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Abstract We show that W2,p weak solutions of the k-Hessian equation Fk(D2u) =
g(x)with k ≥ 2 can be approximated by smooth k-convex solutions vj of similar equa-
tions with the right hands sides controlled uniformly in C0,1 norm, and so that the
quantities

∫
Br
(�vj)

p−k+1Fk−1(D2vj) are bounded independently of j. This result sim-
plifies the proof of previous interior regularity results for solutions of such equations.
It also permits us to extend certain estimates for smooth solutions of degenerate two
dimensional Monge–Ampère equations to W2,p solutions.
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1 Introduction

In recent work [14,15] we showed that viscosity solutions u ∈ W2,p(�)of the k-Hessian
equation

Fk(D
2u) = g(x) in � ⊂ Rn (1.1)

belong to C1,1(�) if g ∈ C1,1(�) is positive and p > k(n−1)/2. C2,α(�) regularity then
follows from the Evans–Krylov estimates [4,6] and higher regularity follows from
standard linear elliptic theory [5] in accordance with the smoothness of g. Here

Fk(D
2u) = σk(λ1, . . . , λn) =

∑

1≤i1<···<ik≤n

λi1 · · · λik
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where λ1, . . . , λn are the eigenvalues of D2u. It is well known that (1.1) is an elliptic
equation on solutions such that λ = (λ1, . . . , λn) belongs to the cone

�k = {λ ∈ Rn : σj(λ) > 0 for j = 1, . . . , k}.
Furthermore, Fk(D2u)1/k is a concave function of D2u for such solutions [1]. We refer
to such solutions as k-convex.

The estimates in [14,15] can be proved much more simply for smooth solutions.
What complicates the proofs considerably is the approximation argument required
to prove these estimates for W2,p solutions. In [14,15] we used a technical argument
involving regularization and second order difference quotients to achieve this. The
whole procedure would be simplified if it were possible to approximate a W2,p vis-
cosity solution u of (1.1) weakly in W2,p

loc by smooth solutions {uj} of similar equations
Fk(D2uj) = gj(x) in such a way that the right hand sides gj are controlled uniformly
in a suitable norm, for example, in C1,1 or in C0,1, and are uniformly bounded away
from zero.

This is of course trivial for the linear case k = 1: the usual regularization uε belongs
to C∞(�) and converges to u in W2,p

loc (�) for 1 ≤ p < ∞. But this is no longer clear in
the nonlinear case. If k ≥ 2, all we can say a priori is that

gε := Fk(D
2uε) → Fk(D

2u) = g in Lp/k
loc (�)

if u ∈ W2,p(�), which is much too weak for our purposes. To apply the estimates in
[14,15] to uε we need to know at least that gε is uniformly bounded in C1(�) and
bounded away from zero.

Our main result here states that it is possible to approximate u locally by smooth
solutions of similar equations in such a way that the key quantities that need to be
controlled in the proofs in [14,15] remain uniformly controlled, and such that the right
hand sides of the equations remain uniformly bounded in C1(�) and bounded away
from zero if g is positive. More precisely, we will prove the following.

Theorem 1.1 Let u ∈ W2,p(�) be a viscosity solution of (1.1) in a domain � ⊂ Rn,
where g ∈ C0,1(�) is positive and p ≥ k ≥ 2. Then for any point x0 ∈ � there exist
a number r > 0 and smooth k-convex solutions {vj} of equations Fk(D2vj) = gj(x) in
Br = Br(x0) such that

(i) vj → u uniformly in Br;
(ii) ‖vj‖C1(Br)

is bounded independently of j;

(iii)
∫

Br
(�vj)

p−k+1Fk−1(D2vj) is bounded independently of j;
(iv) ‖gj‖C1(Br)

≤ 1 + ‖g‖C0,1(B2r)
and infBr gj ≥ infBr g for all j.

The proof of the interior second derivative bound in [15] involves an iteration of
integrals of the kind appearing in (iii), and the exponent of integrability increases
provided p > k(n − 1)/2 (for this we need g to be positive). It then follows from the
results of [15] applied to vj that ‖vj‖C1,1(Br/2)

is bounded independently of j, and the
same is true of ‖vj‖C2,α(Br/4)

by the Evans–Krylov estimates. Thus by (i), u satisfies
similar bounds. Therefore we have the following.

