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We present an extension of the multi-region relaxed magnetohydrodynamics (MRxMHD)

equilibrium model that includes plasma flow. This new model is a generalization of Woltjer’s

model of relaxed magnetohydrodynamics equilibria with flow. We prove that as the number of

plasma regions becomes infinite, our extension of MRxMHD reduces to ideal MHD with flow. We

also prove that some solutions to MRxMHD with flow are not time-independent in the laboratory

frame, and instead have 3D structure which rotates in the toroidal direction with fixed angular

velocity. This capability gives MRxMHD potential application to describing rotating 3D MHD

structures such as "snakes" and long-lived modes. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4870008]

I. INTRODUCTION

The construction of magnetohydrodynamic (MHD)

equilibria in three-dimensional (3D) configurations is of fun-

damental importance for understanding toroidal magnetically

confined plasmas. The theory and numerical construction of

3D equilibria is complicated by the fact that toroidal mag-

netic field without a continuous symmetry are generally a

fractal mix of islands, chaotic field lines, and magnetic

flux surfaces. Hole, Hudson, and Dewar1 have proposed a

mathematically rigorous model for 3D MHD equilibria with-

out flow that embraces this structure by abandoning the

assumption of continuously nested flux surfaces usually

made when applying ideal MHD. Instead, a finite number of

flux surfaces are assumed to exist in a partially relaxed

plasma system. This model, termed a multi-region relaxed

MHD (MRxMHD) model, is based on a generalization of the

Taylor relaxation model2,3 in which the total energy (field

plus plasma) is minimized subject to a finite number of mag-

netic flux, helicity, and thermodynamic constraints. The gen-

eral idea of using constrained minimization of the plasma

energy to derive plasma equilibria was originally proposed

by Kruskal and Kulsrud.4

The MRxMHD model has seen some recent success in

describing the 3D quasi-single-helicity states in RFX-mod;5

however, it must be extended to include plasma flow as rotation

and velocity shear play important roles in high-performance

devices.6 Our extension to include flow is guided by the work

of Woltjer,7 and Finn and Antonsen8 who studied models

for relaxed flowing plasmas by constraining flow helicity

C ¼
Ð

B � u d3s and angular momentum in addition to the flux

and magnetic helicity constraints considered by Taylor.3 The

models studied by Woltjer, Finn, and Antonsen are the single

plasma-region limit of the MRxMHD model with flow

presented in this paper.

In the opposite limit, as the number of plasma interfaces

becomes large and the plasma contains continuously nested

flux surfaces, it is desirable for MRxMHD with flow to

reduce to ideal MHD with flow. We prove this limit to be

true in Sec. III, demonstrating that MRxMHD with flow

essentially “interpolates” between Taylor-Woltjer relaxation

theory on the one hand and ideal MHD with flow on the

other.

One of the intriguing features of our model is that it

allows the description of plasmas with rotating 3D MHD

structures using a minimum-energy approach. While these

plasma states are not time-independent in the laboratory

frame, they are in a rotating reference frame and are in

force-balance in that frame. This property gives MRxMHD

potential application to describing rotating 3D structures,

such as “snakes”9–12 and long-lived modes.13,14

This paper is structured as follows: in Sec. II, we give a

summary of the MRxMHD model and its solution for a finite

number of plasma regions before presenting our extension to

include plasma flow and discussing the effect of flow on

relaxed plasma equilibria. In Sec. III, we prove that this

extension of MRxMHD reduces to ideal MHD with flow in

the limit of continuously nested flux surfaces. This is fol-

lowed by an example application of the MRxMHD with flow

model to an RFP-like plasma in Sec. IV. The paper is con-

cluded in Sec. V.

II. THE MULTI-REGION RELAXED MHD MODEL

A. The zero-flow limit

The model we present in this paper is an extension of

the MRxMHD model introduced previously.1,15–17 Briefly,

the MRxMHD model consists of N nested plasma regions Ri

separated by ideal MHD barriers I i (see Fig. 1). Each plasma

region is assumed to have undergone Taylor relaxation3 to a

minimum energy state subject to conserved fluxes and mag-

netic helicity. The MRxMHD model minimizes the plasma

energy

E¼
X

i

Ei¼
X

i

ð
Ri

1

2
B2þ 1

c�1
riq

c

� �
d3s; (1)

subject to constraints on the plasma mass Mi and the mag-

netic helicity Ki, which are given bya)graham.dennis@anu.edu.au
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Mi ¼
ð
Ri

q d3s; (2)

Ki ¼
ð
Ri

A � B d3s� Dwp;i

þ
C<p;i

A � dl

� Dwt;i

þ
C>t;i

A � dl; (3)

where ri¼ p/qc, p is the plasma pressure, q is the plasma

mass density, A is the magnetic vector potential, and the

loop integrals in Eq. (3) are required for gauge invariance.

