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Quantum Dissipative Systems and Feedback
Control Design by Interconnection

Matthew R. James, Fellow, IEEE, and John E. Gough

Abstract—The purpose of this paper is to extend J.C. Willems’
theory of dissipative systems to open quantum systems described
by quantum noise models. This theory, which combines ideas from
quantum physics and control theory, provides useful methods for
analysis and design of dissipative quantum systems. We describe
the interaction of the plant and a class of external systems, called
exosystems, in terms of feedback networks of interconnected
open quantum systems. Our results include an infinitesimal
characterization of the dissipation property, which generalizes
the well-known Positive Real and Bounded Real Lemmas, and
is used to study some properties of quantum dissipative systems.
We also show how to formulate control design problems using
network models for open quantum systems, which implements
Willems’ “control by interconnection” for open quantum systems.
This control design formulation includes, for example, standard
problems of stabilization, regulation, and robust control.

Index Terms—Control by interconnection, damping, dissipation,
quantum feedback control, quantum feedback networks, quantum
noise, regulation, robustness, stabilization.

I. INTRODUCTION

I N 1972 J.C. Willems [37] developed a general theory of
dissipative systems for the purpose of stability analysis of

open systems, that is, systems that may be subject to external in-
fluences, [39]. This theory generalizes Lyapunov methods that
apply to closed systems, as well as important results in con-
trol theory including the positive and bounded real lemmas. The
theory is widely used in control system analysis and design. In
particular, methods for stability analysis, e.g., [17], [18], [25],
control design by energy shaping, interconnection, robust con-
trol system design; e.g. [29], [31], [35], [38]–[40] have been
developed. While Willems’ theory applies to quite general non-
linear systems, it has its origins in classical physical systems and
is based on describing energy storage and flows. As a simple
example, consider a passive series RLC circuit. Energy

is stored in the inductor and the capacitor
(here, is the inductance, is the capacitance, is capacitor
charge, and is the current). The external voltage is related
to the internal voltages by , with ,
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and , and this determines the dynam-
ical equation . The rate of
change of stored energy is given by

(1)

The first term on the right hand side is the energy dissipated by
the resistor, and the second term is the power applied to the cir-
cuit by an external source. This expression describes the balance
of energy flows, and implies the inequality

(2)

which is an example (in differential form) of the dissipation in-
equalities considered by Willems. It says simply that the rate at
which energy is stored must be less than the rate at which en-
ergy is supplied; the remainder being dissipated. Inequalities of
this type are of fundamental importance to stability analysis of
open systems. Furthermore, such inequalities can be exploited
to facilitate control system design.

In the physics literature, methods have been developed to
model energy loss and decoherence (loss of quantum coherence)
arising from the interaction of a system with an environment;
see, e.g. [6], [8], [21]. These models may be expressed using
tools which include completely positive maps, Lindblad gen-
erators, and master equations. In the 1980s it became apparent
that a wide range open quantum systems, such as those found in
quantum optics, could be described within a new unitary frame-
work of quantum stochastic differential equations, [12], [13],
[19], where quantum noise is used to represent the influence of
large heat baths and boson fields (which includes optical and
phonon fields). Completely positive maps, Lindblad generators,
and master equations are obtained by taking expectations.

Quantum noise models cover a wide range of situations
involving light and matter. In this paper, we use quantum noise
models for boson fields, as occur in quantum optics, meso-
scopic superconducting circuits, and nanomechanical systems,
although many of the ideas could be extended to other contexts.
Quantum noise models can be used to describe an optical cavity,
which consists of a pair of mirrors (one of which is partially
transmitting) supporting a trapped mode of light. This cavity
mode may interact with a free external optical field through
the partially transmitting mirror. The external field consists of
two components: the input field, which is the field before it
has interacted with the cavity mode, and the output field, being
the field after interaction. The output field may carry away
energy, and in this way the cavity system dissipates energy.
This quantum system is in some ways analogous to the RLC
circuit discussed above, which stores electromagnetic energy
in the inductor and capacitor, but loses energy as heat through
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the resistor. The cavity also stores electromagnetic energy,
quantized as photons, and these may be lost to the external
field. If denotes the physical observable for the energy of the
cavity mode, and if a laser beam is applied as an input , then
the energy dissipation relation for the cavity is of the form

(3)

where is a physical quantity of the cavity (notation is explained
at the end of this section). The term plays the role of ,
and is discussed further in Sections II-A and II-D (it is the Lind-
blad generator applied to ). This inequality relates the rate at
which energy is stored in the cavity to the rate at which energy
is supplied, with the remainder being lost to the external field
(which serves as a heat bath).

Motivated by the need for analysis and design methods for
feedback control systems (e.g. [2], [4], [10], [20], [22], [23],
[42], [43]) in emerging quantum technologies, the principal goal
of this paper is to formalize a notion of dissipation for open
quantum systems in a way that is helpful for quantum con-
trol analysis and design. This is achieved by supplementing the
quantum noise framework discussed above with explicit mecha-
nisms for describing how other quantum systems, called exosys-
tems, may influence the behavior of the system of interest, called
the plant. An exosystem may simply represent another system
with which the plant interacts, or it may represent unmodeled
plant dynamics or other sources of uncertainty. Exosystems pro-
vide an explicit physical representation for the disturbance sig-
nals used in [20], or as a signal source as in a modulated laser.
Controllers (other classical or quantum systems used to control
the plant) may also be regarded as exosystems.

Quantum noise models have a natural input-output structure,
and so it is natural to interconnect systems by connecting the
output field of one system to the input field of another; the
simplest case being a cascade or series connection. Based on
this type of field-mediated interconnection, a theory of quantum
feedback networks (QFN) has been developed [7], [11], [14],
[15], [45]–[47]. We use this QFN framework, together with the
direct couplings between systems not using fields, to describe
how exosystems interact with the plant. The quantum informa-
tion carried by the fields between systems may be regarded as a
“quantum signal”, and so the QFN theory provides a framework
for coherent control, [23], [28], [45], [46].