Theorem 1.2 Let u ∈ W2,p(�) be a viscosity solution of (1.1) in a bounded domain �
in Rn, where g ∈ C0,1(�) is positive and p > k(n − 1)/2. Then u belongs to C2,α(�) for
any α ∈ (0, 1).
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This is a slight improvement of the corresponding regularity result in [15] in that
here we assume g ∈ C0,1(�) rather than g ∈ C1,1(�).

A more interesting improvement can be obtained by applying an estimate of Liu
and Bao [7] to the approximations vj. We see then that the conclusion of Theorem 1.2
is valid for p > k(k − 1), provided also that g ∈ C1,1(�) is positive (this gives a better
lower bound on the integrability exponent p if k < n/2). The optimal value of p is an
interesting open problem. Examples in [9,13] show that p ≥ k(k − 1)/2 is necessary if
k ≥ 3.

We can also use a minor modification of Theorem 1.1 to extend the C1,α estimates
proved in [16] for smooth solutions of degenerate two dimensional Monge–Ampère
equations to W2,p solutions.

Theorem 1.3 Let u ∈ W2,p(�), p ≥ 2, be a convex generalized solution of
(

det D2u
)1/2 = g̃(x) in � ⊂ R2

where g̃ ∈ W1,p(�) is nonnegative. Then u ∈ C1,α(�) for α = 1 − 1/p, and for any
concentric balls BR ⊂ B2R ⊂⊂ � we have

[Du]α;BR ≤ CR−1/p

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎝

∫

B2R

(�u)p

⎞

⎟
⎠

1/p

+
⎛

⎜
⎝

∫

B2R

g̃p

⎞

⎟
⎠

1/p

+
⎛

⎜
⎝ Rp

∫

B2R

|Dg̃|p
⎞

⎟
⎠

1/p
⎫
⎪⎪⎬

⎪⎪⎭

where C depends only on p, and [Du]α;BR denotes the Hölder seminorm of Du given
by

[Du]α;BR = sup
x,y∈BR

x �=y

|Du(x)− Du(y)|
|x − y|α .

In [16] we also proved a variant of Theorem 1.3 for smooth solutions in the case
1 < p < 2. We have not been able to extend this result to W2,p solutions.

From [3, Lemma 1] it follows that

Fk−1(D
2u) ≥ c(k, n)g

k−2
k−1 (�u)

1
k−1 , (1.2)

where c(k, n) is a positive constant. Consequently, if g is bounded away from zero, it
follows from Theorem 1.1 (iii) and the Lp theory [5, Chap. 9] that the W2,p−k+1+1/(k−1)

(Br/2) norms of vj are uniformly bounded. Therefore, by passing to a subsequence
if necessary, we may assume that vj converges weakly in W2,p−k+1+1/(k−1)(Br/2) to u
(evidently the positivity of g is not needed for this if k = 2).

It would be interesting to know whether strong convergence holds in this norm (or
in some other W2,q norm). Of course, this question is interesting only in the range
p ≤ k(n − 1)/2. Above this range we get convergence in C2,α , by Theorem 1.2. By
exploiting a term that arises in the proof of Theorem 1.1 we are able to get some
information in this direction.

Theorem 1.4 Under the assumptions of Theorem 1.1 with p > k we have

D2vj
w
⇀ D2u in Lp−k+1+1/(k−1)(Br)
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and
(
�vj

)(p−k)/2 → (�u)(p−k)/2 in Ls(Br/2)

for all s ∈ [1, 2n/(n − 2)).

From the viewpoint of second order elliptic equations it seems reasonable to con-
jecture that if u ∈ W2,p(�) is a viscosity solution of (1.1), then there exist uj ∈ C∞(Br)

solving approximating equations Fk(D2uj) = gj with gj satisfying the bounds in (iii),
such that uj → u in W2,p(Br). Furthermore, we conjecture that this should be true
with W2,p replaced by C1,α . On the other hand, the nonlinearity of the equations may
somehow preclude this. An example of Malý [8] is interesting in this regard. He has
constructed a mapping U from B1 ⊂ R2 into R2 such that det DU = 0 except at 0,
|DU(x)| ≤ C|x|−1, and U ∈ W1,p(B1; R2) for all p ∈ (1, 2), and such that if Uj is
a sequence of Lipschitz mappings with Uj → U strongly in W1,q(B1; R2) for some
q ∈ (1, p), then

lim
j→∞

∫

B1

| det DUj|q → ∞.

