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[1] This study analyses the influence of a viscoplastic lava rheology on the dynamics of
lava flows. Using a multigrid-based augmented Lagrangian scheme, we find a numerical
solution for the flow of a Bingham fluid in a rectangular channel. The numerical results
show that an internal viscoplastic rheology significantly modifies the velocity distribution
within a lava flow through the development of plug regions whose size is determined by
the magnitude of the yield strength. The flow rate, maximum surface velocity and central
plug dimensions are determined as functions of the channel geometry and fluid rheology,
and comparisons between these and several limiting analytical solutions confirm the
accuracy of the numerical method used. The results are also compared to incorrect models
which have been proposed previously in the literature. Several algorithms that extend the
results to different sets of measured initial parameters are outlined; these calculate: (1) the
flow depth when the fluid rheology (viscosity and yield strength) and downstream flow
rate are given, (2) the flow depth when the fluid rheology and maximum downstream
surface velocity are given, (3) the flow rate and fluid rheology when the flow depth,
maximum surface velocity and surface plug width are given, and (4) the flow depth and
rheology when the flow rate, maximum surface velocity and surface plug width are given.
The use of these algorithms is demonstrated by considering the dynamics of a typical lava
flow on Mount Etna, using measured rheological parameters and field observations.

Citation: Robertson, J. C., and R. C. Kerr (2012), Isothermal dynamics of channeled viscoplastic lava flows and new methods
for estimating lava rheology, J. Geophys. Res., 117, B01202, doi:10.1029/2011JB008550.

1. Introduction

[2] A clear understanding of the interaction of lava rheol-
ogy and flow dynamics forms a crucial basis for the inter-
pretation of lava flow morphology, the design of predictive
models for lava flow emplacement and the development of
mitigation strategies to minimize flow hazards to people or
property (Figure 1). A fully molten lava has a purely New-
tonian rheology [Gonnermann and Manga, 2007]. However
progressive crystallization of lava driven by cooling and
degassing can generate a touching network of crystals. This
network can bear a stress in addition to the viscous response
of the melt fraction of the lava [e.g., Pinkerton and Sparks,
1978; Kerr and Lister, 1991; Pinkerton and Norton, 1995;
Hoover et al., 2001; Cimarelli et al., 2011], and the lava will
only flow when the shear stress induced by the weight of the
fluid exceeds this yield strength.
[3] The dynamics of a given flow may be significantly

affected by fluid rheology. As a qualitative example, stirring
and internal convection are important processes by which
the lava can transfer the effects of surficial heat loss throughout
the flow [Griffiths, 2000;Griffiths et al., 2003;Cashman et al.,
2006]. The introduction of an internal yield strength limits the

regions in which shear and convection can occur and reduces
the rate of heat loss from the flow surface. Similarly, adding a
yield strength to a lava flowwill result in a thicker flow, all else
being equal. Thus viscoplastic flows may more easily over-
come topographic obstacles in their path. Isothermal flows are
a good starting point to examine some of these effects; if
studied carefully they form a useful basis for further study of
the more complicated dynamics of cooling and solidification
in viscoplastic flows.
[4] In this study, we consider the isothermal, steady flow of

a viscoplastic fluid in a channel of constant rectangular cross-
section (see Figure 2). The addition of a yield strength to the
rheology of a fluid complicates the equations governing its
dynamics. Analytic solutions for isothermal viscoplastic
fluid flows exist only for some simple flow configurations;
essentially one dimensional or axisymmetric shear flows
(e.g., the cases given by Bird et al. [1983]), with some rare
two dimensional flow configurations where applying integral
transforms to the governing equations places them in a sepa-
rable form [e.g., Craster, 1995]. Viscoplastic fluid flow in a
rectangular channel is not one of these simple cases. Some
flawed models for this configuration have been previously
proposed and cited in the literature [e.g., Johnson, 1970,
section 15; Taylor and Wilson, 1997; Tallarico and Dragoni,
2000]. These models invoke physically incorrect assumptions
and their results become increasingly inaccurate or physically
impossible with increasing plasticity (Figure 3).
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[5] The development of numerical methods to investigate
the dynamics of viscoplastic flow has been an active area of
research for the last two decades (see Dean et al. [2007] for a
review). Unfortunately, this literature is often focused on the
development of solution algorithms and is thus unconcerned
about providing results which can be easily applied to field
or experimental studies from a volcanological perspective.
[6] To fill this gap and resolve previous mistakes in the lit-

erature we analyze viscoplastic flow in a rectangular channel
and specifically discuss features which arise in volcanological
studies in practice. In sections 2 and 3 we define and sum-
marize the features of viscoplastic fluid rheology in general,
and channel flows in particular, provide useful limiting cases
which have analytical solutions, and clarify the numerical
techniques used to obtain solutions for other cases. In sections
4 and 5 we present the results of our numerical calculations,
and compare these to previously published models noted
above. Section 6 outlines some algorithms for extending the
results to a number of cases with different sets of measured
parameters, and section 7 applies these methods to a typical
lava flow on Mt Etna.

2. Viscoplastic Rheology

[7] A viscoplastic material behaves as a solid up to a
critical magnitude of an applied shear stress, ty, called the
yield strength. The material will deform upon exceeding the
yield strength until the applied stress is either relaxed or
removed [Ancey, 2007]. The simplest viscoplastic fluid
model is the Bingham fluid, which consists of a combination
of plastic and Newtonian rheologies. This fluid rheology
was first introduced by Bingham [1916] for one dimensional
flows and later extended to a multi-dimensional tensorial
formulation by Oldroyd [1947]. This latter formulation
relates the deviatoric stress tensor field, t, to the strain rate
tensor field, _�, within the fluid:

t ¼ 2mþ ffiffiffi
2

p ty
k _�k

� �
_� if ktk ≥ ty

_� ¼ 0 otherwise:
ð1Þ

where m is the plastic viscosity, ty the yield strength of the
material and k ⋅ k denotes the Frobenius norm. More com-
plicated rheologies (Herschel-Bulkley fluids for example)
are also used as models for lava flows (see Bird et al. [1983]
for a review).
[8] The Bingham rheology divides a viscoplastic flow into

two sets of domains; one set is described by the first branch
of the constitutive relationship given in equation (1), called
‘yielded regions’, in which the applied shear stress exceeds
the yield strength and the fluid deforms. The second branch
of equation (1) describes the ‘plug regions’. In these regions
the shear stress is low enough that the yield strength of the
fluid prevents deformation. The ‘yield surface’ forms the

Figure 1. A lava flow on the east flank of Mt Etna at around
2800 m above sea level, looking east over the Valle del Bove
towards the town of Giarre. More than a million people live
within range of lava flows in the Catania region. Image taken
on 5th October, 2008. Photo credit: Thomas Reichart.

Figure 2. Schematic diagram showing the basic flow con-
figuration, with a large central plug region and two corner
regions separated by a yielded layer. Also shown is a schema-
tic velocity profile along the flow surface and centreline. The
orientation of the axes is shown, as well as the parameters
describing the channel geometry. The problem domain is
shown by the dotted box in the right hand half of the channel;
due to the symmetric geometry of the channel, we need only
consider one half of the cross-section when solving for the
velocity field.

