Arterial Stiffness

Relations Between Dairy Food Intake and Arterial Stiffness
Pulse Wave Velocity and Pulse Pressure

Georgina E. Crichton, Merrril F. Elias, Gregory A. Dore, Walter P. Abhayaratna, Michael A. Robbins

Abstract—Modifiable risk factors, such as diet, are becomingly increasingly important in the management of cardiovascular disease, one of the greatest major causes of death and disease burden. Few studies have examined the role of diet as a possible means of reducing arterial stiffness, as measured by pulse wave velocity, an independent predictor of cardiovascular events and all-cause mortality. The aim of this study was to investigate whether dairy food intake is associated with measures of arterial stiffness, including carotid-femoral pulse wave velocity and pulse pressure. A cross-sectional analysis of a subset of the Maine-Syracuse Longitudinal Study sample was performed. A linear decrease in pulse wave velocity was observed across increasing intakes of dairy food consumption (ranging from never/rarely to daily dairy food intake). The negative linear relationship between pulse wave velocity and intake of dairy food was independent of demographic variables, other cardiovascular disease risk factors, and nutrition variables. The pattern of results was very similar for pulse pressure, whereas no association between dairy food intake and lipid levels was found.

Further intervention studies are needed to ascertain whether dairy food intake may be an appropriate dietary intervention for the attenuation of age-related arterial stiffening and reduction of cardiovascular disease risk. (Hypertension. 2012; 59:1044-1051.) ● Online Data Supplement

Key Words: pulse wave velocity • arterial stiffness • blood pressure • dairy food

Cardiovascular disease (CVD) is one of the leading causes of death and disease burden in Europe, the United States, and Australia. As populations age, the risk, prevalence and cost of CVD are likely to further increase. Positive modifiable risk factors for CVD, including diet, will become increasingly important to alter the course of this disease.

Dairy foods and milk products have received a negative reaction in the media in the recent past, largely because of the association between saturated fatty acids and CVD risk and the high saturated fatty acid content in dairy foods. However, a number of recent reviews of milk and dairy consumption and CVD have concluded that dairy foods are not associated with a higher risk of CVD and, indeed, may offer some benefit. The Dietary Approaches to Stop Hypertension (DASH) Study was one of the first studies to show that a diet high in low-fat dairy can have beneficial effects on blood pressure (BP). Following the DASH diet, high in fruit, vegetables, and low-fat dairy products (≈3 servings per day), for 6 months was associated with greater reduction in systolic BP (SBP) and diastolic BP (DBP) than either a control diet or a weight-reducing diet, among men and women. These reductions were in the range of 11 to 12 mm Hg for SBP and 6 to 7 mm Hg for DBP. Although the individual contributions of low-fat dairy on BP could not be determined from this combination diet, the DASH Study researchers attributed the beneficial BP effect to the high intake of dairy-rich calcium and potassium in the DASH Study diet. Evidence with respect to consumption of milk and dairy products in relation to BP reduction has been summarized in a recent review of the literature. Based on results from 11 cross-sectional and 8 prospective studies, it was concluded that increased dairy food consumption is associated with lower SBP and lower risk for hypertension, particularly for low-fat dairy food. A recent intervention study has also demonstrated a reduction in SBP after an intake of 3 servings of low-fat dairy products per day for 2 months.

Traditionally, BP is measured by assessing the pressure in the brachial artery in the upper arm, and arterial stiffness is assessed by way of pulse pressure (PP; SBP−DBP). However it is becoming increasingly recognized that measures of central arterial function, that is, measures of arterial stiffness, are more valuable predictors of vascular health outcomes. The central arteries slowly stiffen with age, with the rate influenced by hypertension, diabetes mellitus, and atheroscle-
The University of Maine Institutional Review Board approved this study, and the use of deidentified MSLS data was approved by the University of South Australia Human Ethics Committee. All of the participants provided informed consent for data collection, and all of the procedures followed were in accordance with institutional guidelines.

Methods

Participants Participants were obtained from the Maine-Syracuse Longitudinal Study (MSLS), a study designed to examine cardiovascular risk factors in relation to cognitive performance in community-dwelling individuals. The MSLS consists of 5 cohorts defined by time of entry into the study (1975–2000). Recruitment and data collection procedures for the MSLS have been described previously in detail. The data for the present study were obtained from those participants returning for the seventh study wave, because both cfPWV and dietary intake measures were obtained at this examination for the first time.

