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Abstract. Incomplete factorization preconditioners combined with Krylov 
subspace accelerators are currently among the most effective methods for 
iteratively solving large systems of linear equations. In this paper we consider the 
use of a dual threshold incomplete LU factorization (ILUT) preconditioner for 
the iterative solution of the linear equation systems encountered when 
performing electronic structure calculations that involve density fitting. Two 
questions are addressed, how the overall performance of the ILUT method varies 
as a function of the accuracy of the preconditioning matrix, and whether it is 
possible to make approximations to the original matrix on which the LU 
decomposition is based and still obtain a good preconditioner. With respect to 
overall performance both computational and memory storage requirements are 
considered, while in terms of approximations both those based on numerical and 
physical arguments are considered. The results indicate that under the right 
circumstances the ILUT method is superior to fully direct approaches such as 
singular value decomposition. 
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1   Introduction 

In computational science we are frequently required to solve systems of linear 
equations of the form: 

Ax = b                                                                    (1) 

where A and b are respectively a matrix and vector of known values, while x is a 
vector the values of which we wish to determine. Although there are a variety of 
approaches for solving such problems, if the dimension of the problem is large, and 
particularly if matrix A is sparse, then it is common to use iterative approaches such as 
the Krylov subspace method [1]. In these methods the algorithm proceeds by 
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essentially guessing an initial form for x, and then refining it through a series of 
iterative updates. To improve the efficiency and robustness of this procedure a 
number of preconditioning techniques have been proposed [2]. One such technique, 
that will be considered here, is the dual-dropping incomplete LU factorization 
technique (ILUT) [3]. 

The particular systems of linear equations that are of interest to us are those that 
arise when using an auxiliary basis set to fit the electronic density in electronic 
structure calculations. Specifically, in many implementations of Kohn-Sham density  
functional  theory (KS-DFT) the electronic density ( )(rρ ) is expressed in terms of a 
product of one-particle atom-centered basis functions ( )(rμ and )(rυ ): 
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where μνD  is an element of the density matrix and there are a total of N functions in 
the orbital basis set. Within this representation the total Coulomb energy (EJ) is given 
by: 
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where (μν|λσ) are the two-electron repulsion integrals (ERI). Formally evaluation of 

Eqn. (3) scales as the fourth power of the number of basis functions (O(N4)), however, 

if the density is expanded in terms of auxiliary basis set: 
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this drops to O(N2), albeit O(N2) where N is now the number of functions in the 

auxiliary basis set. It is in the evaluation of these fitting coefficients (cα) that it is 

necessary to solve a set of linear equations. 
With respect to Eqn. (1), the elements of matrix A represent Coulomb integrals 

between two auxiliary fitting basis functions, x the expansion coefficients (cα), and 
the elements of b correspond to the Coulomb potential in the auxiliary basis set 
generated by the electron density as expanded by the density matrix. Solving this 
system of linear equations is problematic in that the dimension of A can become quite 
large - in the order of ten thousand - making it both hard to store in memory and 
computationally expensive to solve using direct techniques such as singular value 
decomposition (SVD). (SVD is used since A is often ill-conditioned, reflecting near 
linear dependencies in the fitting basis set).  

As the name suggests ILUT performs an approximate LU factorization of matrix 
A. The accuracy of this factorization is controlled by two parameters, τ and p and is 
denoted as ILUT(τ, p). Parameter τ serves as a threshold for the magnitude of entries 
retained in the LU factorization, while parameter p limits the maximum number of 
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non-zero entries retained in any given row of the factored matrix. Thus, while τ 
provides no control over the memory required to store the LU factorization, p can be 
used to limit memory usage. In the limit that τ→0.0 and p → n (where n is the 
dimension of matrix A) the LU factorization is exact, and the preconditioning step 
will solve the real problem. Conversely as τ and p move away from these extremes 
preconditioning becomes ever more approximate resulting in larger number of 
subspace iterations. In this work we use the ILUT preconditioner approach of Saad 
[3] combined with the iterative Generalized Minimal Residual subspace method 
(GMRES) [4].  

