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Abstract. We review recent applications of the convergent close-coupling (CCC) method to
studies of two-photon double ionization (TPDI) of He. In a weak-field regime, the electron-
photon interaction can be treated within the lowest order perturbation theory (LOPT) whereas
the electron-electron interaction is included in full. The intermediate states of the target can
either be represented by a discrete set of B-splines in a box or summed over with an average
weight (closure approximation). In a non-perturbative regime, we solve the time-dependent
Schrédinger equation on a square-integrable basis and project this solution on a set of CCC
final states. In both regimes, we are able to calculate reliably the total integrated and fully
differential TPDI cross-sections.

Besides purely numerical results, we introduce a convenient analytical parametrization of
the TPDI amplitude in the manner similar to single photon double ionization. Aided with
this parametrization, we observe two distinctly different modes of correlated motion of the
photoelectron pair. We also derive the angular anisotropy parameters and the recoil ion
momentum distribution for TPDI of He. The latter can be compared with recent experimental
observations.

1. Introduction
Convergent close-coupling (CCC) method has been a very successful tool for theoretical studies
of single-photon double ionization (SPDI) of He and other two-electron atomic and molecular
targets [1]. To apply the CCC technique to the two-photon double ionization (TPDI) problem, a
further development of the method is needed. Firstly, integration over all the intermediate states
of the target is required. This involves evaluation of the ill-defined continuum-continuum dipole
matrix elements. To circumvent this difficulty, we perform our calculations in the Kramers-
Henneberger gauge of the electromagnetic interaction [2]. As an alternative and much less
time consuming method, we use the closure approximation to carry out summation over all the
intermediate target states. As the result of this procedure, we end up with evaluation of the
monopole and quadrupole matrix elements between the correlated ground state and the CCC
final state. This procedure was developed in an earlier work on the second Born treatment of
the electron impact ionization-excitation and double ionization of He [3].

Secondly, in contrast to the weak-field SPDI, the theoretical description of TPDI at large
field strengths requires stepping out beyond the perturbation theory formalism. This can be
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achieved by numerical solution of the time-dependent Schrédinger equation (TDSE) on a square-
integrable basis and subsequent projection of this solution on a set of CCC field-free states [4].

This Progress Report is organized as follows. In Sections 2.1 and 2.2 we present our
perturbative formalism relying on the closure approximation and utilizing the discrete set of
B-splines, respectively. In Section 2.3 we describe our non-perturbative formalism based on the
solution of the time-dependent Schrodinger equation on a square-integrable basis. In Sections
3.1-3.5 we present results for the total integrated and triply-differential cross-sections (TICS and
TDCS), the symmetrized ionization amplitudes angular anisotropy parameters and the recoil
ion momentum distribution.

2. Formalism
2.1. LOPT in closure approximation
We use the following second order perturbation theory expression for the total integrated cross-
sections (TICS) of TPDI : @ . . .
. . 2
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Here the two-photon ionization constant Cy = 8m3c~2a§T = 2.505 x 107°2 ¢cm? s~! [5]. The
vector e represents the polarization of light. The dipole operator d = di + d» where d, = 7,
Vo and Zr,/r3 in the length, velocity and acceleration gauges, respectively, the nucleus charge
Z = 2 for helium. The exponent 8 depends on the gauge of the electromagnetic interaction,
B = 2 in the length gauge. A correlated ground state wave function ¥y is represented by a
multi-configuration Hartree-Fock expansion [6].

In the CCC formalism, we represent the two-electron state by a close-coupling expansion over
the channel states each of which is composed of a target pseudo state f and a Coulomb wave k:
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Here (kf|T|jk') is half-on-shell T-matrix which is found by solving a set of coupled Lippmann-
Schwinger equations [7]. The target pseudostates with positive energies ey > 0 represent the
doubly ionized final state. Implicit in Eq. (1) is the energy conservation € + k?/2 = 2w. The
CCC wave function representing two electrons in continuum can be obtained by projecting the
positive energy pseudostate in Eq. (2) onto the Coulomb wave of matching energy:

U(ky, ko) = Uy(k1)(kalf) , ef = k5/2. (3)

If we assume that the integrand in Eq. (1) is a smooth function, we can take out an average
energy denominator A and use the completeness of the CCC basis. This procedure, known as
the closure approximation, will take us to the following result:

ow) = Cof A2 Y Z/ko (k)| (e - d)(e - d) [To)|" (4)
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The fully-resolved triply-differential cross-section (TDCS) can be written in the closure

approximation as )

d3o
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2.2. LOPT with B-splines

