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Time varying parameter (TVP) models have enjoyed an increasing popularity in empirical macroeco-
nomics. However, TVP models are parameter-rich and risk over-fitting unless the dimension of the model
is small. Motivated by this worry, this article proposes several Time Varying Dimension (TVD) models
where the dimension of the model can change over time, allowing for the model to automatically choose
a more parsimonious TVP representation, or to switch between different parsimonious representations.
Our TVD models all fall in the category of dynamic mixture models. We discuss the properties of these
models and present methods for Bayesian inference. An application involving U.S. inflation forecasting
illustrates and compares the different TVD models. We find our TVD approaches exhibit better forecasting
performance than many standard benchmarks and shrink toward parsimonious specifications. This article
has online supplementary materials.
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1. INTRODUCTION

It is common for researchers to model variation in coefficients
in time series models using state space methods. If, for t =
1, . . . , T , yt is an n × 1 vector of observations on the dependent
variables, Zt is an n × m matrix of observations on explanatory
variables and θt is an m × 1 vector of states, then such a state
space model can be written as

yt = Ztθt + εt (1)

θt+1 = θt + ηt ,

where εt is N (0,Ht ) and ηt is N (0,Qt ). The errors, εt and ηt ,
are assumed to be independent (at all leads and lags and of each
other). This framework can be used to estimate time-varying
parameter (TVP) regression models, variants of which are
commonly used in macroeconomics (e.g., Groen, Paap, and
Ravazzolo 2010; Koop and Korobilis 2011). Furthermore,
TVP-VARs (see among many others, Canova 1993; Cogley
and Sargent 2005; Primiceri 2005; D’Agostino, Gambetti, and
Giannone 2009) are obtained by letting Zt contain deterministic
terms and appropriate lags of the dependent variables, setting
Qt = Q and giving Ht a multivariate stochastic volatility form.

Such TVP models allow for constant gradual evolution of
parameters. However, they assume that the dimension of the
model is constant over time in the sense that θt is always an
m × 1 vector of parameters. But there are several reasons for
being interested in TVP models where the dimension of the
state vector changes over time. Recent articles have found that
the set of predictors for inflation can change over time or over
the business cycle (see, for instance, Stock and Watson 2009,
2010).

Similarly, macroeconomists are often interested in whether
restrictions suggested by economic theory hold. For instance,
Staiger, Stock, and Watson (1997) show how, if the Phillips
curve is vertical, a certain restriction is imposed on a particular
regression involving inflation and unemployment. Koop, Leon-
Gonzalez, and Strachan (2010) investigated this restriction in
a TVP regression model and found that the probability that
it holds varies substantially over time. As another example,
consider the VARs of Amato and Swanson (2001) where
interest centers on Granger causality restrictions that imply
that money has no predictive power for output or inflation. It is
possible (and empirically likely) that restrictions such as these
hold at some points in time but not others.

In cases such as those discussed above, the researcher would
want to work with a TVP model, but where the parameters sat-
isfy restrictions at certain points in time but not at others. To
be precise, it is potentially desirable to develop a statistical ap-
proach which can formally model when (and if) explanatory
variables enter or leave a regression model (or multivariate ex-
tension such as a VAR). In short, there are many reasons for
wanting to work with a TVD model where restrictions which
reduce the dimension of the model are imposed only at some
points in time. The purpose of the present article is to develop
such a model. To our knowledge, there are no existing articles in
the econometric literature which address this precise purpose.
In the next section, the related literature will be discussed. Here
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we note that there are, as discussed above, many articles which
allow parameters to change over time and adopt state space
methods. However, this kind of article does not allow for the
dimension of the parameter space to change over time. Further-
more, in previous work (Koop, Leon-Gonzalez, and Strachan
2010), we have developed methods for calculating the probabil-
ity that equality restrictions on states hold at any point in time
(but without actually imposing the restrictions). Finally, there
are some articles, such as Koop and Potter (2011), which de-
velop methods for estimating state space models with inequality
restrictions imposed. However, the aim of the present article is
different from all these approaches: we wish to develop meth-
ods for estimating models which impose equality restrictions on
the states. In other words, the related econometric literature has
considered the testing of equality restrictions on states in state
space models and estimation of states under inequality restric-
tions. But the present article is one of the few which consider
estimation of state space models subject to equality restrictions
on the states (where these restrictions may hold at some points
in time but not others).

An advantage of the TVD models developed in this article
is that they are all dynamic mixture models (see, e.g., Gerlach,
Carter, and Kohn 2000) and, thus, well-developed posterior
simulation algorithms exist for estimating these models. Such
models have proved popular in several areas of macroeconomics
(e.g., Giordani, Kohn, and van Dijk 2007). We consider several
new ways of implementing the dynamic mixture approach
which lead to models that allow for time-variation in both the
parameters and the dimension of the model. We investigate
these methods in an empirical application involving forecasting
U.S. inflation.

2. TIME VARYING DIMENSION MODELS

The dynamic mixture model of Gerlach, Carter, and Kohn
(2000) is a very general type of state space model which can
be used for many purposes. Gerlach, Carter, and Kohn (2000)
derived an efficient algorithm for posterior simulation in this
model. Dynamic mixture models have been used for many pur-
poses. For instance, Giordani, Kohn, and van Dijk (2007) used
them for modeling outliers and nonlinearities in economic time
series models. Giordani and Kohn (2008) used them to model
structural breaks and parameter change in univariate time se-
ries models and Koop, Leon-Gonzalez, and Strachan (2009)
used them to induce parsimony in TVP-VARs. All of these
approaches, however, focus on parameter change. The contri-
bution of the present article lies in using the dynamic mixture
model framework to allow for model change (in the sense that
the dimension of the model can change over time).