Additionally, each plasma region Ri is bounded by magnetic

flux surfaces and is constrained to have enclosed toroidal

flux Dwt,i and poloidal flux Dwp,i. The C<p;i and C>t;i are circuits

about the inner (<) and outer (>) boundaries of Ri in the

poloidal and toroidal directions, respectively.

Minimum energy states of the MRxMHD model are sta-

tionary points of the energy functional

W ¼
X

i

Ei �
X

i

�i Mi �M0
i

� �
� 1

2

X
i

li Ki � K0
i

� �
; (4)

where �i and li are Lagrange multipliers respectively enforc-

ing the plasma mass and magnetic helicity constraints, and

the M0
i and K0

i are respectively the constrained values of the

plasma mass and magnetic helicity.

Setting the first variation of Eq. (4) to zero gives15

Ri : r� B ¼ liB; (5)

Ri : pi ¼ const; (6)

I i : pi þ
1

2
B2

� �� �
¼ 0; (7)

where Eqs. (5) and (6) apply in each plasma region Ri, Eq.

(7) applies on each ideal interface I i, and ½½x�� ¼ xiþ1 � xi

denotes the change in quantity x across the interface I i.

B. Including the effects of plasma flow

We present here an extension to MRxMHD to include

the effects of plasma flow. In this model, each plasma region

is assumed to have undergone a generalized type of Taylor

relaxation, which minimizes the plasma energy18

E ¼
X

i

Ei ¼
X

i

ð
Ri

1

2
qu2 þ 1

2
B2 þ 1

c� 1
riq

c

� �
d3s

(8)

subject to constraints on the plasma mass (Eq. (2)), magnetic

helicity (Eq. (3)), flow helicity Ci, and toroidal angular mo-

mentum Li, where the last two are given by

Ci ¼
ð
Ri

B � u d3s; (9)

Li ¼ Ẑ �
ð
Ri

qr� u d3s ¼
ð
Ri

qRu � /̂ d3s; (10)

where ri¼ p/qc, q is plasma mass density, u is the mean

plasma velocity, and A is the magnetic vector potential.

The plasma quantities constrained by MRxMHD with flow

are all conserved by ideal MHD and are assumed to be

robust in the presence of small amounts of resistivity and

viscosity. Qin et al.19 have recently proven this to be true

for the magnetic helicity K, and our choice to constrain the

flow helicity C is motivated by the work of Woltjer7 and

Finn and Antonsen.8 Whether or not the toroidal angular

momentum constraint should be enforced will depend on

the symmetry of the problem. This issue is discussed in

detail in Sec. II C.

Minimum energy states of the MRxMHD model with

flow given by Eqs. (8)–(10) are stationary points of the

energy functional

W ¼
X

i

Ei �
X

i

�iðMi �M0
i Þ �

1

2

X
i

liðKi � K0
i Þ

�
X

i

kiðCi � C0
i Þ �

X
i

XiðLi � L0
i Þ; (11)

where �i, li, ki, and Xi are Lagrange multipliers enforcing

constraints on the quantities in Eqs. (8)–(10), and the X0
i are

the constrained values of the quantities Xi.

Setting the first variation of Eq. (11) to zero gives the

plasma region conditions

Ri : r� B ¼ liBþ kir� u; (12)

Ri : qu ¼ kiBþ qXiR/̂; (13)

Ri : �i ¼
1

2
u2 þ c

c� 1
riq

c�1 � XiRu � /̂; (14)

and the interface condition

I i :
1

2
B2 þ p

� �� �
¼ 0: (15)

FIG. 1. Schematic of magnetic geometry showing ideal MHD barriers I i,

and the relaxed plasma regionsRi.
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The plasma region conditions Eqs. (12)–(14) are identical to

those derived previously7,8 in the case of a single relaxed

region. The interface condition, Eq. (15), is the same as Eq.

(7) for MRxMHD without flow. A derivation of Eqs.

(12)–(15) is given in Appendix.

The MRxMHD with flow model described here reduces

to the no-flow limit presented in Sec. II A if the flow helicity

and angular momentum constraints are relaxed. In this limit,

the Lagrange multipliers ki and Xi are zero and Eqs.