Figure 3. Figure 6c taken from Tallarico and Dragoni
[2000], showing their solution for a flow in a square duct
with a side length of 10 m. The relevant physical properties
are ty = 104 Pa, g′ = 1.95 m s�2, m = 7 � 103 Pa s and
r = 2650 kg m�3. ‘Seepage flows’ occur beside the walls
while the central plug remains welded to the corner plugs.
This is a physically impossible solution, since if the central
plug is not moving then there is nothing to provide the shear
stress which is driving the flows at the walls (see also
Figure 12).
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boundary between plug and yielded regions (where jtj = ty).
The spatial derivatives of the strain rates are discontinuous
across the yield surface; it is this aspect of the rheological
model which makes direct solutions to viscoplastic flow pro-
blems difficult to obtain.
[9] For a given flow, the magnitude of the yield strength

determines the location of the yield surfaces (and thus the
size of the plug regions). As ty → 0 (so that the rheology
approaches a Newtonian rheology with viscosity m) the size
of the plug regions and yield surfaces shrink to zero and the
fluid yields everywhere. On the other hand, as the yield
strength approaches a critical value, ty

⋆, the plug regions
expand until the fluid is everywhere unyielded, and the flow
ceases. ty

⋆ is dependent on the flow configuration; analytical
expressions for it exist in some cases (including this one, see
Appendix A).
[10] Given characteristic length and velocity scales L0 and

U0 for some flow configuration, the relevant dimensionless
parameter describing the rheology of the fluid in a dynami-
cal sense is the Bingham number:

B ¼ tyL0
mU0

; ð2Þ

which is simply the ratio of the yield strength to a charac-
teristic viscous stress mU0/L0. A Newtonian fluid has a
Bingham number B = 0, and there is also a critical value of
the Bingham number, B⋆ corresponding to the critical yield
strength ty

⋆. The flows under consideration therefore have
Bingham numbers 0 ≤ B ≤ B⋆.

3. Modeling Viscoplastic Channel Flows

[11] We now consider the main problem of this study:
laminar flow of an incompressible Bingham fluid down a
rectangular channel as shown schematically in Figure 2.

3.1. Parameters

[12] We specify the fluid density r, ambient fluid density
ra, inclination of the base of the flow q (relative to hori-
zontal) and width of the channel W. With these definitions
the effective down-channel buoyancy force acting on the
flow per unit mass is

g′ ¼ 1� ra=rð Þg sinq:

where g is the acceleration due to gravity. We assume that
the viscosity of the ambient fluid is much smaller than the
viscosity of the Bingham fluid, so that the shear stress at the
flow surface is negligible.
[13] In this study we focus on the following parameters in

this flow configuration: the depth of the flow, H; the maxi-
mum velocity at the flow surface, Um; the fluid viscosity and
yield strength, defined above; the down-channel volumetric
flow rate, Q; and the depth and width of the central plug,
Hp and Wp. All of these parameters are interdependent: we
can specify some of these and use them to constrain the
unknown parameters.
[14] To define dimensionless parameters, we choose the

flow depth H as a characteristic length scale. Since buoyancy
is the only force driving the flow, dimensional reasoning
shows that the relevant velocity scale is g′H2/n, where

n = m/r is the dynamic viscosity of the yielded fluid. The
dimensionless parameters obtained from this scaling are the
Bingham number (from equation (2)):

B ¼ ty
rg′H

ð3Þ

and the aspect ratio of the flow cross-section, given by:

b ¼ W

H
: ð4Þ

[15] We also obtain a Reynolds number,

Re ¼ g′H3

n2
;

which must be small (Re < 102) for the flow to be laminar, but
otherwise plays no further role in describing the dynamics.
[16] We define the central plug depth and width fractions

as

hp ¼ Hp

H
and wp ¼ Wp

W

respectively. The scaling given above also gives a dimen-
sionless maximum velocity of

um ¼ nUm

g′H2

and a flow rate per unit width of

q ¼ nQ
g′WH3

:

[17] In this setting the flow rate per unit width is useful as
it approaches a constant in the limit of an infinitely wide
flow (i.e. as b → ∞), whereas the total flow rate becomes
infinite.

3.2. Governing Equations

[18] We choose the axes so that flow travels in the
x direction, with the y direction across the channel and the
z direction perpendicular to the channel floor (see Figure 2).
Incompressibility and the assumption of laminar flow
ensures that the velocity field is invariant along the x axis,
and the only non-zero component of the velocity field is the
x-component u(y, z). Then the problem domain reduces to a
cross-sectional slice of the channel, and the remaining
component of the momentum equation is

r2u� Br � ru

jruj
� �

¼ �1 where t2 ≥ B2

ru ¼ 0 where t2 < B2

9=
; ð5Þ

where t is the dimensionless shear stress field.
[19] The velocity field satisfies no-slip conditions on the

channel walls and a no-shear condition at the flow surface.
Since the problem domain and the boundary conditions are
symmetric about the center plane y = 0, we need only solve
for the velocity field in half the channel (0 ≤ y ≤ b/2 and 0 ≤
z ≤ 1) with a no-shear condition on the channel center line.
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Putting this all together we have the following boundary
conditions on u:

u ¼ 0 for y ¼ b=2 or z ¼ 1
∂u=∂y ¼ 0 for y ¼ 0
∂u=∂z ¼ 0 for z ¼ 0

9=
; ð6Þ

[20] We note that this problem is also equivalent to the
case of a no-slip condition at the flow surface (e.g. in a full
lava tube), where by a similar symmetry argument the
problem domain specified here corresponds to quarter of the
actual flow domain.

3.3. Solution Methods

[21] Any method used to solve equations (5) and (6) needs
to find some way of dealing with the singularity in strain rate
gradients at the yield surface as part of the solution. We
mention in passing one popular solution, which has been to
employ a ‘regularization approach’ [Papanstasiou, 1987;
Taylor and Wilson, 1997], which replaces the two branches
of equation (5) with the following nonlinear elliptic problem:

r2u� Br � ru

jrjuþ ɛ

� �
¼ �1 ð7Þ

where ɛ is a small positive parameter, known as the regu-
larization parameter. The effect of this substitution is to
‘smooth out’ the singular behavior of the rheology so that the
fluid has one smoothly varying effective viscosity. Specifi-
cally ɛ represents a transition strain rate between a high
effective viscosity rheology for _� < ɛ (where the dimen-
sionless apparent viscosity h = _�/t is approximately O(B/ɛ))
and a low-viscosity rheology for _� > ɛ (where h � O(1)).
[22] Unfortunately solutions to the regularized problem in

equation (7) do not have true plug regions as all of the fluid
can yield at least slightly, and thus there are no yield sur-
faces. Making the regularization parameter smaller improves
the distinction between plug and yielded regions, however
the increasing nonlinearity means calculation time becomes
prohibitive, especially in the physically interesting cases
where the Bingham number approaches its critical value.
[23] We have instead elected to use an algorithm based on

energy minimization. We sketch an overview of the algo-
rithm used here and refer interested readers to the detailed
development given by Glowinski and Le Tallec [1989].
Using thermodynamic reasoning, Il’iushin [1940] showed
that the flow of a Bingham fluid minimized an energy func-
tional, and obtained the form of the functional which takes
into account the two components of energy dissipation in the
yielded fluid domains (corresponding to the yield strength
and the yielded fluid viscosity). Mosolov and Mjasnikov
[1965] then used this minimization principle to analyze the
solutions to equations (5) and (6) without knowing the
location of the yield surface a priori. Their analysis allows
the development of an algorithm in which the nonlinearity in
the governing equations is decoupled by treating the velocity
field u and the dimensionless strain rate vector _� (obtained
as the gradient of the velocity field) as separate variables, and a
Lagrange multiplier l is employed to enforce the condition
_� = ru.We use an Uzawa-type algorithm to solve the resulting
saddle problem. The result is the algorithm given byGlowinski
and Le Tallec [1989] (their Algorithm 4.20–4.23 on p. 84).

