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a b s t r a c t

Kuhn’s Theorem shows that extensive games with perfect recall can equivalently be analyzed using
mixed or behavioral strategies, as long as players are expected utility maximizers. This note constructs an
example that illustrates the limits of Kuhn’s Theorem in an environment with ambiguity averse players
who use a maxmin decision rule and full Bayesian updating.
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1. Introduction

A classic result in game theory, Kuhn’s Theorem (Kuhn, 1953)
shows that for eachmixed strategy in an extensive gamewith per-
fect recall, there exists an outcome-equivalent behavioral strategy,
and vice versa.1 In light of the fact that expected utilitymaximizers
are dynamically consistent based on Bayesian updating, the princi-
pal implication of Kuhn’s Theorem is that the optimality of amixed
strategy in the strategic form of an extensive game is equivalent
to the conditional optimality of its outcome-equivalent behavioral
strategy, at all information sets that are reachedwithpositive prob-
ability according to a player’s beliefs about the strategies of his op-
ponents, as pointed out by Brandenburger (2007).

This equivalence betweenmixed and behavioral strategies does
not extend to games where players are ambiguity averse in the
sense of Gilboa and Schmeidler (1989), so that beliefs are repre-
sented by sets of probabilitymeasures, and amaxmin decision rule
is used to define optimality. Such set-valued beliefs of a player
in an extensive game may arise in a number of settings, which
could include Bayesian games where players have ambiguous in-
formation about opponents’ types as in Kajii and Ui (2005), games
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1 SeeMaschler et al. (2013) for a thorough exposition of this result. Two strategies

are outcome-equivalent if they induce the samedistribution over terminal histories,
irrespective of the strategies used by a player’s opponents.
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where equilibria are defined by ambiguous beliefs as in Lo (1996),
games where players are allowed to use ambiguous randomiza-
tion devices as in Riedel and Sass (2014), or games where play-
ers’ beliefs are defined through ambiguous trembles of their op-
ponents’ unambiguous strategies as in Aryal and Stauber (2014). If
we consider an extensive gamewith complete (but not necessarily
perfect) information, so that each player i only faces uncertainty
regarding his opponents’ strategies, and this uncertainty is repre-
sented by set-valued beliefs, Kuhn’s Theorem still yields the exis-
tence of (unambiguous) behavioral and mixed strategies βi and µi
for this player that are outcome-equivalent for every element of his
(set-valued) beliefs. However, if this player uses full Bayesian up-
dating to derive beliefs at each information set, combined with a
maxmin decision rule, optimality of the mixed strategy µi in the
strategic form need not correspond to the conditional optimal-
ity of the outcome-equivalent behavioral strategy βi at informa-
tion sets that are reached according to any element of the player’s
ambiguous beliefs. This is a straightforward consequence of the
well-known fact that maxmin expected utility is not dynamically
consistent with full Bayesian updating.2

In an interesting paper, Epstein and Schneider (2003) show
that dynamic consistency can be restored in dynamic choice
settings with maxmin preferences and full Bayesian updating, as
long as the overall uncertainty a decision-maker faces can be

2 See, for example, Epstein and Schneider (2003) and Epstein and Le Breton
(1993).
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Fig. 1. A two-player example.

captured by a set of priors that has a ‘‘rectangularity’’ property.
Roughly, rectangularity means that the initial set of priors can
be constructed by recursively combining all its corresponding
conditional and marginal probabilities at each stage of the
information filtration. Sass (2013) shows that the characterization
of Epstein and Schneider (2003) can be applied in extensive games
with perfect information to recover a version of Kuhn’s Theorem,
which implies that in environments with perfect information,
the dynamic consistency associated to Kuhn’s Theorem can be
recovered through the use of mixed strategies that possess a
type of rectangularity property. The principal contribution of this
note is to consider whether this approach can be extended to
derive restrictions on ex-ante ambiguous beliefs/strategies, such
as the rectangularity property identified by Epstein and Schneider
(2003), that yield dynamic consistency in extensive games with
imperfect information.We showbymeans of an example that such
restrictions are not possible, if any two players’ ambiguous beliefs
about a third opponent’s strategies are required to be consistent—
in the sense that these beliefs are the same—and each player’s
beliefs regarding the strategies of his opponents are independent
across players.

2. Analysis

We first present an example that shows that the dynamic
consistency associated to standard expected utility maximization
may not hold in extensive games with ambiguity averse players,
which implies that an analysis based on the extensive form of
a game may yield different conclusions than one based on its
strategic form. We then show how dynamic consistency might
be recovered in this example, using the rectangularity property
identified by Epstein and Schneider (2003). Finally, we construct
an extension of the example which shows that this approach to
achieving dynamic consistency cannot be extended to all extensive
games with perfect recall. Our examples are all standard extensive
games with imperfect information and perfect recall, as defined
in Maschler et al. (2013), for example.