(12)–(15) reduce to Eqs. (5)–(7).

We validate our model in Sec. III by proving that it

approaches ideal MHD in the limit as the number of plasma

volumes N becomes large. We have previously proven in the

absence of flow that MRxMHD approaches ideal MHD with-

out flow.20

C. The toroidal angular momentum constraint

If the plasma boundary is axisymmetric, then the total

toroidal angular momentum within the plasma L ¼
P

i Li

will be conserved. If the boundary is not axisymmetric, tor-

que can be exerted on the plasma even if it is ideal.21 This

also holds for each plasma region individually: if the interfa-

ces of a given plasma region are initially axisymmetric and

remain axisymmetric during the relaxation process, then its

toroidal angular momentum Li will be conserved. Thus,

enforcing the conservation of toroidal angular momentum Li

within each plasma volume is equivalent to assuming that all

plasma interfaces remain axisymmetric during the plasma

relaxation process. This is a very strong assumption that will

be appropriate for some plasmas, but inappropriate for

others, for example, rotating fully 3D MHD structures, such

as "snakes" and long-lived modes.

A more appropriate model for rotating 3D MHD struc-

tures is obtained if instead of enforcing the conservation of

toroidal angular momentum Li in each region individually,

only the total toroidal angular momentum L ¼
P

i Li is con-

served. This only requires the assumption that the outer

plasma boundary be axisymmetric, which is reasonable for

snakes and long-lived modes. The equations equivalent to

Eqs. (11)–(15) for this situation can simply be obtained by

making the replacement Xi ! X 8i as this replacement

makes Eq. (11) the appropriate energy functional for the con-

servation of the total toroidal angular momentum L.

Finally, the toroidal angular momentum constraint must

be completely relaxed if the outer plasma boundary is not axi-

symmetric (e.g., stellarators). In this case, the toroidal angular

momentum is not conserved because normal forces exerted

by the non-axisymmetric boundary on the plasma can exert a

non-zero torque. In Sec. II D, we show that a contradiction

would arise if the toroidal angular momentum constraint was

assumed to hold for plasmas with non-axisymmetric bounda-

ries. Relaxing the toroidal angular momentum constraint

entirely is achieved in the energy functional Eq. (11), and

Eqs. (12)–(15) by making the replacement Xi! 0.

D. The effects of flow on MRxMHD

An important consequence of including flow in

MRxMHD is that the plasma minimum energy states may no

longer be time-independent in the laboratory reference

frame. This can be seen by using Eqs. (12) and (13) to show

that the minimum energy states of MRxMHD with flow obey

the equation

q u � rð Þu ¼ �rpþ J� B� qXiR/̂ � ðr � uÞ

þ qXirðRu � /̂Þ: (16)

Comparing this to the evolution equation for ideal MHD

with flow,

q
@

@t
uþ qðu � rÞu ¼ �rpþ J� B; (17)

demonstrates that the minimum energy state described by

Eq. (16) will not in general be time-independent in the labo-

ratory frame unless the last two terms of Eq. (16) are zero.

Each plasma region is, however, time-independent in a refer-

ence frame rotating about the Z axis with angular frequency

Xi. This is seen by making the replacement u ¼ u0 þ XiR/̂,

where u0 is the plasma velocity in the rotating frame. In this

reference frame, the MRxMHD minimum energy states

satisfy

q u0 � rð Þu0 ¼ �rpþ J� Bþ qX2
i RR̂ � 2qXiẐ � u0; (18)

where the last two terms on the right-hand side are, respec-

tively, the centrifugal and Coriolis forces. This should be

compared to the evolution equation for ideal MHD with flow

in the same rotating reference frame, which is

q
@

@t
u0 þqðu0 �rÞu0 ¼ �rpþ J�BþqX2

i RR̂� 2qXiẐ�u0:

(19)

A comparison of Eqs. (18) and (19) demonstrates that the

minimum energy states of MRxMHD with flow satisfy
@
@t u0 ¼ 0. As each plasma region is time-independent in a

rotating reference frame, any 3D structures in plasma region

Ri will rotate about the Z axis with angular frequency Xi as

seen in the laboratory frame. Such rotating 3D structures are

not just allowed by this model, but are actually realized for

appropriate plasma constraints. Khalzov et al.22 have recently

studied the single-volume small-flow limit of this model in a

cylinder; and in this limit, they demonstrated the existence of

minimum-energy states which are time-dependent in the labo-

ratory frame.

