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We study self-trapped localized nonlinear states in the form of truncated Bloch waves in one-dimensional
optical lattices, which appear in the gaps of the linear band-gap spectrum. We demonstrate the existence of
families of such localized states which differ by the number of intensity peaks. These families do not bifurcate
from the band edge, and their power curves exhibit double branches. Linear-stability analysis demonstrates that
in deep lattice potentials, the states corresponding to the lower branches are stable, whereas those correspond-
ing to the upper branches are unstable, independently of the number of peaks.
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The theoretical study of localized states in periodic poten-
tials is driven by many experimental demonstrations in non-
linear optics �1� and the physics of Bose-Einstein conden-
sates �BECs� �2–5�. One of the most striking effects is the
possibility of spatial localization due to an interplay between
periodicity and nonlinearity even when the nonlinearity is
repulsive. The corresponding localized states have long been
known in nonlinear optics as gap solitons �6� whose frequen-
cies lie inside the gaps of the linear band-gap spectrum of a
periodic structure. Similar objects have been observed in
atomic physics, where the experimental generation of BEC
gap solitons proved to be a challenge due to the requirement
of low atom numbers and densities �5�. The physics of such
localized states is well understood, and usually the gap soli-
tons appear through bifurcations of the localized states from
the edges of the bands of periodic solutions �7�.

Seemingly different localized states with steep edges and
a large number of atoms populated evenly in a number of
adjacent lattice sites were observed a few years ago in BEC
loaded into an optical lattice �8�. It was observed that in a
deep one-dimensional optical lattice the BEC wave packet
does not diffuse but instead its initial expansion stops and the
width remains finite. This effect has been attributed to the
self-trapping mechanism of energy localization and the exis-
tence of broad nonlinear localized states in the form of trun-
cated nonlinear Bloch waves in the gaps of the matter-wave
linear spectrum �9�. In particular, Alexander et al. �9� re-
vealed that these robust nonlinear localized states may exist
in all dimensions and can have arbitrary extension within the
lattice. They seem to provide an important missing link be-
tween gap solitons and nonlinear Bloch waves and can be
termed as truncated-Bloch-wave solitons.

In this paper, we consider a model for the Bose-Einstein
condensate in a one-dimensional optical lattice under repul-
sive nonlinearity, and we systematically study the existence
and stability of the truncated-Bloch-wave solitons. On the
question of existence, we reveal that these solitons exist as
countable families which are characterized by the number of

intensity peaks. These solution families do not bifurcate from
the edges of Bloch bands, and their power curves exhibit
double branches. If the depth of the lattice potential falls
below a certain threshold value, these truncated-Bloch-wave
solitons cease to exist. We also demonstrate that in a deep
lattice potential these solitons on the lower branches of the
power curves are stable, while those on the upper branches
of the power curves are unstable, independent of the number
of intensity peaks. In a shallow lattice potential, both
branches of these solitons are linearly unstable. These results
provide a solid background for the earlier experimental ob-
servations of broad localized states in BECs �8� as well as
the corresponding numerical studies �9�, and they reveal the
specific role that these types of self-trapped localized states
play as a link between nonlinear Bloch waves and gap soli-
tons in periodic potentials.

The physical system we consider is that of a Bose-
Einstein condensate loaded into a one-dimensional optical
lattice under repulsive nonlinearity �5,8�. The mathematical
model for this system is the one-dimensional Gross-
Pitaevskii equation with a lattice potential �10�

iUt + Uxx − �V0 sin2 x�U − �U�2U = 0, �1�

where U is the mean-field wave function of the BEC and the
lattice potential is � periodic with potential depth V0. We
have used the same normalization as that found in Ref. �9� to
make the model dimensionless with all the quantities in units
of characteristic scales of the lattice. In particular x and t are
in units of aL=d /� and �L

−1=� /Erec, respectively, where d is
the period of the lattice and Erec=�2 /2maL

2 is the recoil en-
ergy for an atom of mass m absorbing a lattice photon. The
depth of the lattice, V0, is in units of Erec. We have assumed
that the condensate is tightly confined in the transverse di-
mensions to use the standard dimensionality reduction pro-
cedure to reduce the dynamics to an effectively one-
dimensional model.