Consider the game described in Fig. 1, which is a slight modi-
fication of an example from Aryal and Stauber (2014). Since each
player onlymoves at one information set, the players’ sets ofmixed
and behavioral strategies are identical, so Kuhn’s Theorem holds
trivially. However, if we interpret mixed strategies as strategies
in the strategic form associated to the extensive game, choosing a
mixed strategy by player 2 implicitly requires that this player com-
mits to a randomization over actions before the start of the game,
and hence before he knows whether his information set is reached
or not, following player 1’s actions. If 2’s beliefs about 1’s strategies
are unambiguous, and if 2’s information set is reachedwith strictly
positive probability according to these beliefs, the ex ante optimal-
ity of a (mixed) strategy of player 2 is equivalent to the conditional
optimality of the respective (behavioral) strategy at 2’s information
set. This is a consequence of the dynamic consistency of expected
utility maximization.
Fig. 2. An ε-contamination.

Now assume that player 2 is ambiguity averse, and that his
(ambiguous) beliefs about player 1’s strategy are given by an ε-
contamination of the strategy that assigns probability 1 to action
R.3 Denoting the strategy assigning probability 1 to R by β∗

1 =

(l∗, r∗, o∗) = (0, 1, 0), and the set of all distributions over {L, R,O}

by ∆1, an ε-contamination of β∗

1 for some small ε > 0 is defined
by the set of distributions

βε
1 := (1 − ε)β∗

1 + ε∆1.

The projection of the set βε
1 onto the l–r plane is illustrated by the

gray-shaded triangle in Fig. 2.4 Denote a strategy of player 2 by
β2 = (m, 1 − m), where m is the probability assigned to action
M , and assume that player 2 chooses a value of m in the strategic
form of the game, and hence is able to commit tom before knowing
whether his information set is reached or not. If 2 follows amaxmin
decision rule given βε

1 , he then choosesm to solve

max
m∈[0,1]

min
(l,r,o)∈βε

1

{o(−1) + l[101(1 − m)] + r[101m + 100(1 − m)]}.

Clearly, for every m ∈ [0, 1], the minimum in this problem is
attained at (l, r, o) = (0, 1− ε, ε), and hence 2’s optimal choice is
to setm = 1.

In order to consider 2’s optimal strategy conditional on reaching
his information set, we derive his conditional beliefs at the
information set using full Bayesian updating of all distributions in
βε
1 .

5 In Fig. 2, the resulting conditional beliefs over the information
set {L, R} are represented by the thick black line connecting the
points (0, 1) and (ε, 1 − ε). Letting δ denote the probability
assigned to history R, 2’s optimal choice of a (behavioral) strategy
must solve

max
m∈[0,1]

min
δ∈[1−ε,1]

{δ[101m + 100(1 − m)] + (1 − δ)(1 − m)101}

= max
m∈[0,1]

min
δ∈[1−ε,1]

{δ(102m − 1) + 101(1 − m)}

= max
m∈[0,1]


100 + m, ifm ≤

1
102

,

100 + ε + (1 − 102ε)m, ifm >
1

102
.

It follows that as long as 1 − 102ε < 0, or equivalently, ε > 1
102 ,

the optimal conditional strategy of player 2 is to set m =
1

102 , so
his optimal choice is not dynamically consistent.

3 See Aryal and Stauber (2014) for an interpretation of such beliefs.
4 The origin of the coordinate system corresponds to player 1 playing O with

probability 1.
5 Note that in this particular case, 2’s information set is reached with positive

probability according to every element of βε
1 .
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If we interpret 2’s beliefs as defined by the ε-contamination
as a set of priors corresponding to a dynamic decision problem
for player 2, then this set of priors does not satisfy the rectan-
gularity condition of Epstein and Schneider (2003) that guaran-
tees dynamic consistency in single-agent decision problems, so the
dynamic inconsistency is not unexpected. We now explain the
implications of rectangularity for player 2’s dynamic decisionprob-
lem, referring to Epstein and Schneider (2003) for a general defi-
nition. 2’s information structure is given by a filtration (F 0

2 , F 1
2 ),

where F 0
2 = {L, R,O}, F 1

2 = {{L, R}, {O}}, and all information is
revealed after 2 chooses an action. The restriction of every prior
p0 ∈ ∆1 to F 1

2 defines a marginal, or one-step-ahead, distribution
p0

+
over F 1

2 , such that p0 can be decomposed in terms of p0
+
and its

conditional given F 1
2 , denoted by p1, using the standard form

p0 =


F0

2

p1dp0
+
.