This paper seeks to explore two inter-related issues: 

1. Given an exact representation of matrix A, can ILUT preconditioning be used 
to substantially speed-up the time taken to solve the linear equation system 
required when using density fitting? 

2. As the elements of A represent Coulomb interactions that decay with 
distance, is it possible to use either a numerical threshold or chemical 
knowledge to construct a sparse approximation to matrix A from which it is 
possible to derive a good preconditioning matrix? 

Finally, we note that while we have introduced density fitting in the context of 
auxiliary basis sets for performing KS-DFT calculations, density fitting also offers 
significant advantages for multi-configurational SCF (MC-SCF) [5-10], second order 
Møller-Plesset perturbation theory (MP2) [11-15], coupled cluster methods [16-19] 
and more recently, explicitly correlated MP2-R12 [20-22] calculations. Thus the work 
undertaken here has widespread applicability. 

In the following sections we first describe the ILUT preconditioning technique and 
density fitting problem in general, before exploring the use of ILUT preconditioning 
to solve the density fitting problem for a variety of test cases. Conclusions and general 
discussion are given in section 5. 

2   ILUT Preconditioning 

Incomplete factorization preconditioners combined with Krylov subspace accelerators 
are currently among the most effective iterative techniques for solving large, sparse 
irregularly structured linear systems of equations [23]. The incomplete factorization 
technique involves a decomposition of the form A=LU-R=M-R where L and U obey 
the specific non-zero pattern P, and R is the residual of the preconditioning matrix M. 
If P has the same non-zero pattern as A, the LU decomposition is referred to as 
ILU(0). That is, the L and U matrices have the same non-zero structure as the lower 
and upper parts of A, respectively, with drop-offs in the LU decomposition depending 
only on the structure of A without considering the numerical values in LU 
decomposition. By contrast in the ILUT procedure elements in the LU decomposition 
are dropped based on their values rather than their locations [3].  
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As mentioned above the dual-dropping ILUT approach has two parameters: a 
threshold drop tolerance (τ), and a fill number (p) that specifies what fraction of the 
factorization is kept. Ideally, these two parameters should be chosen to balance the 
ILUT construction time with the iterative processing time. The basic ILUT algorithm 
is shown below: 

Algorithm 2.1. ILUT(τ, p): 
For a N×N dimension matrix A,  

Do i=1,.., N 

Step 1: Read in the i th row elements of A into 

{w}; 

       Do j=1, i-1 

            wj=wj/ajj 

            Step 2: Applying a dropping rule to 

wj 

            Step 3: If wj≠0 Then 
                     Do k=j+1,N 

                      Wk=Wk–Wj·ujk 

                     End Do 

                   End If 

       End Do 

Step 4: Applying a dropping rule to {w} 

Step 5: li,j=wj for j=1,…,i-1 

       ui,j=wj for j=i,…,N 

Reset {w}=0 

End Do 

At Steps 2 and 5, all entries with a magnitude less than τ multiplied by the norm of 
the current row are dropped. Furthermore, at Step 5, only the largest p entries in each 
row of the L and U factorization are retained (in additional to the diagonal elements). 
Thus p is a parameter that helps control memory usage, while τ also helps to reduce 
the computational cost. In the work presented here we have set p equal to the 
dimension of the problem, so that the accuracy of the preconditioner is determined 
solely by the parameter τ. A small value of τ implies a more accurate preconditioner 
and fewer Krylov iterations, but the preconditioner will be more expensive to 
construct. While a large value of τ has the opposite effect. 

At each preconditioning iterative step, a linear system of the form Me = r is solved, 
where M is the preconditioner that approximates A, r is the residual of the current 
iteration and e is the correction vector. The preconditioning can be applied to the left 
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or right of the original linear equation system or in split forms, although the general 
consensus is that such variations make relatively little difference [24]. In this work 
initial tests using right and left side preconditioning supported this view. For the 
results presented here right side preconditioning is used with GMRES and ILUT 
routines that are derived from the SLATEC [25] and SPARSKIT [26] libraries 
respectively. For further details of the ILUT preconditioning process the reader is 
referred to Ref. [3, 24]. 