[24] The algorithm proceeds as follows: find an initial
estimate of the velocity field by solving the following
Poisson problem for u0:

1þ að Þr2u0 ¼ �1; ð8Þ

where u0 satisfies the boundary conditions given in
equation (6). Then take l1 = 0, and for n ≥ 1, given un�1

and ln:
[25] 1. Calculate _�n using:

_�n ¼ 1� B

jsnj
� �

sn
a

if jsnj ≥ B;

0 otherwise:

8<
: ð9Þ

where

sn ¼ arun�1 þ ln:

[26] 2. Find un such that:

1þ að Þr2un ¼ r � a _�n � lnð Þ � 1; ð10Þ

where un satisfies the boundary conditions given in
equation (6).
[27] 3. Update the multiplier l:

lnþ1 ¼ ln þ a run � _�nð Þ: ð11Þ

[28] 4. Check for convergence; the algorithm has con-
verged if, for some tolerance d:

krun � _�nk
krunk ≤ d ð12Þ

[29] 5. If the convergence test fails, replace n with n + 1
and return to the first step.
[30] In this algorithm a is a positive parameter. This

augmented formulation improves the conditioning of the
Lagrangian minimization problems. Tuning the value of a
can give better algorithm convergence, although the opti-
mum value of a is dependent on the Bingham number and
aspect ratio. If a is too low, the algorithm will converge
rather slowly, while too high a value of a results in insta-
bility, especially in the plug regions of the flow.
[31] A number of studies use the algorithm (8–12) in

slightly different forms [e.g., Saramito and Roquet, 2001;
Dean et al., 2007]. These studies usually solve the linear
problem in equation (10) using finite element methods at
each iteration. Given the rectangular domain under consid-
eration, we employ finite differences using a full multigrid
algorithm. This method has the advantage of being fast, and
easier to develop than a finite-element code. We base our
multigrid solver (written in C++) for equation (10) on the
version given by Press et al. [1992, section 19].
[32] We calculated flow solutions for 1666 flow config-

urations: these had 49 aspect ratios between 1/5 ≤ b ≤ 25,
with 34 values of the Bingham number per aspect ratio. We
only performed actual calculations for flows with b ≥ 2,
since cases with b < 2 can be obtained from these results via
the symmetry of the flow configuration (i.e. by swapping H
and W and rescaling other values).
[33] The computation for b = 2 was calculated on a

384 � 384 grid with eight coarser grids based on this fine
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grid; the coarsest grid in the solver had a minimum resolution
of 4 � 4 grid points. For higher aspect ratios the x-resolution
was increased to keep the resolutions in the x and z directions
the same. The number of iterations required for convergence
of the algorithm (8–12) ranged between 1 for Newtonian
flows (with B = 0) to around 1000 iterations for Bingham
flows with B = 0.95B⋆, but with a median of order 100
iterations for most configurations. Computations were run in
parallel on an 8-core Mac Pro.

3.4. Useful Limiting Cases

[34] While there are no analytical solutions for the general
case of a rectangular cross-section for arbitrary aspect ratio
and Bingham number, solutions do exist for infinitely-wide
flows with 0 ≤ B ≤ 1 and the Newtonian case (B = 0) for all
aspect ratios. The critical Bingham number for a rectangular
flow cross-section is also given by analytic expressions.
These can provide useful checks on the numerical calcula-
tions, and we summarize them here.
3.4.1. Two Dimensional Flows
[35] A film flow is a flow with infinite width and constant

depth. Channel flows approach this limit as b → ∞. The
down-channel velocity varies in z only, and the solution is:

uðzÞ ¼
2ð1� BÞz� z2

2
for 0 ≤ z < 1� B

ð1� BÞ2
2

for 1� B ≤ z ≤1:

8>><
>>:

[36] Then the maximum velocity is

um ¼ ð1� BÞ2
2

; ð13Þ

and by integrating u through the flow depth we obtain the
flow rate per unit width:

q ¼ 2� 3Bþ B3

6
: ð14Þ

[37] In this case, the Bingham number is simply the depth
of the plug region, i.e. B = Hp/H. The Bingham number must
therefore be less than the critical value B⋆ = 1 for there to be
any flow.
3.4.2. Newtonian Channel Flows
[38] The analytic solution for a Newtonian channel flow

provides another useful bound on the limit B→ 0. In this case
the governing equation reduces to the Poisson equation, which
has the (dimensionless) analytical solution [White, 1990]:

u ¼ 16

p3b2

X∞
k¼1

�1ð Þk�1

2k � 1ð Þ3 1� cosh zkð Þ
cosh zkb=2ð Þ

� �
cos zkð1� zÞð Þ;

ð15Þ

where zk = (2k� 1)p/2. The maximum velocity for this flow is
along the center line y = 0 and z = 1, giving:

um ¼ 1

2
� 16

p3

X∞
k¼1

�1ð Þk�1

2k � 1ð Þ3 sech
zkb
2

� �
: ð16Þ

[39] By integrating across the channel cross section and
dividing by the aspect ratio we obtain the dimensionless
down-channel flow rate per unit width:

q ¼ 1

3
� 128

p5b

X∞
k¼1

1

2k � 1ð Þ5 tanh
zkb
2

� �
: ð17Þ

3.4.3. Critical Bingham Numbers
[40] A final case of interest is the set of conditions under

which flow ceases. This occurs at a critical value of the yield
strength ty

⋆; for flow in a rectangular channel it is

t⋆y ¼ rg′
W þ 2H � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4H2 þW 2 � 2p� 4ð ÞHWp
4� p

: ð18Þ

Appendix A gives the derivation of this expression, which
follows the analysis of Mosolov and Mjasnikov [1965]. This
yield strength corresponds to a critical Bingham number

B⋆ ¼
2þ b �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ b2 þ 2p� 4ð Þb

q
4� p

: ð19Þ

From this we see thatB⋆ ranges from 1 for a film flow (b→∞)
to B⋆ = 0 for the case of a slot flow (as b → 0).
[41] An alternative is to consider the case of zero flow rate

for a given value of B; the critical central plug shape w⋆

(found in Appendix A) which corresponds to B⋆ represents a
lower bound on the geometry obtainable by a viscoplastic
flow in the same way as viscoplastic film flows have a
minimum thickness. In this case, we obtain a minimum
aspect ratio b⋆ expressed in terms of a given Bingham
number B:

b⋆ ¼ p� 4ð ÞB2 þ 4B

2� 2B
ð20Þ

Note these critical yield strengths values are only attainable
in fixed aspect ratio flows. In the case of a non-zero flow rate
and variable flow geometry, the flow will simply inflate to
match the flow rate condition, such that B < B⋆.

