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Diversity in CD8" T cell differentiation

lan A Parish and Susan M Kaech

CD8" T cells are key effector cells of the adaptive immune
system, however their activity must be tightly regulated to allow
pathogen clearance whilst preventing immunopathology and
autoimmunity. In this review, we summarise the diversity of
responses that CD8" T cells make to antigenic stimulation with
afocus on how CD8* T cell responses are regulated to achieve
different immune outcomes. In particular, we discuss
phenotypic diversity during tolerance induction as well as
signals that drive effector and memory cell differentiation in
response to infection.
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Introduction

The peripheral CD8" T cell repertoire is in a constant
state of flux as these cells see a myriad of environmental
signals that are continuously varying. In the steady state,
naive CD8" T" cells must compete for homeostatic survi-
val signals, such as MHC class I (MHC I) and interleukin-
7 (IL-7), in order to survive. Moreover, antigen encounter
can synergise with environmental signals to drive CD8" T
cells down numerous differentiation states that vary both
in effector function and survival capacity. Correct co-
ordination of these differentiation states is crucial for
both the maintenance of peripheral tolerance and the
expansion and persistence of pathogen-specific clones.
This review aims to summarise the diversity of CD8" T’
cell responses to antigen, with a focus on recent work in
the fields of CD8* T cell tolerance, effector cell differ-
entiation and memory (Figure 1).

Multiple paths to peripheral tolerance

Whilst autoreactive CD8" 'T' cells are purged from the
reportoire during thymic negative selection, this is not a
perfect process, and rogue autoreactive CD8" T cells are
often released into the periphery [1]. Peripheral tolerance

mechanisms have thus evolved to purge the repertoire of
these dangerous self-reactive cells. Dendritic cells (DCs),
a key antigen-presenting cell population, are thought to
drive this process by inducing tolerance within any T cells
that recognise antigen presented by DCs in the steady
state.

Upon steady-state antigen recognition, peripheral toler-
ance induction in CD8" T cells can result in two distinct
differentiation states: deletion and anergy (Figure 1). In
both tolerance fates, CD8" T cells generally fail to develop
effector functions despite proliferating in response to
antigen [2,3], although cells can pass through an effector
phase ez route to tolerisation in some models [4,5]. How-
ever, despite these similarities, each tolerance fate exhibits
unique features. Whilst anergic CD8" 'T' cells persist in a
hyporesponsive state caused by T cell receptor (T'CR)
signalling defects [3], cells undergoing deletion die by
apoptosis triggered by the proapoptotic BH3-only protein
Bim [6]. Nevertheless, contraction does occur in models of
CD8"* T cell anergy and this death requires Bim (IA Parish
and WR Heath, unpublished observations). The biological
reason for maintaining anergic cells is currently unclear,
but one possibility is that anergic CD8" T cells adopt an
immunoregulatory state [7].