Solitons in this system are sought in the form of U�x , t�
=u�x�e−i�t, where � is the chemical potential and the spatial
function u�x� is real valued and satisfies the reduced equation*jyang@cems.uvm.edu
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uxx − �V0 sin2 x�u − u3 = − �u . �2�

In this paper, we first consider a deep lattice potential with
V0=6, where the existence and linear stability of truncated-
Bloch-wave solitons will be determined in detail. These soli-
tons and their stability in shallower potentials will be ad-
dressed toward the end of the paper.

To understand the origin of the truncated-Bloch-wave
solitons, we first examine periodic nonlinear Bloch waves
which originate from linear Bloch waves at the band edges.
In a deep potential with V0=6, the linear dispersion curves of
Eq. �2� can be found in Fig. 2�a� of Ref. �11�. At the lower
edge of the first Bloch band �which is 2.0632 in Fig. 1�a��,
Eq. �2� admits an infinitesimal �linear� Bloch wave which is
� periodic, and its adjacent intensity peaks are in phase with
each other. This linear Bloch wave �in arbitrary units� is
shown in Fig. 2�1� of Ref. �11� and appears similar to the
profile shown in Fig. 1�b� here. When � increases from this

band edge �into the first Bloch band�, this linear Bloch wave
bifurcates into a nonlinear �-periodic Bloch wave with a
finite amplitude �under the present repulsive nonlinearity�.
Numerically we can easily compute these nonlinear Bloch
waves, and their amplitudes versus the chemical potential �
are displayed in Fig. 1�a�. Here the amplitude of a nonlinear
Bloch wave u�x� is defined as the maximum value of u�x�. At
two representative chemical potentials �=2.16 and 4 �the
former lies inside the first Bloch band and the latter lies
inside the first band gap�, the corresponding nonlinear Bloch
waves are displayed in Figs. 1�b� and 1�c�, respectively. As
can be seen, as � increases from the lower band edge, the
amplitude of the nonlinear Bloch wave also increases.

Now we truncate these infinitely extended nonlinear
Bloch waves to a finite number of intensity peaks �with the �
value fixed� and ask whether the truncated Bloch waves can
develop exponentially decaying tails at large �x� values so
that they can become localized soliton solutions of Eq. �2�.
When the chemical potential lies inside the first Bloch band
�see Fig. 1�b��, the truncated Bloch waves will still possess
continuous-wave tails and are thus still infinitely extended.
But when the chemical potential lies inside the first band gap
�see Fig. 1�c��, then due to repeated Bragg reflections, the
truncated Bloch waves can decay exponentially at large �x�
values and thus become localized solitons. To confirm this,
we numerically compute the soliton solutions of Eq. �2� by
the squared-operator iteration methods developed in Ref.
�12� using the truncated nonlinear Bloch waves as initial
conditions. When truncating the Bloch wave of Fig. 1�c� to
three and seven peaks, we indeed obtain soliton solutions,
these are displayed in Figs. 2�b� and 2�d� respectively. These
solitons closely resemble the corresponding nonlinear Bloch
wave �see Fig. 2�d� for comparison�, but their tails are now
exponentially decaying rather than infinitely extended. If the
Bloch wave of Fig. 1�c� is truncated to any other number of
peaks, the corresponding soliton state can be obtained as
well. Thus a countable number of solitons can be found from
different truncations of a nonlinear Bloch wave �at the same
� value�. We have thus termed these solitons truncated-
Bloch-wave solitons. They were first observed in BEC ex-
periments �8� and then found numerically in Ref. �9�.

When the chemical potential changes, the truncated-
Bloch-wave solitons will deform. Hence each truncated-
Bloch-wave soliton generates a continuous family of such
solitons parametrized by the chemical potential. We will call
the solution family of the three-peak truncated-Bloch-wave
soliton in Fig. 2�b� the three-peak family and that of the
seven-peak soliton in Fig. 2�d� the seven-peak family, and so
on. Important questions which have not been addressed be-
fore are the following: what solutions are contained in each
family? What do their power diagrams look like? Here the
power of a soliton is defined as P=�−�

� �u�2dx as usual. To
address these questions, we have numerically obtained the
entire families of two-peak to seven-peak solitons. The
power diagrams of three-peak and seven-peak families are
displayed in Fig. 3 �power curves for other-peak families are
similar�. These power diagrams show three important com-
mon features about truncated-Bloch-wave solitons. The first
feature is that these solitons exist only inside the band gap
but not inside a Bloch band. This contrasts with the associ-
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FIG. 1. �Color online� Nonlinear Bloch waves bifurcated from
the lower edge of the first Bloch band under repulsive nonlinearity
�V0=6�. �a� The amplitude versus the chemical-potential diagram;
��b� and �c�� nonlinear Bloch waves at two chemical potentials
marked in �a�. The shaded stripes represent low-potential regions.
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FIG. 2. �Color online� Truncated-Bloch-wave solitons on the
upper and lower power branches of the three-peak �left column� and
seven-peak �right column� families in the first band gap �V0=6�.
The chemical potentials of these solitons are marked in Fig. 3. In
�d�, the corresponding nonlinear Bloch wave �dashed curve� is also
shown for comparison �see also Fig. 1�c��.
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ated nonlinear Bloch waves which exist in both the band gap
and the Bloch band �see Fig. 1�a��. The second feature is that
these solitons do not bifurcate from the �upper� edge of the
�first� Bloch band; thus they are fundamentally different from
the gap solitons studied before �7� which do bifurcate from
edges of Bloch bands. The reason why these solitons cannot
bifurcate from the upper edge of the first Bloch band is ob-
viously because adjacent peaks in these solitons are in phase,
which does not match the Bloch wave at the band edge
�where adjacent peaks are out of phase�. Note that these soli-
tons are closely related to nonlinear Bloch waves which bi-
furcate from the lower edge of the first Bloch band �see Fig.
1�. But unlike those nonlinear Bloch waves, these solitons
cannot exist inside the first Bloch band; thus they cannot
bifurcate from the lower edge of the first Bloch band. The
third common feature of the truncated-Bloch-wave solitons
is that their power diagrams exhibit double branches. This
double-branch phenomenon has been reported for dipole and
vortex solitons in periodic potentials recently �13,14�. Now
we know that this phenomenon will always occur for any
soliton family which does not bifurcate from the edges of
Bloch bands �or edges of the continuous spectrum� as is the
case for truncated-Bloch-wave solitons. The three-peak and
seven-peak solitons shown in Figs. 2�b� and 2�d� lie on the
lower branches of their solution families �more specifically
at points b and d marked in Fig. 3�. On the upper branches,
the solitons will develop two extra intensity peaks at the two
edges of the solitons, and these extra peaks are out of phase
with the other intensity peaks in the interior. Two examples
on the upper branches of the three-peak and seven-peak
families are displayed in Figs. 2�a� and 2�c�, and their posi-
tions on the power diagrams are marked in Fig. 3. It is noted
that these solution families of various peaks are distinct from
each other, with no s-shaped bifurcations connecting them
near the band edge in the power diagram. When the chemical
potential � approaches the right end of the first band gap, all
solutions become less localized. If � crosses this right end
into the �second� Bloch band, solutions become delocalized
due to resonance with the Bloch modes, and the powers of
the solutions become infinite.

Stability of these truncated-Bloch-wave solitons is
clearly an important issue, and this issue has not been
considered before in the literature. Here we investigate
the linear stability of these solitons. Following the
standard procedure, we perturb the soliton as U�x , t�
=e−i�t�u�x�+ �v�x�−w�x��e�t+ �v��x�+w��x��e��t�, where