The fundamental dissipation inequality we present is ex-
pressed in terms of a storage function, and a dissipation
inequality (generalizing (2) along the lines of (3)). The storage
function is a quantum observable which may simply be a phys-
ical quantity related to energy, or some other quantity related
to system performance. The dissipation inequality is meant to
hold for all exosystems in a specified class (which describes the
nature of the external influences being modeled). We provide
an infinitesimal characterization of the dissipation property,
and this important tool is used indispensably in this paper.
This characterization includes (time-domain) generalizations
of the well-known Positive Real and Bounded Real Lemmas,
and is used to study some properties of quantum dissipative
systems. We show that essentially all open quantum systems are
dissipative for a suitable choice of supply rate. This “natural”

supply rate includes terms corresponding to the classical notion
of passivity, a dissipation or damping term due to the quantum
noise, and a dissipation term due to the exosystem.

The network description used in this paper turns out to be
very appropriate and efficient, and was inspired by the behav-
ioral “control as interconnection” perspective in Willems’ more
recent work, [38], [39] (also [33], [34], [41]). Indeed, the frame-
work we develop can also be used to describe how systems are
influenced by controllers, and hence is useful for control design
by interconnection, [38], [39]; see also [29]–[31], [35]. We give
a description of how to formulate control design problems in
these terms, such as standard problems of stabilization, regula-
tion, and robust control. It is important to appreciate that because
we express control design problems in terms of quantum noise
models, the controllers obtained can (in principle) be physi-
cally realized—this is vital when the controller is to be itself
a quantum system, as in coherent control, [20], [22], [23], [27],
[28], [43].

Note that issues of stability are important in the analysis and
design of quantum networks. This is because quantum networks
may contain active elements that introduce energy, and when-
ever this happens, stability of feedback loops in the network is
a basic consideration (small gain theorem, [9], [48], [49]). En-
ergy may be introduced by design, such as via an amplifier, or
by accident due to undesirable environmental influences. It also
plays a role in regulation of a system to a desired equilibrium
mode of operation.

We begin in Section II by describing the mathematical models
for quantum feedback networks we use, which are expressed in
terms of the quantum stochastic calculus, [12], [19]. This sec-
tion includes some material aimed at helping orient the reader
to the ideas, models and notation used in the remainder of this
paper. Our main definitions and results for quantum dissipative
systems are given in Section III, which includes some examples
for illustration. Section IV contains a formulation of control by
interconnection methodology for quantum dissipative systems,
which we illustrate using simple examples. The Appendix con-
tains some definitions and results needed in the paper.

Background references. A number of articles and books are
available to help readers with the background material on which
the present paper is based. The papers [36] and [45] provide
excellent introductions to aspects of the quantum models we
use. The paper [5] is a tutorial article written to assist con-
trol theorists and engineers by providing introductory discus-
sions of quantum mechanics, open quantum stochastic models,
and quantum filtering. The book [13] is an invaluable resource
for quantum noise models and quantum optics, while the book
[32] provides a detailed mathematical treatment of the Hudson-
Parthasarathy theory of the quantum stochastic calculus. The re-
cently published book [44] provides significant physical insight
into quantum measurement and feedback. The textbooks [3] and
[24] are excellent references on quantum mechanics. The papers
[14] and [15] contain the basic results concerning quantum feed-
back networks used in this paper.

Notation. In this paper we use matrices with
entries that are operators on an underlying Hilbert space.
The asterisk is used to indicate the Hilbert space adjoint of
an operator , as well as the complex conjugate of a
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complex number (here, and are real).
Real and imaginary parts are denoted and

respectively. The conjugate transpose
of a matrix is defined by . Also defined

are the conjugate and transpose

matrices, so that . In the physics
literature, it is common to use the dagger to indicate the Hilbert
space adjoint. The commutator of two operators is defined
by . is the Dirac delta function, and
is the Kronecker delta. The tensor product of operators
defined on Hilbert spaces , is an operator defined
on the Hilbert space (tensor product of Hilbert spaces)
defined by for ,

; we usually follow the standard shorthand and write
simply for the tensor product, and also
and .

II. PRELIMINARIES

A. The Classical RLC Circuit Revisited

Before embarking on a description of the class of open
quantum systems considered in this paper, we revisit the
simple classical RLC circuit mentioned in Section I in order
to provide some conceptual and notational connections with
the quantum theory. We may choose the charge and current as
the phase space variables for the circuit, , which
evolve according to the system of equations ,

.
For an arbitrary smooth function of the state,

we have by the chain rule

(4)

or in compact form , where is the directional
derivative operator .
In particular, the stored energy is a
quadratic function of the state variables, and the energy balance
(1) is obtained from setting

(5)

where is the function on the phase plane, also
dependent on the input voltage .

The energy balance relation (1) and dissipation inequality (2)
become

(6)

and

(7)

where the respective supply rates are and
. If we regard the voltage as an input and the current

as an output function of the phase space variables, then it can
be seen that the supply rates are functions of the phase space
variables and the input.

Functions of the phase space variables corre-
spond to the physical variables of interest, and are basic to any
description of classical mechanics. When considering open
physical systems, such as the RLC circuit, or the open quantum
systems discussed in this paper, it is helpful to have a notation
for indicating to which physical system a physical variable
belongs. If we write for RLC circuit physical variables
(the set of smooth functions on the phase space manifold) then
this is in fact a commutative algebra which may be extended to
a -algebra by taking complex-valued functions with the choice
of complex conjugation as the -operation. Likewise we could
write for functions of the external variables . We then see
that the energy function belongs to . The supply rates
however belong to the algebra of functions over both state vari-
ables and external variables, the tensor product ,
so that , . In the quantum setting, these
algebras will be non-commutative (in fact algebras of operators
over Hilbert spaces).