2.1 Using the Dynamic Mixture Approach to Create
a TVD Model

The dynamic mixture model of Gerlach, Carter, and Kohn
(2000) adds to (1) the assumption that any or all of the sys-
tem matrices, Zt , Qt , and Ht , depend on an s × 1 vector Kt .
Gerlach, Carter, and Kohn (2000) discuss how this specifica-
tion results in a mixtures of Normals representation for yt and,
hence, the terminology dynamic mixture model arises. The con-

tribution of Gerlach, Carter, and Kohn (2000) is to develop
an efficient algorithm for posterior simulation for this class of
models. The efficiency gains occur since the states are inte-
grated out and K = (K1, . . . , KT )′ is drawn unconditionally
(i.e., not conditional on the states). A simple alternative algo-
rithm would involve drawing from the posterior for K condi-
tional on θ = (θ ′

1, . . . , θ
′
T )′ and then the posterior for θ condi-

tional on K. Such a strategy can be shown to produce a chain
of draws which is very slow to mix. The Gerlach, Carter, and
Kohn (2000) algorithm requires only that Kt be Markov (i.e.,
p(Kt |Kt−1, . . . , K1) = p(Kt |Kt−1)) and is particularly simple
if Kt is a discrete random variable.

In this article, we consider three different ways Kt can enter
the system matrices so as to yield a TVD model. We begin with
a TVD model which adapts the approach of Gerlach, Carter, and
Kohn (2000) in a particular way such that θt remains an m × 1
vector at all times, but there is a sense in which the dimension
of the model can change over time. Since θt remains of full
dimension at all times, our claim that the dimension of the model
changes over time may sound odd. But we achieve our goal by
allowing for explanatory variables to be included/excluded from
the likelihood function depending on Kt . The basic idea can be
illustrated quite simply in terms of (1). Suppose Zt = Ktzt ,
where zt is an explanatory variable and Kt ∈ {0, 1}. If Kt = 0,
then zt does not enter the likelihood function and the coefficient
θt does not enter the model. But if Ks = 1, then the coefficient
θs does enter the model. Thus, the dimension of the model is
different at time t than at time s.

An interesting and sensible implication of this specification
can be seen by considering what happens if a coefficient is
omitted from the model for h periods, but then is included again.
That is, suppose we have Kt−1 = 1,

Kt = Kt+1 = · · · = Kt+h−1 = 0

but Kt+h = 1 and further assume Qt = Q. Then (1) implies:

E (θt+h) = θt−1

but

var (θt+h) = hQ.

In other words, if an explanatory variable drops out of the model,
but then reappears h periods later, then your best guess for its
value is what it was when it was last in the model. However,
the uncertainty associated with your best guess increases the
longer the coefficient has been excluded from the model (since
the variance increases with h).

It is worth stressing that, if Kt = 0, then θt does not enter
the likelihood and, thus, it is not identified in the likelihood.
However, because the state equation provides an informative
hierarchical prior for θt , it will still have a proper posterior.
To make this idea clear, let us revert to a general Bayesian
framework. Suppose we have a model depending on a vector
of parameters θ which are partitioned as θ = (φ, γ ). Suppose
the prior is p(θ ) = p(φ, γ ) = p(γ )p(φ|γ ) and the likelihood is
L(y|θ ). Now consider a second model which imposes the re-
striction that φ = 0. Instead of directly imposing the restriction
φ = 0, consider what happens if we impose the restriction that
φ does not enter the likelihood. That is, the likelihood for the
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second model is L(y|θ ) = L(y|γ ) and its posterior is

p (θ |y) = L (y|θ ) p (θ )∫
L (y|θ ) p (θ ) dθ

= L (y|γ ) p (γ )∫
L (y|γ ) p (θ ) dθ

p (φ|γ )

= p (γ |y) p (φ|γ ) .

Since p(φ|γ ) integrates to one (or assigns a point mass to φ = 0)
integrating p(θ |y) with respect to φ provides us with a valid
posterior for the second model and the integral

∫
L(y|γ )p(θ )dθ

will result in the correct marginal likelihood. This is the strategy
which underlies and justifies our approach.

To explain our second approach to TVD modeling, we return
to our general notation for state space models given in (1). The
state equation can be interpreted as a hierarchical prior for θt+1,
expressing a prior belief that it is similar to θt . In the empirical
macroeconomics literature (see, among many others, Ballabriga,
Sebastian, and Valles 1999; Canova and Ciccarelli 2004; Canova
2007), there is a desire to combine such prior information with
prior information of other sorts (e.g., the Minnesota prior). This
can be done by replacing (1) by

yt = Ztθt + εt

θt+1 = Mθt + (I − M) θ + ηt , (2)

where M is an m × m matrix, θ is an m × 1 vector and ηt

is N (0,Qt ). For instance, Canova (2007) set θ and Qt to have
forms based on the Minnesota prior and set M = gI where g is a
scalar. If g = 1, then the traditional TVP-VAR prior is obtained,
but as g decreases we move toward the Minnesota prior.

In the case of the TVD model, alternative choices for M, θ , and
Qt suggest themselves. In particular, our second TVD model
sets θ = 0m, M becomes Mt which is a diagonal matrix with
diagonal elements Kjt ∈ {0, 1} and Qt = MtQ. This model has
the property that, if Kjt = 1, then the jth coefficient is evolving
according to a random walk in standard TVP-regression fashion.
But if Kjt = 0, then the j th coefficient is set to zero, thus
reducing the dimension of the model.