4. Results

[42] We first examine the behavior of the flow for fixed
aspect ratio b and varying Bingham number B. Figure 4
shows plots of the down-stream velocity and strain rate
tensor magnitude fields for three flows with b = 2 and three
different values of B. In this case the critical Bingham
number is

B⋆ ¼ 2

2þ ffiffiffi
p

p ≈ 0:530; ð21Þ

all the plotted flows have 0 ≤ B < B⋆.
[43] For the two Bingham cases, dotted black lines delin-

eate the yield surfaces, and the shading denotes the plug
regions. In the Newtonian case the entire fluid yields, how-
ever the two plug regions grow with the development of a
yield strength. One plug region forms in the corner of the
channel, fixed to the channel walls with a concave circular
arc forming the yield surface, while one forms around the
channel center, and moves at the maximum velocity in the
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channel. At low values of B the central plug is almost circu-
lar, but as B increases the sides of the center plug flatten as
they approach the walls, although the corners remain circular.
[44] A layer of yielded fluid separates the two plug

regions. The strain rate magnitudes in Figure 4 show that the
strain rate drops to zero at the plug boundaries. The strain
rate magnitude reaches a maximum at the center of the
channel floor and the top of the channel walls, with a saddle
point in the center of the yielded layer between the plug
regions. This layer is widest on the diagonal of the domain
between the two plug regions, and narrows as it approaches
the flow surface or center line.
[45] As the Bingham number increases (moving from top

to bottom), the size of the central and corner plug regions

increases until they meet at the critical Bingham number and
flow ceases (not shown). The central plug grows at a faster
rate than the corner plug. The width of the yielded layer
between the plug regions narrows and the velocity of the
central plug decreases, such that the yielded layer thickness
goes to zero everywhere upon reaching the critical Bingham
number.
[46] Figure 5 shows the behavior of the channel flow for a

fixed Bingham number of 0.5 and variable aspect ratio.
Given B, equation (20) gives the minimum aspect ratio of

b⋆ ¼ 4þ p
4

≈ 1:785: ð22Þ

Figure 4. Contour plots of the (left) the velocity and (right) strain rate magnitude for a channel with
aspect ratio of b = 2, and Bingham numbers of B = 0, 0.274 and 0.496. The definitions of Bingham
number and aspect ratio are given in equations (3) and (4). The critical Bingham number for this aspect
ratio is approximately 0.530 (see (21)). The yield surface is shown as a dashed line and the plug regions
are shaded. Only half of the channel is shown as these distributions are symmetrical about the center line
of the channel.
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[47] The size of the corner plugs remain similar in all of
these cases, and the first-order effect of the varying aspect
ratio is thus to alter the aspect ratio of the central plug.
The central plug thickness decreases as the aspect ratio
increases, due to the decreasing drag exerted by the walls
as they move further apart. In contrast, the plug width
(scaled to the channel width) increases throughout the
range of aspect ratios, although the width of the yielded
layer at the surface of the flow increases with increasing
aspect ratio. Similarly the thickness of the yielded layer on
the channel center line approaches the limiting two-
dimensional value of 0.5 as b → ∞.

[48] Figure 6 shows the convergence of flow parameters
taken from the calculated solutions towards those of the
analytic two-dimensional film flow limit as b → ∞. Solid
black lines denote the two-dimensional solutions (given in
section 3.4.1) in all plots, while colors show the value of the
aspect ratio. The top two plots show the calculated flow per
unit width and the maximum velocity converging towards
that of the two-dimensional limit. The maximum velocity
converges faster than the flow rate; the velocity is within
10% of the two-dimensional value at b = 5, while the flow
rate is within 10% only by b ≈ 15. The bottom plot shows
that the plug depth converges only slightly slower than the

Figure 5. Contour plots of the velocity and strain rate magnitude for a channel flow with a Bingham
number of B = 0.5, and aspect ratios of b = 2 and 4. The critical aspect ratio for this Bingham number
is approximately 1.785 (see (22)). The yield surface is shown as a dashed line and the plug regions are
shaded.
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flow rate. We suggest that the two-dimensional flow solution
makes a good approximation for the flow rate, maximum
velocity and central plug depth above b ≈ 15.
[49] Similarly, Figure 7 shows the convergence of the flow

rate per unit width, the maximum surface velocity and the
ratio of central plug width to channel width towards the
Newtonian analytic solution given in section 3.4.2 as B→ 0.
The solid black line represents the Newtonian analytic
solution and the colors show the value of B for each calcu-
lation. The flow rate and maximum velocity plots converge
smoothly towards the Newtonian analytical limit. In contrast
the plug width fraction does not approach the Newtonian
limit (Wp/W = 0 for all b) in the same manner; there is a rapid
variation in plug width between the Newtonian and weakly
Bingham flows at high aspect ratio. This is because the

majority of the surface shear strain occurs over a distance of
order H from the walls; thus it only takes a small yield
strength to jump from no surface plug to a plug width of
about W � 2H, particularly at large aspect ratios.
[50] Figures 8 and 9 show the flow rate per unit width and

maximum velocity as functions of the aspect ratio and
Bingham number, contoured from the values obtained from
1504 flow configurations. Figures 10 and 11 show similar
plots for hp = Hp/H and wp = Wp/W, i.e. the plug width and
height scaled to the channel width and height. The contours
in all four plots have been found by triangulating the flow
configuration data and using a linear barycentric interpolant
on each triangle (i.e. a piecewise-linear two-dimensional
interpolation).

Figure 6. Convergence of calculated values for (top) flow rate, (middle) maximum velocity and (bottom)
central plug depth towards the two dimensional film flow limit (see section 3.4.1). Each dot represents a
calculation, colored by aspect ratio b (colors are the same for all plots). In all plots the solid black line
denotes the limiting two dimensional flow value; the limit in the case of the central plug width fraction
is wp/w = 1 for all Bingham numbers.
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[51] In all of these plots the critical Bingham number B⋆

given by equation (19) forms the upper boundary of the
data — supercritical configurations with Bingham numbers
beyond this limit will not flow. As expected, this line also
forms the contour of zero flow rate and zero maximum
velocity for all the plots, as well as plug height and width
fractions of 1. The two dimensional limit would fall at the far
right hand side of the plots, and the Newtonian limit forms
the bottom, along B = 0.

5. Comparisons With Previous Studies

[52] Johnson [1970] presented a study aimed at explaining
the dynamics of slurry flows and erosion patterns in glacial
valleys. He defined a model of viscoplasticity using an
internal angle of friction to account for the yielding behavior

of the fluid (similar to analysis of finite-displacement pro-
blems with plastic materials). He then derived a set of gov-
erning equations by inserting this rheological model into the
momentum balance for a fully-developed flow.
[53] There are two flaws in Johnson’s analysis. The first is

in his formulation of the three-dimensional rheology, whose
energy balance (his equation 15.38, pp. 553) does not take
into account the energy dissipation produced by the yield
strength of the fluid in yielded regions. The second is the
decomposition of the stress field into a Fourier series (in his
equation 15.44, on p. 554). To apply a Fourier decomposi-
tion the stress fields must be superposable so that all modes
of the decomposition contribute equally to the velocity field.
This superposition is only valid for linear (i.e. Newtonian)
fluid rheologies. In contrast, non-Newtonian fluids have

Figure 7. Convergence of calculated values for (top) flow rate, (middle) maximum velocity and (bottom)
the ratio of central plug width to channel width towards the limit of a Newtonian viscous rheology. Each
dot represents a calculation, colored by Bingham number B (the colors are the same for all plots). In all
plots the solid black line denotes the expected value when B = 0 (expressions are given in section 3.4.2).
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stress fields which are not decomposable into Fourier modes
in general. The effect of Johnson’s analysis is to recover the
stress field for a purely Newtonian flow, ignoring the con-
tribution of the energy dissipation by the yield strength to the
energy balance in yielded portions of the flow.
[54] Similarly, Tallarico and Dragoni [2000] present an

semi-analytical model for the duct flow of a viscoplastic
fluid with a Bingham rheology, based on a similar analysis
to Johnson [1970]. Their model involves a calculation of the
vorticity of the down-channel velocity field, which is then
inverted for the velocity profile across the channel cross-
section. The authors derive governing equations for the
vorticity vector field by taking the curl of the Navier-Stokes
equations, which they assert describes the motion of a
Bingham fluid.
[55] The flaw in Tallarico and Dragoni’s analysis is the

use of the Navier-Stokes equation, which assume a New-
tonian rheology in their derivation. They do not describe the
behavior of a viscoplastic fluid at all. To see this, note that
we can represent both Newtonian and many non-Newtonian
rheologies using an effective viscosity h: for Newtonian
flows h = m is constant, for non-Newtonian flows h will be
strain- or stress-dependent and will vary with position in the
flow. The governing equations for the vorticity vector, x, are
then found by taking the curl of the (low Reynolds number)

equation of motion with the relevant constitutive equation
for an effective viscosity h, giving

r � hrxð Þ ¼ 0:

In the Newtonian case expansion of this equation gives
Laplace’s equation

r2x ¼ 0:

In the non-Newtonian case the expansion of this equation is
more complex:

hr2x þrh � rx ¼ 0:

The second part of this expanded term is small for weakly
non-Newtonian fluids (for which the spatial gradients in
effective viscosity are small), but becomes more important
as the rheological nonlinearity increases. Tallarico and
Dragoni’s analysis misses this important nonlinear term.
[56] These flawed assumptions in the models of Tallarico

and Dragoni and Johnson have significant consequences for
the results which they obtain from their models. Figure 12
compares the results obtained by the methods of Tallarico
and Dragoni [2000] (which give the same answers as
those of Johnson) with those of the current study. There are
several important differences:

Figure 8. Calculated dimensionless flow rate per unit width q plotted as a function of aspect ratio b
and Bingham number, B. The heavy black line denotes the critical Bingham number B⋆(b), given in
equation (19).
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[57] 1. In the models of Johnson and Tallarico and Dragoni
a change in yield strength does not produce any change in
the stress field calculated for the yielded portions of the flow.
As can be seen from our solutions in Figure 12 (right), a
change in fluid rheology should change the stress field
throughout the entire flow, not just in the plug regions.
[58] 2. The shape of the corner plugs is incorrect. Both

authors have corner plugs with a convex shape which pro-
trudes into the main flow, whereas mathematical analysis of
this problem shows that these zones should be concave
[Mosolov and Mjasnikov, 1967] as obtained by the current
calculations. It is difficult to see why these zones should pro-
trude at all into the flow since the tip of the plug would be
subject to high stresses from the remainder of the fluid, pre-
sumably exceeding the yield strength. The shape of the central
plug also has this unintuitive feature, with a protrusion which
grows towards the corner plugs as the Bingham number
increases. As our study shows, the central plug should remain
circular until the walls start to have an appreciable effect.
[59] 3. Both authors obtain incorrect values for the critical

Bingham number where the central plug meets the corner
plug, again a result of the incorrect shape of the modeled
plugs. In the example given in Figure 12 the critical Bingham
number lies between the B = 0.3 and B = 0.35 examples,
which is markedly different to the expected analytical value
of about 0.530 (given in equation (21)).

[60] 4. The models of both authors produce an unphysical
solution at supercritical Bingham numbers where the fluid
‘seeps’ around the central plug which sticks to the corner
plugs (with the velocity field from Tallarico and Dragoni
[2000] shown in Figure 3, and the strain rate magnitude in
Figure 12 (bottom left)). It is difficult to see what is driving
these seepage flows if the central plug is not moving (a fact
acknowledged by Johnson).
[61] 5. Finally, the nature of Bingham constitutive equation

implies that plug regions should form around all local maxima
or minima in the velocity field, since the shear stress must
necessarily fall beneath the yield strength in the regions where
jruj→ 0. The supercritical solutions from both models do not
satisfy this requirement as the seepage flows near the walls do
not have plugs in their centers. As noted by both sets of
authors, their models also fail to capture the transition from
subcritical Bingham number flow to their supercritical seepage
flow. As our results show, with a correct model the yielded
layer disappears everywhere at the critical Bingham number,
so that any flow at supercritical Bingham numbers is not
possible with a purely Bingham rheology.

6. Applications

[62] As noted when describing channel flows in section 3.1,
the choice of independent parameters used to describe channel

Figure 9. Calculated maximum surface velocity um plotted as a function of aspect ratio b and Bingham
number, B.
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flows is application driven. In practice, variables such as the
flow depth, fluid viscosity or yield strength are not always
known beforehand, so that determining b and B is not
straightforward. In this section we outline algorithms which
can be used to apply the results of section 4 to these situations.

6.1. Flows With Dynamics Controlled by Flow Rate

[63] In the first application we solve the following problem:

Given Q; n and ty; determine H ;Um and Wp:

This application arises in experimental situations, where the
flow rate and fluid properties control the dynamics of ana-
logue flows. It is also applicable in field situations when
trying to determine the downstream flow configurations for a
given flow when the flow rate is prescribed by measurements
upstream.
[64] Since b and B are not dependent on Um, we can solve

for H only and then separately calculate the maximum
velocity and central plug width. We solve this problem with
a secant root finding method against the cost function

f Hð Þ ¼ 1� g′WH3

nQ
q b;Bð Þ; ð23Þ

where q is the dimensionless flow rate per unit width calculated
from the interpolations given in Figure 8 withb andB evaluated
for our current approximation to the flow depth H.

[65] The algorithm initialization requires two initial
approximations to the flow height, H0 and H1. For H0 we use
the minimum flow depth H⋆ for the given yield strength and
flow width by rearranging equation (20) to give:

H⋆ ¼ 2W � p� 4ð Þty=rg′
2Wrg′

=ty � 4: ð24Þ

For H1 we take the height of a Newtonian two dimensional
flow with the same flow rate per unit width, with a plug of
depth H⋆ on top. Thus:

H0 ¼ H⋆ and H1 ¼ H⋆ þ 3nQ
g′W

� �1=3

: ð25Þ

We also need an initial value for the cost function: evaluat-
ing equation (23) at H0 gives f(H0) = 1, since q = 0 when
H = H⋆.
[66] Then for n > 1, with Hn�1 and Hn known, we iterate

the following three step procedure:
[67] 1. Evaluate the cost function f(Hn) using equation (23)

and check for convergence; the algorithm has converged if

j f Hnð Þ � f Hn�1ð Þj ≤ d

for some tolerance d. If the algorithm has converged, use Hn

to calculate b and B and use these to find Um and Wp.

Figure 10. Calculated plug depth fraction, Hp/H plotted as a function of aspect ratio b and Bingham
number, B. Note that when b ≪ 2 and B is small, the plug depth drops rapidly to zero.
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[68] 2. If the convergence test fails, update the approxi-
mation to H:

Hnþ1 ¼ Hn � Hn � Hn�1

f Hnð Þ � f Hn�1ð Þ f Hnð Þ:

[69] 3. Replace n with n + 1 and return to step 1.

6.2. Calculating Flow Rate and Height
From Maximum Velocity

[70] If we know the maximum velocity but not the flow
rate or height we have the following problem:

Given Um; n and ty; determine H ;Q and Wp:

Here the algorithm in section 6.1 can be used with the fol-
lowing cost function based on the maximum surface velocity
(rather than equation (23) which is based on flow rate)

f ðHÞ ¼ 1� g′H2

nUm
umðb;BÞ

where b and B are evaluated using H and with

H0 ¼ H⋆ and H1 ¼ H⋆ þ 2nUm

g′

� �1=2

in the initialization (rather than equation (25)). Again,
f (H0) = 1 since um = 0 when H = H⋆.