B. Quantum Mechanics

In quantum mechanics [24] physical quantities like energy,
spin, position, etc., are expressed as observables; these are rep-
resented as self-adjoint operators acting on a Hilbert space .
Other physical variables, like annihilation operators (see Ap-
pendix B)—which are not self-adjoint—are also of importance.
We will use the notation to refer to the collection of phys-
ical variables for a system (in general is a non-commutative

-algebra). We refer to as the physical variable space for the
system. Unit vectors are called state vectors. When a
quantum system is in a state defined by a state vector ,
the expected value of an observable is defined in terms
of the Hilbert space inner product: . In what follows we
use the shorthand notation to denote expectation when the
underlying state is understood.

The postulates of quantum mechanics state that for a closed
system the evolution of states and observables are given in terms
of a unitary operator satisfying the Schrödinger equation

(8)

with initial condition (the identity). Here, is an
observable called the Hamiltonian, and represents the energy of
the system. State vectors evolve according to . Al-
ternatively, we may view state vectors as fixed in time, while ob-
servables are taken to evolve according to :
this is the Heisenberg picture. Both pictures are equivalent and
the average of an observable in state at time is given
equally by .

In this paper we are interested in open quantum sys-
tems—systems that interact with other systems or an environ-
ment. These systems will be defined in Section II-D in terms
of a stochastic generalization of the Schrodinger (8) involving
quantum noise. Before considering these open system models,
we look at a simple situation of two interacting systems in the
next section.

C. A Pair of Interacting Systems

Consider a pair of independent systems (the plant) and
(the exosystem, or signal generator). The physical variable



JAMES AND GOUGH: QUANTUM DISSIPATIVE SYSTEMS AND FEEDBACK CONTROL DESIGN BY INTERCONNECTION 1809

spaces for these systems are denoted and respectively,
and consist of operators defined on underlying Hilbert spaces

and respectively. The physical variable space for the
combined system is the tensor product , consisting of
operators on the Hilbert space . All operators in
may be regarded as operators in by identifying
with , and similarly for . As a consequence, all
variables in commute with all variables in .

Let and be the Hamiltonians for each
of the systems, respectively; this would be enough to specify
their dynamics as isolated, closed, systems. However, we allow
them to interact by exchanging energy as specified by an inter-
action Hamiltonian of the form

(9)

where and . The total Hamiltonian for the
combined system is , and the dynamics
are given by the Schrödinger (8) using this total Hamiltonian.

Now let’s consider the effect of the exosystem on the plant
. Let be a non-negative observable that commutes

with . Then from (8) we see that evolves according to

where . From this we see that is lossless,
with the right hand side of this relation giving the net rate at
which energy is delivered to from (cf. [35, eq. (2.39) and
Chapter 4], and Section III-A below).

Remark 2.1: While a detailed discussion of physical mod-
eling is beyond the scope of this paper, we briefly discuss a
classical analogy to help explain the common form (9) of the
interaction Hamiltonian used here. Consider a series LC
circuit connected to an external circuit (with Hamiltonian

), for which the total Hamiltonian is ,
where . In classical mechanics,
evolves according to the equation

.1 The term is the interaction Hamiltonian, with .
The quantity here is given by . Thus with
input voltage and coupling variable , the quantity
is a conjugate variable, the current . The interaction term
may arise as a simplification or approximation of a more de-
tailed description of the interaction.

In the general framework we present in this paper (Sec-
tion III), is an open system, and may be connected to
via field connections in addition to direct couplings of the form
(9). Open quantum systems are summarized in Section II-D,
and mechanisms for interconnecting them are reviewed in
Section II-E.

D. Definitions

We consider an open quantum system with physical vari-
able space consisting of operators defined on an under-
lying Hilbert space . The self-energy of this system is de-
scribed by a Hamiltonian . This system is driven by a

1Here, the Poisson bracket is defined by ��� �� � � ����, where � �

� �

�� �
.

collection of field channels given by the quantum stochastic
processes

...
...

...
...

These respectively describe annihilation of photons in the field
channels, and scattering between channels, and are operators
on a Hilbert space , with associated variable space . Specif-
ically, is the Hilbert space describing an indefinite number
of quanta (called a Fock space [32]), and is the space of
operators over this space. We assume that these processes
are canonical, meaning that we have the following non-van-
ishing second order Ito products: ,

,
and . The simplest situation
corresponds to that of a vacuum state for the field
channels, in which case the input processes are purely quantum
noise.

Coupling of the system to the field is defined using

...
...

...
...

respectively a scattering matrix with operator entries
satisfying , and a vector of coupling operators

.
We use the notation to indicate an

open system specified by the parameters , and . The
Schrodinger equation is

(10)

with initial condition determines the unitary mo-
tion of the system, in accordance with the fundamental pos-
tulate of quantum mechanics. Given a system operator

, its Heisenberg evolution is defined by
and satisfies

(11)

In this expression, all operators evolve unitarily (e.g.
) (commutators of vectors and matrices of operators are

defined component-wise), and tr denotes the trace of a matrix.
We also employ the notation

(12)

In what follows we write:

(13)

for the generator of the plant . The components of the output
fields are defined by ,
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and satisfy the quantum
stochastic differential equations

(14)

(15)

where , etc., as above. The output processes also
have canonical quantum Ito products.

It can be seen that the parameters provide a
compact specification of the open system, assuming canonical
field inputs, since they determine the behavior of the system,
via the flow , as determined by the Schrodinger (10). In the
case of a purely static system, we sometimes use the shorthand

. Important special cases are , the
trivial (identity) system, and , where

If is an initial system state vector, then with vacuum
fields the state vector of the complete system is . Then the
quantum expectation is defined to be .
In order to describe how quantum noise beyond time is aver-
aged out, we introduce a collection of physical variable
spaces such that is generated by operators in
and the quantum noises , . Then is adapted,
i.e. , and . There is an associated vacuum
expectation [32, Chapter 26] with respect
to which the open dynamics satisfies

(16)

for all . In this expression depends on the initial
operators and the quantum noises up to time , while the noises
beyond time have been averaged out; it captures the Markovian
nature of the model.