A set of priors P ⊂ ∆1 is rectangular if it is defined by all the com-
positions of all its conditionals and one-step-ahead distributions,
so for every one-step-ahead distribution p0

+
corresponding to some

p0 ∈ P , and every conditional q1 corresponding to some q0 ∈ P , the
composition


F0

2
q1dp0

+
is also an element of P . Epstein and Schnei-

der (2003) note that any set of conditionals P1 combined with any
set of one-step-ahead distributions P0

+
define an induced rectan-

gular set of priors given by

P(P1, P0
+
) :=


F0

2

q1dp0
+

 q1 ∈ P1, p0
+

∈ P0
+


.

In our example, player 2’s beliefs are defined by a set of priors
P ⊂ ∆1 such that P = βε

1 . If P
1 and P0

+
denote the sets of all

conditionals and one-step-ahead distributions associated to ele-
ments of P , then P(P1, P0

+
) is the smallest rectangular set of priors

containing P , as noted by Epstein and Schneider (2003). The set of
induced one-step-ahead distributions is given by all distributions
that assign a probability between 0 and ε to the event {O}, and the
remaining probability to the event {L, R}. Combining these distri-
butions with the previously described conditionals according to
the formula for P(P1, P0

+
), yields the smallest rectangular set of

priors containing P = βε
1 . In Fig. 3, the rectangular set P(P1, P0

+
)

is given by the union of the gray and light gray shaded triangles.
As explained in Epstein and Schneider (2003), the two lines with
slope −1 form the boundary of the region where the probability
of {O} lies between 0 and ε, and the vertical axis together with the
dashed line form the boundary of the region that induces the con-
ditionals over {L, R} represented by the thick black line. Combining
the associated one-step-ahead and conditional distributions yields
the resulting rectangular set.

If we now consider player 2’s problem resulting from (ambigu-
ous) beliefs induced by the rectangular set P(P1, P0

+
), we get the

same optimal choice of m at 2’s information set, since the set of
conditional beliefs resulting from full Bayesian updating does not
change. However, the ex ante problem of choosing a mixed strat-
egy in the strategic form now becomes

max
m∈[0,1]

min
p+∈[0,ε], δ∈[1−ε,1]

{p+(−1) + (1 − p+)

× {δ[101m + 100(1 − m)] + (1 − δ)(1 − m)101}} ,

which clearly has the same solution as the conditional problem,
and hence dynamic consistency is restored.

The previous example suggests that it might be possible to
restore dynamic consistency in extensive games by restricting
every player’s beliefs about his opponents’ strategies in a way that
generates rectangular priors for the filtration defining the player’s
associated decision problem. We show next, by constructing an
Fig. 3. The smallest rectangular set of priors containing βε
1 .

Fig. 4. A three-player example.

appropriate example, that this approach cannot be used to ensure
dynamic consistency in general games.

Consider the three player game described in Fig. 4. This game is
an extension of the two player game we analyzed previously, and
since player 2’s payoffs are assumed to be independent of player 3’s
actions, our previous analysis and the result of Epstein and Schnei-
der (2003), which shows the equivalence of dynamic consistency
and rectangular priors, imply that in order to guarantee dynamic
consistency for player 2, we need to assume that 2’s beliefs about
1’s actions are given by a rectangular prior. Since 2’s information is
given by the same filtration as in the previous game, any rectangu-
lar set of priors must be of the form described by the gray area in
Fig. 5. If player 3’s (ambiguous) beliefs about player 1’s actions are
required to be consistent with player 2’s beliefs, then the rectan-
gularity requirements thatwe need to ensure dynamic consistency
for player 2, imply that 3’s beliefs about 1’s actions must be rect-
angular relative to 2’s information filtration. We thus assume that
players 2 and 3 have identical priors over 1’s actions, given by a
rectangular set such as the one described in Fig. 5. Furthermore,
assuming that 3’s beliefs about 2’s actions are independent of his
beliefs about 1’s actions, we can represent such (ambiguous) be-
liefs by an interval [a, b] ⊆ [0, 1], where any n ∈ [a, b] denotes
the probability 2 assigns to action N .

To analyze dynamic consistency for player 3, note that his
information filtration is given by F 0

3 = {LM, LN, RM, RN,O} and
F 1

3 = {{LM, LN, RM}, {RN,O}}. Since 3’s payoffs arising from the
terminal histories LM , LN and RM are assumed to be identical,
we can combine these histories into a single ‘‘state’’ for player 3,
which we will denote by Z . We can then rewrite the filtration as
F 0

3 = {Z, RN,O} andF 1
3 = {{Z}, {RN,O}}, and represent any prior

in a two-dimensional ‘‘Machina triangle’’ where the horizontal axis
represents the probability of state Z , denoted by z, the vertical axis
represents the probability of state RN , denoted by rn, and the origin
is equivalent to state O. Given a strategy of player 1 denoted by
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Fig. 5. A rectangular set of priors for player 2.

Fig. 6. Changing priors.