2 Proofs of results

Let x0 be any point of �. We may assume that x0 is the origin and that r > 0 is so
small that B2r = B2r(0) ⊂⊂ �. Let u ∈ W2,p(�) be a viscosity solution of (1.1). Under
the regularity assumptions on g it is known that u belongs to C0,1(�) [10,12]. Let uε
denote the regularization of u, defined by

uε(x) = ε−n
∫

�

φ

(
x − y
ε

)

u(y)dy

for some nonnegative rotationally symmetric function φ ∈ C∞
0 (R

n) with support in

B1(0) and
∫
φ = 1. Then uε → u locally uniformly in�, in W1,q

loc (�) for all q < ∞, and

in W2,p
loc (�). Furthermore, for any �′ ⊂⊂ � we have

sup
�′

|Duε | ≤ sup
�′

|Du| (2.3)

and ∫

�′
|D2uε |p ≤

∫

�′
|D2u|p (2.4)

provided ε < dist(�′, ∂�).
By the mean value theorem for integrals, for each sufficiently small ε > 0 there is

a number rε ∈ [r, 2r] such that
∫

∂Brε

|D2uε |p ≤ 1
rε

∫

B2rε

|D2uε |p. (2.5)

Here integrals over ∂Brε are always assumed to be taken with respect to the n − 1-
dimensional measure on ∂Brε ; usually we will not indicate the volume elements.
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Let µ = supB2r
|Dg| and define

hε(x) = (µ+ 1)ε + ε−n
∫
φ

(
x − y
ε

)

g(y)dy.

Then hε → g uniformly on Br as ε → 0 and

hε(x) ≥ (µ+ 1)ε + inf
Bε (x)

g ≥ ε + g(x)

and

hε(x) ≤ (µ+ 1)ε + sup
Bε (x)

g ≤ (2µ+ 1)ε + g(x)

so

inf
Br

hε ≥ inf
B2r

g

and

sup
Br

|Dhε | ≤ sup
B2r

|Dg|

if ε < r.
Now let vε ∈ C∞(Brε ) be the unique k-convex solution of

Fk(D2vε) = hε(x) in Brε ,

vε = uε on ∂Brε .
(2.6)

Such solutions vε exist by the results of [1]. Furthermore, since uε → u uniformly on
B2r and hε → g, we have vε → u on Br. Indeed, given any δ > 0, we have |uε − u| < δ

on B2r for small enough ε, and therefore also |vε − u| < δ on ∂Brε . Then u + δ is a
viscosity supersolution of (2.6) for small enough ε and therefore vε ≤ u + δ in Brε by
the comparison principle for viscosity solutions.

Next we show that u = u − δ + θ(|x|2 − r2
ε ) is a viscosity subsolution of (2.6) for a

suitable choice of θ > 0. Suppose ψ ∈ C2 is a function such that ψ ≥ u in Brε with
equality at some point x̄ ∈ Brε . Then ψ = ψ + δ − θ(|x|2 − r2

ε ) is a C2 function with
ψ ≥ u in Brε with equality at x̄, so at x̄ we have Fl(D2ψ) ≥ 0 for all l = 0, . . . , k and
Fk(D2ψ) ≥ g. Therefore at x̄

Fk(D
2ψ) = Fk(D

2ψ + 2θI) ≥
k∑

j=0

(2θ)jFk−j(D
2ψ)

≥ Fk(D
2ψ)+ (2θ)k ≥ g + (2θ)k ≥ hε

if we choose (2θ)k = (2µ+1)ε. Thus u is a viscosity subsolution of (2.6) and therefore,
by the comparison principle, u ≤ vε in Brε . Thus

vε − δ ≤ u ≤ vε + δ + C(k,µ)ε1/kr2
ε ≤ vε + 2δ

in Brε for small enough ε > 0. It follows that vε → u as ε → 0.
Next we derive some preliminary estimates that will be used later. First, for any

constant m > 0 and for uε = uε + m(|x|2 − r2
ε ), we have

Fk(D
2uε) = Fk(D

2uε + 2mI) ≥ (2m)k,
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since Fl(D2uε) ≥ 0 for l = 1, . . . , k. For m fixed sufficiently large we have Fk(D2uε) ≥
Fk(D2vε) in Brε and uε = vε on ∂Brε . By the comparison principle we have uε ≤ vε ≤
uε in Brε , where uε denotes the harmonic function in Brε equal to uε on ∂Brε . Thus

sup
Brε

|vε | ≤ C(n, r, ‖hε‖C0(Br)
). (2.7)

Since uε = vε on ∂Brε , we also have

Dν(uε − vε) ≥ 0 on ∂Brε (2.8)

where ν denotes the outer unit normal vector field to ∂Brε . Therefore

sup
∂Brε

Dνvε ≤ sup
∂Brε

Dνuε

≤ sup
B2r

|Duε | + 4mr

≤ C(k, n, r, ‖hε‖C0(B2r)
, ‖Duε‖C0(B2r)

).