E. Quantum Feedback Networks

In this section we describe a quantum framework for feedback
networks that will be used in the sequel, [14], [15]. Quantum
feedback networks (QFN) consist of open quantum components
that are interconnected by means of field channels that serve as
“quantum wires”. These channels enable the directional trans-
mission of quantum signals, thereby allowing the components
to interact; the components may also interact directly via suit-
able couplings that facilitate bidirectional energy exchanges, as
discussed in Section II-C. Here we focus on the directional in-
terconnections. The QFN framework is expressed in terms of
elementary constructs that enable efficient description of net-
works. These network constructs are defined in terms of the
open system parameters discussed in Section II-D.
As we will see, the framework generalizes the familiar transfer
function descriptions widely used in classical linear systems
theory; however, we emphasize that the QFN framework holds
for open quantum components whose dynamical variables may

Fig. 1. Concatenation of two systems, � � .

Fig. 2. Series or cascade connection of two systems, � � � .

evolve nonlinearly (by this we mean that the differential equa-
tion for a component operator may be nonlinear).

QFN modeling proceeds as follows. Before implementing
any connections, we first collect the components together. This
is described using the concatenation product , Fig. 1. Next, we
identify any series connections between components, which we
describe using the series product , Fig. 2. Networks that can be
completely described using the concatenation and series prod-
ucts are called reducible networks (these were studied in detail
in [15]). Any remaining signal connections will form part of a
feedback loop that can be described in terms of a linear frac-
tional transformation, [14]. All direct couplings between
components can be accommodated using an interaction Hamil-
tonian of the form (9).

Suppose we are given two such systems:
and , with physical variable spaces and

, respectively. The products we define below combine these
systems to produce new systems defined in terms of parameters
drawn from the tensor product of variable spaces .

The concatenation of and is the system
defined by

(17)

as illustrated in Fig. 1 (where each arrowed line may represent
multiple channels). It is possible to include zero-dimensional
inputs into this scheme as a special case: if a system in isola-
tion has no inputs then it is a closed dynamical system and its
dynamics are described by a Hamiltonian . It is convenient
just to write this as with the absence of inputs
denoted by blanks; we then just set

and more generally
.



JAMES AND GOUGH: QUANTUM DISSIPATIVE SYSTEMS AND FEEDBACK CONTROL DESIGN BY INTERCONNECTION 1811

Now suppose and
have the same number of field channels (i.e. and have the
same length). Then the series product is defined by

see Fig. 2.
Several useful facts concerning the series product are

the following: (i) given a system , we have
,

(ii) the inverse of a system exists and is given by
, by which it is meant that

, and (iii) for any
two systems and we have where

.
For future reference, we mention that the generators for the

systems formed with the concatenation and series products are

(18)

(19)

Next, consider a system of the form

(20)

The feedback network defined by Fig. 3 is well-defined
provided is invertible, in which case the parameters for

are given by the linear fractional transformation [14]

Remark 2.2: Underlying the series and LFT network con-
structs is the simple idea of equating the input with a slightly
delayed version of the output , and then letting the delay tend
to zero. Full technical details are given in [13]–[15].

III. QUANTUM DISSIPATIVE SYSTEMS

We are now in a position to introduce a definition of dissi-
pation for open quantum systems described by quantum noise
models. As we have indicated above, since dissipation concerns
the loss of energy or coherence from a system of interest, which
we call the plant, to an external environment, or the effect of

Fig. 3. Quantum feedback network described by the linear fractional transfor-
mation � ���.

an external system or environment on the system, we model the
external influences as another open system, which we call an ex-
osystem. Since we wish to consider the effect of a range of ex-
osystems (analogous to a range of signal generators connected
to an RLC circuit), we specify a class of allowed exosystems for
the dissipation property. The definition, together with some ex-
amples, is presented in Section III-A using the QFN framework
from Section II-E.

A. Definitions and Differential Characterization

A plant is an open system of the type defined in Sec-
tion II-D

(21)

It is the system of main interest, and is regarded as being part
of a possibly larger network of systems. The space of physical
variables for is denoted . Since our interest is in modeling
and analyzing the effect of the external influences on the plant,
we assume that certain of its input and outputs are available for
connection to an exosystem , an open system

(22)

It is also assumed that certain plant variables are available for
direct interconnection with an exosystem. Thus the plant def-
inition and interconnection specification determine how it can
interface with exosystems , as discussed in Section II-E. The
interconnections determine a network , as shown in Fig. 4
(a star product architecture, [14], [16], [49]). In terms of the net-
work constructs of Section II-E, we have explicitly

(23)

using the LFT (Fig. 3), where

(24)

and is a direct interaction Hamiltonian.
We will allow exosystems to vary in a class of such

exosystems. The operators constituting the system parameters
belong to an algebra . The input to the system

is assumed to be a canonical vacuum field.
Let be a self-adjoint function of the

exosystem parameters, depending on the plant parameters (e.g.
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Fig. 4. Plant-exosystem network � �� .

a quadratic form), called a supply rate. In general, a supply rate
may contain constant terms (see Example 3.10).

We say that the plant is dissipative with supply rate with
respect to a class of exosystems if there exists a non-negative
plant observable such that

(25)

for all exosystems and all . Here, the dynamics is
that of the network , is the initial vacuum expectation
onto (which contains ), and denotes operator
ordering, see Appendix C.

We shall refer to (25) as the dissipation inequality. It is a nat-
ural generalization of Willems’ definition [37] to open quantum
systems, building on [20]. Following the terminology from [37],
when equality holds in (25) for all exosystems , we say
that the plant is lossless. This terminology refers to the fact
that in such cases all energy flows and storages have been ac-
counted for; the total system (plant, exosystem, fields) does not
loose energy. Important special cases and applications of the
dissipation inequality will be discussed below.

We next present the infinitesimal version of the dissipation
inequality (25) in the following theorem.

Theorem 3.1: Let be a plant, and be a given net-
work structure for a class of exosystems. Then the plant
is dissipative with supply rate with respect to if and only if
there exists a non-negative plant observable such that

(26)

for all exosystems .
Proof: Assume is dissipative as stated, and select any

exosystem and consider the plant-exosystem network
. Now apply (16) to the network to obtain

(27)

Now combine this with (25) to obtain (26). The converse follows
by reversing this argument and integration.

