodes visited will be reduced.

B. MIMO detector with modified SE algorithm

Given Y′, R, the a priori information p(X̂), and the radius

C
′

, the modified SE algorithm can be outlined as follows:

1) Set tree search level index i := 2NT − 1, path metric

ϑi := 0, branch metric ζi := 0, accumulated a priori

information metric δi := 0, zig-zag search index λj :=
0, j ∈ [0, 2NT −1], radius increasing index ∆ := 0, and

current radius d := C
′

.

2) If (the node is first time visited) {
Compute the ZF-DFE estimate of transmitted symbol

at level i as X̂i = 〈(Y
′

i − ζi)/Ri,i〉, where 〈·〉 is

operator that finds the nearest constellation point.

Create zig-zag lookup table Φi for constellation point

X̂i. Define |Φ| as the number of possible zig-zag

points.

If (i == 2NT − 1)

λi := λi + ∆ + 1, Xi = Φi(λi).
Compute the accumulated a priori information metric

δi := δi−1 + 2σ2 ln p(X̂i). }
Else If (λi == |Φi| − 1)

If (i == 2NT − 1)

go to step 7.

Else

λi := 0, X̂i = Φi(λi), i := i + 1, go to step 6.

Else

go to step 6.

3) If (the current radius is less than the path metric at level

i, i.e. d < ϑi + ‖Y
′

i − ζi −Ri,iX̂i‖
2 − δi)

Out of sphere, go to step 4.

Else If (i > 0) {
update branch metric:

ζi−1 :=
2NT−1

∑

k=i

Ri−1,kX̂k,

update path metric:
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ϑi−1 := ϑi + ‖Y
′

i − ζi −Ri,iX̂i‖
2 − δi,

i := i− 1, then go to step 2. }
Else If (i == 0)

go to step 5.

4) If(i == 2NT − 1)

If (λi < |Φi| − 1)

λi := λi + 1, X̂i = Φi(λi).
Else

go to step 7.

Else

i := i + 1, go to step 6.

5) A point within the sphere is fund, save X̂ in the

candidate list U . Updating the radius d := ϑi + ‖Y
′

i −
ζi −Ri,iX̂i‖

2 − δi, then go one level up i := i + 1, go

to step 6.

6) λi := λi + 1,

while(λi > |Φi| − 1) {
λi := 0, i := i + 1.

If (i > 2NT − 1)

go to step 7.

λi := λi + 1. }
X̂i = Φi(λi), δi := δi−1 + 2σ2 ln p(X̂i), go to step 3.

7) If (C
′

is within Upper bound)

If(List has less points as required)

Increase the radius C
′

, ∆ := ∆ + 1, go to step 1.

Else

Terminate.

Unlike the modified Pohst algorithm using the lower and

upper boundary adaption to prune the less likely path, the

modified SE algorithm eliminates the path by making the

comparison between the current available sphere radius and the

path metric. A large path metric ϑi is more likely to be outside

the available sphere radius. Hence, further search starting from

such less reliable enumerated node to its children nodes will

not be probable.

Another salient feature of the modified SE algorithm is the

ZF-DFE in step 2. As discussed in [1], in the original SE

algorithm, the ZF-DFE estimate of transmitted signal at ith

level depends on the branch metric only. Such approach may

end up with less reliable estimation, which will affect the

convergence of the tree search and introduce performance loss.

[1] proposed preprocessing and ordering to improve ZF-DFE

estimate, which is more complex. Our approach is to make

a trial on another constellation point rather than the ZF-DFE

estimate. We propose to do this on a zig-zag basis to visit the

neighboring constellation point of ZF-DFE estimate.

