FAILURE OF AMALGAMATION IN HILBERT LATTICES

TOMASZ KOWALSKI

We show that Bruns and Harding's counterexample (see [1]) to amalgamation in orthomodular lattices also works for Hilbert lattices. The argument is based on the example of a non-modular Hilbert lattice devised by von Neumann in a letter to Birkhoff (see [2] for an extensive quotation from that letter). Consider the real sequence space $\ell_{2}=\left\{f: \mathbb{N}^{+} \rightarrow \mathbb{R}: \Sigma_{i=1}^{\infty} f(i)^{2}<\infty\right\}$, where \mathbb{N}^{+}stands for $\mathbb{N} \backslash\{0\}$. Let $\left\langle e_{n}: n \in \mathbb{N}^{+}\right\rangle$be the standard orthonormal base of ℓ_{2}, i.e., $e_{n}(n)=1$ and $e_{n}(m)=0$ for $m \neq n$. It follows from Satz 15 in [3] that there are two unbounded self-adjoint operators X and Y such that $\operatorname{dom}(X) \cap \operatorname{dom}(Y)=\{0\}$ and moreover Y can be chosen to be the "multiplication by n " operator $Y f=\left\langle n \cdot f(n): n \in \mathbb{N}^{+}\right\rangle$. Thus, Y is represented over the standard base as the $\mathbb{N}^{+} \times \mathbb{N}^{+}$matrix with entries $y_{i j}=i \cdot e_{i}(j)$. Further, the operators $X^{2}+2 I$ and $Y^{2}+2 I$ are self-adjoint and invertible. Define $A=\left(X^{2}+2 I\right)^{-1}$ and $B=\left(Y^{2}+2 I\right)^{-1}$, where I is the identity operator. The following lemma spells out some properties of A, B and C.
Lemma 1. The operators A and B are bounded self-adjoint, with $\|A\| \leq \frac{1}{2}$ and $\|B\| \leq \frac{1}{2}$. Further, $C=\sqrt{I-A^{2}-B^{2}}$ is also bounded and self-adjoint. Moreover the following conditions hold:
(1) $A^{2}+B^{2}+C^{2}=I$,
(2) A^{-1} and B^{-1} exist,
(3) $A f+B g=0$ implies $f=g=0$,
(4) $C f=0$ implies $f=0$,
(5) if B^{-1} is defined for f and $B^{-1} f=0$, then $f=0$,
(6) if B^{-1} is defined for f and $C B^{-1} f=0$, then $f=0$.

Let now \bar{H} be the direct sum $\ell_{2} \oplus \ell_{2} \oplus \ell_{2}$. From (1) it follows that the map $f \mapsto(A f, B f, C f)$ is an embedding of ℓ_{2} into \bar{H}. Let \bar{L} be the image of ℓ_{2} under this embedding. Clearly, \bar{L} is a proper subspace of \bar{H}. Let $\bar{K}=\left\{(0,0, h): h \in \ell_{2}\right\}$ and $\bar{M}=\left\{(0, g, h): g, h \in \ell_{2}\right\}$.

Lemma 2. The spaces \bar{K}, \bar{L} and \bar{M} satisfy the following conditions:

- $\bar{K} \subset \bar{M}$,
- $\bar{L} \vee \bar{K}=\overline{1}$,
- $\bar{L} \cap \bar{M}=\overline{0}$.
where $\overline{1}$ stands for \bar{H} and $\overline{0}$ for the zero subspace.
In other words, $\overline{1}, \bar{K}, \bar{L}, \bar{M}$, and $\overline{0}$ form a sublattice of the Hilbert lattice of \bar{H} isomorphic to the pentagon.

To proceed, we will need certain derived operators, in particular $C B^{-2} C$. Since C in bounded self-adjoint, it is represented over the standard base by a Hermitian
$\mathbb{N}^{+} \times \mathbb{N}^{+}$matrix, say

$$
C=\left(\begin{array}{ccc}
c_{11} & c_{12} & \ldots \\
c_{21} & c_{22} & \ldots \\
\vdots & \vdots & \ddots
\end{array}\right)
$$

with $c_{i j}=c_{j i}$. The operator $B^{-2}=B^{-1} B^{-1}=\left(Y^{2}+2 I\right)\left(Y^{2}+2 I\right)$ can also be represented by a Hermitian (unbounded, diagonal) matrix