Note that the dissipation inequality (26) involves only plant
and exosystem operators, since the LHS depends on operators

in the algebra (the noise has been averaged out by
).
Remark 3.2: (Non-Autonomous Case.): For non-autonomous

situations, the plant and exosystem operators may depend on
time (they can even be random provided they are adapted), and
the dissipation inequalities take the forms

(28)

for all and all exosystems , and

(29)

for all and all exosystems .
In general we can expect physical systems to be dissipative

in some sense, and indeed we characterize this precisely in the
next theorem. In what follows we denote by the class of ex-
osystems without any particular constraints (unrestricted)—the
only requirement is that members of are open systems that
can be connected to the plant. The following simple (but impor-
tant!) result follows from a calculation similar to that used to
prove Theorem 3.1.

Theorem 3.3: Let be a plant, and be
a given network structure for the class of (unconstrained)
exosystems. Let be a non-negative observable, . Then

is lossless (hence dissipative) with respect to for a supply
rate given by

(30)

with storage function .
Theorems 3.1 and 3.3 contain special cases of interest,

e.g. time domain versions of the Bounded and Positive Real
Lemmas, as well as fundamental energy balance properties of
physical systems. See Theorems 3.6 and 3.7 below.

It is instructive to examine the form of that “natural” supply
rate (defined by (30)) for the specific interconnection between
the plant and exosystems given
by the series connection

(31)

and where the Hamiltonian of the exosystem has the form

(32)

where is fixed and commutes with (this pro-
vides a mechanism for direct coupling). Let be a non-nega-
tive observable such that . Then we have

, so that the plant satisfies
the lossless energy rate relation

(33)

where . This relation may be regarded as a
generalization of the well-known passivity relation for classical
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Hamiltonian systems (see, e.g. [35, eq. (2.39) and Chapter 4]).
If we think of as an “output” quantity (not necessarily part
of an output field channel!), then the last two terms correspond
to a product of input and output terms, i.e. an energy flow
into the plant from the exosystem—these terms capture the
passivity of the plant, as we now explain. The term
is known in quantum physics as a “dissipation” or “damping”
term, which in the model arises from the quantum noise in the
field; when negative, this term represents energy lost from the
plant to the field (heat bath). The first term, , is due to
the exosystem and is in general zero when
commutes with plant operators. Indeed, if we integrate (33) and
take expectations with respect to a joint state consisting of a
plant state vector for which and the vacuum
state for the network input fields, we find that

(34)

which generalizes well known passivity inequalities, [1]. Pas-
sivity and gain will be discussed in more detail in Section III-C,
which also contains illustrative examples.

B. Stability

In the case of classical deterministic systems, dissipativity
plays an important role in stability analysis, [17], [37]. For in-
stance, strictly passive systems are asymptotically stable. The
purpose of this section is to make this connection in our current
quantum context using a simple exponential stability criterion,
given in the following lemma.

Lemma 3.4: Let be a plant for which there exists a non-
negative observable satisfying the differential inequality

(35)

where and are real numbers. Then for any plant state
we have

(36)

Moreover, if then .
Proof: Integrating the plant dynamics we find that

(37)
Now from [32, sec. 26], we have for , hence it
follows that the expectation ( is the
plant state) satisfies

(38)

From this we deduce . The as-
sertions of the lemma now follow.

We now state a stability result for strictly dissipative systems.
Theorem 3.5: Let be dissipative with storage function

and supply rate . Assume that the supply rate satisfies

(39)

for some real number . Then for the unperturbed plant
we have for any plant state.

This result follows, of course, from Lemma 3.4 and Theorem
3.1. It is possible to consider more general stability results and
this will be taken up in future work.

C. Passivity and Gain

In this subsection we consider passivity and gain properties
for the series plant-exosystem interconnection, (31). In partic-
ular, we present generalizations of the positive and bounded real
lemmas (Theorems 3.6 and 3.7 below). To help make the ideas
clearer, we will assume that the exosystems commute with the
plant. More general results can be formulated using the frame-
work developed in this paper.

Consider a plant , and define a class of ex-
osystems

. We say that is
{\em passive} (with respect to ) if it is dissipative with re-
spect to the supply rate

(40)

for some non-negative real number . Here are
plant operators used to specify the supply rate in (40)
which captures the basic passivity relation (recall (1) and (34)).
Note that is related to damping. Explicitly, is passive if
there exists a non-negative system observable and a
non-negative real number such that

(41)

for all exosystems and all .
Theorem 3.6: (Positive Real Lemma): A plant

is passive (with respect to ) if and only if there exists a non-
negative system observable and a non-negative real
number such that

(42)

(43)
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Proof: We use some results from the Appendix in what
follows. If is passive, there exists a non-negative system ob-
servable and a non-negative real number such that

(44)

for all exosystem parameters
. Setting and we obtain (42). Now let vary

freely but commuting with plant operators to deduce (43).
The Bounded Real Lemma is used to determine the gain of

a system, and in conjunction with the Small Gain Theorem, can
be used for robust stability analysis and design, [9], [16], [49].
Consider a plant , together with the exosystem
class . We
say that has gain (with respect to ) if it is dissipative
with respect to the supply rate

(45)

for a real number , and class ; i.e. there exists a non-
negative system observable and a non-negative real
number such that

(46)

for all exosystems and all . Here, is a real
number (gain parameter), and , are plant operators
used to specify a performance quantity used in the
supply rate in (45).

Theorem 3.7: (Bounded Real Lemma): A plant
has gain (with respect to ) if and only if there

exists a non-negative system observable and a
non-negative real number such that

(47)

and

(48)

for all exosystem parameters . If exists, then
has gain (with respect to ) if

(49)

Proof: If has gain , then there exists a non-negative
system observable and a real number such that

(50)

for all exosystem parameters . From the Appendix we see that
, hence (47). In equality (48) also follows.