To carry over summation over all intermediate states in Eq. (1), without relying on the closure
approximation, we use the discretization method developed in Ref. [8] and applied to the problem
of TPDI of helium in Ref. [9]. Within this procedure, the set of intermediate states in the PT
expressions is replaced by the set obtained by diagonalization of the atomic Hamiltonian in
a suitably chosen basis. Within this procedure, the second order amplitude entering (1) is
calculated as:

> (90 | EE
i£io

where ¥; is the discrete set of states, ¥;, belongs to the energy shell Ey + w — E;, = 0,
p2 = 2(Eio-f-l - Eio—l)il-

To achieve accurate numerical results, it is necessary to ensure that the density of discrete
states ; is sufficiently high near the position of the pole of the LOPT expansion. This can be
achieved if we employ a basis composed of B-splines in a box and define a two-electron discrete
states as Wi(r1,72) = 3, 1 Ci Bnk(r1)Bmk(r2)|l1(1)l2(2)L) . Here notation [l1(1)I2(2) L) is
used for bipolar harmonics. The radial orbital By (r) is a basis spline of the order k = 7 with
the knots located at the sequence of points lying in [0, Rmax| where the size of the box Rmax
is varying between 30 a.u. and 70 a.u. Typical number of knot points was 40-45, they were
distributed evenly in [0, Rmax]- The coefficients C; in the B-spline expansion were obtained by
diagonalizing the He atom Hamiltonian (\Il,|f{ |¥;) = E;6;;. This diagonalization procedure in
the subspace of the S-symmetry states q gave the ground state energy of Ey = —2.9004 a.u.
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2.3. Time-dependent formalism

When the field cannot be treated perturbatively, we rely on a direct numerical solution
of the TDSE i 0¥/0t = HY for the helium atom in the presence of the external AC
field. The atomic Hamiltonian H = Hy + Vis + ﬂint(t) contains the non-interacting part
Hy = p?/2+p3/2—2/r1 —2/rs , the Coulomb interaction Vis = |r; — 72|~ and the interaction
with the external AC field Hin(t) = f(t)(r1 + 72) - Fac coswt . Here f(t) is a smooth switching
function which is chosen in such a way that it is zero for ¢ = 0 and ¢ = 67", where T = 27/w is
a period of the AC field. For ¢t € (T,5T) f(t) =1, for t € (0,T) it grows monotonously, so that
f(t) and its derivative are continuous. Analogously, for ¢t € (57,6T") f(t) smoothly decays from
1 to zero. The total duration of the atom-field interaction is therefore T} = 67'.

The solution of the TDSE is sought in the form of expansion on a square-integrable basis

U(ry,me,t) =Y aj(t)fi(r1,m2) , where fi(r1,m2) = ¢, (r)éhyp, (r2) [11(1)12(2) L) . (6)
J

The radial orbitals in Eq. (6) are pseudostates diagonalizing the Het Hamiltonian in a
Laguerre basis: (¢ Hyo+|oNy) = Eipwdy . Initial conditions for the solution of TDSE
are determined by solving an eigenvalue problem using a subset of basis functions of the S-
symmetry only. We integrate TDSE up to a time 7} when the external field is switched off.
Then we project the solution onto a field-free CCC wave function (3) representing two electrons
in continuum. This prepares a set of the final states corresponding to various photoelectron
energies F1, E>. Projection of the solution of the TDSE on the states of this grid geves us a
probability distribution function p(k1, k2) of finding the helium atom in a field-free two-electron
continuum state ki, ks at the time ¢ = 7). From this probability, we can compute TICS and
TDCS:

Cy w?
w
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Momenta q;, go in Eq. (7) are defined on the energy shell: E; = ¢?/2, E — E; = ¢2/2,
tana = g2/q1, E is the excess energy.

3. Results

3.1. Total integrated cross-section

Results for the TICS of TPDI of He are presented in Figure 1. There are four different CCC
calculations plotted in the Figure. The first set is the closure calculation using Eq. (4) in
which the following estimate of the energy denominator A was used. We assumed that the
main contribution to the sum over the intermediate states in Eq. (1) came from those terms
where the energies of the intermediate electron p?/2 was close to the energy of the final state
electron k2/2. Under this condition, the dipole matrix element between the intermediate and
final continuum states in Eq. (1) will be strongly peaking. This condition leads to A ~ w .
However, as is seen in Figure 1, this choice of the energy denominator gives the TICS which is
far below other theoretical predictions [10-13]. Also, such a closure calculation gives the TICS
which is flattening near the threshold of the sequential TPDI process. However, it was argued in
Ref. [13] that the TICS should be increasing steeply near the threshold because of the growing
contribution of the sequential process in which two atomic electrons are removed independently,
one by one.