We can now see from the force-balance equation,

Eq. (19), that a contradiction would arise if we were to

assume that toroidal angular momentum was conserved for

non-axisymmetric plasma boundaries. In such a case, Xi

would not necessarily be zero; and therefore, the 3D struc-

ture of the volume would rotate in time and intersect the

fixed plasma boundary, which it cannot as the boundary is

assumed to be impermeable. The resolution is that the toroi-

dal angular momentum is not conserved in a plasma with a

non-axisymmetric outer boundary as, even in the absence of

viscosity, forces exerted by the boundary normal to the wall

can exert a non-zero torque on the plasma.
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Finally, another important effect of flow on MRxMHD

is that pressure is no longer constant in each plasma region.

In the absence of flow, the pressure profile of MRxMHD has

a piecewise-constant structure,15 but we see from Eq. (14)

that this will not generally be the case when the effects of

flow are included because the plasma flow velocity will vary

throughout each plasma region according to Eq. (13).

III. THE CONTINUOUSLY NESTED FLUX-SURFACE
LIMIT

In this section, we take the continuously nested flux

surface limit (N ! 1) of MRxMHD with flow and prove

that it reduces to ideal MHD with flow.

Taking the limit of infinitesimally small plasma regions

of the energy functional Eq. (11) gives

W ¼
ð

1

2
qu2 þ 1

2
B2 þ 1

c� 1
rðsÞqc

� �
d3s

�
ð
�ðsÞ dM � dM0ð Þ �

ð
1

2
lðsÞ dK � dK0ð Þ

�
ð

kðsÞ dC� dC0ð Þ �
ð

XðsÞ dL� dL0ð Þ; (20)

where s is an arbitrary flux-surface label; dM, dK, dC, and

dL are, respectively, infinitesimal amounts of plasma mass,

magnetic helicity, flow helicity, and toroidal angular

momentum between infinitesimally separated flux surfaces;

and dM0, dK0, dC0, and dL0 are the corresponding con-

straints. The expressions for the infinitesimals dM, dC, and

dL follow immediately from Eqs. (2), (9), and (10), however

the infinitesimal for the magnetic helicity dK deserves addi-

tional attention. From Eq. (3), we obtain that the infinitesi-

mal of magnetic helicity dK is

dK ¼ A � B d3s� wtðsÞdwp þ wpðsÞdwt; (21)

where wt(s) and wp(s) are, respectively, the toroidal and

poloidal fluxes enclosed by flux surface s. The enclosed mag-

netic fluxes are defined by

wtðsÞ ¼
þ
CpðsÞ

A � dl; (22)

wpðsÞ ¼ �
þ
CtðsÞ

A � dl; (23)

with CtðsÞ and CpðsÞ being toroidal and poloidal circuits

along the flux surface s.

A. The magnetic flux constraints

In addition to the constraints listed in the energy func-

tional Eq. (20), we must also enforce the magnetic flux con-

straints. In the finite-volume case, this is convenient to

enforce using a relationship between the vector potential var-

iation dA and the variation of the plasma interfaces dx (see

Appendix). In the limit of continuously nested flux surfaces,

it is instead easier to enforce the flux constraints with

Lagrange multipliers and adding the relevant terms to the

energy functional Eq. (20).

In addition to the usual toroidal and poloidal flux con-

straints, in the limit of continuously nested flux surfaces, the

radial magnetic fluxes must be everywhere zero, consistent

with the surfaces labeled by s being magnetic flux surfaces.

The magnetic flux constraints have the form

Wjflux constraints ¼� 2p
ð

QfðsÞðdwt � dw0
t Þ

� 2p
ð

QhðsÞðdwp � dw0
pÞ

�
ð

Qsðs; h; fÞ B � rsð Þ d3s; (24)

where dwt and dwp are infinitesimal elements of toroidal and

poloidal magnetic flux, respectively, and Qf and Qh are the

corresponding Lagrange multipliers. The Qs Lagrange multi-

plier enforces the constraint B � rs ¼ 0.

The toroidal magnetic flux constraint can be expressed

as a volume integralð
2pQfðsÞ dwt ¼ 2p

ð
QfðsÞB � d2rf

¼
ð

df

� �ð
QfðsÞB � es � ehð Þ ds dh

¼
ð

B � QfðsÞrf
� �

J ds dh df (25)

¼
ð

B � QfðsÞrf
� �

d3s; (26)

where es, eh, ef are the covariant basis vectors23 and J is the

Jacobian of the (s, h, f) coordinate system, with h an arbi-

trary poloidal angle coordinate and f an arbitrary toroidal

angle coordinate.