6.3. Estimation Rheology From Flow Depth
and Maximum Velocity

[71] If we have estimates for the channel depth, maximum
velocity and surface plug width, and we require estimates for
the flow rate and fluid rheologywe have the following problem:

Given H ;Um and Wp; determine Q; n and ty:

This application could be useful in cases where field and geo-
detic observations of active flow fields provide measurements
of the flow depth and surface velocities, giving a maximum
velocity and an estimate of plug width [e.g., Calvari et al.,
2002; Favalli et al., 2010].
[72] The difficulty in solving this problem is that we must

solve for the viscosity and yield strength simultaneously. We
can however constrain the rheological parameters separately
from the flow rate, since b and B are not directly dependent
onQ. For convenience, we form a vector of unknown variables:

x ¼ n
ty

� �
:

Then we require two constraints, in this case the measured
values of Wp and Um, and a vector cost function:

fðxÞ ¼
1� g′H2

nUm
umðb;BÞ

1� W

W �Wp
1� wpðb;BÞ
� �

2
664

3
775 ð26Þ

where b and B are evaluated using the current values in x.

Figure 11. Plug width fraction, Wp/W, plotted as a function of aspect ratio b and Bingham number, B.
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[73] In order to find the solution f(x) = 0 using a quasi-
Newton method, we require an approximation to the inverse
of the Jacobian matrix J = ∂f/∂x (i.e. a matrix A where
A ≈ J�1). Since we don’t have an explicit relation between
f and n and ty (which would allow direct calculation of J),
we use the two-dimensional flow solution to find an
approximate Jacobian J0. We then use Broyden’s method
which begins with A0 = J0

�1 and then updates A at each step
based on the value of the cost function f (see Press et al.
[1992] for a discussion).
[74] We initialize this algorithm by using the plug width to

estimate a starting Bingham number:

B0 ¼ Wp

W
B⋆
0

where B⋆ is given by equation (19). We can then use B0 and
the two dimensional Bingham flow to estimate n and ty,
giving x0 as:

x0 ¼ 1� B0ð Þ2g′H2=2Um

rg′HB0

" #
: ð27Þ

[75] We also use B0 and the two dimensional Bingham
flow to derive an initial approximation to the Jacobian
(given in Appendix B):

J0 ¼

2Um

g′H2 1� B0ð Þ2
2

rg′H 1� B0ð Þ
0

1

rg′HB⋆

W

W �Wp

� �
2
6664

3
7775 ð28Þ

and set A0 = J0
�1.

Figure 12. Contour plots of the strain rate magnitude field calculated from (left) the model of Tallarico
and Dragoni [2000] and (right) the solver from this study. These flows have b = 2, and B = 0.2, 0.3 and
0.35 (top to bottom respectively). The yield surface is shown as a dashed line and the plug regions are
shaded. The bottom plots correspond to the solution given by Tallarico and Dragoni [2000] reproduced
in Figure 3.
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[76] Then for n ≥ 0, given xn and An, we iterate the fol-
lowing procedure:
[77] 1. Calculate an update direction:

Dxn ¼ Anf xnð Þ:

[78] 2. Perform a line search in the direction of Dxn by:
[79] (i) Calculate an update candidate

xnþ1 ¼ xn þDxn:

(ii) Check whether any components of xn+1 are invalid
(in this case ‘valid’ means that n > 0, ty ≥ 0, and B ≤ B⋆). If
there are invalid components, replace Dxn by Dxn/2 and
repeat these two steps until all components are valid.

If the line search fails to return a valid update candidate after a
specified number of iterations, then reset the approximation to
the inverse Jacobian, i.e. An = J0

�1 and return to step 1.
[80] 3. Check for convergence; the algorithm has con-

verged if

kf xnþ1ð Þ � f xnð Þk ≤ d

for some tolerance d. If the algorithm has converged, the
value obtained for x can then be used to calculate b and B
and hence the flow rate Q.
[81] 4. If the convergence test fails, update the approxi-

mation to the inverse Jacobian:

Anþ1 ¼ An þ Dxn � AnDfnð Þ DxTAnð Þ
DxTnAnDfn

where Dfn = f(xn+1) � f(xn) and
T denotes the vector trans-

pose operator.
[82] 5. Replace n with n + 1 and return to step 1.
[83] We note Tallarico et al. [2006] suggest the use of two

correction factors to estimate bulk rheological parameters
and flow rates, one for the walls and one for the Bingham
rheology. These correction factors, multiplied together, give
an estimate fluid rheology. The use of such methods under-
estimates the net down-channel flow rate and overestimates
the viscosity and yield strength of the lava, especially in the
physically interesting cases of low aspect ratios and high
Bingham numbers. Furthermore, their method would be very
difficult to apply to flows in the field. It assumes that a plug
depth is already known, which is problematic because plug
depths would be difficult (if not impossible) to measure in the
field, and assumption of a plug depth is equivalent to
assuming a yield strength. They cannot use a plug width
since their correction factor for viscoplastic effects is based
on the two dimensional solution (given in section 3.4.1).
[84] This demonstrates that observations of surface veloci-

ties, perhaps by analyzing streaks in long-exposure photo-
graphs, could give more accurate estimates of bulk lava
rheology and flow rates within channeled flows and lava
tubes.We suggest that these observations should be made near
an erupting vent so as to minimize the effects of solidification
on the surface velocity distribution [Griffiths et al., 2003].

6.4. Estimation of Rheology From Flow Rate
and Maximum Velocity

[85] Finally we examine the case where we have estimates
for the flow rate, maximum velocity and surface plug width,

and we require estimates for the flow depth and fluid rhe-
ology. Then we have the following problem:

Given Q;Um and Wp; determine H ; n and ty:

This application is useful in experimental situations [Griffiths
et al., 2003].
[86] For this situation we define the unknown vector and

cost function as:

x ¼
H
n
ty

2
4

3
5 ð29Þ

and

fðxÞ ¼

1� g′H2

nUm
umðb;BÞ

1� g′H3W

nQ
qðb;BÞ

1� W

W �Wp
1� wpðb;BÞ
� �

2
66666664

3
77777775

ð30Þ

respectively, where b and B are evaluated using the current
values in x.
[87] To find an initial vector x0, we take the two-

dimensional Newtonian flow as an initial guess at H; using
the expressions for the flow rate per unit width and maximum
velocity and solving for H, we get:

H0 ¼ 3Q

2UmW
ð31Þ

[88] We can then use the plug width fraction wp =Wp/W to
estimate the Bingham number:

B0 ¼ wpB
⋆ ð32Þ

where B⋆ is the critical Bingham number given in
equation (19) evaluated forH =H0, and then use this Bingham
number and maximum velocity to estimate the yield strength
and viscosity, giving:

x0 ¼
3Q=2UmW

g′H2
0 1� B0ð Þ2=2Um

rg′H0B0

2
64

3
75 ð33Þ

for the initial solution vector.
[89] We also require an initial approximation to the Jaco-

bian matrix J0. As before we use the two-dimensional film-
flow limit to approximate q and um (details in Appendix B),
giving the following expression:

J0 ¼

�2

H0 1� B0ð Þ
2Um

g′H2
0 1� B0ð Þ2

2

rg′H0 1� B0ð Þ
�2UmW

Q 1� B0ð Þ
2U2

mW B0 þ 2ð Þ
3g′H0Q 1� B0ð Þ2

UmW 1þ B0ð Þ
rg′Q 1� B0ð Þ

�WB

W �Wp

� �
B⋆H0

0
�W

rg′H0B⋆ W �Wp

� �

2
666666664

3
777777775

ð34Þ
[90] Armed with the initial vector in equation (33), and the

approximation to the Jacobian in equation (34), we can then
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use Broyden’s method as outlined in section 6.3 to find the
values of H, n and ty for the flow.