To understand the implications of this specification for Kt ,
consider the illustration above where m = 1 and, thus θt and Kt

are scalars and see what happens if a coefficient is omitted from
the model for h periods. That is, suppose we have Kt−1 = 1,

Kt = Kt+1 = · · · = Kt+h−1 = 0

but Kt+h = 1. In this case, (2) implies

E (θt+h) = θ

but

var (θt+h) = Q.

In other words, in contrast to our first TVD model, our second
TVD model implies that, if a coefficient drops out of the model,
but then reappears h periods later, then your best guess for its
value is 0 and the uncertainty associated with your best guess is
Q (regardless of for how long the coefficient has been excluded
from the model). Thus, there is more shrinkage in this model
than in our first TVD model and (in contrast to the first TVD
model) it will always be shrinkage toward zero.

To justify our third approach to TVD modeling, we begin
by discussing the TVP-SUR approach of Chib and Greenberg
(1995) which has been used in empirical macroeconomics in

articles such as Ciccarelli and Rebucci (2002). If we return
to our general notation for state space models in (1), the
model of Chib and Greenberg (1995) adds another layer to the
hierarchical prior:

yt = Ztθt + εt

θt+1 = Mβt+1 + ηt ,

βt+1 = βt + ut , (3)

where the assumptions about the errors are described after (1)
with the additional assumptions that ut is iid N (0, R) and ut

is independent of the other errors in the model. Note that βt

can potentially be of lower dimension than θt , which is another
avenue the researcher can use to achieve parsimony. However,
if M is a square matrix, the hierarchical prior in (3) expresses
the conditional prior belief that

E (θt+1|θt ) = Mβt

and, thus, is a combination of the random walk prior belief of
the conventional TVP model with the prior beliefs contained in
M. Our third TVD model can be constructed by specifying M
and Qt to be exactly as in our second TVD model.

To understand the properties of the third TVD model, we
can consider the same example as used previously (where a
coefficient drops out of the model for h periods and then re-
enters it). Remember that, in this case, the first TVD model
implied E(θt+h) = θt−1 and var(θt+h) = hQ while the second
TVD model implied E(θt+h) = 0 and var(θt+h) = Q. The third
TVD model can be seen to have properties closer to those of
the first approach and yields E(θt+h) = βt−1 and var(θt+h) =
hR + Q (if M is a square matrix).

The first and third TVD models, thus, can be seen to have
similar properties. However, they differ in one important way.
Remember that the first TVD model did not formally reduce
the dimension of θt in that all of its elements were unrestricted
(it constructed Kt in such a way so that some elements of θt

did not enter the likelihood function). The third TVD model
does formally reduce the dimension of θt since it allows for
some of its elements at some points of time to be restricted
to zero.

These three different TVD models can be implemented with
any choice of Kt . However, the approach can become compu-
tationally demanding if the dimension of Kt is large. Consider
a TVD regression model with p predictors. It is tempting to
simply let Kt be a vector of p dummy variables controlling
whether each regressor is included or excluded in the model at
time t. With this approach there are 2p values Kt could take
and, since the Gerlach, Carter, and Kohn (2000) algorithm in-
volves evaluating the posterior for Kt at each of these values, the
computational demands will be high unless p is small. In our
forecasting exercise p = 14 and such an approach is compu-
tationally infeasible. Accordingly, the researcher will typically
seek to restrict the dimension of Kt or the number of values
each Kt can take.

In our forecasting exercise, we only consider models with
no predictors, a single predictor or all p predictors. More pre-
cisely, the vector Kt = (K1,t , . . . , Kp,t ) can only take values in
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I, where

I = {(0, 0, . . . , 0), (1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . ,

(0, 0, . . . , 0, 1), (1, 1, . . . , 1)} .

In other words, Kt can take on p + 2 values. In addition, we
impose a Markov hierarchical prior which expresses the belief
that, with probability c the model will stay with its current set of
explanatory variables and with probability 1 − c it will switch
to a new model. A priori, all of the p + 1 possible new models
are equally likely. Thus we have:

Pr(Kt+1 = i | Kt = i) = c, i ∈ I

Pr(Kt+1 = j | Kt = i) = 1 − c

p + 1
, i �= j, i, j ∈ I

for t = 1, . . . , T − 1.

2.2 Comparison With the Existing Literature

The TVD approach falls into the growing literature which
seeks to place restrictions on TVP regression or TVP-VAR
models in order to decrease worries associated with over-
parameterization problems. The simplest way to treat over-
parameterization problems is to set some of the parameters to
zero. However, conventional sequential hypothesis testing pro-
cedures can run into pretesting problems. Furthermore, it may
be empirically desirable to have a parameter being zero at some
points in time, but not at others, and traditional hypothesis test-
ing procedures do not allow for this. In theory, TVP models, by
allowing a coefficient to be estimated as being near zero at some
points in time, but not others, should be able to allow for the
dimension of the model to change over time, at least approx-
imately. However, in practice, this approximation can be poor
and use of over-parameterized TVP models can lead to poor
forecast performance (see the forecasting results in this article
or Koop and Korobilis 2011).

These considerations have led to a growing literature which
works with models with many parameters, but shrinking some of
them toward zero to ensure parsimony. See, among many others,
Banbura, Giannone, and Reichlin (2010), De Mol, Giannone,
and Reichlin (2008), George, Sun, and Ni (2008), Korobilis
(2011), Koop, Leon-Gonzalez, and Strachan (2009), and Groen,
Paap, and Ravazzolo (2010). However, there are few articles
that deal with model change (i.e., where the model dimension
can be reduced or expanded over time by setting time-varying
coefficients to zero) as opposed to parameter change (an ex-
ception is the dynamic model averaging, DMA, literature. See,
for example, Raftery et al. 2010 or Koop and Korobilis 2011).
Our TVD approach adds to the growing literature on ways
of ensuring parsimony in potentially over-parameterized TVP
regression models. It does so in a different way from existing
approaches (other than DMA) in that it allows for the model
dimension to change over time (as opposed to simply imposing
shrinkage on parameters). In our empirical work presented
below, we investigate whether this property of TVD improves
forecasting performance and find evidence that it does.