Similarly, the poloidal magnetic flux constraint can be

expressed as a volume integralð
2pQhðsÞ dwp ¼

ð
B � QhðsÞrhð Þ d3s: (27)

Defining Q ¼ Qsrsþ Qhrhþ Qfrf as the vector of

Lagrange multipliers enforcing the magnetic flux constraints,

the flux constraints can be written in the compact form

Wjflux constraints ¼�
ð

Q � Bð Þ d3s

þ 2p
ð

QhðsÞ
dw0

pðsÞ
ds

þ QfðsÞ
dw0

t ðsÞ
ds

" #
ds:

(28)

B. The magnetic helicity constraint

The magnetic helicity constraints are trivially satisfied

in the limit of infinitesimally separated magnetic flux surfa-

ces. We demonstrate this by expressing the gauge terms in

Eq. (21) directly in terms of the (s, h, f) coordinate system
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�wt dwp ¼ �
þ

A � eh dh

� � þ
B � ef � esð Þ df

� �
ds

¼ �
þ

AhBh J dh df

� �
ds; (29)

wp dwt ¼ �
þ

A � ef df

� � þ
B � es � ehð Þ dh

� �
ds

¼ �
þ

AfB
f J dh df

� �
ds; (30)

) dK ¼
þ

A � B� AhBh � AfB
f

� �
J dh df

� �
ds ¼ 0; (31)

where A � B ¼ AhBh þ AfB
f þ AsB

s and B � rs ¼ 0

) Bs ¼ 0. In the limit that the interfaces I i become continu-

ously nested, the differential amount of magnetic helicity on

each surface becomes zero, and the magnetic helicity con-

straint (which therefore must also be zero) is trivially satis-

fied. Magnetic helicity behaves differently to other plasma

quantities like plasma mass as the interfaces I i become more

closely separated because magnetic helicity is a topological

quantity24 and not an extrinsic quantity like plasma mass or

an intrinsic quantity like plasma density.

C. Variation of the energy functional of MRxMHD with
flow

Including the magnetic flux constraints given by

Eq. (28) and removing the trivially satisfied magnetic helic-

ity constraint, the energy functional of Eq. (20) becomes

W ¼
ð

1

2
qu2 þ 1

2
B2 þ 1

c� 1
rðsÞqc �Q � B� �ðsÞq

�

�kðsÞB � u� qXðsÞRu � /̂
�

d3s

þ
ð

2pQhðsÞ
dw0

pðsÞ
ds

þ 2pQfðsÞ
dw0

t ðsÞ
ds

"

þ �ðsÞ dM0ðsÞ
ds

þ kðsÞ dC0ðsÞ
ds

þ XðsÞ dL0ðsÞ
ds

�
ds: (32)

Variations of W with respect to the Lagrange multipliers

enforce the corresponding constraints. The interesting varia-

tions are those with respect to q, u, B, and the position of the

flux surfaces x.

Setting the variations of W with respect to q, u and B to

zero yield, respectively,

�ðsÞ ¼ 1

2
u2 þ c

c� 1
rðsÞqc�1 � XðsÞRu � /̂; (33)

qu ¼ kðsÞBþ qXðsÞR/̂; (34)

Q ¼ B� kðsÞu: (35)

The first of these is Bernoulli’s equation for ideal MHD

(compare to Eq. (31) of McClements and Thyagaraja25 with

V¼ 0), and the second equation also appears in ideal MHD

and is equivalent to Eq. (29) of Hameiri.26

The remaining variation of the energy functional W with

respect to the position of the flux surfaces x is

dWjdx ¼
ð �

dx �
�
� 1

c� 1
qcrrðsÞ þ qr�ðsÞ

þ B � urkðsÞ þ qRu � /̂rXðsÞ
�
� dQjdx � B

	
d3s;

(36)

where we have used dsðxÞ ¼ �dx � rsðxÞ (see Eq. (17) of

Dennis et al.20), and dQjdx is the variation of Q(s, h, f) due

to the variation of the position of the flux surfaces.