From an initial sample of 626 individuals with cfPWV data at wave 7, participants were excluded in the following order: (1) history of stroke (n = 14); (2) probable dementia (n = 2); (3) inability to read English (n = 1); (4) missing data on dairy consumption (n = 3); or (5) suboptimal quality of data on arterial stiffness as defined a priori as a cfPWV error of estimate >20% (n = 19). Dementia and stroke were reasons for exclusion, because we were interested in examining relationships between diet and arterial stiffness in a community-dwelling, relatively healthy study population. The characteristics of the final sample with complete data (N = 587) are presented in Table 1.

The University of Maine Institutional Review Board approved this study, and the use of deidentified MSLS data was approved by the University of South Australia Human Ethics Committee. All of the participants provided informed consent for data collection, and all of the procedures followed were in accordance with institutional guidelines.

Procedure Within 2 weeks of the laboratory visit, participants completed the Center for Epidemiological Studies Depression Scale (CES-D), the Nurses’ Health Activity Questionnaire, and the Nutrition and Health Questionnaire. At this visit, a blood sample, brachial artery BP, and pulse wave measures were obtained before breakfast, after an overnight fast. Standard assay methods were used to obtain total cholesterol, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, triglycerides, fasting plasma glucose, and plasma homocysteine. After a light breakfast, including decaffeinated tea or coffee, participants underwent a medical interview, including a detailed medical history.

BP and cfPWV Assessment

Brachial artery pressures were measured in accordance with the procedure at previous MSLS waves, taken 5 times each in reclining, sitting, and standing positions after a supine rest for 10 minutes, with a 5-minute rest between each set of measures. Measures were taken using the traditional pressure-cuff method (Critikon Dinamap ProCare 100, oscillometric method).

In a supine position, cfPWV was assessed noninvasively using the Sphygmocor system (ArCor Medical) with application tonometry. The carotid-femoral path length was estimated as the surface distances joining the suprasternal notch, the umbilicus, and the femoral pulse subtracted from distance between the suprasternal notch and the carotid pulse. Carotid-femoral transit time was estimated in 8 to 10 sequential ECG-gated femoral and carotid waveforms as the average time difference between the onset of the femoral and carotid waveforms. The intersecting tangent method was used to identify the foot of the pulse wave. PWV was calculated as the carotid-femoral path length divided by the carotid-femoral transit time, a reproducible measure of central arterial stiffness.

Dietary Assessment

Diet was assessed using the Nutrition and Health Questionnaire, which is composed of 41 questions about dietary intake, smoking history, physical activity, marital status, medical history, self-reported health, and medication and supplement use. The questionnaire has been used in a large investigation of cancer and nutrition, and its acceptable validity has been demonstrated by comparison with dietary recall, protein excretion, and total energy expenditure data. The dietary component questions participants about their frequency of consumption of meat, fish, dairy products, eggs, breads, cereals, and beverages including tea, coffee, carbonated drinks, water, fruit juice, and alcohol. A comprehensive list of 37 foods follows, and participants are required to stipulate how fre-
quenty they consume each food, with 6 response options: never, seldom, once a week, 2 to 4 times a week, 5 to 6 times a week, or once or more a day. These 6 response options were used to form the 5-level categorization of total dairy food consumption, with the never and seldom respondents grouped together because of the low numbers in each category. Dairy products included milk, cheese, yoghurt and dairy desserts (grouped together), ice cream and cream (grouped together), and total dairy foods. Milk was the only dairy food for which participants were asked to stipulate the fat content of milk consumed (whole fat, reduced fat, or skim). Milk intake included milk on cereal and in other beverages, such as tea and coffee. Soy milk intake was not included in any analyses of dairy and cfPWV.

The median score within each response option was used to estimate total intakes per week for each food in the questionnaire; for example, 2 to 3 times per week was estimated at 2.5. These totals were used to determine mean daily intakes for each food. Because portion sizes were not stipulated, the totals are an estimate of the number of times each food was consumed on a daily basis. Individual foods were grouped into 5 major food categories (in addition to dairy products), grains, fruits, vegetables, protein foods, and fats/sweets/other (empty calories), based on the US Department of Agriculture MyPlate.17 Intakes of individual foods and beverages within each food group were summed to give an estimate of total intake for each group, and intakes for all of the food groups were added to estimate total energy intake. The primary predictor variable in this study was the 5-level categorization of total dairy food consumption.