Figure 1. (Color online) The total integrated cross-
section of the TPDI of He as a function of the photon
4 energy. The four CCC calculations are shown: I
- closure approximation, red plus signs; II - closure
modified by sequential process, red circles; III - LOPT
with B-splines, red diamonds; IV - TDSE, red squares.
Calculations by other authors are as follows: R-matrix
[10], blue asterisks; time-dependent (TD) basis [11],
green crosses; time-dependent close-coupling (TDCC)
[12], black pentagons; exterior complex scaling (ECS)

40 42 44 46 48 50 52 54 [13], purple open circles.
Photon energy w (eV)

TICS (102 cm*s)

001 | +

Based on this argument, we reconsidered the choice of the energy denominator made
in Ref. [14]. If we assume that the leading process is a sequential interaction of both
atomic electrons with the field, the typical energy denominator should be of the order of
A ~ 0.5(IPge+ — IPye) where IPye and IPy.+ are the ionization potentials of the neutral He
atom and the singly charged He* ion, respectively. In addition to this new choice of the energy
denominator, we evaluated the matrix element of the lowest order sequential process explicitly
taking it out from the closure sum. In this process, the two atomic electrons interact sequentially
with the field but not with each other. It is this process that gives a steep rise of TICS near the
sequential TPDI threshold. As can be seen from Figure 1, such a closure calculation modified
by the sequential process is much closer to other literature results and demonstrates the correct
behaviour near the sequential threshold.

In the same figure, we also show the TICS results obtained in the LOPT calculation with
B-splines and the TDSE . These two sets of results are shown with error bars which indicate
a typical accuracy of the corresponding method. The LOPT results are effected somewhat
by the choice of the size of the box. The TDSE results may vary depending on the timing
of the projection on the field-free continuum states (see Ref. [4] for detail). The LOPT and
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TDSE results are very close. The latter calculation was performed for the field intensity of
3.5 x 101 W/cm? corresponding to the electric field of the order of 0.1 a.u. Not surprisingly,
both non-perturbative and LOPT results are close for such a weak field. However, it can be
argued [15] that, for the field intensities as high as 10'® W/cm? in the XUV photon energy
range, the ponderomotive energy of the electron is only 1% of the photon energy. This means
that the higher order effects beyond two-photon absorption can be ignored and the use of LOPT
is well justified.

3.2. Triply-differential cross-section

The fully-differential, with respect to the photoelectron energies and angles, TDCS can provide
additional information on the mechanisms of two-electron escape and the role the many-electron
correlations play in this process.
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Figure 2. (Color online) TDCS of TPDI of He for the coplanar geometry at w = 42 eV, E; = E5 =
2.5 €V and various fixed electron angles. The CCC calculation in the closure approximation from Ref. [14]
(divided by 1.6) is shown by the red solid line. The TDSE calculation projected on the CCC final state
from Ref. [4] (divided by 2.2) is shown by the blue dashed line. The black dots represent the TDCC
results of Ref. [12].

In Figure 2 we show two CCC calculations (with closure and TDSE) of TDCS at w = 42 eV
and equal energy sharing Fq = E» = 2.5 eV in comparison with the TDCC result of Ref. [16].
Here the coplanar geometry is assumed in which the two photoelectrons are detected in the same
plane with the polarization axis of linearly polarized light. One electron escapes at a fixed angle
01 and the second electron is detected on the full angular range. In the closure calculation, the
CCC basis of the final state included 20 — [ target states with orbital momentum ! ranging from
0 to 6 (the so-called 20I6 calculation). A more concise 153 basis was used in a much more time
consuming and computationally demanding CCC calculation with TDSE.

We see from Figure 2 that the closure CCC results are very similar, in shape, with the TDCC
calculation of Ref. [16] in which the short field pulse interaction with the He atom was treated
nonperturbatively. More thorough and extensive comparison of the two methods was made in
Ref. [14] and confirmed this conclusion. Such a similarity can be interpreted in the following way.
Due to the long range of the Coulomb force, the angular correlation pattern in the two-electron
continuum is formed at large distances (and times) when the field pulse is long gone. It shows,
therefore, little sensitivity to the details of the atom-field interaction which can be treated in
the simplified closure approximation. The CCC results with TDSE shown in Figure 2 are also
similar but exhibit more deviation from the TDCC calculation. This may be due to a smaller
CCC basis size used in this particular calculation.