Deletion and anergy are often considered disparate cell
fates, however recent data have questioned whether these
cell fates are as molecularly distinct as previously thought.
One of the features of anergic T cells is upregulation of the
transcription factors Egr-2 and Egr-3 by NFAT activation
in the absence of AP-1 activation [8,9]. Egr-2 and Egr-3
then drive expression of immunosuppressive E3 ubiquitin
ligases, such as Cbl-b, which degrade key signalling com-
ponents and attenuate T'CR signalling capacity [10]. Inter-
estingly, both Egr-2 and Cbl-b (as well numerous other
anergy associated genes) were strongly upregulated during
deletion [11] suggesting that molecular parallels exist
between deletion and anergy. Furthermore, signalling
through the inhibitory signalling molecule PD-1 is
required for both CD8" T cell anergy [12] and deletion
[13,14]. Finally, atleastin CD4" T cells, blocking deathina
model of deletion leads to a fate of anergy [15°]. Although
still speculative, it is possible that common genetic path-
ways direct states of anergy and deletion in tolerised CD8*
T cells, but the outcome is largely dependent on the overall
level of TCR signalling. Itis known that high antigen levels
typically cause anergy whereas lower antigen levels lead to
deletion [16°]. Thus, in situations of weak or tissue-
restricted antigen presentation, deletion may prevail,
because the expression of genes inhibitory to T'CR signal-
ling, coupled with lower IL.-7 receptor expression [11],
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A model for generating diverse CD8" T cell fates. (Top portion) Naive CD8" T cells (brown cell) that encounter antigen on steady state, tolerogenic DCs
(beige cell) proliferate without acquiring effector functions (dark blue cells) in a process dependent on PD-1 and the molecules Egr-2, Egr-3 (Egr-2/3)
and Cbl-b. Such tolerised T cells typically upregulate PD-1 and downregulate IL-7R as indicated, and either die (black cell) or become anergic (i.e.
deficient in TCR signalling as denoted by the red cross). Antigen (Ag) levels control this process, with high Ag levels promoting anergy, and low Ag
levels causing deletion. (Lower portion) Immunogenic DCs (red cell), which have encountered pathogen-derived products, activate naive CD8* T cells
to form effector cells (cytotoxic granules and production of effector cytokines are indicated). This differentiation process is regulated by molecules
such as Id2, Spi-6, Notch, T-bet and eomesodermin (Eomes). These effector cells can adopt multiple cell fates, such as memory precursor cell fates
(characterised by IL-7R™, KLRG1'®, T-bet", Blimp-1"™, Spi-2a"™ and Bcl-2" expression; bottom left) or short-lived effector cell fates (with IL-7R',
KLRG1", T-bet" and Blimp-1" expression; middle). Such short-lived cells can either become senescent effectors and die by bim-dependent
apoptosis, or persist into early memory as short-lived effector memory cells that are CCR7'°, CD62L'° and KLRG1". By contrast, memory precursor
cells are long-lived and can be CCR7'°, CD62L'°, Blimp-1"™ effector memory cells (promoted by 1d2, KIf2 and Blimp-1), or CCR7"™, CD62L", Blimp-1"°
central memory cells (driven by Bcl-6). Evidence exists that KLRG1' effector cells can also give rise to KLRG1" short-lived effector memory cells
(denoted by broken arrow and question marks; NS Joshi, TW Hand and SMK, unpublished observations). In some chronic viral infections, PD-1, LAG-3
and IL-10 causes cells to acquire an exhausted phenotype (light blue cell) characterised by high PD-1 and LAG-3 expression and low IL-7R levels.
Although the exhausted cell is depicted as sharing a common effector cell precursor with other cell fates, it is currently unclear at what point during
effector cell differentiation this fate branches.

promote cell death by ‘starving’ cells of MHC and 1L.-7
survival signals. By contrast, higher antigen levels or ubi-
quitous antigen expression may provide a sufficiently
strong and persistent T'CR signal to permit survival of
tolerised CD8" T cells.

Breaking tolerance: the road to an effector cell
Whereas steady-state presentation of antigen by DCs
causes CD8* T cell tolerance by default, antigen pres-
entation in the context of infection drives clonal expan-
sion and CD8" T cell effector and memory formation.
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Effector CD8" T cells (often termed cytotoxic T lympho-
cytes, or CTL) can kill antigen-bearing target cells using
granzymes and perforin, and can rapidly produce anti-
viral cytokines, such as IFN-y and TNF-a upon TCR
ligation [17]. Effector cell differentiation occurs during
infection partly because DC recognition of pathogen-
derived products creates immunogenic DCs that bear
increased amounts of co-stimulatory molecules and anti-
gen—-MHC complexes. Antigen encounter on immuno-
genic antigen-presenting cells for brief periods iz vitro (as
little as one day) can induce CD8" T cell proliferation and
differentiation into effectors, although longer durations of
antigen encounter 77 vivo augment clonal expansion
[17,18]. Initial 7z vitro studies also suggested that TCR
avidity for antigen regulates effector cell differentiation
[19], however recent iz vivo data suggest that, whilst
avidity regulates the magnitude of the response, effector
(and memory) CDS8" T cells can still form in response to
low avidity interactions [20°]. In addition, pathogen acti-
vated DCs also upregulate Notch ligands, which can
ligate Notch on CD8" T cells and directly induce cyto-
toxicity [21°].