Covariates

Variables that were measured at the physical examination and were considered as candidates for inclusion in the covariate sets included height, weight, body mass index (BMI), waist circumference, and prevalent obesity, diabetes mellitus, hypertension, and CVD. BMI was calculated from height and weight (in kilograms per meter squared), and obesity was defined as BMI of ≥ 30 kg/m\(^2\). Waist circumference was measured over light clothing, using a nonextendable tape at the level of the iliac crest. Diabetes mellitus was defined as treatment with insulin, oral antidiabetic agents, or by fasting glucose level of ≥ 7 mmol/L. Hypertension was defined as treatment for hypertension or a BP of $\geq 140/90$ mm Hg. Prevalent CVD was defined by the self-reported presence of coronary artery disease, myocardial infarction, congestive heart failure, transient ischemic attack, or angina pectoris and confirmed by medical charts. Where necessary, diagnostic determinations were confirmed by chart review with permission.

Statistical Analyses

Data were analyzed with SPSS (version 18; SPSS, Chicago, IL). Preliminary analyses were performed to assess any significant correlations among dairy intake, cfPWV, and other demographic, health, nutrition, and lifestyle factors. The dairy intakes in the sample were calculated, and the demographic, health, and dietary characteristics of those who consume dairy food at least once per day and those who consume less than this were tested for differences using ANOVA or χ\(^2\) tests where appropriate. For the primary analyses, univariate ANCOVA was used to compare cfPWV across increasing intakes of dairy food consumption, ranging from never/seldom to at least once per day, and polynomial trend analyses were performed across the 5 levels of dairy food intake only after the ANCOVA test of the dairy intake main effect was found to be statistically significant ($P<0.05$). If the omnibus test of overall differences among groups was observed, any significant trends were reported. Adjustments for multiple comparisons among dairy food intake groups were made and reported in terms of the Bonferroni adjustment.

An age-adjusted model was first performed, and then analyses followed using 4 covariate sets. The extended covariate sets were as follows: (1) basic covariate set: age, sex, education, and race; (2) extended covariate set 1: basic set+height, weight, heart rate, antihypertensive drug treatment (yes/no), and mean arterial pressure (MAP); (3) extended covariate set 2: extended covariate set 1+waist circumference, total cholesterol, HDL, and LDL cholesterol; and (4) extended covariate set 3: extended covariate set 2+depressive symptoms (CES-D raw score), intake of grains, vegetables, protein foods, empty calories (sweets, fats, and others), and total intake from all of the food groups (all in times per day).

Because adjustment for height when assessing cfPWV has been recommended,19 height and weight were used in the extended covariate set 1 instead of BMI. However, alternative analyses (reported in the Results section) were done with height and weight removed and with waist circumference substituted.

Variables were required to meet 1 of 2 criteria to be included as an additional covariate: significantly related ($P<0.05$) to dairy food intake (the predictor) and cfPWV (the primary outcome variable) to be included in the second extended model or differed significantly between low (less than once per day) and high (at least daily) dairy consumers to be included in the third extended model. Preliminary correlational analyses were performed to ensure that MAP had the same relationship to cfPWV in each dairy intake category. MAP was calculated as DBP +1/3(SBP−DBP). cfPWV was significantly correlated with MAP for both low dairy consumers (<1 time per day, $n=371$) and high dairy consumers (≥ 1 time per day, $n=216$), indicating that MAP has the same relationship to PWV regardless of dairy intake. Additional analyses were performed with the inclusion of a dairy intake×MAP interaction term.

Supplemental Table 1 shows those health and dietary variables that were significantly correlated with both dairy food intake and cfPWV. Although PWV, SBP, and PP were highly correlated, they were used as dependent variables in the current study. For all of the models used, covariates were entered simultaneously with the predictor variables.

Results

The self-reported intakes of dairy foods (milk, cheese, yoghurt and dairy desserts, and cream and ice cream) are shown in Table 1. Slightly more than one third of the sample (36.8\%) reported eating dairy food at least once per day. Half of participants (50.1\%) reported eating dairy foods between 2 and 6 times per week. The remaining participants (13.1\%) reported eating dairy foods no more than once per week. For individual foods, milk was the dairy product consumed most frequently on a daily basis. Nearly one third of the sample reported drinking 600 mL of milk per day, equating to just over 2 servings per day. A similar proportion of the sample consumed <150 mL per day, with the remaining participants (42.6\%) drinking between 150 and 450 mL per day. Of those that drank milk, the majority reported drinking skim or reduced fat milk (80.4\%). Cheese was most often consumed between 2 and 4 times per week. Yoghurt, dairy desserts, cream, and ice cream were consumed infrequently.