We have in mind that TVD could be a useful approach in
cases where the researcher has a potentially high-dimensional
parameter space, such as arises in regressions with many poten-

tial explanatory variables or VARs with many variables or long
lag length. The researcher wishes to allow for time-variation in
parameters and thus wants to use a TVP model. However, in
such cases, most of the parameters in the model are typically
zero, at least at some points in time. The trouble is that the re-
searcher does not know which parameters are zero and at what
time periods they are zero. Our suggested strategy is to work
with the TVP model with high-dimensional parameter space,
but use TVD methods to impose restrictions (in a time-varying
manner) on the potentially over-parameterized TVP model.

2.3 Posterior Computation in the TVD Models

The advantage of the TVD modeling framework outlined in
this article is that existing methods of posterior computation
can be used to set up a fast and efficient Markov chain Monte
Carlo (MCMC) algorithm. Thus, we can deal with computa-
tional issues quickly. For all our models, K is drawn using the
algorithm described in Section 2 of Gerlach, Carter, and Kohn
(2000). Note that this algorithm draws K conditional on all the
model parameters except for θ . The fact that θ is integrated out
analytically greatly improves the efficiency of the algorithm.
We draw θ (conditional on all the model parameters, including
K) using the algorithm of Chan and Jeliazkov (2009), although
any of the standard algorithms for drawing states in state space
models (e.g., Carter and Kohn 1994 or Durbin and Koopman
2002) could be used. All our models have stochastic volatility
and to draw the volatilities and all related parameters we use the
algorithm of Section 3 of Kim, Shephard, and Chib (1998). The
remaining parameters are the error variances in the state equa-
tions and the parameters characterizing the hierarchical prior for
K which have textbook posteriors (see, e.g., Koop 2003). Since
all of these posterior conditional distributions draw on standard
results, we do not reproduce them here, but refer the reader to the
online appendix to this article for details. The online appendix
also includes MCMC convergence diagnostics.

3. FORECASTING US INFLATION

To investigate the properties of the TVD models, we use
a TVD regression model and investigate how the various ap-
proaches work in an empirical exercise involving U.S. inflation
forecasting. The literature on inflation forecasting is a volumi-
nous one. Here we note only that there have been many arti-
cles which use regression-based methods in recursive or rolling
forecast exercises (e.g., Ang, Bekaert, and Wei 2007; Stock and
Watson 2007; 2009) and that recently articles have been ap-
pearing using TVP models for forecasting (e.g., D’Agostino,
Gambetti, and Giannone 2009) to try and account for parameter
change and structural breaks. We compare our TVD models to
a variety of forecasting procedures commonly used in the lit-
erature including constant coefficient models, structural break
models, and TVP models.

3.1 Overview of Modeling Choices and Forecast
Metrics

All of our models include at least an intercept plus two lags
of the dependent variable. We present results for forecasting one
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quarter ahead and one year ahead using the direct method of fore-
casting. Articles such as Stock and Watson (2007) emphasize
the importance of correctly modeling time variation in the error
variance and, accordingly, most of our models include stochas-
tic volatility (although we also include some models without
stochastic volatility for comparison). In the next section, we
provide a list of the predictors we use.

The following is a list of the forecasting models used in this
article, along with their acronyms.

• TVD 1,2,3: the three versions of the TVD model.
• OLS: a constant coefficient model estimated via OLS with

an intercept, three lags, and all the predictors.
• OLS-AR: a constant coefficient model estimated via OLS

with an intercept and two lags.
• OLS-AIC: a constant coefficient model estimated via OLS

with an intercept and at most four lags. The lag length is
selected by AIC recursively.

• OLS-F: a constant coefficient model estimated via OLS
with an intercept, two lags, and two factors constructed
from the predictors using principal components.

• OLSroll, OLSroll-AR, OLSroll-AIC, and OLSroll-F:
rolling window (of size 40) versions of OLS, OLS-AR,
OLS-AIC, and OLS-F, respectively.

• TVP: time-varying parameter model estimated via MCMC
with an intercept, three lags, and the predictors.

• TVP-AR: time-varying parameter model estimated via
MCMC with an intercept and two lags.

• TVPSV and TVPSV-AR: same as TVP and TVP-AR but
with stochastic volatility.

• UCSV: unobserved-components stochastic volatility
model of Stock and Watson (2007) implemented as the
TVPSV model with only an intercept.

• TVPXi: time-varying parameter model estimated via
MCMC with an intercept, two lags, and the ith regres-
sor (i = 1, . . . , 14, ordered in the same manner as in the
list in Section 3.2).

• TVPX1-X14: equally weighted average forecasts of
TVPX1–TVPX14.

• TVPSVXi: same as TVPXi but with stochastic volatility.
• TVPSVX1-X14: equally weighted average forecasts of

TVPSVX1–TVPSVX14.
• PPT-AR: the structural break model of Pesaran,

Pettenuzzo, and Timmerman (2006) on an AR(2) model.

Note that PPT-AR allows for structural breaks in both the
AR(2) coefficients and the error variance. This model requires
the selection of the number of breaks. In the context of a recur-
sive forecasting exercise, we do this as in Bauwens et al. (2011).
See the online appendix for details.