Another key set of signals in effector cell formation during
infection are innate immune system-derived inflamma-
tory cytokines. In particular, IL.-12 and the type 1 inter-
ferons (IFNa/B) promote CTL expansion and
differentiation 7z vitro [22] and iz vive during infection
[23,24], in part through induction of cytotoxic molecules
and IFN-vy production [22,25]. As different infections will
elicit disparate cytokine responses, the cytokines
required for CTL expansion and differentiation may vary
between infections. For example, CTL responses to
Listeria infection are more I1.-12 dependent [26,27],
whilst the CTL response to LCMV infection is more
IFNa/B dependent [23,28°°]. It should be noted that IL.-
12 stimulation is most effective in driving CTL differ-
entiation when received simultaneously with a TCR
stimulus [26,29], suggesting that, like CD4" T cells
[30], antigenic and cytokine signals must be co-delivered
for optimal CTL differentiation. There is additional
evidence that other inflammatory cytokines influence
CTL differentiation, a topic recently reviewed in detail

[22,31].

A number of transcription factors have been identified
that promote C'T'L. differentiation. The T-box transcrip-
tion factor eomesodermin drives acquisition of cytotox-
icity and anti-viral cytokine production [32°°], although
the pathways responsible for eomesodermin induction are
currently unclear. Another T-box transcription factor, T-
bet, also appears to be a crucial regulator of effector cell
differentiation as T-bet deficient CD8" T cells exhibit
diminished cytotoxicity and altered cytokine production
[33°°]. Moreover, IL.-12 induces expression of T-bet
[34°,35] providing a mechanism for I.-12 driven CTL
differentiation. Nevertheless, IL.-12 and IFNa/B can also

trigger IFN-vy production via STAT4 activation [25]. The
presence of both T-bet and eomesodermin is crucial for
normal CTL differentiation as CD8" T cells deficient in
both of these factors develop an aberrant effector phe-
notype characterised by excessive I11.-17 production [36°].
In addition, the transcription factors RBP-] and CREB1
are responsible for the expression of cytotoxic molecules
downstream of Notch signalling [21°]. Repressors of
effector function also exist; the transcriptional repressor
Bcl-6 can repress expression of the cytotoxic molecule
granzyme B [37], although Bcl-6 may be more important
in controlling memory formation than initial effector cell
differentiation (see next section). A major challenge in
the field is to determine how this transcriptional network
is organised to control effector cell formation and main-
tain effector molecule gene expression in memory cells in
the absence of infection.

Whilst the expression of cytotoxic products in C'TLs aids
pathogen clearance, they may also be detrimental to the
lifespan of a C'TL. For example, CTLs lacking the serine
protease inhibitors Spi-6 or Spi-2a, which block granzyme
B and cathepsin B activity, respectively, show reduced
expansion during viral infection [38,39]. Interestingly,
Spi-6 is a gene upregulated by the transcription factor
1d2, and Id2—/— CD8* T cells demonstrate a similar
propensity to die and decreased clonal expansion during
viral infection [40].

It should be noted that during certain chronic viral
infections, CD8" T' cells exhibit dysfunction in their
ability to mobilise effector functions, such as IFN-v,
TNF-a, IL.-2 and cytotoxicity. This dysfunction (often
referred to as ‘exhaustion’) may also be considered a
unique CD8" T cell differentiation state. A network of
inhibitory receptors, including PD-1 [41°°] and LAG-3
[42], are upregulated on exhausted T cells and appear
important in driving the exhausted state. In addition,
augmented IL.-10 production during chronic infection
also promotes an exhausted CD8" T cell state [43,44]
and may operate in a pathway independent of PD-1 [45].
A number of transcription factors are selectively upregu-
lated in exhausted CD8* T cells (such as PBX3 and
Blimp-1) [46] suggesting this effector cell fate is an active
process directed by gene regulatory changes.

