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We show that Bruns and Harding’s counterexample (see [1]) to amalgamation
in orthomodular lattices also works for Hilbert lattices. The argument is based on
the example of a non-modular Hilbert lattice devised by von Neumann in a letter
to Birkhoff (see [2] for an extensive quotation from that letter). Consider the real
sequence space !2 = {f : N+ → R : Σ∞i=1f(i)2 < ∞}, where N+ stands for N \ {0}.
Let 〈en : n ∈ N+〉 be the standard orthonormal base of !2, i.e., en(n) = 1 and
en(m) = 0 for m &= n. It follows from Satz 15 in [3] that there are two unbounded
self-adjoint operators X and Y such that dom(X)∩dom(Y ) = {0} and moreover Y
can be chosen to be the “multiplication by n” operator Y f =

〈
n · f(n) : n ∈ N+

〉
.

Thus, Y is represented over the standard base as the N+ ×N+ matrix with entries
yij = i · ei(j). Further, the operators X2 + 2I and Y 2 + 2I are self-adjoint and
invertible. Define A = (X2 + 2I)−1 and B = (Y 2 + 2I)−1, where I is the identity
operator. The following lemma spells out some properties of A, B and C.

Lemma 1. The operators A and B are bounded self-adjoint, with ||A|| ≤ 1
2 and

||B|| ≤ 1
2 . Further, C =

√
I −A2 −B2 is also bounded and self-adjoint. Moreover

the following conditions hold:

(1) A2 + B2 + C2 = I,
(2) A−1 and B−1 exist,
(3) Af + Bg = 0 implies f = g = 0,
(4) Cf = 0 implies f = 0,
(5) if B−1 is defined for f and B−1f = 0, then f = 0,
(6) if B−1 is defined for f and CB−1f = 0, then f = 0.

Let now H be the direct sum !2 ⊕ !2 ⊕ !2. From (1) it follows that the map
f -→ (Af,Bf, Cf) is an embedding of !2 into H. Let L be the image of !2 under
this embedding. Clearly, L is a proper subspace of H. Let K = {(0, 0, h) : h ∈ !2}
and M = {(0, g, h) : g, h ∈ !2}.

Lemma 2. The spaces K, L and M satisfy the following conditions:

• K ⊂ M ,
• L ∨K = 1,
• L ∩M = 0.

where 1 stands for H and 0 for the zero subspace.

In other words, 1, K, L, M , and 0 form a sublattice of the Hilbert lattice of H
isomorphic to the pentagon.

To proceed, we will need certain derived operators, in particular CB−2C. Since
C in bounded self-adjoint, it is represented over the standard base by a Hermitian
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N+ × N+ matrix, say

C =




c11 c12 . . .
c21 c22 . . .
...

...
. . .





with cij = cji. The operator B−2 = B−1B−1 = (Y 2 + 2I)(Y 2 + 2I) can also be
represented by a Hermitian (unbounded, diagonal) matrix





9 0 0 . . .
0 36 0 . . .
0 0 121 . . .
...

...
...

. . .





with main diagonal entries pii = (i2 + 2)2. Therefore, the operator CB−2C is
represented by the (non-Hermitian, unbounded) matrix

M =




m11 m12 . . .
m21 m22 . . .

...
...

. . .





where mij =
∑∞

n=1(n
2 + 2)2cincnj .

Lemma 3. The space L
⊥ ∩M is a non-zero subspace of H.

Let N be L
⊥ ∩M . Since N is a non-zero proper subspace of M , by properties

of orthomodular lattices it follows that N and M generate an 8-element Boolean
subalgebra of (the Hilbert lattice of) H. In particular, putting U = N ∨M

⊥ we
get that U is a proper subspace of H.

Lemma 4. The space U is precisely {(a, b, c) : Bb + Cc = 0}, with a, b, c ∈ !2.
Moreover, the following equalities hold:

(1) K ∩ U = 0,
(2) L ∩ U = 0,
(3) U ∩K

⊥ = M
⊥,

(4) U
⊥ ∨ L = N

⊥.

We now preceed to define a subspace of U . Let P be the projection on first
coordinate, i.e., an operator on !2 defined by

Pf(n) =

{
f(n) if n = 1
0 otherwise

Clearly the subspace P corresponding to P is a proper, non-zero subspace of !2.
Thus, W defined as {(a, b, Pc) : Bb + Cc = 0} is a proper, non-zero subspace of U .

Lemma 5. We have (L + W )⊥ = 0 = (K + W )⊥.

Lemma 6. The subalgebra of the Hilbert lattice of H generated by L, K and W is
isomorphic to MO3 (i.e., the Chinese lantern with 6 atoms).

Now let L1 and L2 be two copies of the Hilbert lattice of H. We will use
subscripts to differentiate between their elements (subspaces of the two copies of
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H). Thus, for instance L1 will stand for L ⊂ H as an element of L2, while L2 will
stand for L as an element of L2.

By Lemma 6, MO3 is a sublattice of both. Let p, q, r be three distinct atoms of
MO3 . Define embeddings e1 : MO3 −→ L1 and e2 : MO3 −→ L2 by putting:

• e1(p) = L1, e1(q) = K1, e1(r) = W 1, and
• e2(p) = L

⊥
2 , e2(q) = K

⊥
2 , e1(r) = W

⊥
2 .

Notice that intuitively this amounts to identifying the copies of L, K and W in L1

respectively with the copies of L
⊥, K

⊥ and W
⊥ in L2.

Suppose that the V-formation 〈MO3 ,L1,L2, e1, e2〉 can be amalgamated by a
Hilbert lattice L. We will use 1 and 0 respectively for the top and bottom elements
of our lattices. In L we can then carry out the following calculations.

(1) 1 = U
⊥
2 ∨K

⊥
2 = U

⊥
2 ∨ q ≤ U

⊥
2 ∨ q ∨ U

⊥
1 = U

⊥
2 ∨K1 ∨ U

⊥
1 = U

⊥
2 ∨M1

where the inequality in the middle is trivial, the equalities neighbouring it follow
from the embeddings, and the first and last equalities in the row both come from
Lemma 4 (from (1) and (3) respectively). Since N1 ⊆ M1, by orthomodularity we
get

(2) N1 ∨ U
⊥
1 = N1 ∨ (N⊥1 ∩M1) = M1

which together with (1) yields

(3) 1 = U
⊥
2 ∨N1 ∨ U

⊥
1

Then, as N1 ⊆ U1 and U
⊥
2 ⊆ W

⊥
2 = r = W 1 ⊆ U1, using orthomodularity again

we obtain

(4) N1 ∨ U
⊥
2 = U1.

Orthomodularity also yields

(5) L
⊥
1 = N1 ∨ (L⊥1 ∩N

⊥
1 ).

Therefore

N
⊥
2 = U

⊥
2 ∨ L2 = U

⊥
2 ∨ p⊥ = U

⊥
2 ∨ L

⊥
1

= U
⊥
2 ∨ (N1 ∨ (L⊥1 ∩N

⊥
1 )) = (U⊥2 ∨N1) ∨ (L⊥1 ∩N

⊥
1 )

= U1 ∨ (L⊥1 ∩N
⊥
1 ) = (M⊥

1 ∨N1) ∨ (L⊥1 ∩N
⊥
1 )

= M
⊥
1 ∨ (N1 ∨ (L⊥1 ∩N

⊥
1 )) = M

⊥
1 ∨ L

⊥
1

= (M1 ∩ L1)⊥ = 0⊥ = 1

where the first equality follows by Lemma 4(4) and the last row employs Lemma 2.
So we obtain N

⊥
2 = 1, which contradicts Lemma 3.
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