Next, the interior gradient estimate of [2,11] implies that

sup
Brε /2

|Dvε | ≤ C(n, r, ‖hε‖C1(Br)
). (2.9)

Our goal now is to show that
∫

Brε /2

(�vε)p−k+1Fk−1(D
2vε) (2.10)

is also bounded independently of ε. We will achieve this by combining some ideas
from [15] with an observation of Trudinger [10].

We temporarily drop the subscripts ε on v, h and r to simplify notation. On the ball
Br we consider the function

w =
(
δkl − xkxl

r2

)
Dklv.

By direct computation using the concavity of Fk(D2v)1/k (which can be written as

−Fij,rs ≥
(

1
k − 1

)
F−1FijFrs), we find, as in [10],

FijDijw ≥
(
δkl − xkxl

r2

)
Dklh

+
(

k−1 − 1
) (
δkl − xkxl

r2

) DkhDlh
h

− 4Dkhxk

r2 − 2kh
r2 .

Therefore
FijDijw ≥

(
δkl − xkxl

r2

)
Dklh − C(k, n)Z (2.11)

where

Z :=|Dh|2
h

+ |Dh|
r

+ h
r2 .
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We now let q ≥ 0 and multiply (2.11) by ηwq where η = (r2 − |x|2). Then we have
∫

Br

ηwqFijDijw ≥
∫

Br

ηwq
(
δkl − xkxl

r2

)
Dklh − C

∫

Br

ηwqZ . (2.12)

Integrating the left hand side by parts twice and using the divergence structure of Fij,
DiFij = 0, we have

−C
∫

Br

ηwqZ +
∫

Br

ηwq
(
δkl − xkxl

r2

)
Dklh

≤ −q
∫

Br

ηwq−1FijDiwDjw − 1
q + 1

∫

Br

FijDiηDj(wq+1)

= −q
∫

Br

ηwq−1FijDiwDjw + 1
q + 1

∫

Br

wq+1FijDijη

− 1
q + 1

∫

∂Br

wq+1FijDiη νj

where ν = x/r is the outer unit normal to ∂Br. Using the facts that Diη = −2xi,
Dijη = −2δij and

∑
Fii = (n − k + 1)Fk−1

we arrive at the estimate

1
q + 1

∫

Br

wq+1Fk−1(D
2v)+ q

2(n − k + 1)

∫

Br

ηwq−1Fij(D2v)DiwDjw

≤ r
(q + 1)(n − k + 1)

∫

∂Br

wq+1Fνν(D2v)+ C
∫

Br

ηwqZ

+ 1
2(n − k + 1)

∫

Br

ηwq
(
δkl − xkxl

r2

)
Dklh. (2.13)

Next we handle the last term on the right. Integrating by parts we get
∫

Br

ηwq
(
δkl − xkxl

r2

)
Dklh

= −
∫

Br

(
Dkηwq + ηqwq−1Dkw

) (
δkl − xkxl

r2

)
Dlh +

∫

Br

ηwqDk

(xkxl

r2

)
Dlh.

All the terms except the one containing Dw can be estimated in a straightforward
way: they are controlled by

C(k, n)
∫

Br

rwq|Dh| ≤ C(k, n)r2
∫

Br

wqZ .
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Next, writing DT
k h =

(
δkl − xkxl

r2

)
Dlh, we estimate

q

∣
∣
∣
∣
∣
∣
∣

∫

Br

ηwq−1DT
k hDkw

∣
∣
∣
∣
∣
∣
∣

≤ q
4(n − k + 1)

∫

Br

ηwq−1FijDiwDjw + C(k, n)q
∫

Br

ηwq−1FijDT
i hDT

j h

≤ q
4(n − k + 1)