Life after death: persistence of CD8" T cells
into memory

At the completion of a CD8 T cell immune response, the
majority of effector cells die by Bim-dependent apopto-
sis [47,48]. However, a proportion of cells survive this
contraction process and persist as a memory T cell
population that confers long-term protection against
reinfection. Memory T cells, although heterogeneous
in phenotype, possess a well-defined set of character-
istics: they exhibit enhanced proliferative capacity
(relative to effector cells), augmented re-expression of
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effector genes upon rechallenge (relative to naive cells) and
a unique ability to self-renew and survive for long-periods
of time. The molecular basis of many of these features is
now emerging. Memory cells exhibit greater proliferative
potential relative to effector cells because of reduced
expression of the cell cycle inhibitor p27%"P, increased
activity of the kinase CDK6 and reduced expression of
the anti-proliferative transcription factor Bmil [49,50].
Augmented effector gene re-expression in memory cells
appears due to chromatin alterations at effector gene loci
[51°,52°]. Finally, unlike naive or effector cells, long-lived
memory CD8" T cells express receptors for both IL-7
(which promotes survival) and IL.-15 (which drives anti-
gen-independent proliferation and self-renewal) [17] lead-
ing to long-term maintenance of the memory population.
In addition, memory cells express higher levels of factors,
such as Bcl-2 and Spi-2a, that both enhance memory cell
formation and survival [38,53].

Cells with memory potential are evident early during the
immune response, although they may not necessarily
display all the hallmark qualities of a mature memory
CD8" T cell [54]. At the peak of the T cell response to
certain acute infections, such as LCMV and Listeria, these
memory precursor cells represent a small proportion of
the effector cell population, and can be distinguished by
higher IL-7 receptor (IL-7R) expression and lower
expression of the senescence marker KLRGI1
[34°,55,56]. These IL-7R" KLRG1" effector CD8* T
cells demonstrate the highest rate of long-term survival,
homeostatic turnover (via [L.-15) and secondary responses
to reinfection [34°,55-57]. By contrast, most of the
remaining effector CD8" T cells are IL-7R", express
KLRG1, and do not persist or proliferate well following
reinfection [34°,56,57]. A population of KLRG1" IL-7R™
memory CD8* T cells can additionally be found,
although these cells also display a finite lifespan [34°,58].

How do effector CD8" T cells with memory cell potential
form during infection? Our past work suggested that a
gradient of T'-bet may be established in effector CD8" T’
cells, and that high T-bet levels promote terminal effector
cell differentiation and senescence, whilst low levels of
T-bet permit memory precursor development [34°]. The
appropriate balance of T-bet expression appears directly
tied to effector cell survival because low levels of T-bet
are sufficient for IL-15R/IL-2RB (CD122) expression,
but high levels of T-bet repress IL-7Ra [34°,57,59°].
Collectively, this suggests that cells with intermediate
T-bet levels will have optimal responses to both IL.-7 and
IL.-15, the primary cytokines that sustain memory CD8*
T cells [60]. Recently, it was also found that CD8" 'T" cells
undergo asymmetric cell divisions during the initial cell
division [61°°] and can be routed down either short-lived
or long-lived fates. Perhaps T-bet and other cell fate
determining factors are unequally partitioned during
these cell divisions, leading to different cell fates. How-