When forecasting h periods ahead, our models provide us
with p(yτ+h|Dataτ ), the predictive density for yτ+h using data
available through time τ . The predictive density is evaluated
for τ = τ0, . . . , T − 1 where τ0 is 1980Q1. Let yo

τ+h be the ob-
served value of yτ+h as known in period τ + h. Using these,
we can calculate root mean squared forecast error and mean
absolute forecast errors. RMSFE and MAFE only use the point
forecasts and ignore the rest of the predictive distribution. For
this reason, we also use the predictive likelihood to evaluate fore-

cast performance. Note that a great advantage of predictive like-
lihoods is that they evaluate the forecasting performance of the
entire predictive density. Predictive likelihoods are motivated
and described in many places such as Geweke and Amisano
(2011). The predictive likelihood is the predictive density for
yτ+h evaluated at the actual outcome yo

τ+h. We use the sum of
log predictive likelihoods for forecast evaluation:

T −h∑

τ=τ0

log
[
p

(
yτ+h = yo

τ+h|Dataτ

)]
.

Note that, if τ0 = 0, then this would be equivalent to the
log of the marginal likelihood. Hence, the sum of log predictive
likelihoods can also be interpreted as a measure similar to the log
of the marginal likelihood, but made more robust by ignoring the
initial τ0 − 1 observations in the sample (where prior sensitivity
is most acute).

In our forecasting exercise, we present results from the in-
dividual models in the preceding list. However, we also do
Bayesian model averaging (BMA) using products of predic-
tive likelihoods. To be precise, we use TVD-BMA which is
calculated using model averaging over the three versions of
the TVD model. These BMA weights vary over time using
a window of ten years. That is, when forecasting yt+h using
information through time τ , we use weights proportional to∏τ−h

t=τ−h−40 p(yt+h = yo
t+h|Datat ) for each model.

We also present results of various standard tests of forecast
performance. The null hypothesis of these tests is that a bench-
mark forecasting model (in our case, always TVD-BMA) pre-
dicts equally as well as a comparator (in our case, one of the
models in the list above). These tests are based on point fore-
casts. Complete details are provided in the online appendix.
Here we note that we use the three test statistics that are labeled
S1, S2, and S3 in Diebold and Mariano (1995). We also carry out
the test of Giacomini and White (2006), which we label S4.

All OLS methods are implemented in the standard non-
Bayesian manner and require no prior (and no predictive like-
lihoods are obtained). In order to make sure all our approaches
are as comparable as possible, our TVP regression models are
exactly the same as our TVD models (including having the same
prior for all common parameters) except that we set Kjt = 1 for
all t and for the j included in the relevant TVP model. For the
TVP models with stochastic volatility we use the same stochas-
tic volatility specification and prior as with the TVD models. For
the homoscedastic version, the error variance has the same prior
as that used for the initial volatility in the stochastic volatility
model.

The precise details of our prior are given in the online ap-
pendix. Here we offer some general comments about prior elic-
itation in TVD models. Since these are state space models, we
require priors on the initial conditions for the states as well as
the initial conditions K1,1, . . . , Kp,1 and the parameters in the
state equations (i.e., state equation error variances and parame-
ters in the hierarchical prior for K). In our experimentation with
different priors (summarized in the prior sensitivity analysis in
the online appendix), we find our forecasting results to be robust
to the choice of prior. The results reported in this article are for
a subjectively elicited but relatively noninformative prior. For
instance, Kj,1 (for j = 1, . . . , p) is chosen to have a Bernoulli
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prior with Pr (Kj,1 = 1) = bj . We then use a Beta prior for bj

with hyperparameters chosen to imply E(bj ) = 0.5 and a large
prior variance. Thus, we are centering the prior over the nonin-
formative choice that Kj,1 is equally likely to be zero or one,
but attach a large prior variance to that choice. We also use
θ1 ∼ N (0, 5 × I ), thus shrinking the initial coefficients toward
zero, but only slightly (since the prior variance is large). For the
stochastic volatility part of the model, we make the same prior
choices as in Kim, Shephard, and Chib (1998). In the TVP-VAR
literature it is common to use training sample priors (e.g., Cogley
and Sargent 2005; Primiceri 2005). As discussed in the online
appendix, we have also used a training sample prior and find re-
sults to be virtually the same as for the relatively noninformative
prior used in the body of the article.

3.2 Data

In this article, we use real time quarterly data so that all
our forecasts are made using versions of the variables available
at the time the forecast is made. We provide results for core
inflation as measured by the Personal Consumption Expenditure
(PCE) deflator for 1962Q1 through 2008Q3. If Pt is the PCE
deflator, then we measure inflation as 100 × log(Pt+h/Pt ) when
forecasting h periods ahead.

As predictors, authors such as Stock and Watson (2009) con-
sider measures of real activity including the unemployment rate.
Various other predictors (e.g., cost variables, the growth of the
money supply, the slope of term structure, etc.) are suggested
by economic theory. Finally, authors such as Ang, Bekaert, and
Wei (2007) have found surveys of inflation expectations to be
useful predictors. These considerations suggest the following
list of potential predictors which we use in this article:

• UNEMP: unemployment rate.
• CONS: the percentage change in real personal consump-

tion expenditures.
• GDP: the percentage change in real GDP.
• HSTARTS: the log of housing starts (total new privately

owned housing units).
• EMPLOY: the percentage change in employment (All Em-

ployees: Total Private Industries, seasonally adjusted).
• PMI: the change in the Institute of Supply Management

(Manufacturing): Purchasing Manager’s Composite Index.
• TBILL: three month Treasury bill (secondary market) rate.
• SPREAD: the spread between the 10 year and 3 month

Treasury bill rates.
• DJIA: the percentage change in the Dow Jones Industrial

Average.
• MONEY: the percentage change in the money supply (M1).
• INFEXP: University of Michigan survey of inflation ex-

pectations.
• COMPRICE: the change in the commodities price index

(NAPM commodities price index).
• VENDOR: the change in the NAPM vendor deliveries in-

dex.
• yt−3: the third lag of the dependent variable.