∫

Br

ηwq−1FijDiwDjw + C(k, n)q
∫

Br

η
|Dh|2

h
wq−1�v

where [Fij] denotes the inverse matrix of [Fij], and we have used the estimate

[Fij] ≤ �v
h

I

(see [14,15]). The first term on the right can be absorbed by the second term on the
left side of (2.13). Next, writing x̂ = x/|x| for x �= 0, we have

w = �v − |x|2
r2 Dx̂x̂v ≥

(

1 − |x|2
r2

)

�v = r−2η�v,

and this is clearly also true at x = 0. Here we have used the fact that if λ1 ≥ · · · ≥ λn
are the eigenvalues of D2v, then Dx̂x̂v ≤ λ1 and therefore

�v − Dx̂x̂v ≥
n∑

j=2

λj > 0

since λ ∈ �2. We deduce therefore that
∫

Br

ηwq−1�v
|Dh|2

h
≤ r2

∫

Br

wq |Dh|2
h

.

Combining the above estimates we have, with ε now reinstated,

1
q + 1

∫

Brε

wq+1
ε Fk−1(D

2vε)+ q
4(n − k + 1)

∫

Brε

ηwq−1
ε Fij(D2vε)DiwεDjwε

≤ rε
(q + 1)(n − k + 1)

∫

∂Brε

wq+1
ε Fνν(D2vε)+ Cr2

ε

∫

Brε

wq
εZε , (2.14)

where C depends only on k, n and q, and

Zε := |Dhε |2
hε

+ |Dhε |
rε

+ hε
r2
ε

.

Next we estimate the boundary integral in (2.14). We choose any point ξ ∈ ∂Brε
and rotate coordinates so that ξ = (0, . . . , 0, rε). Since vε = uε on ∂Brε , at ξ we have,
for α,β = 1, . . . , n − 1,

Dαβ(vε − uε) = Dn(vε − uε)
δαβ

rε
,
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and therefore, by (2.8),
[Dαβvε] ≤ [Dαβuε] at ξ (2.15)

in the sense of matrices. Since λ(D2vε) ∈ �k ⊂ �k−1 ⊂ · · · ⊂ �1, we have, at ξ ,

Fl−1
(

̂D2vε
) = ∂

∂(Dννvε)
Fl(D

2vε) > 0 for all l = 1, . . . , k.

where ̂D2vε denotes [Dαβvε]α,β<n. It follows from this that λ
(

̂D2vε
) ∈ �n−1

k−1, the k − 1

admissible cone in Rn−1. Similarly, λ
(

̂D2uε
) ∈ �n−1

k−1. Therefore (2.15) implies that

Fνν(D2vε) ≤ Fνν(D2uε) at ξ .

Since ξ ∈ ∂Brε is arbitrary, it follows that

Fνν(D2vε) ≤ C(k, n)(�′uε)k−1

≤ Ĉ(k, n)
(

1 + (�′uε)k−1
)

on ∂Brε .

where �′ = �− Dνν on ∂Brε . Therefore by (2.5),

rε

∫

∂Brε

wq+1
ε Fνν(D2vε) ≤ C(k, n, q)rε

∫

∂Brε

(
1 + (�′uε)q+k

)

≤ C(k, n, q)
∫

B2rε

(
1 + |D2uε |q+k

)

if q + k = p.
Using this in (2.14) we obtain

∫

Brε

wq+1
ε Fk−1(D

2vε)+
∫

Brε

ηwq−1
ε Fij(D2vε)DiwεDjwε

≤ C
∫

B2rε

(
1 + |D2uε |q+k

)
+ Cr2

ε

∫

Brε

wq
εZε , (2.16)

where C depends only on k, n and q. This is the key estimate from which our results
follow.

To derive Theorem 1.1 we discard the second term on the left and we estimate

Zε ≤ 2
r2
ε

(

sup
Brε

|Dhε |2
hε

+ sup
Brε

hε

)

,

which in turn can be controlled by the corresponding quantity with hε replaced by g.
Using (1.2) (with g replaced by hε) and the fact that hε has a positive lower bound if
g is positive, we can then absorb the term

∫
Brε

wq
ε into the left hand side of (2.16) at

the expense of leaving a large constant on the right, to obtain

∫

Brε

wq+1
ε Fk−1(D

2vε) ≤ C

⎛

⎜
⎝1 +

∫

Brε

|D2uε |q+k

⎞

⎟
⎠ .
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where C depends on k, n, q, r and on ‖g‖C0,1(Brε )
and infBrε

g > 0. Next, on Brε/2 we
have

wε ≥ 3
4
�vε ,

so we conclude, after using (2.4), that

∫

Br/2

(�vε)p−k+1Fk−1(D
2vε) ≤ C

⎛

⎜
⎝1 +

∫

Br

|D2u|p
⎞

⎟
⎠ .