In Table 2, the demographic, health, and nutritional characteristics of participants who consumed dairy food at least daily (36.8\%) are compared with those who consumed dairy food less frequently than this (63.2\%). Participants who consumed dairy on a daily basis consumed more vegetables and protein foods but fewer grains and empty calories (sweets/fats), adjusting for total energy intake, compared with those who ate dairy less frequently than this. They also had a higher number of years of education, lower body weight and waist circumference, lower SBP and DBP, and fewer depressive symptoms (all $P<0.05$). More women than men consumed dairy food on a daily basis.

There was a decrease in cfPWV, PP, and SBP for participants across increasing intakes of dairy food, ranging from...
Table 2. Demographic Variables, Health Characteristics, and Dietary Intake of Sample, Comparing Those Who Consume Dairy Food at Least Once per Day Compared With Less Than This (N=587)

<table>
<thead>
<tr>
<th>Demographic/Health Characteristic</th>
<th>Dairy Food <1 Time/Day (n=371)</th>
<th>Dairy Food at Least 1 Time/Day (n=216)</th>
<th>P*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>63.0 (12.7)</td>
<td>65.2 (11.6)</td>
<td>0.039</td>
</tr>
<tr>
<td>Education, y</td>
<td>14.4 (2.7)</td>
<td>15.0 (2.9)</td>
<td>0.019</td>
</tr>
<tr>
<td>Physical activity, MET hours/wk</td>
<td>21.2 (27.9)</td>
<td>24.6 (26.2)</td>
<td>NS</td>
</tr>
<tr>
<td>Smoking, cigarettes per wk</td>
<td>9.3 (36.8)</td>
<td>5.5 (32.2)</td>
<td>NS</td>
</tr>
<tr>
<td>Waist circumference, cm</td>
<td>95.1 (15.1)</td>
<td>91.8 (16.5)</td>
<td>0.015</td>
</tr>
<tr>
<td>Weight, kg</td>
<td>84.3 (19.6)</td>
<td>80.8 (18.7)</td>
<td>0.035</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>29.9 (6.8)</td>
<td>29.1 (6.0)</td>
<td>NS</td>
</tr>
<tr>
<td>cPWV, m/s</td>
<td>10.4 (2.9)</td>
<td>10.1 (2.7)</td>
<td>NS</td>
</tr>
<tr>
<td>SBP, mm Hg</td>
<td>130.9 (20.6)</td>
<td>126.8 (18.6)</td>
<td>0.016</td>
</tr>
<tr>
<td>DBP, mm Hg</td>
<td>78.2 (10.2)</td>
<td>75.8 (9.5)</td>
<td>0.005</td>
</tr>
<tr>
<td>MAP, mm Hg</td>
<td>95.8 (12.4)</td>
<td>92.8 (11.3)</td>
<td>0.004</td>
</tr>
<tr>
<td>PP, mm Hg</td>
<td>52.7 (16.2)</td>
<td>51.0 (14.7)</td>
<td>NS</td>
</tr>
<tr>
<td>Heart rate, bpm</td>
<td>60.2 (9.6)</td>
<td>59.9 (8.9)</td>
<td>NS</td>
</tr>
<tr>
<td>Total cholesterol, mmol/L</td>
<td>4.8 (1.0)</td>
<td>4.9 (1.0)</td>
<td>NS</td>
</tr>
<tr>
<td>HDL cholesterol, mmol/L</td>
<td>1.4 (0.4)</td>
<td>1.4 (0.4)</td>
<td>NS</td>
</tr>
<tr>
<td>LDL cholesterol, mmol/L</td>
<td>2.9 (0.8)</td>
<td>2.9 (0.8)</td>
<td>NS</td>
</tr>
<tr>
<td>Triglycerides, mmol/L</td>
<td>1.3 (0.9)</td>
<td>1.3 (0.8)</td>
<td>NS</td>
</tr>
<tr>
<td>Glucose, mmol/L</td>
<td>5.5 (1.4)</td>
<td>5.4 (1.2)</td>
<td>NS</td>
</tr>
<tr>
<td>Depression, CES-D§</td>
<td>8.6 (7.6)</td>
<td>7.1 (7.4)</td>
<td>0.017</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mean % (Within <1 Time per d Group)</th>
<th>Mean % (Within ≥1 Time per d Group)</th>
<th>P†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>154 (41.5)</td>
<td>70 (32.4)</td>
</tr>
<tr>
<td>Females</td>
<td>217 (58.5)</td>
<td>146 (67.6)</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>301 (81.1)</td>
<td>203 (94.0)</td>
</tr>
<tr>
<td>Other</td>
<td>70 (18.9)</td>
<td>13 (6.0)</td>
</tr>
<tr>
<td>CVD§</td>
<td>41 (11.1)</td>
<td>29 (13.4)</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>57 (15.4)</td>
<td>30 (13.9)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>238 (64.2)</td>
<td>122 (56.5)</td>
</tr>
<tr>
<td>Antihypertensive medication</td>
<td>204 (55.0)</td>
<td>113 (52.3)</td>
</tr>
<tr>
<td>Cholesterol-lowering medication</td>
<td>130 (35.0)</td>
<td>74 (34.3)</td>
</tr>
<tr>
<td>Diabetes mellitus medication</td>
<td>50 (13.5)</td>
<td>29 (13.4)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mean</th>
<th>SEM</th>
<th>Mean</th>
<th>SEM</th>
<th>P‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grains per d</td>
<td>3.5 (0.08)</td>
<td>3.2 (0.10)</td>
<td>0.010</td>
<td></td>
</tr>
<tr>
<td>Fruits per d</td>
<td>1.5 (0.05)</td>
<td>1.6 (0.07)</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Vegetables per d</td>
<td>2.6 (0.05)</td>
<td>2.9 (0.07)</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>Protein foods per d</td>
<td>1.8 (0.04)</td>
<td>1.9 (0.05)</td>
<td>0.024</td>
<td></td>
</tr>
<tr>
<td>Other (fats/sweets) per d</td>
<td>2.1 (0.08)</td>
<td>1.5 (0.11)</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Alcohol, standard drinks per d</td>
<td>0.4 (0.04)</td>
<td>0.4 (0.05)</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Total all foods served per d‡</td>
<td>12.0 (3.8)</td>
<td>13.5 (4.1)</td>
<td><0.001</td>
<td></td>
</tr>
</tbody>
</table>