3.3. Symmetrized ionization amplitudes
The TDCS results of the previous section can be conveniently analyzed and interpreted by
introduction of a simple parametrization in which the essential dynamic of the TPDI process
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is separated from kinematic variables. Similar parametrization for SPDI process introduced
in Ref. [17; 18] proved to be a very useful and convenient tool. In the most general way, the
amplitude of the TPDI process can be present in the following form [19]:

F(ky, k2) = fi(ky - €) + fa(kz - €)® + fo(ky - €)(k2 - €) + fo(e - €) (8)

Here the unit vectors k; = k; /ki,i = 1,2 are directed along the photoelectron momenta and e is
the polarization vector of light. Eq. (8) can be transformed to the Jacobian momenta p = ki + ko
and g = k1 — k2 [20]

F(p.k) = fp(p-€)* + fr(k - €)* + fip(k - €)(p - €) + fole - e) (9)

In comparison, the SPDI amplitude has a much simpler structure: D(p, k) = dp(p-e)+di(k-€) .
Under the equal energy condition F1 = Es, fi, and dy are vanishing and the SPDI amplitude
D(p, k) depends on one vector p whereas F(p, k) retains dependence on both p and k. The
corresponding amplitudes f, and f; can be associated with the center-of-mass and relative
motion, respectively. A gaussian ansatz |f|? oc aexp [~41n2(w — 615)%/A6%,] + b can be applied
to the squared amplitudes in which the width factor Af;5 indicates the strength of the angular
correlation in the two-electron continuum.

200 | f . . . .
PY e Figure 3. (Color online) The angular correlation width Af;2

of the TPDI amplitudes fp, fi in comparison with the width of
the SPDI amplitude d,, all calculated at equal energy sharing
E, = E; = E/2 and plotted versus the excess energy E. Center-
of-mass motion: F  f,(p-€)?>, D o d,(p-e) . Relative motion:
F « fi(k-e)?
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The width factors, as functions of the excess energy E = FEj + Fs, are plotted in Figure 3.
We see a considerable difference between the the width factors of the amplitudes associated with
the center-of-mass and relative motion. In the former case, large p favors k1 11 k2 which causes
large Coulomb repulsion and hence a smaller Gaussian width. In the latter case, large k favors
k1 Tl k2 which is associated with a smal Coulomb repulsion and a larger Gaussian width.

3.4. Angular anisotropy parameters
By integrating Eq. (5) over d€21, we get the doubly differential cross-section (DDCS) which can
be presented in the form

2
d&—;j (;E = dcg 4i [1 + BaPs(cos 62) + BaPy(cos 92)] (10)

ats 2 T . .

On the left panel of I‘Zlgure 3 we show the 8 parameters in Eq. (10) for TPDI of He with
linearly polarized light at the excess energy of 11 eV above the double ionization threshold which
corresponds to the photon energy w = 45 eV. For comparison, on the right panel of the same
figure, we show the (-parameter for SPDI at the excess energy of 20 eV (the photon energy
w =99 eV). The experimental data for SPDI are from Ref [21].

By comparing the left and right panels of Figure 1, we observe a significant qualitative
difference between the 8 parameters for TPDI and SPDI. In the two-photon case, both 82 and
B4 are large and positive. In contrast, in the single-photon case, the 82 parameter varies widely

from nearly zero for a very slow photoelectron to large positive values for a fast photoelectron.
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This energy dependence of B2 can be interpreted as a gradual cross-over between two different
regimes of SPDI. Nearly zero 5 parameter of a slow photoelectron corresponds to a fully isotropic
angular distribution which is a footprint of the shake-off mechanism. On the contrary, a large
positive 3o parameter for a fast photoelectron corresponds to a direct knock out when the whole
of the photon energy and angular momentum is absorbed by the fast photoelectron.

In TPDI, because the target atom interacts with the field twice, the shake-off electron can
be ejected in a p wave after firstly being promoted from the ground 1s state to an excited np
state. In this scenario, the main contribution to the angular distribution of the slow electron
comes from the [y = Iy = 1 term which leads, in the dominant quadrupole channel, to 8, = 1
and B4 = 0. This is indeed close to the calculated value of 32 and explains much smaller values
of 54. By way of the exchange symmetry, one can argue that the same angular terms would be
dominant for the fast electron which explains a rather weak energy dependence of S parameters.
A non-zero value of 4 indicates that the slow electron can also emerge in a d state as a result
of two repeated knock out processes.