Next, if exists, define . Then
by completion of squares

This inequality and (49) imply (48) as required.
Examples 3.9 and 3.10 below illustrate the Positive and

Bounded Real Lemmas.
Remark 3.8: Note that the “optimal” exosystem parameter

belongs to , and so does not in
general commute with , and consequently lies outside the
class of exosystems under consideration; i.e., in gen-
eral.

We conclude this section with several examples. The first ex-
ample is that of a two-level system, Appendix A.

Example 3.9: (Two-Level Atom): In this example we con-
sider an open two level atom , where

, , denote the Pauli matrices (Appendix A) and
.

Consider the storage function
(here is the 2 2 identity matrix), and . Then
by (33) we have

(51)

Therefore this system is lossless (passive, recall (40), with
and ), and has gain 1 with respect to the

output quantity (recall (45), with and
), and commuting inputs . When , by

Theorem 3.5 the expected value of tends to zero
(asymptotically stable).

The next example looks at open quantum oscillators, Ap-
pendix B.

Example 3.10: (Open Oscillator): Consider the plant
, where is the annihilation operator

(satisfying the commutation relations , recall Ap-
pendix B), and are complex numbers, and is a frequency
parameter. The case , corresponds to a damped
cavity with coupling , while the undamped oscillator
model for an atom using in [10] has coupling
for which . The coupling arises in
amplifier models, [13].

With and , from (33) we have

(52)

where . From this it can be seen
that is passive whenever (in which
case in (40)). Furthermore, if

(strict passivity) and it follows
from Lemma 3.4 that the plant is stable, i.e. the expected value
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of remains bounded. If in addition then the expected
value of tends to zero.

In the strictly passive case we may complete the squares to
deduce that the plant has finite gain. For instance, if ,

(damped cavity) we have

(53)

and hence the system has gain 1 relative to the output quantity
and commuting inputs ( and in

(45)).
If , the plant is not passive and not stable. The

case is marginally stable.

D. Dissipative Networks

Dissipation properties for QFNs can be analyzed by consid-
ering how the network is constructed in terms of the elemen-
tary constructs (concatenation, series connection, direct inter-
action, LFT) and knowledge of how dissipation “transforms”
under these constructs. This is the purpose of the following re-
sults. The first lemma considers concatenation and series con-
nections.

Lemma 3.11: Let and be given plants and
and are network structures to be specified. Assume
and are dissipative with respect to supply rates and

, storage functions and , and exosystem classes
and respectively. Then:

1) If and ,
then the network is dissipative with respect to
the network structure and exosystem class

; the storage function is and the
supply rate is

(54)

If commutes with and and if commutes with
and , then then the supply rate is simply the sum

of the supply rates:
.

2) If and , then the
network is dissipative with respect to the network
structure and exosystem class

(55)

where
; the storage

function is and the supply rate is

(56)

Proof: For part 1, we have

so that the last line is a supply rate for the concatenated system.
Similarly, for part 2 we have

where
([15, Theorem

3.4]).
In the next lemma, we consider the dissipation properties of

a LFT feedback system in terms of series plant-exosystem net-
work structures.

Lemma 3.12: Let be a plant of the form (20) that is dis-
sipative with supply rate and storage function with
respect to the network structure and exosystem class

. Assume the LFT system is well-defined (Fig. 3, Sec-
tion II-E). Define a class

. Then is dissi-
pative with storage function and supply rate

(57)
for relative to the network structure

.
Proof: Let , and consider the

system . By elimination of the internal signal in the
feedback loop, we see that

is an admissible exosystem for . The result now follows from
the assumed dissipation property for .

The next lemma describes how series architectures may be
used to modify the plant and supply rates.

Lemma 3.13: Let and be systems for which the series
connection is well defined, and assume

(58)

Then the plant is dissipative with storage function and
supply rate with respect to and series network ar-
chitecture if and only if the plant is dissipative
with storage function and supply rate with respect
to and series network architecture .

Proof: The assertions follow from the relation
.

As a consequence of Lemma 3.13, the scattering matrix for
the plant can be moved into the supply rate.

Corollary 3.14: Let be a class of exosystems satisfying

(59)
Then:

1) The plant is dissipative with supply rate
with respect to series architecture if and

only if the plant is dissipative with supply
rate with respect to and
series architecture .
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Fig. 5. (a) Quantum network � formed by interconnecting systems with a
static connection system � ([37, Fig. 1]). (b) Equivalent representation of the
network � � � � �� � �� �� ��.

2) The plant is dissipative with supply rate
with respect to series architecture if and

only if the plant is dissipative with supply
rate with respect to and series
architecture .

The following example illustrates the use of some of the
above results by considering the dissipation properties of a
network analogous to [37, Fig. 1 and Theorem 5, sec. 4].

Example 3.15: Consider a network consisting of plants
interconnected via field channels and a static con-

nection system (with complex numerical entries), Fig. 5. In
terms of the notation of this paper, , where

, , and .
Here, , , , are appropriately sized permutation ma-
trices (static components that interchange signals).

We assume that the network of Fig. 5 is well-defined and
that for let be dissipative sys-
tems with supply rates and storage functions with re-
spect to the network structures and exosystem classes

. Since the network has input channels corre-
sponding to the channels not involved in the interconnection,
we may consider a series architecture , where

with appropriately sized exosystems of the form
. Then we can see that with respect to the network

structure the network is dissipative with storage func-
tion as follows.

First, by the first part of Lemma 3.11, we know that
is dissipative with storage function and supply rate

with respect to the network
structure , where . Next, we write

where

and . Here is the permutation
corresponding to . Now is simply a re-arrange-
ment of , and so it is dissipative with supply rate

, where , storage func-
tion and series architecture.

Write and
. Then is dissipative with respect to the

series structure with supply rate

The supply rate for the network now follows from
Lemma 3.12. The exosystem class can be determined from these
calculations.

E. Uncertainty Modeling

Because of its importance to questions of robustness, in
this subsection we briefly discuss how uncertainty can be
modeled in the framework of this paper. However, a detailed
treatment of robustness is beyond the scope of the present paper.
The plant-exosystem network architecture illustrated
in Fig. 4 together with a specification of exosystem class

provides a scheme capable of accommodating a wide
range of uncertainty models. Here for definiteness we set

, and consider a simple but common situation
of parameter uncertainty.