BMI indicates body mass index; CES-D, Centre for Epidemiologic Studies Depression Scale; cPWV, carotid-femoral pulse wave velocity; CVD, cardiovascular disease; DBP, diastolic blood pressure; HDL, high-density lipoprotein; LDL, low-density lipoprotein; MAP, mean arterial pressure; MET, metabolic equivalent; PP, pulse pressure; SBP, systolic blood pressure.

*Data show ANOVA for continuous variables.
†Data show χ² for categorical variables.
‡Data show ANCOVA, controlling for total servings per day for all of the food groups.
§For CES-D, higher score indicates greater number of depressive symptoms.
CVD was defined as present if there was self-reported history of coronary artery disease, myocardial infarction, congestive heart failure, transient ischemic attack, or angina pectoris.
¶Mean and SD, includes alcohol.
never/seldom to ≥1 time per day (Table 3). Table 3 shows the 95% confidence limits associated with each mean for each group and summarizes the results of statistical analyses for the age-adjusted, basic, and the most extended models. Table S2 describes the results for each covariate set for each dependent variable.

For the age-adjusted model, the lowest cfPWV values (mean value: 9.9 m/s) were observed for those who consumed dairy products 5 to 6 times per week and daily (mean value: 10.0 m/s). With the addition of demographic variables, other cardiovascular risk factors, and nutrition variables, this significant linear trend across increasing intakes of dairy food remained (extended covariate set 3). The cfPWV of those in the lowest 3 intake categories (eat dairy 0–4 times per week) decreased in a linear fashion as dairy food intake increased. (Table 3). For all of the fully extended models, PP and SBP showed a significant linear trend across increasing intakes of dairy food.

