FAILURE OF AMALGAMATION IN HILBERT LATTICES

TOMASZ KOWALSKI

We show that Bruns and Harding's counterexample (see [1]) to amalgamation in orthomodular lattices also works for Hilbert lattices. The argument is based on the example of a non-modular Hilbert lattice devised by von Neumann in a letter to Birkhoff (see [2] for an extensive quotation from that letter). Consider the real sequence space $\ell_2 = \{f \colon \mathbb{N}^+ \to \mathbb{R} \colon \Sigma_{i=1}^{\infty} f(i)^2 < \infty\}$, where \mathbb{N}^+ stands for $\mathbb{N} \setminus \{0\}$. Let $\langle e_n : n \in \mathbb{N}^+ \rangle$ be the standard orthonormal base of ℓ_2 , i.e., $e_n(n) = 1$ and $e_n(m) = 0$ for $m \neq n$. It follows from Satz 15 in [3] that there are two unbounded self-adjoint operators X and Y such that $dom(X) \cap dom(Y) = \{0\}$ and moreover Y can be chosen to be the "multiplication by n" operator $Yf = \langle n \cdot f(n) : n \in \mathbb{N}^+ \rangle$. Thus, Y is represented over the standard base as the $\mathbb{N}^+ \times \mathbb{N}^+$ matrix with entries $y_{ij} = i \cdot e_i(j)$. Further, the operators $X^2 + 2I$ and $Y^2 + 2I$ are self-adjoint and invertible. Define $A = (X^2 + 2I)^{-1}$ and $B = (Y^2 + 2I)^{-1}$, where I is the identity operator. The following lemma spells out some properties of A, B and C.

Lemma 1. The operators A and B are bounded self-adjoint, with $||A|| \leq \frac{1}{2}$ and $||B|| \leq \frac{1}{2}$. Further, $C = \sqrt{I - A^2 - B^2}$ is also bounded and self-adjoint. Moreover the following conditions hold:

- (1) $A^2 + B^2 + C^2 = I$,
- (2) A^{-1} and B^{-1} exist,
- (3) Af + Bg = 0 implies f = g = 0,
- (4) Cf = 0 implies f = 0,
- (5) if B^{-1} is defined for f and $B^{-1}f = 0$, then f = 0,
- (6) if B^{-1} is defined for f and $CB^{-1}f = 0$, then f = 0.

Let now \overline{H} be the direct sum $\ell_2 \oplus \ell_2 \oplus \ell_2$. From (1) it follows that the map $f \mapsto (Af, Bf, Cf)$ is an embedding of ℓ_2 into \overline{H} . Let \overline{L} be the image of ℓ_2 under this embedding. Clearly, \overline{L} is a proper subspace of \overline{H} . Let $\overline{K} = \{(0,0,h): h \in \ell_2\}$ and $\overline{M} = \{(0, g, h) \colon g, h \in \ell_2\}.$

Lemma 2. The spaces \overline{K} , \overline{L} and \overline{M} satisfy the following conditions:

- $\overline{K} \subset \overline{M}$, • $\overline{L} \vee \overline{K} = \overline{1}$, • $\overline{L} \cap \overline{M} = \overline{0}$.

where $\overline{1}$ stands for \overline{H} and $\overline{0}$ for the zero subspace.

In other words, $\overline{1}$, \overline{K} , \overline{L} , \overline{M} , and $\overline{0}$ form a sublattice of the Hilbert lattice of \overline{H} isomorphic to the pentagon.