Consider a plant , where ,
. Here is a real parameter. Then using the definition

of the series product we can write
, which represents the plant as a nominal system

with the uncertainty connected into it from an exosystem
containing the uncertainty terms. Note that and are not
independent systems, and in fact share variables.

The following example looks at the effect of parameter uncer-
tainty on the behavior of the damped oscillator (recall Example
3.10).

Example 3.16: (Parameter Uncertainty): As an example of
this type of uncertainty modeling, consider the plant of Example
3.10, where , and (damped oscillator). Uncer-
tainty arises from the parameter values and , which may
not be known accurately. This type of uncertainty is common
in quantum optics, where is a measure of mirror transmis-
sivity and corresponds to a detuning of the cavity relative to
the input field. In the above notation, let ,

denote the nominal parameters, defining the nominal plant
, a tuned cavity. Let the true parameters

be , , a detuned cavity
. Hence the uncertain exosystem is

(so that and ).
Then a straightforward calculation using (13) shows that

This means that the true system is always stable, regardless
of the uncertainty, though the decay rate does change. This of
course is expected of a passive physical system.

However, other aspects of system performance may be af-
fected. For instance, consider the quadratures ,

, which are rotated by the detuning . Indeed,
if we focus on the observable , then the uncertain exosystem
contribution to the true generator (recall (13)) is

, which depends on the detuning parameter . We see,
therefore, that a detailed robustness analysis with respect to pa-
rameter uncertainty may involve consideration of one or more
physical variables.
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Fig. 6. Plant-controller-exosystem network � � � �� .

IV. FEEDBACK CONTROL DESIGN BY INTERCONNECTION

A. Control Design Formulation

In the previous section we described how the behavior of
plant is influenced by exogenous influences (represented as
exosystems) using a quantum network framework. We now
employ this same framework to consider problems of control
system design. The network framework allows us to efficiently
express a range of control design problems. Indeed, in what
follows we describe a control design procedure that extends
classical methods including passivity-based control (PBC),
“energy shaping” control, interconnection and damping assign-
ment (IDA) PBC, and “control as interconnection”, [29]–[31],
[33]–[35], [38], [39], [41].

Let be a plant which can be interconnected with a controller
and an exosystem in a network , Fig. 6, as de-

scribed in Section II-E. Given an exosystem class we denote
by a class of control systems for which such a network is de-
fined. Since the network parameters (together with
the inputs) determine the dynamical evolution of the plant-con-
troller-exosystem network, control design can be thought of in
terms of shaping the network dynamics in a desired way by ap-
propriate choice of controller . Note that this framework
is general enough to allow us to consider choices for the con-
troller that are quantum, or classical, or a mixture of the two (cf.
[20]).

It is worth remarking that the distinction between plant and
controller is not always clear-cut. Indeed, the plant may need
to be engineered in an appropriate way to facilitate control. For
example, one may desire certain field couplings or direct inter-
action Hamiltonians to be physically available—this clearly re-
lates to the design of the plant. Also, if one is interested in the
expected behavior of the network for a range of variables ,
then it may be appropriate to work directly with the network
generator , and use the form of this generator to
determine the controller , given the objectives. This approach

is roughly dual to a method based on master equations already
in use, see, e.g. [33].

We specify the control objectives by encoding them in a non-
negative observable (the parameters of the con-
trollers are assumed to belong to ), a supply rate

, and a class of exosystems for which a network
is well defined. One then seeks to find, if pos-

sible, a controller such that

(60)

for all exosystems . In other words, one seeks a
controller for which the closed loop system is dissipative with
storage function , supply rate , and exosystem class

. The exosystems are included to facilitate robust control
system design for situations where uncertainty and disturbances
are important. The observable is something which on av-
erage should be small (such as regulation errors), or tend to zero
as time evolves. The supply rate may also contain such “small”
quantities, as well as terms from the exosystems. The supply
rate need not be the natural supply rate for the network—the
inequality in the dissipation inequality can be exploited to
permit other choices.

B. Controller Synthesis

We shall now describe how standard problems of stabiliza-
tion, regulation, and robust control fall within the scope of the
controller synthesis framework formulated in the previous sub-
section. We begin with a general synthesis problem that ab-
stracts stabilization and regulation, since they are closely re-
lated. These problems correspond to a choice of a non-neg-
ative observable whose expected value we wish to go to zero as
time approaches infinity. For definiteness, we choose

, where is a suitable real number, and
, which consists only of the trivial exosystem, so that

.
Theorem 4.1: (Stabilization/Regulation): If there exists a

controller and non-negative observable
such that the plant-controller network satisfies

(61)

for some real , then as exponentially
for any plant-controller state.

This theorem follows from the stability results give in Sec-
tion III-B.

Our next result is a theorem concerning nonlinear quantum
robust control, which generalizes the linear quantum re-

sults given in [20], [23]. We use an exosystem class
to describe the “dis-

turbance” inputs. The next theorem is a consequence of a slight
extension of the Bounded Real Lemma (Theorem 3.7) applied
to the plant-controller network .

Theorem 4.2: ( Control): If there exists a controller
and a non-negative observable such that the

plant-controller network satisfies

(62)
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Fig. 7. Plant-controller network � � � for Examples 4.3, 4.4.

and

(63)

for some real , , and all exosystem parameters
, then the plant-controller network has gain .

C. Design Examples

In this section we provide some simple examples to illustrate
several issues concerning feedback control design of quantum
systems. The examples (Examples 4.3, 4.4) employ the series
architecture shown in Fig. 7.

Our first design example is a regulation problem analogous
to the classical problem of designing a controller to maintain a
given value of capacitor charge in a RC circuit, [30].

Example 4.3: (Regulation): Consider an optical cavity
(a damped open harmonic oscillator, Example 3.10). If

the input field is a vacuum, photons initially in the cavity will
eventually leak out. Suppose our control objective is to main-
tain a given non-zero value for the steady state expected photon
number. Let’s choose a value for the desired steady-state value
of , which corresponds to a number of photons (i.e., we
want the cavity to be in a coherent state in the steady-state,
Appendix B).