<table>
<thead>
<tr>
<th>Outcome Measure</th>
<th>Covariate Set</th>
<th>Never/Seldom (n=37)</th>
<th>1 Time per wk (n=49)</th>
<th>2–4 Times per wk (n=141)</th>
<th>5–6 Times per wk (n=153)</th>
<th>≥1 Time per d (n=216)</th>
</tr>
</thead>
<tbody>
<tr>
<td>cPWV</td>
<td>Age-adjusted</td>
<td>10.8 10.0–11.5</td>
<td>11.1 10.4–11.8</td>
<td>10.8 10.4–11.2</td>
<td>9.9[†] 9.6–10.3</td>
<td>10.0[‡] 9.7–10.3</td>
</tr>
<tr>
<td></td>
<td>Basic</td>
<td>10.6 9.8–11.4</td>
<td>10.9 10.2–11.6</td>
<td>10.7 10.3–11.1</td>
<td>10.0 9.6–10.3</td>
<td>10.1 9.7–10.4</td>
</tr>
<tr>
<td></td>
<td>Extended 3</td>
<td>11.0 10.3–11.7</td>
<td>10.8 10.1–11.5</td>
<td>10.6 10.3–11.0</td>
<td>10.0 9.6–10.3</td>
<td>10.1 9.8–10.4</td>
</tr>
<tr>
<td>PP</td>
<td>Age-adjusted</td>
<td>56.3 51.9–60.7</td>
<td>57.8 53.5–62.1</td>
<td>53.2 50.9–55.5</td>
<td>51.3 49.1–53.4</td>
<td>50.2[†] 48.3–52.0</td>
</tr>
<tr>
<td></td>
<td>Basic</td>
<td>56.3 51.9–60.6</td>
<td>56.6 52.3–60.9</td>
<td>52.7§ 50.5–55.0</td>
<td>51.4§ 49.2–53.5</td>
<td>50.6§ 48.8–52.4</td>
</tr>
<tr>
<td></td>
<td>Extended 3</td>
<td>57.6 54.1–61.0</td>
<td>53.1 49.8–56.5</td>
<td>52.4 50.6–54.1</td>
<td>50.8§ 49.2–52.4</td>
<td>51.6§ 50.2–53.0</td>
</tr>
<tr>
<td>SBP</td>
<td>Age-adjusted</td>
<td>131.8 125.6–137.9</td>
<td>138.7 132.7–144.6</td>
<td>131.7 128.5–134.8</td>
<td>128.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basic</td>
<td>130.1 124.1–136.2</td>
<td>135.9 130.1–141.8</td>
<td>130.4 127.3–133.4</td>
<td>129.5 126.5–132.4</td>
<td>127.4 124.8–129.9</td>
</tr>
<tr>
<td></td>
<td>Extended 3</td>
<td>133.0 130.7–135.3</td>
<td>130.1 127.8–132.3</td>
<td>129.6 128.4–130.7</td>
<td>128.5§ 127.4–129.6</td>
<td>129.1§ 128.1–130.0</td>
</tr>
</tbody>
</table>

CES-D indicates Center for Epidemiologic Studies Depression Scale; cPWV, carotid-femoral pulse wave velocity; HDL, high-density lipoprotein; LDL, low-density lipoprotein; PP, pulse pressure; SBP, systolic blood pressure; WC, waist circumference; age-adjusted: adjusted for age; basic set: adjusted for age, education, sex, and race; extended set 3: adjusted for variables in basic set + height, weight, heart rate, antihypertensive drug treatment, mean arterial pressure, WC, total cholesterol, HDL and LDL cholesterol, CES-D raw score + grains per day, vegetables per day, sweets per day, protein per day, and total food servings per day.

*P for overall omnibus outcome. †P<0.05 for statistically significant linear trend. ‡P<0.01 for statistically significant linear trend. ¶Data were significantly different from the never/seldom group. §§Data were significantly different from 1 time per wk group. ||Data were significantly different from 2–4 times per wk group.

Additional Analyses

The pattern of significant results remain unchanged when the following additional regression models were used: waist circumference was substituted for height and weight, a MAP × dairy intake interaction was used in the model with MAP, and physical activity was added to the extended covariate sets. The analyses were repeated for participants not on any medication (n=218). Comparing those who ate dairy less than daily (n=137) with those who ate dairy food at least daily (n=81), the patterns of results for cPWV were the same as for the whole sample, with the high dairy consumers having a lower cPWV in all of the covariate models (data not shown).

Discussion

Dairy product intake was inversely associated with cPWV and SBP, with adjustment for demographic, cardiovascular, and dietary factors. cPWV, PP, and SBP all decreased in a linear fashion as dairy food intake increased across categories of intake from never/seldom to 5 to 6 times per week or more. Importantly, we have also shown that dairy food intake is not adversely associated with higher levels of cholesterol (total, HDL, and LDL cholesterol) or increased abdominal obesity (as measured by waist circumference). Moreover, our results for cPWV, the gold standard measure of arterial stiffness, were supported by our findings for PP and SBP, surrogate hemodynamic indices of arterial stiffness.
These findings are consistent with research examining the effects of different milk-derived proteins on BP and arterial stiffness. Peptides derived from milk protein, including caseokinins (casein derived) and lactokinins (whey derived) have been shown to inhibit angiotensin I-converting enzyme activity, an important enzyme involved in BP regulation.\(^{19,20}\) Beneficial effects on BP and augmentation index have been reported for both fermented milk rich in casein\(^{21–23}\) and rich in whey protein.\(^{24,25}\) A more recent study found that ionic calcium, in addition to lactic acid bacteria, released during milk fermentation also contributed to angiotensin I-converting enzyme-inhibitory activity.\(^{26}\) This small collection of research does provide evidence for the role of probiotic dairy products in BP modification. Further research is needed to determine their role in the treatment of arterial stiffness.

