
Abstract 
 

Hierarchical Fuzzy Signatures are generalizations 
of the Vector Valued Fuzzy Set concept introduced in 
the 1970s. A crucial question in the Fuzzy Signature 
context is what kinds of aggregations are applicable 
for combining data with partly different substructures. 
Our earlier work introduced the Weighted Relevance 
Aggregation method to enhance the accuracy of the 
final results of calculations based on Hierarchical 
Fuzzy Signature Structures. In this paper, we further 
generalise the weights and the aggregation into a new 
operator called Weighted Relevance Aggregation 
Operator (WRAO). WRAO enhances the adaptability 
of the fuzzy signature model to different applications 
and simplifies the learning of fuzzy signature models 
from data. We also show the methodology of learning 
these aggregation operators from data.  
 
 
1. Introduction 
 

In Kóczy [8] the vector valued fuzzy sets concept [7] 
has been further generalised to introduce the fuzzy 
signature concept. Fuzzy signatures can model 
complex structured problems via hierarchically 
structured (embedded) vector valued fuzzy sets, and a 
set of aggregation functions. The hierarchically 
structured vector valued fuzzy sets represent the degree 
of relationship of the attributes of the object. The set of 
aggregation functions tunnel, from lower branches to 
the higher branches, the interconnectedness of different 
universes of discourses of hierarchical fuzzy signature 
structure. Also, these aggregation functions are non-

homogenous, that is, we can use different aggregations 
at different levels as well as at different branches of the 
same level of the hierarchical fuzzy signature structure. 
We argue that these properties help fuzzy signatures to 
model problems similarly to the nature of human 
approaches to problem solving. An important benefit 
of the fuzzy signature concept is that it can be used to 
compare the degree of similarity or dissimilarity of two 
objects with slightly different descriptor structure, 
which have nevertheless the same main fuzzy signature 
skeleton. Additionally, fuzzy signatures are capable of 
dealing with missing input data. Thus, medical and 
economic diagnoses are obvious application areas for 
fuzzy signatures.  

In [2] we further enhanced the technique of inference 
in fuzzy signatures, by introducing the Weighted 
Relevance Aggregation method. The concept behind 
the Weighted Relevance aggregation method is that the 
weights in each branch of the fuzzy signature express 
the perceptions of the relevance of that branch to its 
higher-level branches in the hierarchical fuzzy 
signature structure. Thus, this method introduces 
additional expert knowledge to the fuzzy signature 
structure to classify vague data. Further, in [2] we 
proposed to use simple aggregation functions: 
minimum, average, maximum-average, and maximum 
with these weights. In [4] we showed a methodology of 
learning these weights for Weighted Relevance 
Aggregation, from real world data, using a gradient 
descent method. In [3] a steepest gradient descent 
method was successfully used for learning these 
weights for Weighted Relevance Aggregation in 
hierarchical fuzzy signatures. But still, we need to 
manually set the aggregation functions.  
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In this paper, we further generalise these weights and 
aggregation functions into an operator called Weighted 
Relevance Aggregation Operator (WRAO). This 
allows us to learn both the aggregation function and the 
Weighted Relevance at the same time for an individual 
node in the hierarchical fuzzy signatures structure. 
Also, we discuss the partial derivatives of the function 
in question that are needed for gradient based leaning.   

In Section 2, we briefly discuss the theory of fuzzy 
signatures and the Weighted Relevance Aggregation 
method. In Section 3 we introduce the generalised 
Weighted Relevance Aggregation Operator and discuss 
the partial derivatives used. In Section 4 we discuss the 
methodology of learning this new operator from data, 
using Guass-Newton optimization method.  Finally, in 
Section 5, we show how to calculate the Jacobian 
matrix for the Guass-Newton method using a real 
world application.  
 
2. Fuzzy Signatures and Weighted 

Relevance Aggregation 
 

In this section we discuss the theoretical background 
of hierarchical fuzzy signature structures and the 
weighted relevance aggregation method.  

Fuzzy signatures are iterative vector valued fuzzy 
sets, where each vector component can be a further 
vector valued fuzzy set [8]. A fuzzy signature s can be 
defined as, 
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Fig.1 shows an example of a hierarchical fuzzy 

signature structure with two arbitrary levels g and 
(g+1). Now, aggregation of an arbitrary branch aq..i in 
level g (fig.1) can be written as, aq..i = @q..i{aq..ij}, 
where @q..i is an arbitrary aggregation function, 
j=1,…n, and aq..ij œ [0,1]. These aggregation functions, 
which are used for inference in fuzzy signatures, can 
be simple aggregations like minimum (min), average 
(avg), maximum_average (max-avg), or maximum 
(max), which were used in [2], or they can be complex 
aggregation functions as proposed in [8].  