The
Ð

dQjdx � B d3s term in Eq. (36) can be simplified

using the relationð
dQjdx � B d3s ¼

ð
dx � r �Qð Þ � B½ �d3s; (37)

which follows from expanding Q ¼ Qiðs; h; fÞrui and using

duiðxÞ ¼ �dx � rui, where the ui are the magnetic coordi-

nates (s, h, f) and we have used the Einstein summation

convention over the repeated index i.
The variation of the energy functional with respect to dx

can now be simplified using Eqs. (33), (35), and (37) to

dWjdx ¼
ð

dx � ½�J� Bþ q u � rð Þuþrpþ qXR/̂

� r� uð Þ � qXr Ru � /̂
� �

� d3s: (38)

Setting the variation dWjdx to zero gives

q u � rð Þu ¼ �rpþ J� B� qXðsÞR/̂ � r� uð Þ

þ qXðsÞrðRu � /̂Þ: (39)

Comparing Eq. (39) to the evolution equation for ideal

MHD with flow, Eq. (17), demonstrates that the minimum

energy state described by Eq. (39) will not be time-

independent unless the last two terms are zero. As these

terms depend on X(s), simplifying them will depend on the

form of the angular momentum constraints assumed in the

model. As discussed in Sec. II B, the choice of angular

momentum constraints applied to the model depend on the

assumptions made and the geometry of the plasma bound-

ary. We consider three cases: (i) the plasma is assumed to

remain axisymmetric during the relaxation process; (ii) only

the outer boundary of the plasma is assumed to be axisym-

metric, and the interior of the plasma may have 3D struc-

ture; and (iii) the outer boundary of the plasma is not

axisymmetric.

1. Case 1: The plasma remains axisymmetric during
plasma relaxation

If the plasma remains axisymmetric during the relaxa-

tion process, then the toroidal angular momentum will be

conserved on each flux surface and the Lagrange multiplier

X(s) may vary across the plasma. In this situation, the last

two terms of Eq. (39) are zero
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qXðsÞR/̂ � r� uð Þ � qXðsÞr Ru � /̂
� �

¼ �qXðsÞ R̂
@uR

@/
þ Ẑ

@uZ

@/
þ /̂

@u/

@/

� �
¼ 0; (40)

and hence Eq. (39) reduces to the force-balance equation for

ideal MHD with flow

q u � rð Þu ¼ �rpþ J� B: (41)

We have now proven that in axisymmetry, the MRxMHD

model defined by Eqs. (8)–(10) reduces to ideal MHD with

flow as the number of plasma volumes N becomes large. In

particular as the MRxMHD model in the axisymmetric limit

(and with N ! 1) reduces to the ideal MHD force-balance

equation with the usual auxiliary Eqs. (33), the MRxMHD

equilibria in the N!1 limit will be described by the Grad-

Shafranov equation with flow (see, for example, Goedbloed,

Keppens, and Poedts (Ref. 27, Sec. 18.2).

2. Case 2: Only the plasma boundary is assumed to be
axisymmetric during relaxation

If only the plasma boundary is assumed to be axisym-

metric during the relaxation process, then only the total

toroidal angular momentum will be conserved and X(s) in

Eq. (39) should be replaced with the unknown scalar

Lagrange multiplier X (see Sec. II D). In this case, we find

similarly to the results of Sec. II D that the plasma is time-

independent (and hence in force-balance) in a reference

frame rotating with angular frequency X about the Z axis.

Transforming Eq. (39) into a rotating reference frame by

making the replacement u! u0 þ XR/̂ yields

qðu0 � rÞu0 ¼ �rpþ J� Bþ qX2RR̂ � 2qXẐ � u0; (42)

which is the ideal MHD force-balance condition in the rotat-

ing reference frame (compare to Eq. (19)).

By partially relaxing the usual assumption of axisymme-

try of the plasma, we have obtained an equilibrium model

for 3D plasmas, which rotate in the laboratory reference

frame. There is an additional restriction in comparison to

axisymmetric ideal MHD with flow in that the usual flux

function X(s) is now restricted to be the scalar Lagrange

multiplier X, which is constant across the entire plasma.

3. Case 3: The plasma boundary is not axisymmetric

If the outer boundary of the plasma is not assumed to be

axisymmetric, then angular momentum will not be conserved

and we should make the replacement X(s)! 0 in Eq. (39). In

this case, we again obtain the ideal MHD force-balance equa-

tion, Eq. (41), but without any axisymmetry assumptions.

Fully relaxing the usual axisymmetry assumption yields

an equilibrium model for 3D plasmas, but as the boundary is

fixed and not axisymmetric, the flux function X(s) is now zero.