To proceed, we will need certain derived operators, in particular $CB^{-2}C$. Since C in bounded self-adjoint, it is represented over the standard base by a Hermitian $\mathbb{N}^+ \times \mathbb{N}^+$ matrix. say

$$C = \begin{pmatrix} c_{11} & c_{12} & \dots \\ c_{21} & c_{22} & \dots \\ \vdots & \vdots & \ddots \end{pmatrix}$$

with $c_{ij} = c_{ji}$. The operator $B^{-2} = B^{-1}B^{-1} = (Y^2 + 2I)(Y^2 + 2I)$ can also be represented by a Hermitian (unbounded, diagonal) matrix

$$\begin{pmatrix} 9 & 0 & 0 & \dots \\ 0 & 36 & 0 & \dots \\ 0 & 0 & 121 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

with main diagonal entries $p_{ii} = (i^2 + 2)^2$. Therefore, the operator $CB^{-2}C$ is represented by the (non-Hermitian, unbounded) matrix

$$M = \begin{pmatrix} m_{11} & m_{12} & \dots \\ m_{21} & m_{22} & \dots \\ \vdots & \vdots & \ddots \end{pmatrix}$$

where $m_{ij} = \sum_{n=1}^{\infty} (n^2 + 2)^2 c_{in} c_{nj}$.

Lemma 3. The space $\overline{L}^{\perp} \cap \overline{M}$ is a non-zero subspace of \overline{H} .

Let \overline{N} be $\overline{L}^{\perp} \cap \overline{M}$. Since \overline{N} is a non-zero proper subspace of \overline{M} , by properties of orthomodular lattices it follows that \overline{N} and $\overline{\overline{M}}$ generate an 8-element Boolean subalgebra of (the Hilbert lattice of) \overline{H} . In particular, putting $\overline{U} = \overline{N} \vee \overline{M}^{\perp}$ we get that \overline{U} is a proper subspace of \overline{H} .

Lemma 4. The space \overline{U} is precisely $\{(a, b, c): Bb + Cc = 0\}$, with $a, b, c \in \ell_2$. Moreover, the following equalities hold:

- (1) $\overline{K} \cap \overline{U} = 0$,
- (2) $\overline{L} \cap \overline{U} = 0$,
- (3) $\overline{U} \cap \overline{K}^{\perp} = \overline{M}^{\perp},$ (4) $\overline{U}^{\perp} \vee \overline{L} = \overline{N}^{\perp}.$

We now preceed to define a subspace of \overline{U} . Let P be the projection on first coordinate, i.e., an operator on ℓ_2 defined by

$$Pf(n) = \begin{cases} f(n) & \text{if } n = 1\\ 0 & \text{otherwise} \end{cases}$$

Clearly the subspace \overline{P} corresponding to P is a proper, non-zero subspace of ℓ_2 . Thus, \overline{W} defined as $\{(a, b, Pc) : Bb + Cc = 0\}$ is a proper, non-zero subspace of \overline{U} .

Lemma 5. We have $(\overline{L} + \overline{W})^{\perp} = 0 = (\overline{K} + \overline{W})^{\perp}$.

Lemma 6. The subalgebra of the Hilbert lattice of \overline{H} generated by \overline{L} , \overline{K} and \overline{W} is isomorphic to MO3 (i.e., the Chinese lantern with 6 atoms).

Now let \mathbf{L}_1 and \mathbf{L}_2 be two copies of the Hilbert lattice of \overline{H} . We will use subscripts to differentiate between their elements (subspaces of the two copies of \overline{H}). Thus, for instance \overline{L}_1 will stand for $\overline{L} \subset \overline{H}$ as an element of \mathbf{L}_2 , while \overline{L}_2 will stand for \overline{L} as an element of \mathbf{L}_2 .

By Lemma 6, MO3 is a sublattice of both. Let p, q, r be three distinct atoms of MO3. Define embeddings $e_1: MO3 \longrightarrow \mathbf{L}_1$ and $e_2: MO3 \longrightarrow \mathbf{L}_2$ by putting:

- $e_1(p) = \overline{L}_1, e_1(q) = \overline{K}_1, e_1(r) = \overline{W}_1$, and
- $e_2(p) = \overline{L}_2^{\perp}, e_2(q) = \overline{K}_2^{\perp}, e_1(r) = \overline{W}_2^{\perp}.$

Notice that intuitively this amounts to *identifying* the copies of \overline{L} , \overline{K} and \overline{W} in \mathbf{L}_1 respectively with the copies of \overline{L}^{\perp} , \overline{K}^{\perp} and \overline{W}^{\perp} in \mathbf{L}_2 .