3.5. Recoil ion momentum distribution

By integrating the squared amplitude (9) over the spherical angle dQ we get the DDCS
d?c/(dQdE,) which is given by the expression equivalent to Eq. (10). The angular anisotropy
parameters 2,34 and the SDCS do/dE, entering this expression are shown in Figure 5 in
comparison with the corresponding parameters for SDCS.

Figure 5. (Color online) Angular
anisotropy [ parameters and energy

N

B parameters
=

44
- pldoldE
. B

PO el S M TRt S A

0.5 1
p (a.u.)

do/dEp (arb. units)

N

p (a.u.)

distribution do /dE,, of the recoil ion for
single-photon (right) and two-photon
(left) double ionization of He at the
excess energies of 11 and 20 eV,
respectively.

Again, as in Figure 4, there is a qualitative difference between the TPDI and SPDI cases.
In the two-photon case, the 8 parameters change from nearly zero to large positive values as p
varies from 0 to pmax. This is to be compared with the large and positive 82 parameter which
varies very little in SPDI. The energy distribution do/dE, is zero both for p = 0 and p = pmax
(k = 0) due to the kinematic factor kp. However, the function p~'do/dE, is large at p = 0 and
decays monotonously towards ppax in TPDI but has a broad maximum at about ~ ppax/2 in
SPDI.

This different behavior of double ionization amplitudes in single- and two-photon case has
a profound implication when the recoil ion momentum distribution is measured experimentally
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which can be seen seen in Figure 6. For SPDI, this momentum distribution peaks at ~ pmax/2
where 3 is large and positive resulting in a broad dipole structure aligned along the polarization
axis of light as is indeed the case for various excess energies ranging from 1 to 100 eV [22]. On
the contrary, in the TPDI case, the intensity of the momentum distribution is largest near the
origin where the 3 parameters are close to zero. Hence, there is very little anisotropy seen in
the recoil ion momentum distribution except for large momenta where the experimental signal
is fairly weak.

Two—photon DPI of He w=45 eV DPI of He at w=99 eV
15 ; ; T ; ; : T ; : ;

1.5

1.0

0.5 1
0.0 1
—05F ]

-1.0

pz (au)

—10F

-1.5 e
-1.5-1.0 -0.5 0.0 05 1.0 1.5
px (au)

-1.5 e
-1.5-1.0 -0.5 0.0 05 1.0 1.5
px (au)

Figure 6. (Color online) Recoil ion momentum distribution do/(dp,dp,) in two-photon (first and
second left) and single-photon (first and second right) double ionization. Experimental data are from
Refs. [23] and [21] for TPDI of Ne at 38.8 eV and SPDI of He at 99 eV, respectively.

References

]
]
]
] Ivanov I A and Kheifets A S 2007 Phys. Rev. A 75 033411
] Tang X and Bachau H 1993 J. Phys. B 26 75-83
] Dyall K G, Grant I P, Johnson C T, Parpia F A and Plummer E P 1989 J. Comp. Phys. 55 425-456
7] Bray I and Stelbovics A T 1995 Adv. Atom. Mol. Phys. 35 209-254
] Cormier E and Lambropoulos P 1995 J. Phys. B 28 5043

] Nikolopoulos L A A and Lambropoulos P 2001 J. Phys. B 34 545

| Feng L and van der Hart H W 2003 J. Phys. B 36 L1-L7

] Piraux B, Bauer J, Laulan S and Bachau H 2003 Fur. Phys. J. D 26 7

] Hu S X, Colgan J and Collins L A 2005 J. Phys. B 38 L35

]

Martin F 2007 ECAMP IX: Satellite Symposium on Multiphoton multiple ionisation of atoms,
molecules and clusters Crete, Greece

] Kheifets A S and Ivanov I A 2006 J. Phys. B 39 1731-1742
] Lambropoulos P, Nikolopoulos L A A and Makris M G 2005 Phys. Rev. A 72 013410 (pages 4)
] Colgan J and Pindzola M S 2002 Phys. Rev. Lett. 88 173002
] Huetz A, Selles P, Waymel D and Mazeau J 1991 J. Phys. B 24 1917-1933
] Malegat L, Selles P and Huetz A 1997 J. Phys. B 30 251-261
[19] Istomin Y A et al. 2006 Phys. Rev. Lett. 97 123002
] Kheifets A S, Ivanov I A and Bray I 2007 Phys. Rev. A 75 024702
] Brauning H et al. 1997 J. Phys. B 30 L649-L655
] Knapp A et al. 2002 J. Phys. B 35 L521-1526
] Moshammer R et al. 2007 Phys. Rev. Lett. 98 203001