$$
\left(\begin{array}{cccc}
9 & 0 & 0 & \ldots \\
0 & 36 & 0 & \ldots \\
0 & 0 & 121 & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

with main diagonal entries $p_{i i}=\left(i^{2}+2\right)^{2}$. Therefore, the operator $C B^{-2} C$ is represented by the (non-Hermitian, unbounded) matrix

$$
M=\left(\begin{array}{ccc}
m_{11} & m_{12} & \ldots \\
m_{21} & m_{22} & \ldots \\
\vdots & \vdots & \ddots
\end{array}\right)
$$

where $m_{i j}=\sum_{n=1}^{\infty}\left(n^{2}+2\right)^{2} c_{i n} c_{n j}$.
Lemma 3. The space $\bar{L}^{\perp} \cap \bar{M}$ is a non-zero subspace of \bar{H}.
Let \bar{N} be $\bar{L}^{\perp} \cap \bar{M}$. Since \bar{N} is a non-zero proper subspace of \bar{M}, by properties of orthomodular lattices it follows that \bar{N} and \bar{M} generate an 8-element Boolean subalgebra of (the Hilbert lattice of) \bar{H}. In particular, putting $\bar{U}=\bar{N} \vee \bar{M}^{\perp}$ we get that \bar{U} is a proper subspace of \bar{H}.

Lemma 4. The space \bar{U} is precisely $\{(a, b, c): B b+C c=0\}$, with $a, b, c \in \ell_{2}$. Moreover, the following equalities hold:
(1) $\bar{K} \cap \bar{U}=0$,
(2) $\bar{L} \cap \bar{U}=0$,
(3) $\bar{U} \cap \bar{K}^{\perp}=\bar{M}^{\perp}$,
(4) $\bar{U}^{\perp} \vee \bar{L}=\bar{N}^{\perp}$.

We now preceed to define a subspace of \bar{U}. Let P be the projection on first coordinate, i.e., an operator on ℓ_{2} defined by

$$
\operatorname{Pf}(n)= \begin{cases}f(n) & \text { if } n=1 \\ 0 & \text { otherwise }\end{cases}
$$

Clearly the subspace \bar{P} corresponding to P is a proper, non-zero subspace of ℓ_{2}. Thus, \bar{W} defined as $\{(a, b, P c): B b+C c=0\}$ is a proper, non-zero subspace of \bar{U}.

Lemma 5. We have $(\bar{L}+\bar{W})^{\perp}=0=(\bar{K}+\bar{W})^{\perp}$.
Lemma 6. The subalgebra of the Hilbert lattice of \bar{H} generated by \bar{L}, \bar{K} and \bar{W} is isomorphic to MO3 (i.e., the Chinese lantern with 6 atoms).

Now let \mathbf{L}_{1} and \mathbf{L}_{2} be two copies of the Hilbert lattice of \bar{H}. We will use subscripts to differentiate between their elements (subspaces of the two copies of
$\bar{H})$. Thus, for instance \bar{L}_{1} will stand for $\bar{L} \subset \bar{H}$ as an element of \mathbf{L}_{2}, while \bar{L}_{2} will stand for \bar{L} as an element of \mathbf{L}_{2}.

By Lemma 6, MO3 is a sublattice of both. Let p, q, r be three distinct atoms of MO3. Define embeddings $e_{1}: M O 3 \longrightarrow \mathbf{L}_{1}$ and $e_{2}: M O 3 \longrightarrow \mathbf{L}_{2}$ by putting:

- $e_{1}(p)=\bar{L}_{1}, e_{1}(q)=\bar{K}_{1}, e_{1}(r)=\bar{W}_{1}$, and
- $e_{2}(p)=\bar{L}_{2}^{\perp}, e_{2}(q)=\bar{K}_{2}^{\perp}, e_{1}(r)=\bar{W}_{2}^{\perp}$.

Notice that intuitively this amounts to identifying the copies of \bar{L}, \bar{K} and \bar{W} in \mathbf{L}_{1} respectively with the copies of $\bar{L}^{\perp}, \bar{K}^{\perp}$ and \bar{W}^{\perp} in \mathbf{L}_{2}.