IV. SIMULATION RESULTS

A. Simulation Setup

We consider a 4×4 MIMO spatial multiplexing system. The

channel model for each transmit and receive antenna are inde-

pendent flat Rayleigh fading channel. A rate-1/2 (171, 133)8
convolutional code is used for channel coding. Each block

of information bits has the length of 9216. The modulation

includes QPSK and 16QAM. We compared the Bit Error Rate

(BER) and complexity for the non-iterative receivers with

original algorithms and iterative receivers with modified sphere

decoders. We refer to the original Pohst and SE algorithm in

[1] as “Pohst ML” and “SE ML” respectively, the modified

Pohst algorithm in III-A as “Pohst MAP”, and the modified

SE algorithm in III-B as “SE MAP”. The computation load is

measured by the number of visiting nodes in the tree search,

which dominates the system complexity [3] and indicates the

convergence speed of algorithms.

B. Numerical Results

Fig. 2 shows the BER performance for original Pohst and

SE algorithms, and the modified Pohst and SE algorithms

after 4 iterations. It can be observed that the proposed sphere

decoding algorithms have a 2dB gain for QPSK modulation,

and 3dB gain for 16QAM modulation over the original sphere

coding algorithms at BER level of 10−4. This observation sug-

gests that the iterative sphere decoding can achieve significant

performance achievement over the generic sphere decoders

for the non-iterative receivers. Regarding the performance of

different sphere decoding algorithms, it can be seen that the

original Pohst algorithm outperforms the original SE algorithm

by 1dB. This difference has been reduced to 0.5dB between

the two modified algorithms in the iterative reception.

Fig. 3 shows computation complexity for the modified

Pohst and SE algorithms over SNRs with 16QAM modulation.

It can be shown that Pohst algorithm generally has higher

complexity than the SE algorithm. This is because the Pohst

algorithm enumerates all the points within the admissible

interval, while SE algorithm only searchs the points around the

ZF-DFE estimate. Therefore, a favorable complexity reduction

can be obtained by the modified SE algorithm with minor

performance loss compared to modified Phost algorithm shown

in Fig. 2. As expected, by employing the a priori information,

the complexity of modified algorithms can be further reduced

over iterations because the additional priori information metric

0 2 4 6 8 10 12
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10−2
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100

Eb/No in dB

BE
R

Pohst ML
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Pohst MAP
SE MAP

QPSK 16QAM

Fig. 2. BER performance for original Pohst and SE algorithms, modified
Pohst algorithm, and modified SE algorithms in a 4 × 4 MIMO spatial
multiplexing system with QPSK and 16QAM modulation
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Fig. 4. Computation complexity for modified Pohst algorithm and modified
SE algorithms over iterations in a 4 × 4 MIMO spatial multiplexing system
with 16QAM modulation

improves the search by adjusting the overall path metric

according to the reliability of the enumerated points in addition

to the Euclidian Distance. It helps identify and discard the

inaccurate search path so that the unnecessary search efforts

can be saved.

Fig. 4 shows the computation complexity for the modified

Pohst and SE algorithms over iterations with 16QAM mod-

ulation. It is interesting to notice that for the modified Pohst

algorithm, the complexity of the second iteration is higher

than that for the first iteration in the low SNR region, and this

difference is getting smaller as SNR goes higher. However, this

is not the case for the modified SE algorithm. This is because

in the modified Pohst algorithm, the enumeration always starts

from the lower bound and ends at higher bound. At low SNR,

after the first iteration, the a priori information is not reliable,

which leads to a loose lower and upper bounds and slows

down the tree search. Such effect becomes marginal with more

stable priori information at high SNRs as show in Fig. 4. On

the other hand, for the modified SE algorithm, the zig-zag tree

search is started from point around the ZF-DFE point, which

is independent to the unreliable a priori information after the

first iteration.

V. CONCLUSION

In this paper, we proposed modified Pohst and SE algorithm

with accumulated a priori information metric for iterative

spatial multiplexing MIMO receiver. The original Pohst and

SE algorithms in [1] is modified to estimate the MAP proba-

bility of transmitted signal sequence. Performance comparison

shows significant performance gain over non-iterative receiver

with ML metric can be obtained, and complexity reduction

can be obtained from SE enumeration strategy with minor

performance loss compared to Phost enumeration algorithm.
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