7. Example Calculations Using Field
Data From Etna

[91] As a demonstration of how to use our numerical results
in section 4 and the algorithms in section 6, we consider the
dynamics of lava flows erupted byMt Etna [Bonaccorso et al.,
2004]. These lavas typically have a Newtonian rheology at
low crystal fractions [Vona et al., 2011], but develop a visco-
plastic rheology at moderate crystal fractions [Chester et al.,
1985; Pinkerton and Norton, 1995]. Here we will use the
rheological measurements made by Pinkerton and Sparks
[1978] on a set of Etnean lava flows erupted in 1975 (the
emplacement of these flows is described by Pinkerton and
Sparks [1976]). This flow had an internal temperature of
1086� 3°C, a modal crystal fraction of 0.45–0.47, a measured
yield strength of ty = 370 � 30 Pa, and a yielded fluid vis-
cosity of m = 9400 � 1500 Pa s. The Etna lava flows in 1975
contained 15� 5% vesicles by volume [Pinkerton and Sparks,
1976]. With a non-vesicular lava density of 2600 kg m�3 this
gives a density of 2210 � 130 kg m�3 and a kinematic vis-
cosity of n = 4.25 � 0.68 m2 s�1 for the vesicular lava.
[92] We consider a channeled flow starting near the summit

of Mt Etna, with a width of 5 m and a slope of 10° (similar to
the geometries for the 1975 eruption specified by Pinkerton
and Sparks [1976]). Since the flow is under air, ra = 0 and
the effective downstream gravitational acceleration is
g′ = 1.704 m s�2 for a vertical gravitational acceleration of
g = 9.81 m s�2. Using equation (24), we can calculate the
minimum flow depth for a flow of this yield strength and
width: H⋆ = 9.3� 0.7 cm. If the source feeding our flow were
to cease erupting, this depth would represent the remaining
thickness of the flow once it had drained, provided the rheo-
logical properties of the lava did not change dramatically.
[93] We assume that the flow has a depth of 1m. This flow has

a (prescribed) aspect ratio of b = 5, and a Bingham number of
B = 0.098� 0.008. Using the results in Figures 8, 9, 10, and 11,
such a flowwould have flow rate ofQ = 0.411� 0.005 m3 s�1,
a maximum velocity of Um = 0.147 � 0.002 m s�1, a central
plug surface width ofWp = 1.05� 0.04 m and a plug depth of
Hp = 13.8 � 0.7 cm. These measured velocities and flow rates
agree well with the values given by Pinkerton and Sparks
[1976].
[94] Suppose that the flow reaches the lower slopes of

Mt Etna, where the inclination of the ground surface is 3°,
so that the flow widens to W = 10 m but continues to flow at
the same flow rate, while the rheological properties remain
constant. Using equation (24), the minimum depth of this

flow is H⋆ = 33� 2 cm, and using the algorithm in section 6.1,
we can solve for the depth of this flow, giving
H = 1.422 � 0.007 m (the results of each iteration in the algo-
rithm are shown in Table 1). This depth means the flow has an
aspect ratio of b = 7.03 � 0.03 and a Bingham number of
B = 0.22� 0.02. Using b andB, and the results in Figures 9, 10,
and 11, we see that the maximum velocity of this flowwould be
Um = 0.064 � 0.002 m s�1, with a central plug surface plug
depth of Hp = 56 � 2 cm and a width of Wp = 4.29 � 0.15 m.
[95] Finally, as an example of the algorithm outlined in

section 6.3, we return to the original flow near the vent
(W = 5, H = 1, q = 10°) and use the maximum velocity and
surface plug width obtained there to determine the fluid
rheology. The results of each iteration of the algorithm are
shown in Table 2, and the final result gives us a yielded fluid
viscosity of n = 4.2 � 0.8 m2 s�1 and a yield strength of
ty = 370 � 37 Pa, in good agreement with our original
values.

8. Conclusions

[96] In this study we have analyzed the channeled flow of an
isothermal Bingham lava using a multigrid-based augmented
Lagrangian method. This method converges to known ana-
lytical values in the limiting cases of two dimensional flow and
Newtonian fluid rheology. We have also highlighted and
explained flaws within the models of Johnson [1970],
Tallarico and Dragoni [2000], and Tallarico et al. [2006].
[97] Our numerical results show that an internal visco-

plastic rheology significantly modifies the surface velocity
distribution of a lava flow through the development of plug
regions, even when the yield strength is small. At low
Bingham numbers the plug regions are small. However, with
an increasing Bingham number the plugs grow larger until
flow ceases everywhere in the channel at some critical
Bingham number. These plug regions (1) thicken the flow
and (2) remove shear strain from the center of the flow
surface. Plugs also form in the corners of the channel and
have a concave shape.
[98] The presence of a yield strength in a high aspect ratio

flow generates a significant unyielded region at the flow
surface. The width of this central plug regionWp is relatively
insensitive to variations in yield strength at moderate to high
Bingham numbers. This is because the significant zones of
surface shear are restricted to regions with a width of order H
near the walls, so that at high aspect ratio Wp � W � 2H.

Table 1. The Intermediate Results of the Algorithm Described in
Section 6.2 to Find the Flow Height for the Calculations Presented
in Section 7 Using Field Data From Lava Flows on Mt. Etnaa

Step (n) Hn b(Hn) B(Hn) k f (Hn)k
0 0.3339 29.95 0.9767 1
1 1.341 7.457 0.2432 0.1277
2 1.488 6.719 0.2191 0.1093
3 1.42 7.04 0.2296 0.002598
4 1.422 7.033 0.2293 6.754e-05

aThe algorithm takes 4 steps to converge to an accuracy of d = 2 � 10�5.

Table 2. The Intermediate Results of the Algorithm Described in
Section 6.3 to Find the Fluid Rheology for the Calculations
Presented in Section 7a

Step (n) tyn nn b(xn) B(xn) k f(xn)k
0 2.032 1435 10 0.3813 0.4527
1 2.819 818.5 10 0.2174 0.1758
2 3.681 491 10 0.1304 0.07266
3 4.032 402 10 0.1068 0.03362
4 4.166 381.2 10 0.1013 0.01369
5 4.245 370 10 0.09828 0.002083
6 4.249 370 10 0.09828 0.001085
7 4.253 370 10 0.09828 2.268e-06
8 4.253 370 10 0.09828 2.398e-09

aThe algorithm takes 8 steps to converge to an accuracy of d = 2 � 10�5.
The results from the line searches in Step 2 are not shown.
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At low Bingham number the central plug region is extremely
thin, and it may be altered by irregularities in the channel
geometry such as bends and changes in slope.
[99] In section 6 we described several algorithms which

extend our calculations to situations where some of the para-
meters on which either the aspect ratio or Bingham number
depend are unknown. These methods converge reasonably
quickly and are useful for a number of field situations. Field
geologists will be particularly interested in the case where the
flow rate, fluid viscosity and yield strength can be accurately
estimated from measurements of the flow depth, maximum
downstream velocity and central plug width at the flow sur-
face. The results of the numerical code are provided as a
comma-delimited file in the auxiliary material for this paper.1

All of the code written for this study (both the multigrid solver
used to obtain the numerical flow solutions, written in C++,
and implementations of the algorithms in section 6, written in
Python) can be made available by contacting the first author.
[100] Finally, we end by noting that changes in temperature

play an important role in determining the dynamics of visco-
plastic lava flows, since the interactions between convection,
solidification and rheology are not trivial [Griffiths, 2000;
Griffiths et al., 2003; Cashman et al., 2006]. For example the
presence of a plug on the flow surface will increase the stability
of the surface crust, modifying the feedbacks between cooling,
solidification and insulation of the flow. As another example,
the lack of advection in the two corner plug regions will mean
that they will cool and solidify, changing the shape of the
channel. We aim to examine the non-isothermal features of
viscoplastic lava flow dynamics in more detail in a future paper.