This set of variables is a wide one reflecting the major theoreti-
cal explanations of inflation as well as variables which have been

found to be useful in forecasting inflation in other studies. The
third lag of the dependent variable is included so that the model
can, if warranted, choose a longer lag length than the benchmark
two lags that are always included. Most of the variables were
obtained from the “Real-Time Data Set for Macroeconomists”
database of the Philadelphia Federal Reserve Bank. The excep-
tions to this are PMI, TBILL, SPREAD, DJIA, COMPRICE,
INFEXP, and VENDOR which were obtained from the FRED
database of the Federal Reserve Bank of St. Louis.

3.3 Results

Tables 1 and 2 present the results of our forecasting exer-
cise for one quarter and one year ahead forecasts, respectively.
Predictive likelihoods, MAFEs, and RMSFEs are telling a very
similar story and it is one which says that the TVD models
forecast very well. The main methods that occasionally forecast
better are parsimonious TVP regression models which include
only one regressor. For instance one year ahead, a TVP regres-
sion model using two AR lags and housing starts as regressors
forecasts slightly better than the TVD models. However, a pri-
ori, a researcher in this field would not know which regressor to
include (e.g., housing starts might not come to mind as being the
logical regressor to include and the more logical choice of the
unemployment rate does not yield a good forecast performance)
and it might have been difficult to discover the fact that this was
a good forecasting model using traditional model selection pro-
cedures. An alternative to the use of TVD models would be to do
sequential hypothesis testing procedures to try and select which
regressors to include in a forecasting model. However, even in
a constant coefficient model, pretesting problems would make
this a risky strategy. In TVP regression models, such problems
would worsen. Furthermore, the TVD model allows for a regres-
sor to be included at some points in time, but excluded at others,
which is not possible with a conventional testing strategy. In
sum, TVD models are always among the top forecasting models
in Tables 1 and 2. Even in the cases where they are not the very
best, it is hard to imagine a simple strategy that the researcher
could use to reliably find the best forecasting model among the
choices we consider. The best alternative appears to be simple
averaging of parsimonious TVP models. In the remainder of this
section we expand on these points.

TVD methods consistently forecast better than any of the OLS
methods we consider. At the quarterly forecast horizon, forecast
gains are small but at the annual horizon they are much larger.
This holds true for simple AR forecasts, OLS methods using
many predictors and factor methods. It also holds true regard-
less of whether we use rolling or expanding windows of data to
produce the OLS estimates. In general, we are finding evidence
that constant coefficient models (even if estimated using rolling
windows) do not forecast as well as TVD models which explic-
itly allow for parameter change and change in model dimension
over time.

The tables also show that nonparsimonious TVP models fore-
cast very poorly as well. TVP regression models which include
all the 14 predictors forecast poorly in our application. In theory,
one might expect such a TVP model to be able to approximate
a TVD model (i.e., the coefficients in the TVP model could
evolve to be close to zero for a particular predictor and, thus, it

D
ow

nl
oa

de
d 

by
 [

A
us

tr
al

ia
n 

N
at

io
na

l U
ni

ve
rs

ity
] 

at
 1

8:
44

 0
9 

A
ug

us
t 2

01
2 



364 Journal of Business & Economic Statistics, July 2012

Table 1. Measures of one quarter ahead forecast performance

Forecast performance Test statistics

Model RMSFE MAFE sum of log pre-like S1 S2 S3 S4

TVD-BMA 0.428 0.311 −54.68 – – – –
TVD1 0.424 0.305 −58.23 −0.850 0.928 0.055 7.217
TVD2 0.430 0.313 −57.91 0.552 0.186 0.926 0.850
TVD3 0.422 0.308 −61.70 −1.269 −0.186 −0.595 23.860
OLS 0.439 0.321 – 0.470 0.371 0.691 –
OLS-AR 0.448 0.321 – 2.052 1.300 1.463 –
OLS-AIC 0.430 0.309 – 0.151 0.371 0.543 –
OLS-F 0.455 0.333 – 2.694 1.857 2.397 –
OLSroll 0.486 0.365 – 2.627 3.343 2.953 –
OLSroll-AR 0.442 0.332 – 1.048 1.300 2.198 –
OLSroll-AIC 0.443 0.328 – 1.066 1.486 1.501 –
OLSroll-F 0.455 0.343 – 1.771 2.600 3.055 –
PPT-AR 0.443 0.315 −61.47 1.447 0.928 2.096 4.582
UCSV 0.438 0.315 −83.72 1.102 −0.186 0.970 1.401
TVP 0.475 0.353 −107.32 2.131 2.043 2.066 6.119
TVPSV 0.476 0.354 −87.12 2.175 2.043 2.096 7.546
TVP-AR 0.430 0.316 −76.11 0.475 1.857 1.672 3.977
TVPSV-AR 0.428 0.313 −55.67 −0.120 0.928 1.047 1.657
TVPX1 0.438 0.318 −73.20 1.290 1.300 1.306 2.425
TVPX2 0.435 0.322 −78.31 1.160 2.043 2.105 6.171
TVPX3 0.433 0.318 −77.48 0.873 2.043 1.879 2.431
TVPX4 0.428 0.314 −77.63 −0.056 −0.186 −0.025 1.331
TVPX5 0.436 0.321 −76.87 1.281 2.414 2.716 5.637
TVPX6 0.437 0.323 −80.75 1.028 3.157 2.072 2.855
TVPX7 0.448 0.330 −83.24 1.395 1.300 1.793 4.796
TVPX8 0.433 0.314 −74.29 0.646 0.928 1.006 1.063
TVPX9 0.473 0.340 −87.11 2.074 1.486 1.196 5.331
TVPX10 0.442 0.324 −80.46 1.991 0.371 1.642 4.732
TVPX11 0.441 0.321 −69.65 1.572 2.785 2.179 3.000
TVPX12 0.461 0.331 −85.63 2.225 1.671 1.656 5.161
TVPX13 0.436 0.321 −80.94 0.797 1.486 1.617 2.659
TVPX14 0.418 0.302 −71.94 −1.265 1.114 0.083 2.405
TVPSVX1 0.434 0.315 −56.85 0.742 0.371 0.780 0.575
TVPSVX2 0.430 0.318 −55.79 0.290 1.486 1.653 5.431
TVPSVX3 0.431 0.314 −56.24 0.391 2.228 1.705 0.576
TVPSVX4 0.425 0.311 −54.14 −0.499 0.000 −0.129 1.433
TVPSVX5 0.432 0.317 −57.00 0.736 2.600 2.311 4.016
TVPSVX6 0.432 0.317 −58.71 0.424 2.043 1.744 1.094
TVPSVX7 0.446 0.329 −55.67 1.226 1.486 1.804 8.222
TVPSVX8 0.432 0.312 −56.48 0.478 0.928 0.887 0.393
TVPSVX9 0.467 0.337 −60.10 1.916 2.043 1.507 3.996
TVPSVX10 0.438 0.322 −58.53 1.458 1.857 1.760 3.554
TVPSVX11 0.434 0.316 −55.45 0.934 1.114 1.639 1.283
TVPSVX12 0.455 0.324 −65.22 1.941 1.486 1.380 4.692
TVPSVX13 0.433 0.318 −59.09 0.553 1.486 1.141 0.911
TVPSVX14 0.415 0.297 −51.78 −1.595 0.000 −1.008 2.814
TVPX1-14 0.432 0.317 −69.32 0.796 2.228 1.981 3.553
TVPSVX1-14 0.429 0.314 −53.87 0.105 1.671 1.452 4.082