As a consequence of Eq. (34), in this limit, the plasma flow is

aligned with the magnetic field and given by q u¼ k(s) B.

4. Summary

We have now proven that as the number of plasma

regions N in MRxMHD with flow becomes large that the

model reduces to ideal MHD with flow, either in a rotat-

ing reference frame or in the laboratory reference frame

depending on the symmetry assumptions made in the

model.

In Sec. IV, we apply MRxMHD with flow to a simple

RFP-like plasma with flow.

IV. EXAMPLE APPLICATION TO RFP-LIKE PLASMA
WITH FLOW

In this section, we apply our MRxMHD with flow model

to an RFP-like plasma with a small amount of flow. We take

the small-flow limit for convenience of analytic calculations,

the large flow limit would require numerically solving the

nonlinear system of Eqs. (12)–(15).

Our example application of MRxMHD is motivated by

the experimental results of Kuritsyn et al.28 In their work,

Kuritsyn et al. measured the parallel flow in the Madison

Symmetric Torus (MST) reversed field pinch during a

reconnection event and found that the normalized parallel

momentum density qu � B=B2 was roughly constant in the

plasma core, but changed signs near the edge of the

plasma. This experiment has been studied by Khalzov

et al.22 who demonstrated that the experiment could be

modeled as a plasma in a relaxed single-fluid MHD

state. This model is identical to the MRxMHD model with

flow presented in this work in the limit of a single plasma

volume and weak plasma flow. The example model we

present here is a minor extension of the work of Khalzov

et al.22 to include two plasma volumes to better describe

the change in parallel momentum density near the edge of

the plasma.

Motivated by the model of Khalzov et al.,22 we approxi-

mate the MST as a periodic cylinder and consider the limit

of weak plasma flow (qu2 � B2) and purely field-aligned

flow (X¼ 0). To first order in k, the plasma in each region

satisfies

r� B ¼ liBþ kir� u; (43)

qu ¼ kiB; (44)

�i ¼
c

c� 1
riq

c�1; (45)

where Xi¼ 0. In this limit, the plasma has a uniform pressure

and density in each plasma region.

Figure 2 shows an example RFP-like plasma with two

plasma volumes. The equilibrium is described by

l1 ¼ 5:79m�1; l2¼2:04m�1; r1 ¼ 0:4m, r2 ¼ 0:5m; p1

¼100 kPa; p2 ¼50kPa; k1=
ffiffiffiffiffi
q1

p ¼�10�2, k2=
ffiffiffiffiffi
q2

p ¼ þ10�2;
and q1¼q2 ¼1:7�10�8 kg=m3. These values have been

chosen to match the experimental plasma parameters28

(F¼�0.2, H¼1.7, enclosed toroidal flux Uz�40mWb,

plasma number density n�1019 m�3; n u �B=B2�75

�1020 m�3 kms�1 T�1). Despite the discontinuous pressure

profile the ideal MHD transport barrier at r1¼0.4m is in

force balance, as demonstrated in Figure 2(c), which shows

that pþ 1
2
B2 is continuous across the interface, and hence

the interface condition Eq. (15) is satisfied. The strong
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discontinuity in the poloidal plasma flow illustrated in

Fig. 2(b) is due to the large jump in ki at the reversal sur-

face. This feature derives from the large change in the par-

allel momentum of the plasma near the reversal surface in

the experiment of Kuritsyn et al.,28 and is illustrated in

their Fig. 4(b), which is effectively a plot of our k.

The example presented in this section demonstrates

the existence of multi-volume, RFP-like solutions to

the MRxMHD model with flow. By increasing the num-

ber of interfaces, the plasma can be approximated arbitra-

rily close to any ideal MHD equilibrium, as proven in

Sec. III.

V. CONCLUSION

We have formulated an energy principle for equilibria

that comprise multiple Taylor-relaxed plasma regions

including the effects of plasma flow. This model is an exten-

sion of earlier work that considered the zero-flow limit1,20,29

and the single relaxed-region limit.7,8 We have demon-

strated our model reduces to ideal MHD with flow in the

limit of an infinite number of plasma regions. In this limit,

the magnetic geometry is characterized by continuously

nested flux surfaces. However, the appeal of MRxMHD

with flow is that the model is well-defined for flowing 3D

plasmas as only a finite number of flux surfaces are assumed

to exist. The rest of the plasma may be characterized by

smoothly nested flux surfaces, islands, chaotic fields, or

some combination of these. The numerical solution to

MRxMHD with flow in the nonlinear 3D case will be the

subject of future work as an extension to the Stepped

Pressure Equilibrium Code.30 A unique feature of the model

presented here is that it allows an energy-minimization

approach to be used to the description of plasmas with rotat-

ing 3D structure such as the long-lived mode on MAST13,14

or the "snake" on various devices.9–12
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APPENDIX: DERIVATION OF THE MRXMHD
EQUATIONS