ever, other studies have suggested that activated CD8" T’
cells are not necessarily committed to one or the other fate
so quickly, as longer durations of infection promote
terminal differentiation of CTLs [34°,56,62] and IL-12
can augment T-bet expression [34°,35]. Overall, this
suggests that environmental signals may amplify or refine
the effector cell diversity generated by asymmetric cell
division. Establishing a gradient of a lineage-determining
transcription factor (such as T-bet) through infection-
inducible cytokine levels does not restrict effector T cells
to simply two cell fates, but instead permits the broad
spectrum of effector and memory differentiation states
known to exist. Furthermore, it provides a model with
built-in flexibility, whereby the innate immune system
can control the magnitude and potency of the effector cell
response during diverse infections (which can vary in
tropism, intensity and duration). Blimp-1 likely also acts
in a graded fashion [57] (RL Rutishauser and SMK,
unpublished data), however it is presently unclear if other
transcription factors act similarly.

Other factors can promote CD8" T cell memory for-
mation. The co-stimulatory molecule receptors 4-1BB,
0X40 and CD27 can augment memory cell differen-
tiation and survival [17,63]. It is also well established
that help from CD4" T cells is almost always required
during the primary response for optimal memory CD8* T
cell formation [17]. Whilst it is unclear what factor CD4"
T cells supply to CD8* T cells, IL.-2 is one candidate as it
plays a key role in promoting memory T cell recall
responses to secondary infection [64°] and activated
CD4" T cells are an abundant source of this cytokine.
In addition, CD4" T cells may ‘condition’ DCs to better
induce memory formation [65]. Regardless of the mech-
anism, CD4" T cell help appears to prevent the memory
precursor population from undergoing terminal differen-
tiation; ‘unhelped’ cells display a higher proportion of T-
bet" KLRG1™ cells and T-bet deficiency can partially
restore their function [57].

The memory CD8" T cell population that eventually
forms upon pathogen clearance is heterogeneous and
evolves over time. Memory cells are often subdivided
based on expression of the lymph-node homing receptors
CD62L and CCR7 into CD62L'> CCR7" non-lymphoid
tissue resident effector memory cells (T'gar) and CD62LM
CCR7" lymphoid tissue resident central memory cells
(Tem). In studies in mice, most T'gy and Ty stem from
IL-7Rh"memory precursor cells [55,66]. However, some
KLRG" senescent effector cells can persist into early
memory as ‘short-lived Ty’ [34°,55,56] (Figure 1) gen-
erating further heterogeneity within the memory popu-
lation. Whilst CD8* T'cy and Tgy both produce IFN-y,
Tgnm generally display immediate cytotoxicity whereas
T'om typically produce more IL-2 and possess a higher
proliferative potential [67,68°°,69]. Importantly, the anti-
gen-specific memory T cell population composition
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changes over time, with Ty gradually disappearing and
giving way to T'qy;, most likely due to slow outgrowth of
the Ty [67,70]. Pathogen-specific memory T cells can
persist in the tissues (such as the gut and lung) long-term
[71,72], although these populations may be maintained by
T'cm that migrate into tissues and form Tgyy [73]. Tran-
scription factors that control the T'cn/Tgn balance have
also been identified. Activation of the PI3K/mTOR path-
way downregulates CCR7 and CD62L expression via the
transcription factor KIf2 [74°], suggesting metabolic con-
trol of the T'onm/Trm balance. Furthermore, the transcrip-
tion factors Id2, T-bet and Blimp-1 favour Tk formation
(RL Rutishauser and SMK, unpublished data) [40,57]
whilst Bcl-6 promotes Ty formation [75].

Conclusions

Whilst many cell intrinsic and extrinsic factors have been
identified that shape CD8" 'T' cell fate choices, it is still
unclear how the large array of lineage-determining factors
synergise and/or integrate to fine-tune cell fate choices. In
particular, understanding how different cell fates are
maintained (particularly in the absence of antigen) and
determining the extent of fate plasticity remains a future
challenge. To this end, understanding the epigenetic
establishment and maintenance of the transcriptional
signatures underlying different CD8" T cell fates
represents an exciting area of future research.
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