Perhaps the simplest thing to do is to provide a source of
fresh photons that can be supplied to the cavity to replace those
that are lost. This might be achieved using a laser source or
modulator connected in series, as in Fig. 7. Here,

is a complex number describing the strength of the source, and
is to be determined, if possible.

We set ,
and for a positive real number , , with

, which consists only of the trivial exosystem, as in
Theorem 4.1. Note that the expected value of in the state
is zero: .

The design problem is to select , a complex number, such
that

for suitable . Then from (19) the LHS of this expression
is

. If we set , , then
this expression equals . Therefore
which implies that the expected value of tends to zero as

(by Theorem 3.5), and the control objective is achieved
(notes also that the expected value of in the cavity coherent
state is zero: ).

Fig. 8. Alternate representation of the plant-controller network � � � in the
form � �� for Example 4.3.

The effect of the controller is to place the cavity input field
in a coherent state . It is well known (e.g. [13]) that this is
equivalent to adding a Hamiltonian term to the cavity model
and setting the input to vacuum. In the notation of this paper,
this follows from (18) and (19): , where

. This is illustrated in Fig. 8.
The next example shows that care must be exercised when at-

tempting to use classical control design methods. Furthermore,
one must take account of quantum noise and the fact that phys-
ical quantities do not in general commute.

Example 4.4: (Stabilization): Suppose we wish to stabilize
the marginally stable system , a special case
of the open oscillators of Example 3.10, using an approach anal-
ogous to a standard method from classical control theory for sta-
bilizing Hamiltonian systems, [35, sec. 4.1].

Consider the series plant-controller network of Fig. 7. From
Example 3.10, we know that this system is passive; if

then

(64)

where and (recall (30), (52)) with
). The classical Hamiltonian stabilization procedure suggests

that we set for some non-negative gain . In order
to implement this feedback, the controller needs to have ac-
cess to the variable . However, is not available in the output
signal , since by the output relation (15) ,
where .

We suppose that the plant can be re-engineered to have a
second field channel which contains . Specifically, we con-
sider the augmented system , where .
The desired variable is now available in the second output of
the augmented system, and so we can form the series connec-
tion , Fig. 9.
However, an examination of the dynamics of the quadratures

and shows that the feedback
system is marginally stable and not asymptotically stable
for all (the feedback system has poles at 0 and ).
Physically, neither of the field couplings and

are sufficient for strict passivity and
hence asymptotic stability.
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Fig. 9. Alternative representation of the plant-controller network � � � for
Example 4.4.

A preferable stabilization scheme would be to replace by
. Then the re-engineered systems and

are both strictly passive and asymptotically stable.

V. CONCLUSION

In this paper we have extended J.C. Willems’ theory of dissi-
pative systems to open quantum systems described by quantum
noise models. With the aid of recently developed methods for
describing quantum feedback networks, we have shown how to
describe external influences as arising from interactions with ex-
osystems. The fundamental dissipation property was expressed
in these terms. We presented an infinitesimal characterization
of the dissipation property, which generalizes the well-known
Positive Real and Bounded Real Lemmas. We also showed how
to implement Willems’ “control by interconnection” for open
quantum systems using quantum network representations. We
believe that the results in this paper provide useful methods for
the analysis and design of quantum dissipative systems, and in-
deed networks of such systems. The quantum network based
results we have presented are quite powerful, and merit further
development. The network paradigm is particularly important
if quantum technology is to move from the device and small
system level to a more complex system level such as is being
contemplated, for example, in the quantum computing commu-
nity.

APPENDIX

A. Two Level Atom (Qubit)

The simplest quantum system has two energy levels and is
often used to model ground and excited states of atoms. Since
the advent of quantum computing, this system is also known as
the qubit, the unit of quantum information. The two level atom
is illustrated in Fig. 10(a), showing the action of the raising
and lowering operators. The Hilbert space for this system
is , the two-dimensional complex vector space. The

Fig. 10. Energy level diagrams. (a) Two-level atom (qbit). (b) Harmonic oscil-
lator.

physical variable space for this system is spanned by the Pauli
matrices [26, sec. 2.1.3], [13, sec. 9.1.1]:

The raising and lowering operators are defined by
. The basic commutation relations are
, , and .

The energy levels correspond to the eigenvalues of .

B. Quantum Harmonic Oscillator

The quantum harmonic oscillator is one of the most important
examples because of its tractability and application to modeling,
[26, Box 7.2], [24, sec. 10.6], [13, sec. 4.1]. Models for the op-
tical cavity and boson fields are based on the quantum harmonic
oscillator. The quantum harmonic oscillator is illustrated in Fig.
10(b), which shows infinite ladder of energy levels and the ac-
tion of the creation and annihilation operators. The Hilbert
space for the quantum harmonic oscillator is ,
the vector space of square integrable functions defined on the
real line. The physical variable space for this system is de-
fined in terms of the annihilation operator , with the ad-
joint of , and the canonical commutation relations

. The action of the annihilation operator may be expressed
as on a domain of func-
tions (vectors) in . The eigenvalues of are the numbers

(number of quanta), with corresponding eigenvec-
tors denoted called {\em number states}.
We have and . For
a complex number , a coherent state is defined by

(Dirac notation), and sat-
isfies the eigenvalue relation .

C. Operator Orderings

In this appendix we review some definitions and results con-
cerning operator ordering.
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Let and be self-adjoint operators on a Hilbert space .
Then by definition means for all vectors

. Using this, we say to mean .
Now fix and self-adjoint, and is arbitrary. Assume

for all operators acting on .
Then we claim that .

To verify this claim, suppose by contradiction there exists
such that .

Now set , where is an arbitrary real number. Now
the hypothesis implies

. Since is arbitrary, this gives a contradiction, estab-
lishing the claim.

Now fix arbitrary operators and . We can use a similar
argument to show that if for all operators
acting on , then .
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