In this appendix, we derive the MRxMHD equations for

the plasma, Eqs. (12)–(14), and the interface condition,

Eq. (15). The plasma Eqs. (12)–(14) have been obtained pre-

viously by Woltjer7 and Finn and Antonsen8 in the context

of single relaxed-region models. The derivation is essentially

unchanged when considering the case of a finite number of

nested relaxed-regions, which is the case considered here.

The new result presented here is the interface condition

Eq. (15). We also present a derivation of the plasma equa-

tions for completeness and as a necessary step in obtaining

the interface condition.

Equilibria of the MRxMHD model are stationary points

of the energy functional Eq. (11),

W ¼
X

i

Ei �
X

i

�iðMi �M0
i Þ �

1

2

X
i

liðKi � K0
i Þ

�
X

i

kiðCi � C0
i Þ �

X
i

XiðLi � L0
i Þ; (A1)

where �i, li, and Xi are Lagrange multipliers and Ei, Mi, Ki,

Ci, and Li are defined by Eqs. (8)–(10).

Instead of introducing Lagrange multipliers to enforce

the toroidal and poloidal flux constraints as in Sec. III A, we

use the approach of Spies, Lortz, and Kaiser31 who showed

that the flux constraints are equivalent to the following rela-

tionship at the interfaces:

FIG. 2. Example MRxMHD solution for an RFP in cylindrical geometry with two plasma volumes. Panels (a) and (b), respectively, show the magnetic field

and plasma velocity components versus radial position. Panel (c) shows the plasma pressure p, magnetic pressure 1
2

B2, and total pressure pþ 1
2

B2 across the

plasma. Panel (d) shows the plasma rotational transform profile.
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n� dA ¼ � n � dxð ÞB; (A2)

where dA is the variation of the vector potential and dx is the

perturbation to the interface positions.

Setting the variations of W with respect to u and q to

zero yield, respectively,

qu ¼ kiBþ qXiR/̂; (A3)

�i ¼
1

2
u2 þ c

c� 1
riq

c�1 � XiRu � /̂; (A4)

which are the last two plasma bulk conditions, Eqs. (13)

and (14).

The variation of W with respect to A is

dWjdA¼
X

i

ð
Ri

dA � r�B�kir�u�liBð Þ

þ
X

i

þ
@Ri

n�dAð Þ � B�kiu�
1

2
liA

� �
d2r; (A5)

where n is a unit normal perpendicular to the boundary

of the plasma volume, @Ri ¼ I i�1 [ I i is the boundary

of the plasma volume Ri, and I i is the plasma interface

separating plasma volumes Ri�1 and Ri (see Figure 1).

Using Eq. (A2), the surface integral in dWjdA can

be written in terms of the variation to the plasma interfa-

ces dx

dWjdA ¼
X

i

ð
Ri

dA � r � B� kir� u� liBð Þ

�
X

i

þ
@Ri

n � dxð Þ B2 � kiu � B�
1

2
liA � B

� �
d2r:

(A6)

Requiring dWjdA to be zero for all choices of dA yields

r� B ¼ liBþ kir� u; (A7)

which is the first plasma bulk condition, Eq. (12).

The interface condition can now be obtained by consid-

ering the variation of W with respect to the interface

positions

dWjdx ¼
X

i

þ
@Ri

n � dxð Þ 1

2
qu2 þ 1

2
B2 þ 1

c� 1
riq

c

�

��iq� kiB � u� qXiRu � /̂ � 1

2
liA � B

�

�
X

i

þ
@Ri

n � dxð Þ B2 � kiu � B�
1

2
liA � B

� �
; (A8)

where the remaining term of Eq. (A6) has been included.

Equation (A8) simplifies to

dWjdx ¼
X

i

þ
I i

n � dxð Þ pþ 1

2
B2

� �� �
; (A9)

where xi½ �½ � ¼ xiþ1 � xi is the jump in x across the plasma

interface I i. Requiring this variation to be zero gives the

interface condition Eq. (15),

pþ 1

2
B2

� �� �
¼ 0: (A10)
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