Remark 2.1 If q = 0 (i.e., p = k), there is no need to absorb the term
∫

Brε
wq
ε into the

left side of (2.16), while if k = 2, then Fk−1(D2vε) = �vε ≥ wε . In each of these cases
the constant C in (2.16) does not depend on a positive lower bound for g; in fact C
depends only on k, n, q and ‖h̃ε‖C0,1(Brε )

where h̃ε = h1/2
ε .

To prove Theorem 1.3 we first modify the proof of Theorem 1.1 slightly. Recalling

our assumption g̃ = (
det D2u

)1/2 ∈ W1,p(�), p ≥ 2, we define

h̃ε(x) = ε + ε−n
∫
φ

(
x − y
ε

)

g̃(y)dy.

Then h̃ε is bounded in Lp(�′) for any �′ ⊂⊂ � and ε < dist(�′∂�) (this is not quite
evident for the approximations used above), and hε := h̃2

ε → g := g̃2 in L1
loc(�). It

follows from standard results on Monge–Ampère equations that if vε is defined by
(2.6) as before, then vε → u locally uniformly on Brε (we do not need to use the
argument from above). Furthermore, the convexity of vε implies that supBrε /2

|Dvε | is
bounded independently of ε. We now follow the proof of Theorem 1.1 and estimate
the last term in (2.16) in an obvious way using the Hölder and Young inequalities and
the fact that Zε is bounded in Lp/2(Brε ):

∫

BRε

wq
εZε =

∫

BRε

wp−2
ε Zε ≤ δ

∫

BRε

wp
ε + C(δ)

∫

BRε

Z p/2
ε .

Theorem 1.3 then follows by applying the estimate in [16] to the approximations vε .

Remark 2.2 We have not been able to extend the estimate in [16] for smooth solutions
to W2,p solutions if p ∈ (1, 2). The main difficulty in this case is that the second term
on the left in (2.16) has a negative coefficient (depending on p) and it needs to be
controlled by the concavity term coming from the twice differentiated equation. More
precisely, we would need to show that

−wεFij,rsDijkvεDrslvε
(
δkl − xkxl

r2

)

≥ (1 − δ)Fij

(
δkl − xkxl

r2

)
Diklvε

(
δpq − xpxq

r2

)
Djpqvε

for some δ ∈ (0, 1). This is true at x = 0, as shown in [16], but we have not been able
to prove it in general.
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Finally, we show how Theorem 1.4 follows. The first part of the theorem is evident
from Theorem 1.1 and the estimate (1.2). To prove the second part we use the second
term on the left side of (2.16). Using the fact that hε has a positive lower bound,
together with the facts that

[Fij(D2vε)] ≥ hε
�vε

I

and

�vε ≥ wε ≥ r−2
ε η�vε ,

which have already been used above, we compute
∫

Brε

ηwq
εFij(D2vε)DiwεDjwε

≥ c0

∫

Brε /2

wq−2
ε |Dwε |2

= 4c0

q2

∫

Brε /2

∣
∣
∣D

(
wq/2
ε

)∣
∣
∣
2

≥ c1

q2

∫

Brε /4

∣
∣
∣D

(
(�vε)q/2

)∣
∣
∣
2 − C

∫

Brε

wq
ε

for controlled positive constants c0, c1, C. Using this in (2.16) we see that
∫

Brε /4

∣
∣
∣D

(
(�vε)q/2)

)∣
∣
∣
2 +

∫

Brε/4

(�vε)q+1+1/(k−1)

is bounded independently of ε. By the Rellich–Kondrachov compactness theorem [5,
Theorem 7.26], we may therefore assume that for a suitable subsequence {εj} decreas-
ing to zero, (�vεj)

q/2 converges strongly in Ls(Br/4) for all s ∈ [1, 2n/(n−2)). Standard
arguments using the first part of Theorem 1.4 then imply that the limit is (�u)q/2, so
the second assertion of Theorem 1.4 is proved.
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