Appendix A: Calculating Critical Yield Strengths

[101] As discussed in the introduction, the size of plug
regions is dependent on the yield strength of the fluid, with
higher yield strengths corresponding to larger plugs. To find
the size of the yield strength required to stop the channel
flow, we can consider the special limiting case immediately
before the central and corner plugs meet. In this instance, the
yielded layer in the flow shrinks to a line: the limiting yield
surface. The yield strength corresponding to this limiting
yield surface is ty

⋆. This appendix outlines how to obtain the
critical yield strengths (ty

⋆) given in section 3.4, which has
been provided by Mosolov and Mjasnikov [1965, 1966,
1967] as part of their study of the variational form of the
problem in equation (5).
[102] To begin, define W as the channel cross-section (in

dimensional terms), so that

W ¼ ðy; zÞ : �W

2
≤ y ≤

W

2
; 0 ≤ z ≤ H

	 

:

[103] Consider the set of all possible central plug regions w
which are subregions of W. As a useful metric of plug size,
define x as the ratio of the size of a given central plug region
w to the length of the yield surface that defines its boundary
(denoted ∂w), i.e.:

xðwÞ ¼ areaðwÞ
lengthð∂wÞ : ðA1Þ

[104] Theorem 1 of Mosolov and Mjasnikov [1965] shows
that the critical central plug region w⋆ satisfies x(w⋆) ≥ x(w)
for all w ∈ W, while Lemma 2.4 shows that x(w⋆) is a
function of ty

⋆:

xðw⋆Þ ¼ t⋆y
rg′

: ðA2Þ

[105] Thus if we find x(w⋆), we can easily determine ty
⋆.

We also recover a critical Bingham number B⋆ correspond-
ing to this yield strength as follows:

B⋆ ¼ t⋆y
rg′H

¼ xðw⋆Þ
H

: ðA3Þ

[106] Lemma 2.3 ofMosolov and Mjasnikov [1965] shows
that any portion of the boundary of w⋆ which is not part of
the channel boundary will form a circular arc which is tan-
gential to the channel boundary at either end. Therefore we
need only consider the set of plug shapes wr ⊆ W that result
from replacing the corners of the rectangular domain by
circles of radius r, as shown in Figure A1. By calculating the
boundary and area of such a domain, we can then see that for
these plugs

xðwrÞ ¼ 2WH þ ðp� 4Þr2
2W þ 4H þ 2ðp� 4Þr

for 0 < r ≤ min (H, W/2).
[107] A straightforward calculation shows that the maxi-

mum of x over wr is

xðw⋆Þ ¼ W þ 2H � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4H2 þW 2 � ð2p� 4ÞWH

p
4� p

:

[108] Using this expression and either equation (A2) or
equation (A3) it is straightforward to recover the expressions

Figure A1. Determining the geometry of the critical central
plug w⋆; we generate possible central plug regions wr with
yield surfaces described by the channel walls and a circle
of radius r. Then we select w⋆ as the wr with r which maxi-
mizes the central plug area to yield surface ratio x. Walls are
shown as hatched lines, the flow centerline by the dashed
line on the left and the yield surfaces in grey.

1Auxiliary materials are available at ftp://ftp.agu.org/apend/jb/
2011JB008550.
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for the critical Bingham number B⋆ and aspect ratio b⋆ given
in the body of the paper.

Appendix B: Estimating Jacobians for Sections 6.3
and 6.4

[109] In section 6.3, we provided expressions for initial
approximations to the Jacobian J of the cost function f(x).
We have three different components which go into the cost
function:

f1 ¼ 1� g′H2

nUm
um b;Bð Þ

f2 ¼ 1� g′H3W

nQ
q b;Bð Þ

f3 ¼ 1� W

W �Wp
1� wp b;Bð Þ� �

:

The problem in section 6.3 is simply that for section 6.4
without H as an unknown, and with the removal of f2 from
the cost function. Therefore we treat the calculation of the
Jacobian for section 6.4, and the Jacobian for section 6.3 is
found by removing the relevant components dependent on f2
or ∂/∂H.
[110] To derive the Jacobian we use approximations to wp,

q and um. In the first we approximate the dependence of wp

on B by a linear function between B = 0 and B = B⋆, so that

wp ≈
B0

B⋆ :

Secondly we approximate the maximum velocity and flow
rate by those for the two dimensional Bingham flow, given
in equations (13) and (14), with B = B0 and H = H0.
[111] By substituting these expressions into f we can

obtain derivatives with which to estimate the components of
the Jacobian. The derivatives for f1 are:

∂f1
∂H

≈� 2

H0ð1� B0Þ ;
∂f1
∂n

≈
2Um

g′H2ð1� B0Þ2
;

∂f1
∂ty

≈
2

rg′Hð1� B0Þ
;

the derivatives for f2 are:

∂f2
∂H

≈ � 2UmW

Qð1� B0Þ ;

∂f2
∂n

≈
2U2

mW ð2þ B0Þ
3g′H0Qð1� B0Þ2

;

∂f2
∂ty

≈
UmW ð1þ B0Þ
rg′Qð1� B0Þ

;

and the derivatives for f3 are:

∂f3
∂H

≈ � WB

ðW �WpÞB⋆H0
∂f3
∂n

≈ 0

∂f3
∂ty

≈
W

rg′HB⋆ðW �WpÞ

from which we have the expression for J0 given in
equations (28) or (34).

Notation

A Approximation to the inverse Jacobian of f(xn).
B Bingham number.
B⋆ Bingham number at which flow ceases.
f Cost function, vector cost function, cost function
update.

f Vector cost function.
g, g′ Gravitational acceleration (prime denotes buoyancy-

compensated downslope component), m s�2.
hp Plug depth to flow depth ratio.
H Flow depth, m.
Hp Central plug depth at flow centerline, m.
H⋆ Minimum flow depth, m.
J Jacobian matrix of f(xn).
n Iteration number (when subscripted refers to the cur-

rent approximation for parameter).
q Dimensionless down-channel flow rate per unit width.
Q Total down-channel flow rate, m3 s�1.
sn Stress field approximation in augmented Lagrangian

algorithm.
u Dimensionless velocity field.

um Dimensionless maximum surface velocity.
U Down-channel velocity component field, m s�1.

Um Maximum surface velocity, m s�1.
wp Central plug width to flow width ratio.
W Channel width, m.
Wp Central plug width at flow surface, m.
x Solution vector.
x Dimensionless down-channel coordinate.
y Dimensionless cross-channel coordinate.
z Dimensionless coordinate perpendicular to the chan-
nel floor.

a A positive tuning constant for the augmented
Lagrangian algorithm.

b Cross-channel aspect ratio.
b⋆ Minimum aspect ratio for a given Bingham number.
d Convergence tolerance.
ɛ Regularization parameter, s�1.
_� Strain rate tensor, s�1.
_g Dimensionless strain rate vector.
h Apparent viscosity of viscoplastic fluid, Pas.
l Lagrange multiplier.

m, ma Kinematic viscosities of the viscoplastic/ambient
fluids, Pas.

n Dynamic viscosity of the yielded Bingham fluid,
m2s�1.

w Central plug region.
w⋆ Central plug cross region at the critical yield strength.
wr Regions made by replacing the corners of W with

circles of radius r.
W Channel cross section.

r, ra Densities of the viscoplastic and ambient fluids,
kg m�3.

t Stress tensor, Pa.
ty Yield strength, Pa.
ty⋆ Critical yield strength at which flow ceases, Pa.
q Channel inclination.
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x Central plug area to yield surface length ratio, m.
zk Mode number in equations (15)–(17).
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