Our data support one of the first intervention studies to examine the effects of low-fat dairy product consumption on BP, in addition to other risk parameters of the metabolic syndrome.\(^{3}\) Consumption of 3 servings of low-fat dairy foods in overweight individuals for 8 weeks resulted in a significant reduction in SBP (2.9 ± 7.4 mm Hg). The high dairy diet showed no relationship with total cholesterol, LDL cholesterol, or triglycerides.

Our findings also support studies that have examined dairy products without added probiotics in relation to measures of CVD. These include a number of recent reviews, including a meta-analysis by Elwood et al.,\(^{27}\) who found significant reductions in the relative risk of ischemic heart disease, ischemic stroke, and hemorrhagic stroke in those who consume the most milk, and other reviews of prospective studies, which have failed to find a consistent relationship between dairy food intake and coronary heart disease.\(^{28,29}\) Most recently, an increased consumption of yoghurt has been associated with carotid artery intima-media thickness,\(^{30}\) a marker of atherosclerotic vascular disease and predictor of future cardiovascular and cerebrovascular events.\(^{31}\) This study showed that women aged >70 years who consumed >100 g of yoghurt per day had a significantly lower carotid artery intima-media thickness than those with lower yoghurt intakes, after adjustment for baseline, dietary, and lifestyle risk factors. Higher milk, cheese, or total dairy intakes were not associated with carotid artery intima-media thickness or with SBP or DBP. An earlier prospective study found that yoghurt intake was associated with a lower risk of acute myocardial infarction,\(^{32}\) a clinical consequence of atherosclerotic vascular disease.

Little is known about the mechanisms by which dairy foods may improve BP or arterial stiffening, a slow process resulting from changes in the extracellular matrix of the arterial walls. The strongest evidence surrounds the role of bioactive peptides derived from dairy protein, released during digestion, to inhibit angiotensin I–converting enzyme, modulate endothelial function, and cause vasodilatation.\(^{33}\) Additional components of dairy are likely to play a role. High levels of potassium have been associated with lower BP in numerous observational studies and clinical trials.\(^{34}\) Dietary potassium is thought to cause vasodilatation by stimulating the sodium pump and opening potassium channels, as well as reducing vasoconstrictive sensitivity to angiotensin II.\(^{34}\) Magnesium modulates vascular tone and reactivity and stimulates the production of vasodilators, improving blood flow and decreasing vascular resistance, thereby lowering BP and increasing arterial function.\(^{35}\) Phosphorus from dairy products has been associated recently with lower BP and a reduced risk of incident hypertension in a large prospective study.\(^{36}\) Without a known mechanism on how dairy phosphorus may reduce BP, it may be the combination of a range of nutrients in dairy foods that is effective in modulating BP. Finally, dietary calcium has been linked with low BP, working in combination with sodium, potassium, and magnesium to ensure ionic balance, stabilize vascular cell membranes, and increase vasodilatation.\(^{34}\) BP reduction may also be mediated by body weight or fat reductions, because substantial evidence exists for an antiobesity effect of dairy,\(^{37–39}\) and any positive effect on weight loss will be of benefit to BP.

Studies have reported that consumption of caffeinated tea and coffee affects PWV if consumed immediately before PWV analyses.\(^{40,41}\) Our participants consumed noncaffeinated tea and coffee on the day of the examination. Coffee and tea consumption as a routine part of the diet was not related to cfPWV, PP, or BP.

Although the differences in cfPWV and SBP according to dairy food intake in this study were relatively small (difference of 1.0 m/s and 4.5 mm Hg between never/seldom and 5–6 times per week groups for cfPWV and SBP, respectively), the differences are likely to be clinically significant. In a recent meta-analysis, it was estimated that, for every 1 m/s increase in cfPWV, there were age-, sex-, and risk factor–adjusted increases of 14%, 15%, and 15% in total CVD events, CVD mortality, and all-cause mortality, respectively.\(^{7}\) Clearly, hypertension represents a modifiable risk factor with US data suggesting that even small reductions in BP can have a great public health impact and translate into substantial reductions in coronary heart disease and stroke events.\(^{42,43}\) It has been estimated that a reduction in SBP by 2 mm Hg may reduce the risk for stroke and myocardial infarction by ~4%.\(^{44}\)