(l, r, o), and an independent strategy of player 2 denoted by n, the
induced prior over 3’s state space assigns probability o to state O,
probability rn to state RN , and probability l + r(1 − n) to state
Z . Since the origins of the triangles representing the prior (l, r, o)
for players 2 and the corresponding prior (l + r(1 − n), rn, o) ≡

(z, rn, o) for player 3 both coincide with probability 1 assigned
to state O, we can represent both priors on the same triangle.
As the probability of O stays constant, a ‘‘shift’’ from (l, r, o) to
(z, rn, o) is captured by amovement along the line of slope−1 that
corresponds to the probability o, as described by amove frompoint
E to point F in Fig. 6.

If both 2 and 3’s beliefs about 1’s actions are captured by the
same arbitrary set of priors that is rectangular with respect to 2’s
information filtration, such as the one described in Fig. 5, and 3’s
beliefs about 2’s actions are captured by a set [a, b] representing
probabilities n assigned to action N , we can represent the induced
set of priors for player 3’s filtration by shifting all points of the
rectangular set spanned by the points {A, B, C,D} in Fig. 5, anal-
ogously to the shift from Fig. 6. As long as 0 < a < b < 1, this
would imply that each point (l, r, o) from the initial rectangular
set will yield a set of points along the line of slope −1 correspond-
ing to o, such that the corresponding set of ‘‘rn-coordinates’’ lies
in the interval [ra, rb]. The full initial set spanned by {A, B, C,D}

in the l–r plane then yields a set of priors for player 3 in the
z–rn plane, which is represented in Fig. 7 by the gray shaded area
spanned by {A′, B′, C ′,D′

}. Note that the northwest boundary A′D′

of this induced set of priors corresponds to the northwest bound-
ary AD of the initial set of priors, transformed using the larger value
n = b; similarly, the southeast boundary B′C ′ is induced by the ini-
tial southeast boundary BC , transformed using the smaller value
Fig. 7. Induced set of priors for player 3.

n = a.6 Hence, if rA and rD, and lA and lD denote the r- and l-
coordinates, respectively, of the points A and D in Fig. 5, then the
rn-coordinates of the points A′ and D′ in Fig. 7 will be given by rAb
and rDb, and the z-coordinates of A′ and D′ are zA′ = lA + rA(1− b)
and zD′ = lD + rD(1 − b). Since rA > rD and lA > lD, this im-
plies that both the rn and z coordinates of A′ exceed those of D′.
A similar argument shows that the rn and z coordinates of B′ ex-
ceed those of C ′. Since the lines connecting A′ and B′, and C ′ and
D′, must both have slope −1, this implies that the set spanned by
{A′, B′, C ′,D′

} cannot be rectangular relative to player 3’s filtration,
because such a rectangular set would have to be bounded by two
vertical lines representing constant values of z, and by two lines
that bound the set of all priors that map to some interval of con-
ditional beliefs over {RN,O} (such as the thick black line on the
rn-axis in Fig. 7). The failure of rectangularity for player 3’s infor-
mation filtration implies that there exist payoffs for player 3 under
which dynamic consistency does not hold.

3. Conclusion

Our analysis shows that if any two players’ ambiguous beliefs
about a third player in a game are required to be consistent, and
each player’s beliefs regarding the strategies of his opponents are
assumed to be independent across players, then the dynamic con-
sistency implicit in Kuhn’s Theorem cannot be achieved in every
extensive game with imperfect information and ambiguity averse
players, even if additional rectangularity assumptions are intro-
duced. The obvious implication is that an analysis of such games
must rely on the extensive form and on a consistent planning as-
sumption in the spirit of Strotz (1955–1956). Alternatively, if an an-
alyst wants to use the strategic form of a game and retain dynamic
consistency, hemay do so by using ambiguous beliefs that are rect-
angular, but then hemust either allow for inconsistencies of beliefs
across players, or restrict his analysis to extensive game forms for
which rectangular beliefs are guaranteed to yield dynamic consis-
tency. A recent paper by Mouraviev et al. (2014) identifies restric-
tions that characterize a corresponding class of games.

6 Note that any point (αl+ (1− α)l′, αr + (1− α)r ′) on the line connecting two
elements (l, r) and (l′, r ′) of the initial rectangular set, if transformed using some
value of n, will lie on the line connecting the respective transformations of (l, r) and
(l′, r ′), if based on the same value of n, since

(αl + (1 − α)l′ + [αr + (1 − α)r ′
](1 − n), [αr + (1 − α)r ′

]n)

= (α[l + r(1 − n)] + (1 − α)[l′ + r ′(1 − n)], αrn + (1 − α)r ′n).

This implies that the boundaries A′D′ and B′C ′ must always be straight lines.
Furthermore, since the initial points A and D yield identical conditionals over {L, R},
the points A′ and D′ will yield identical conditionals over {Z, RN}, and similarly for
B′ and C ′ .
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