The Weighted Relevance Aggregation concept was 
proposed in [2] to provide the incorporation of 
additional expert knowledge to the fuzzy signature 
structure by introducing the weighted relevance of each 
branch to its higher-level branches of the fuzzy 
signature structure. Thus, the Weighted Relevance will 
give an additional ability to fuzzy signatures for 

decision making in situations where input data are 
vague and complex.  

The Weighted Relevance aggregation of an arbitrary 
branch iqa ...  in a fuzzy signature (Fig.1) can be defined 
as { }ijqijqiqiq awa ............ @ •= , where iq..@  is an arbitrary 
aggregation function, j=1,…n, and [ ]1,0... ∈ijqa . The 
following properties hold for arbitrary weighted 
relevance qw : 

i. [ ]1,0∈qw  

ii. Note that ∑
=

l

q
qw

1
 is not necessarily equal to 1. 

In [1], [2] and [3] we have shown that the Weighted 
Relevance Aggregation can be used to enhance the 
accuracy of the final results. Also, it helps to find a 
more general hierarchical structure, which represents 
large number of data points for fuzzy signatures. 
 
3. Weighted Relevance Aggregation 

Operator (WRAO) 
 

In this section we first discuss the idea of 
generalizing weighted relevance and aggregations into 
an operator called Weighted Relevance Aggregation 
Operator (WRAO) for fuzzy signatures. Secondly, we 
obtain the partial derivatives of WRAO for gradient-
based learning. 
 
3.1.  Definition and Properties of WRAO 
 

The importance of WRAO is that it enhances the 
adaptability of the hierarchical fuzzy signature 
structure by giving more flexibility to learn better 
values, which are weighted relevance and aggregation 
functions, for inference.  

The generalised means [5] of n arguments 
[ ]1,0,...,, 21 ∈nsss  is a function [ ] [ ]1,01,0: →ng  such that, 

Fig. 1. Fuzzy Signature Structure with two 
arbitrary levels g and (g+1) 
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where ℜ∈p  and  0≠p .  We used the above function 
to define the generalised WRAO for fuzzy signatures.  
 
Definition: The generalised WRAO of n branches 

[ ]1,0,...,, 21 ∈nsss  with n weighted relevancies 
[ ]1,0,...,, 21 ∈nwww , in a fuzzy signature, is a function 

[ ] [ ]1,01,0: 2 →ng  such that, 
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where ℜ∈p  , 0≠p , ],1[ ni ∈  and ∑
=

n

i
iw

1

 is not 

necessarily equal to 1. We called p is the aggregation 
factor of the above function. 
Theorem 1: WRAO (2) holds following properties, 
(a) Partially Idempotent w.r.t si when all wi are fixed 

and vice versa. 
(b) Commutativity. 
(c) Partially Monotonic w.r.t si when all wi are fixed 

and vice versa. 
Proof (a): The classical Idempotency does not hold for 
(2). Instead, it can be proof that (2) is partially 
idempotent concerning si if the values of wi are fixed, 
or concerning wi if the values of si are fixed. 
Let ],1[* niawa ii ∈∀= , and 0* ≥a in (2). Also, assume 
that all wi are fixed. Then we get from (2), 
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Similarly, we can proof that, (2) is partially idempotent 
concerning wi if the values of si are fixed▫ 
Proof (b): Commutativity of (2) is obvious▫ 
Proof (c): (2) is Monotonic function, 
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Similarly, we can proof that, (2) is partially monotonic 
concerning wi if the values of si are fixed▫ 
Theorem 2: WRAO (2) shows following 
characteristics, 
(a) 0→p   then WRAO  geometric mean 
(b) ),...,,(axm),...,,;,...,,( 22112121
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(d) 1=p  then WRAO  arithmetic  mean 
(e) 1−→p  then WRAO  harmonic mean 
Proof (a): 0→p  
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As logarithm is strictly monotonic increasing function, 
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denominator and numerator of (2) by p
a*  (suppose 

that, always [ ] 0..,1 * ≠∈∃ atsni ; otherwise there is no 
meaning of the aggregation). 
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=  and divide the 

denominator and numerator of (2) by p
a* .  
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Proof: (c)  1→p ; proof is obvious, apply p=1, 
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Proof: (d)  1−→p ; proof is obvious, apply p=-1, 
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Now, it is clear that our WRAO generates a class of 
aggregations, which span the universe of all 
aggregations which fall between Zadeh’s classical 
conjunction and disjunctions operators, also including 
these two operators.  Thus, we argue that WRAO 
enhances the adaptability of hierarchical fuzzy 
signature structures to different applications.  In 
addition, it simplifies the learning of fuzzy signature 
models from data, by generalizing both the Weighted 
Relevance and aggregation functions into one operator.  
 