v ,w�1 are normal-mode perturbations, � is the eigenvalue
of the normal mode, and the superscript � represents com-
plex conjugation. Inserting this perturbed soliton into the
evolution Eq. �1� and dropping higher-order terms in �v ,w�,
a linear eigenvalue problem L�v ,w�T=��v ,w�T is obtained.
Here L is the linearization operator, and the superscript T
represents the transpose of a vector. Linear stability of a
soliton is determined by the spectrum of the linearization
operator L, and the existence of any eigenvalue with a posi-
tive real part implies linear instability of the soliton. We have
computed this spectrum for truncated-Bloch-wave solitons of
various families in the deep potential of V0=6 �see Figs. 2
and 3� by the Fourier collocation method �15�. We have
found that for all these solution families, solitons on the
lower branches are always stable and those on the upper
branches always unstable. To illustrate, we pick the two soli-
tons in Figs. 2�c� and 2�d�, which lie on the upper and lower
branches of the seven-peak family in Fig. 3�b�. The linear-
stability spectra of these two solitons are shown in Figs. 4�b�
and 4�a�, respectively. We see that the eigenvalues of the
lower-branch soliton all lie on the imaginary axis, indicating
that this soliton is linearly stable. But the spectrum for the
upper-branch soliton contains real positive eigenvalues, indi-
cating its linear instability. Intuitively, the linear instability of
this upper-branch soliton is easy to understand. Indeed, this
soliton has two intensity peaks on the two edges which are
out of phase with the interior peaks. Thus the structures near
the edges of this soliton can be viewed as out-of-phase di-
poles. It is well known that in lattices under attractive non-
linearity, in-phase dipoles are linearly unstable �see, e.g.,
Ref. �16��. If the nonlinearity is repulsive as it is in model
�1�, dipole stability is switched, and out-of-phase dipoles be-
come linearly unstable �see, e.g., Ref. �17��. Consequently,
this upper-branch soliton in Fig. 2�c� should be linearly un-
stable. Regarding the linear stability of the lower-branch
soliton, however, it is less obvious intuitively, and this result
is one of the main findings of this paper.

The above linear-stability result of lower-branch
truncated-Bloch-wave solitons in a deep lattice potential
shows that these solitons should also be nonlinearly stable
under weak perturbations. To confirm this, we take the
seven-peak soliton of Fig. 2�d� and modulate its seven-peak
amplitudes by 10% random perturbations. Specifically we
add to this soliton a perturbation which is a superposition of
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FIG. 3. �Color online� Power curves of the �a� three-peak and
�b� seven-peak families of truncated-Bloch-wave solitons �V0=6�.
The solutions at marked points are displayed in Fig. 2.
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FIG. 4. �Color online� Linear-stability analysis of the seven-
peak family of truncated-Bloch-wave solitons in Figs. 1 and 2
�V0=6�: �a� stability spectrum of the lower-branch soliton shown in
Fig. 2�d�; �b� stability spectrum of the upper-branch soliton shown
in Fig. 2�c�.
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seven Gaussian humps of the shape exp�−x2� centered at the
seven lattice sites of the soliton. The amplitudes of these
Gaussian humps are taken randomly at the level of about
10% of the soliton amplitude. For the realization of ampli-
tude values �0,−0.08,0.06,−0.06,0.01,0.05,−0.11� for
these Gaussian humps, the nonlinear evolution of the per-
turbed soliton after 60 time-unit evolution is displayed in
Fig. 5. We see that the evolution is stable as expected, show-
ing the robustness of these types of soliton structures in lat-
tice potentials. Evolution with other realizations of the per-
turbations is qualitatively similar.

These theoretical results appear very similar to the experi-
mental observation of nonlinear self-trapping of Bose-
condensed 87Rb atoms in a one-dimensional deep periodic
potential �8�. In the experiment of Ref. �8�, it was observed
that with a higher number of atoms, the repulsive atom-atom
interaction led to the formation of a self-trapped broad local-
ized state with steep edges and roughly uniform interior,
closely resembling the truncated-Bloch-wave soliton shown
in Fig. 2�d�. We note however that the lattice depth used in
the experiment corresponds to V0	11, much deeper than the
V0=6 considered in Fig. 2. Furthermore, as noted in Ref. �8�,
the experiment was not carried out in the one-dimensional
regime, with the higher-order transverse effects playing an
important role. To directly compare our results with those of
experiment we may obtain the physical density and atom
number from our normalized model by multiplying the nor-
malized density �U�2 by �2�10−6� /8�aL

2�as�, where as is the
s-wave scattering length, to obtain the density in atoms cm−3

and multiply the power P by � / �4�as�m��aL�, where �� is
the transverse trap frequency, to obtain the total number of
atoms. Inherent in our one-dimensional approximation is the
assumption that the nonlinear energy at the peak density is
much less than the transverse trap energy, i.e., that
�upeak�2� / �maL

2����1, and as such we consider the experi-
mental parameters d=3.5 �m and ��=320 Hz. For a 87Rb

BEC the seven-peak solution shown in Fig. 2�d� then con-
tains approximately 400 atoms, with 	60 atoms per lattice
period and a peak density of 	2.8�10−13 atoms cm−3, all
experimentally reasonable values.