A limitation to the study can be regarded as the lack of detailed information regarding quantities of foods, including dairy food, consumed. Participants were asked, “How often do you eat the following foods?” but were not required to estimate portion or serving sizes. Quantities are therefore likely to differ substantially among individuals, as well as the same individual on different occasions. In addition, the range of responses to indicate how often a food is consumed was limited in the high intake range; that is, there was not a more specific measure of intake beyond “once or more a day.” We are also unable to stipulate the fat content of dairy food consumed based on information provided (with the exception of milk). The study was cross-sectional, and dietary measurement at only 1 point in time may not reflect long-term consumption patterns. Secondly, the cross-sectional nature of the study does not enable us to come to any conclusions regarding causality. We are unable to infer that increasing dairy intake may decrease arterial stiffness. The age range in the present study was wide, but we adjusted for age in our statistical analytic procedures, because we did not have
sufficient numbers of subjects to examine results for multiple age groups over a narrower range of ages. Finally, the MAP in this study was estimated using SBP and DBP and was not a true measure of MAP.

This study has a number of strengths. This is the first cross-sectional study that has examined dairy food intake (not limited to fermented dairy products) and cIPWV as a measure of arterial stiffness. We have examined this relationship in a large, community-dwelling, healthy sample across a wide age span and controlled for relevant demographic, health, and dietary variables.

Perspectives
Higher dairy food intake was associated with lower cIPWV and accompanying reductions of PP and SBP. Further evidence from long-term longitudinal or intervention studies is needed before the incorporation of dairy foods into a balanced diet for the attenuation of arterial stiffening can be recommended. However, this initial analysis of dairy consumption in relation to arterial stiffening indicates that dairy consumption is not associated with a worsening of traditional risk factors, such as hypercholesterolemia and hypertension, and may indeed have benefits in reducing arterial stiffness.

Acknowledgments
We thank Amanda Goodell and Suzanne Brennan (Maine-Syracuse Longitudinal Study, University of Maine) for their help with data acquisition and data management.

Sources of Funding
The research was supported by the Maurice de Rohan International Scholarship (University of South Australia) and in part by the National Heart, Lung, and Blood Institute (grants HL67358 and HL81290) and the National Institute on Aging (grant AG03055) of the National Institutes of Health.

Disclosures
None.

References
28. Ivey KL, Lewis JR, Hodgson JM, Zhu K, Dhaliwal SS, Thompson PL, Prince RL. Association between yogurt, milk, and cheese consumption and common carotid artery intima-media thickness and cardiovascular
disease risk factors in elderly women. Am J Clin Nutrition. 2011;94:
234–239.
carotid intima-media thickness and risk of stroke and myocardial infar-
32. Tavani A, Gallus S, Negri E, La Vecchia C. Milk, dairy products, and
coronary heart disease. J Epidemiol Community Health. 2002;56:
471–472.
34. Houston MC, Harper KJ. Potassium, magnesium, and calcium: their role
in both the cause and treatment of hypertension. J Clin Hypertens
35. Sontia B, Touyz RM. Role of magnesium in hypertension. Arch Biochem
36. Alonso A, Nettleton JA, Ix JH, de Boer IH, Folsom AR, Badulescu A,
Kestenbaum BR, Chambless LE, Jacobs DR Jr. Dietary phosphorus,
blood pressure, and incidence of hypertension in the Atherosclerosis Risk
in Communities Study and the Multi-Ethnic Study of Atherosclerosis.
37. Zemel MB. Role of calcium and dairy products in energy partitioning and
38. Zemel MB, Teegarden D, Van Loan MD, Schoeller DA, Matkovic V,
Lyle RM, Craig BA. Dairy-rich diets augment fat loss on an energy-
and dairy acceleration of weight and fat loss during energy restriction in
40. Mahmud A, Feely J. Acute effect of caffeine on arterial stiffness and
41. Vlachopoulos C, Hirata K, Stefanadis C, Toutouzas P, O’Rourke MF.
Caffeine increases arterial stiffness in hypertensive patients. Am J
42. Cook NR, Cohen J, Hebert PR, Taylor JO, Hennekens CH. Implications
of small reductions in diastolic blood-pressure for primary prevention.
43. Appel LJ, Brands MW, Daniels SR, Karanja N, Elmer PJ, Sacks FM.
Dietary approaches to prevent and treat hypertension: a scientific
statement from the American Heart Association. Hypertension. 2006;47:
296–308.
44. Selmer RM, Kristiansen IS, Haglerod A, Graff-Iversen S, Larsen HK,
Meyer HE, Bonaa KH, Thelle DS. Cost and health consequences of
reducing the population intake of salt. J Epidemiol Community Health.