could drop out of the model ensuring a dimension reduction). In
practice, this is not happening and TVD models are forecasting
better than TVP models.

TVD is also forecasting better than the popular structural
break model of Pesaran, Pettenuzzo, and Timmerman (2006).
The tables only present results for an AR version of this struc-
tural break model. Including all the predictors leads to much
worse forecast performance.

Our three TVD models exhibit similar forecast performance.
Forecast metrics based on point forecasts indicate that TVD1 is
the best, whereas predictive likelihoods indicate TVD2. How-
ever, overall there is some evidence that use of BMA is beneficial
in improving forecast performance since TVD-BMA exhibits
strong forecast performance by both metrics.

Another class of popular forecasting models are parsimonious
TVP models such as TVP-AR models. For instance, the popular
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Table 2. Measures of one year ahead forecast performance

Forecast performance Test statistics

Model RMSFE MAFE sum of log pre-like S1 S2 S3 S4

TVD-BMA 0.469 0.365 −77.84 – – – –
TVD1 0.471 0.360 −79.23 −0.850 −0.557 −0.482 1.608
TVD2 0.487 0.382 −76.64 0.552 1.671 1.455 5.942
TVD3 0.498 0.393 −86.65 −1.269 1.857 2.328 13.924
OLS 1.319 1.046 – 0.470 6.871 7.780 –
OLS-AR 1.193 0.958 – 2.052 6.128 7.460 –
OLS-AIC 1.193 0.957 – 0.151 6.128 7.460 –
OLS-F 1.215 0.969 – 2.694 5.942 7.394 –
OLSroll 1.435 1.141 – 2.627 7.242 8.155 –
OLSroll-AR 1.226 0.987 – 1.048 6.871 7.576 –
OLSroll-AIC 1.289 1.034 – 1.066 6.871 7.675 –
OLSroll-F 1.148 0.932 – 1.771 6.685 7.394 –
PPT-AR 1.199 0.952 −191.20 1.447 6.685 3.758 73.771
UCSV 0.505 0.366 −84.54 1.102 0.928 0.510 3.413
TVP 0.603 0.471 −108.22 2.131 3.157 3.851 16.242
TVPSV 0.601 0.468 −108.44 2.175 2.971 3.758 15.734
TVP-AR 0.480 0.369 −74.69 0.475 0.371 0.455 3.771
TVPSV-AR 0.477 0.367 −74.18 −0.120 −0.186 −0.017 3.237
TVPX1 0.488 0.374 −79.27 1.290 0.557 1.066 2.909
TVPX2 0.477 0.372 −75.64 1.160 −0.743 −0.551 1.345
TVPX3 0.482 0.375 −76.45 0.873 1.114 0.915 2.188
TVPX4 0.466 0.363 −70.33 −0.056 −1.486 −1.088 4.477
TVPX5 0.469 0.358 −74.89 1.281 −1.486 −1.127 2.359
TVPX6 0.496 0.386 −80.42 1.028 0.000 1.044 2.579
TVPX7 0.493 0.377 −77.59 1.395 −0.186 −0.259 2.065
TVPX8 0.485 0.369 −76.24 0.646 0.000 −0.410 2.462
TVPX9 0.499 0.384 −81.41 2.074 1.486 1.339 5.401
TVPX10 0.479 0.370 −74.86 1.991 −0.186 −0.705 1.687
TVPX11 0.488 0.377 −76.43 1.572 0.371 0.270 2.741
TVPX12 0.505 0.388 −82.30 2.225 0.928 0.763 2.860
TVPX13 0.490 0.378 −77.91 0.797 0.557 0.981 4.835
TVPX14 0.475 0.368 −74.51 −1.265 0.186 −0.047 1.715
TVPSVX1 0.485 0.372 −78.52 0.742 0.743 0.744 2.631
TVPSVX2 0.478 0.371 −74.98 0.290 −0.557 −0.375 2.026
TVPSVX3 0.479 0.372 −75.12 0.391 0.928 0.708 2.437
TVPSVX4 0.462 0.361 −69.10 −0.499 −2.043 −1.523 5.591
TVPSVX5 0.470 0.359 −74.57 0.736 −1.114 −0.937 2.819
TVPSVX6 0.499 0.388 −79.44 0.424 0.557 1.069 3.661
TVPSVX7 0.482 0.372 −76.06 1.226 −1.114 −0.204 1.993
TVPSVX8 0.483 0.368 −75.91 0.478 −0.557 −0.534 2.194
TVPSVX9 0.498 0.383 −80.63 1.916 1.114 1.320 4.417
TVPSVX10 0.480 0.369 −73.99 1.458 −0.371 −1.011 2.674
TVPSVX11 0.481 0.372 −75.17 0.934 0.000 −0.008 2.339
TVPSVX12 0.504 0.388 −81.35 1.941 0.371 0.639 2.553
TVPSVX13 0.485 0.374 −76.92 0.553 0.557 0.849 3.183
TVPSVX14 0.477 0.368 −74.11 −1.595 −0.186 −0.292 2.639
TVPX1-14 0.476 0.368 −75.20 0.796 0.186 −0.215 1.797
TVPSVX1-14 0.474 0.366 −74.22 0.105 0.000 −0.207 2.426