The above theoretical results pertain to truncated-Bloch-
wave solitons in a deep lattice potential. What will happen to
these solitons if the lattice potential becomes shallow? To
address this question, we take a shallow potential with V0
=1 and investigate the existence and stability properties of
the truncated-Bloch-wave solitons. For the seven-peak fam-
ily, the results are summarized in Fig. 6 �results for other-
peak families are qualitatively similar�. In this shallow po-
tential, we see from Fig. 6�a� that these solitons exist in a
smaller region of the first gap. From Figs. 6�b� and 6�c� we
see that the edges of these solitons become less steep, their
tails become longer, and the solution profiles on the upper
and lower branches become more similar. From Fig. 6�d�, we
see that the soliton on the lower branch now becomes lin-
early unstable due to oscillatory instabilities caused by com-
plex unstable eigenvalues �this holds for other solitons on the
lower branch as well�. The solitons on the upper branch are
certainly also unstable. Thus in a shallow potential, both
branches of truncated-Bloch-wave solitons are linearly un-
stable, which contrasts with the deep-potential case.

By comparing truncated-Bloch-wave solitons in the deep
and shallow potentials of V0=6 and V0=1, we see that when
the potential becomes shallow, the existence region of these
solitons shrinks toward the upper part of the �first� band gap
�see Figs. 3 and 6�. This shrinkage continues until the poten-
tial depth drops below a critical value of V0=0.65, where
these truncated-Bloch-wave solitons all disappear �see also
Ref. �9��. Thus very shallow lattice potentials cannot support
truncated-Bloch-wave solitons. Regarding the linear stability
of these solitons, the results above show that in deep lattice
potentials, lower branches of truncated-Bloch-wave solitons
are stable, but in shallow potentials, both branches of these
solitons are unstable. As the potential depth decreases, the
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stable region of truncated-Bloch-wave solitons gradually
shrinks toward the middle part of the lower branch and then
vanishes when V0
2.3. Thus whole families of these soli-
tons become unstable when V0 drops below approximately
2.3. The experiment of Ref. �8�, which used V0	11, was
thus far above this instability threshold. As V0 is defined in
the unit of the lattice recoil energy Erec, the dimensionless
instability threshold of V0
2.3 thus corresponds to the di-
mensional instability threshold of V0
11.35�2 /md2, which
is inversely proportional to the atom mass and the square of
the lattice period.

In this paper, we only analyzed truncated-Bloch-wave
solitons in the first band gap under repulsive nonlinearity.
These solitons were obtained by truncating the nonlinear
Bloch waves originating from the lower band edge of the
first Bloch band. It should be noted that this branch of non-
linear Bloch waves �see Fig. 1� continues into higher Bloch
bands and band gaps. In higher band gaps, by truncating
these nonlinear Bloch waves, we may obtain higher-gap
truncated-Bloch-wave solitons. It is also noted that from ev-
ery edge of a Bloch band, a branch of nonlinear Bloch waves
bifurcates out for both attractive and repulsive nonlinearities
�the bifurcation goes rightward �see Fig. 1�a�� under repul-
sive nonlinearity and leftward under attractive nonlinearity�.
Whenever a branch of nonlinear Bloch waves enters a band

gap, we may obtain the corresponding truncated-Bloch-wave
solitons. These other truncated-Bloch-wave solitons can be
similarly analyzed, but this lies outside the scope of the
present paper.

In conclusion, we have analyzed the existence and stabil-
ity of truncated-Bloch-wave solitons existing in the gaps of
the linear band-gap spectra of matter waves. We have dem-
onstrated that such self-trapped structures form families of
broad but localized solutions which can be identified by the
number of peaks. These localized states do not bifurcate
from the band edge, and their power diagrams exhibit double
branches. Linear-stability analysis demonstrates that in a
deep lattice potential, the solutions on the lower branches are
stable regardless of the number of peaks, but in a shallow
potential, solutions on both branches are unstable. When the
lattice potential becomes weak enough, these truncated-
Bloch-wave solitons cease to exist.
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