3.2.  Partial Derivatives of WRAO 
 

The Weighted Relevance aggregation of an arbitrary 
branch iqa ...  in a fuzzy signature (Fig.1), using WRAO, 
can be written as,   
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where n is the number of leaves in the branch iq... , 

ijqw ...  is the Weighted Relevance of the leaf ijqa ... , 
where [ ]nj ,1∈ , and iqp ...  is the aggregation factor of 
branch iq... .  

To avoid the constraints on the weighted relevance 
factor iw , we replaced it by the following sigmoid 
function [3], [4]: 

ie
wi λ−+

=
1

1 ,    (4) 

where ℜ∈iλ . After the above transformation it 
becomes clear that for any values of the parameter iλ  
the weighted relevancies are [ ]1,0∈iw  and ∑ iw  is not 
necessarily equal to 1. Therefore the constrained 
optimization problem has been transformed into an 
unconstrained optimization problem. Now equation (4) 
can be rewritten as follows, 
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This form of WRAO equation can be used for 
gradient based learning. The parameters we need to 
learn are the aggregation factor iqp ... , and the Weighted 
Relevance factor iq...λ . First, we can obtain the partial 
derivatives of the equation (5) w.r.t. iqp ... . 
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where [ ]( ) iqp
ijqijq wat ...

......= . Similarly, we can obtain the 
partial derivatives of the equation (5) w.r.t. ikq...λ . 
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where [ ]nk ,1∈ .  
 
4. Gauss-Newton Optimization method 

for WRAO Learning 
 

This section reviews the Newtons’ gradient based 
optimization method for learning. The Newtons’ 
method is an advanced optimization algorithm that 
outperforms simple gradient descent when applied in a 
wide variety of problems.   

Newtons’ method uses quadratic approximation to 
the objective function that matches first and second 
derivative values at that point. Newton’s method is a 
second order derivative method [10].  

The Sum of Square Errors (SSE) can be use as the 
error evaluation criteria, 

22
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where t stands for the target vector, s  for the actual 
output vector of the fuzzy signature, and  denotes 
the 2-norm. Also, it will be assumed that there are m 
parameters to be learnt and there are n records in the 
training data set, such that mn > .  
The next iteration, k+1, of the of the Newtons’ method 
can be calculated as,  

(a) kkkkk eJguG ⋅−=−=⋅  
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(b) kkk uparpar +=+1     
where  gk is the gradient vector, Gk is the Hessian, and 
J is the Jacobian matrix of (8), ku  is the next update 
vector, and the vector kpar  contains the all parameters 
needing to be optimised by the learning algorithm in 
the kth iteration. The Jacobian matrix of (8) can be 
written as 

( )
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= k

k
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e
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where k is the iteration number of the training 
algorithm. 
 
5. Example Problem: Salary Selection 

Fuzzy Signature 
 

 
 

In this section we describe how to calculate the 
Jacobian matrix for gradient based learning, discussed 
in Section 4, using the partial derivatives shown in 
Section 3. The High Salary Selection fuzzy signature 
(Fig.2) in [2] has been selected as the example real 

world problem. The High Salary Selection fuzzy 
signature in Fig.2 describes the prediction of high 
salary of a person given by work experience, contacts 
and age. 

Fig. 3 shows the same High Salary Selection fuzzy 
signature structure with input values and the 
parameters, which are to be learnt, at each node. The 
parameters iw and ip represent the Weighted Relevance 
and aggregation factor at node i respectively.  

Now, let us assume that we need to calculate the 
Jacobian matrix for the above fuzzy signature for the 
kth iteration of the learning. The Jacobian matrix for the 
High Salary Selection fuzzy signature is of the 
following form: 
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where r is the number of records in the training data 
set. The Chain Rule can be used to find the partial 
derivatives of the above Jacobian matrix.  
 
 
6. Conclusion 
 

We proposed WRAO for inference in hierarchical 
fuzzy signature structures. WRAO generalised both the 
Weighted Relevance and the aggregation functions in 
hierarchical fuzzy signatures, into a single operator. 
The requirements and benefits of the WRAO have 
been pointed out. Secondly, we have discussed the 
learning WRAO’s from real world data. Also, the 
partial derivatives of WRAO have been obtained for 
gradient-based learning. Finally, a practical example 
has been used to show the technique of calculating the 
Jacobian matrix for the gradient based learning.  
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