Suppose that the V-formation $\langle MO3, \mathbf{L}_1, \mathbf{L}_2, e_1, e_2 \rangle$ can be amalgamated by a Hilbert lattice **L**. We will use $\overline{1}$ and $\overline{0}$ respectively for the top and bottom elements of our lattices. In **L** we can then carry out the following calculations.

(1)
$$\overline{1} = \overline{U}_2^{\perp} \lor \overline{K}_2^{\perp} = \overline{U}_2^{\perp} \lor q \le \overline{U}_2^{\perp} \lor q \lor \overline{U}_1^{\perp} = \overline{U}_2^{\perp} \lor \overline{K}_1 \lor \overline{U}_1^{\perp} = \overline{U}_2^{\perp} \lor \overline{M}_1$$

where the inequality in the middle is trivial, the equalities neighbouring it follow from the embeddings, and the first and last equalities in the row both come from Lemma 4 (from (1) and (3) respectively). Since $\overline{N}_1 \subseteq \overline{M}_1$, by orthomodularity we get

(2)
$$\overline{N}_1 \vee \overline{U}_1^{\perp} = \overline{N}_1 \vee (\overline{N}_1^{\perp} \cap \overline{M}_1) = \overline{M}_1$$

which together with (1) yields

(3)
$$\overline{1} = \overline{U}_2^{\perp} \vee \overline{N}_1 \vee \overline{U}_1^{\perp}$$

Then, as $\overline{N}_1 \subseteq \overline{U}_1$ and $\overline{U}_2^{\perp} \subseteq \overline{W}_2^{\perp} = r = \overline{W}_1 \subseteq \overline{U}_1$, using orthomodularity again we obtain

(4)
$$\overline{N}_1 \vee \overline{U}_2^\perp = \overline{U}_1.$$

Orthomodularity also yields

(5)
$$\overline{L}_1^{\perp} = \overline{N}_1 \lor (\overline{L}_1^{\perp} \cap \overline{N}_1^{\perp}).$$

Therefore

$$\begin{split} \overline{N}_{2}^{\perp} &= \overline{U}_{2}^{\perp} \vee \overline{L}_{2} = \overline{U}_{2}^{\perp} \vee p^{\perp} = \overline{U}_{2}^{\perp} \vee \overline{L}_{1}^{\perp} \\ &= \overline{U}_{2}^{\perp} \vee (\overline{N}_{1} \vee (\overline{L}_{1}^{\perp} \cap \overline{N}_{1}^{\perp})) = (\overline{U}_{2}^{\perp} \vee \overline{N}_{1}) \vee (\overline{L}_{1}^{\perp} \cap \overline{N}_{1}^{\perp}) \\ &= \overline{U}_{1} \vee (\overline{L}_{1}^{\perp} \cap \overline{N}_{1}^{\perp}) = (\overline{M}_{1}^{\perp} \vee \overline{N}_{1}) \vee (\overline{L}_{1}^{\perp} \cap \overline{N}_{1}^{\perp}) \\ &= \overline{M}_{1}^{\perp} \vee (\overline{N}_{1} \vee (\overline{L}_{1}^{\perp} \cap \overline{N}_{1}^{\perp})) = \overline{M}_{1}^{\perp} \vee \overline{L}_{1}^{\perp} \\ &= (\overline{M}_{1} \cap \overline{L}_{1})^{\perp} = \overline{0}^{\perp} = \overline{1} \end{split}$$

where the first equality follows by Lemma 4(4) and the last row employs Lemma 2. So we obtain $\overline{N}_2^{\perp} = \overline{1}$, which contradicts Lemma 3.

References

- [1] G. Bruns, J. Harding, Amalgamation of ortholattices, Order, 14, 193–209, 1998.
- [2] M. Redei, The birth of quantum logic, manuscript.
- [3] J. von Neumann, Zur Theorie der unbeschränkter Matrizen, Collected Works, vol. II, no. 3, 144–172, Pergamon Press 1961.