Suppose that the V-formation $\left\langle M O 3, \mathbf{L}_{1}, \mathbf{L}_{2}, e_{1}, e_{2}\right\rangle$ can be amalgamated by a Hilbert lattice \mathbf{L}. We will use $\overline{1}$ and $\overline{0}$ respectively for the top and bottom elements of our lattices. In \mathbf{L} we can then carry out the following calculations.

$$
\begin{equation*}
\overline{1}=\bar{U}_{2}^{\perp} \vee \bar{K}_{2}^{\perp}=\bar{U}_{2}^{\perp} \vee q \leq \bar{U}_{2}^{\perp} \vee q \vee \bar{U}_{1}^{\perp}=\bar{U}_{2}^{\perp} \vee \bar{K}_{1} \vee \bar{U}_{1}^{\perp}=\bar{U}_{2}^{\perp} \vee \bar{M}_{1} \tag{1}
\end{equation*}
$$

where the inequality in the middle is trivial, the equalities neighbouring it follow from the embeddings, and the first and last equalities in the row both come from Lemma 4 (from (1) and (3) respectively). Since $\bar{N}_{1} \subseteq \bar{M}_{1}$, by orthomodularity we get

$$
\begin{equation*}
\bar{N}_{1} \vee \bar{U}_{1}^{\perp}=\bar{N}_{1} \vee\left(\bar{N}_{1}^{\perp} \cap \bar{M}_{1}\right)=\bar{M}_{1} \tag{2}
\end{equation*}
$$

which together with (1) yields

$$
\begin{equation*}
\overline{1}=\bar{U}_{2}^{\perp} \vee \bar{N}_{1} \vee \bar{U}_{1}^{\perp} \tag{3}
\end{equation*}
$$

Then, as $\bar{N}_{1} \subseteq \bar{U}_{1}$ and $\bar{U}_{2}^{\perp} \subseteq \bar{W}_{2}^{\perp}=r=\bar{W}_{1} \subseteq \bar{U}_{1}$, using orthomodularity again we obtain

$$
\begin{equation*}
\bar{N}_{1} \vee \bar{U}_{2}^{\perp}=\bar{U}_{1} . \tag{4}
\end{equation*}
$$

Orthomodularity also yields

$$
\begin{equation*}
\bar{L}_{1}^{\perp}=\bar{N}_{1} \vee\left(\bar{L}_{1}^{\perp} \cap \bar{N}_{1}^{\perp}\right) . \tag{5}
\end{equation*}
$$

Therefore

$$
\begin{aligned}
\bar{N}_{2}^{\perp}=\bar{U}_{2}^{\perp} \vee \bar{L}_{2} & =\bar{U}_{2}^{\perp} \vee p^{\perp}=\bar{U}_{2}^{\perp} \vee \bar{L}_{1}^{\perp} \\
=\bar{U}_{2}^{\perp} \vee\left(\bar{N}_{1} \vee\left(\bar{L}_{1}^{\perp} \cap \bar{N}_{1}^{\perp}\right)\right) & =\left(\bar{U}_{2}^{\perp} \vee \bar{N}_{1}\right) \vee\left(\bar{L}_{1}^{\perp} \cap \bar{N}_{1}^{\perp}\right) \\
=\bar{U}_{1} \vee\left(\bar{L}_{1}^{\perp} \cap \bar{N}_{1}^{\perp}\right) & =\left(\bar{M}_{1}^{\perp} \vee \bar{N}_{1}\right) \vee\left(\bar{L}_{1}^{\perp} \cap \bar{N}_{1}^{\perp}\right) \\
=\bar{M}_{1}^{\perp} \vee\left(\bar{N}_{1} \vee\left(\bar{L}_{1}^{\perp} \cap \bar{N}_{1}^{\perp}\right)\right) & =\bar{M}_{1}^{\perp} \vee \bar{L}_{1}^{\perp} \\
=\left(\bar{M}_{1} \cap \bar{L}_{1}\right)^{\perp} & =\overline{0}^{\perp}=\overline{1}
\end{aligned}
$$

where the first equality follows by Lemma $4(4)$ and the last row employs Lemma 2. So we obtain $\bar{N}_{2}^{\perp}=\overline{1}$, which contradicts Lemma 3.

References

[1] G. Bruns, J. Harding, Amalgamation of ortholattices, Order, 14, 193-209, 1998.
[2] M. Redei, The birth of quantum logic, manuscript.
[3] J. von Neumann, Zur Theorie der unbeschränkter Matrizen, Collected Works, vol. II, no. 3, 144-172, Pergamon Press 1961.