UCSV model of Stock and Watson (2007) is a TVP regres-
sion model with only a time-varying intercept (and stochastic
volatility). The UCSV and TVPSV-AR model does forecast
quite well, although overall TVD-BMA forecasts slightly bet-
ter (see, in particular, the predictive likelihoods for one-quarter
ahead forecasts).

Tables 1 and 2 also indicate the importance of allowing
for stochastic volatility. This is not so clear in terms of point

forecasts, where homoscedastic and heteroscedastic versions of
a model tend to have similar MAFEs and RMSFEs. However,
predictive likelihoods in many cases, increase substantially
when stochastic volatility is added to a model.

Tables 1 and 2 also present results for the four hypothesis
tests of equal predictive performance described above (see also
the online appendix). Remember that these are implemented so
that each model is compared to the TVD-BMA model. Critical

D
ow

nl
oa

de
d 

by
 [

A
us

tr
al

ia
n 

N
at

io
na

l U
ni

ve
rs

ity
] 

at
 1

8:
44

 0
9 

A
ug

us
t 2

01
2 



366 Journal of Business & Economic Statistics, July 2012

values for the test statistics S1, S2, and S3 can be obtained from
the standard normal distribution with positive values for test
statistics indicating that TVD-BMA is forecasting better than
the comparator model. Critical values for S4 are obtained from
the χ2(3) distribution.

Results from these tests are largely supportive of our previ-
ous conclusions. That is, the value of these test statistics almost
always indicates that TVD-BMA is forecasting better and it
is often the case that this forecast improvement is statistically
significant. For instance, the hypothesis of equal predictability
between TVP models containing all the regressors and TVD-
BMA is always rejected. In most cases, the same conclusion
holds for the OLS methods. Tests of equal predictability be-
tween TVD-BMA and parsimonious TVP models yield weaker
results. Often it is the case that TVD-BMA forecasts better than
a particular parsimonious TVP model at the 5% level of signifi-
cance, but it is more common for the test statistics to be positive
but insignificant at the 5% level. Although it is worth noting
that there are many cases where TVD-BMA would forecast
significantly better if we used a 10% level of significance.

Tables 1 and 2 establish that, overall, the TVD approaches
do tend to forecast better than many commonly used bench-
marks. However, they relate to average forecast performance
from 1980Q1 through the end of the sample. Rolling sums of
log predictive likelihoods and square roots of rolling averages
of forecast errors squared for one-quarter ahead and one-year
ahead forecasts can be used to investigate how forecasting per-
formance changes over time. Graphs of these are available in
the online appendix. The most striking thing these graphs show
is the deterioration in forecast performance around the time of
the financial crisis. Unsurprisingly, this occurs with every fore-
casting method. However, this deterioration is much less for the
TVD methods than for some of the other methods. At the quar-
terly forecast horizon, the forecasting superiority of TVD im-
provements in forecast performance only appears after the early
1990s. In fact, there is a period in the 1980s and early 1990s
that the over-parameterized TVP models (which include all the
regressors) forecast better than the other models. However, later
in the sample there is a clear deterioration in forecast perfor-
mance of TVP and TVPSV. At the annual forecast horizon, this
pattern is not found. The TVP regression models forecast poorly
from the very beginning of our forecast period.

4. CONCLUSIONS

In this article, we have presented a battery of theoretical and
empirical arguments for the potential benefits of TVD models.
Like TVP models, TVD models allow for the values of the
parameters to change over time. Unlike TVP models, they also
allow for the dimension of the parameter vector to change over
time. Given the potential benefits of a TVD framework, the task
is to build specific TVD models. This task was taken up in
Section 2 of this article where three different TVD models were
developed. All these models are dynamic mixture models and,
thus, have the enormous benefit that we can draw on existing
methods of posterior computation developed in Gerlach, Carter,
and Kohn (2000).

An empirical illustration involving forecasting US inflation
illustrated the feasibility and desirability of the TVD approach.

SUPPLEMENTAL MATERIAL

The online appendix, which accompanies this paper, is also
available at http://personal.strath.ac.uk/gary.koop/research.htm.
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