3   Density Fitting 

The error in the fitted density (Eqn. (4)) for a two electron projection operator 12ω  is 
defined as: 

( ) ( ) ( ) ( ) βαα βωααωρρωρρρωρρω ccc 12121212 2~~ +−=−−=Δ       (5) 

where αc  are the fitting coefficients. Differentiating with respect to αc  and 
minimizing gives rise to:  
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which can be written as a set of linear equations of the form: 
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cx =  and ( )αωυμμυα 12,Db = .                                 

Although there are a number of possibilities for the two electron projection 
operator 12ω , it is widely acknowledged that use of the Coulomb operator gives the 
best results for energy evaluations [27,28]. Using this operator the linear system given 
in Eqn. (7) involves the following three-center and two-center repulsion integrals: 
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In practice solution of the linear equation system is a little more complex than 
suggested above, since the expansion coefficients must be constrained so that the total 
charge is constant, i.e. 

 ∑ =
α

αα nSc                                                             (9) 
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where n is the total charge and ∫= rdrS 3)(αα . Practical implementation of this 

constraint requires an extra orthogonalization step in each GMRES step. Furthermore, 

as matrix A is not positive definite (but semi-definite), the diagonal elements are 

scaled to modify its condition number. 
In principle, matrix A is dense owing to the long tail of the Coulomb interactions 

involved in computing each element of this matrix. In practice, however, if two 
functions are well separated we would expect the value of the corresponding element 
of A to be relatively small, and therefore a numerical threshold could be used to 
determine whether it should be kept. Alternatively, since the fitting functions are 
normally chosen to be atom centered, it may be possible to construct a sparse 
representation of A based on knowledge of the atoms in the system. One obvious 
approach is to consider a sparse representation of A where the only non-zero elements 
involve those interactions between fitting functions that are located on the same 
atomic centre. This has the effect of producing a block diagonal representation of A. 
Less dramatic approximations might be based on including all interactions between 
fitting functions that are within the same functional group. 

Finally, it should be noted that the KS-DFT method is in itself iterative, involving 
an initial guess of the density matrix (Dμυ) that is refined during each iteration until a 
“self-consistent field” (SCF) is reached. Within this process the density fitting 
equations must be solved at each iteration of the SCF procedure, but because the 
location of the fitting functions does not change from iteration to iteration the ILUT 
representation of matrix A remains the same for all SCF iterations. What does change, 
however, is the value of the b vector which must be re-evaluated at each SCF 
iteration. (This vector changes as it involves a contraction of the current guess for the 
density matrix with the relevant 3-center integrals.) The implication of this is that an 
ILUT factorization of A can be done just once before the start of the SCF procedure, 
and then used during every SCF iterations to improve performance when solving to fit 
the current density. 

4   Numerical Results and Discussion 

To explore the performance of the ILUT method for density fitting calculations four 
different computations were considered: 

System 1:  is a zeolite fragment (Si8O7H18) containing 33 atoms, and utilizing a 6-31g* 
basis set. The fitting basis contains 1489 functions and is obtained using the scheme 
implemented in Gaussian 03 to automatically generate fitting basis sets [29, 30]. 14 
iterations are required to converge the SCF. 

System 2: this is identical to system 1, but employs a larger cc-pVDZ basis set that 
gives rise to 2048 automatically generated fitting basis functions. 13 iterations are 
required to converge the SCF. 
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System 3: is a Valinomycin molecule (C54H90N6O18) containing 168 atoms, and 

utilizing a 3-21g basis set. This gives rise 3018 fitting functions. 11 iterations are 

required to converge the SCF. 

System 4: is identical to system 3, but uses a 6-31g basis set. This gives rise to 4182 
fitting functions. 11 iterations are required to converge the SCF. 

All calculations were performed on the 900 MHz SPARC v9 processor running 
Sun Solaris 10 with code compiled using Sun Studio 11.  

4.1   Approximating the LU Decomposition of A 

In this section we consider the case when matrix A is exact, but the accuracy of the 
LU decomposition is varied by changing parameter τ. We allowed a maximum of 
2000 Kyrlov iterations, and assume convergence to be satisfied when the 2-norm 
residual is reduced by a factor of 109. There appears to be no generally applicable 
guidelines for choosing a value for parameter τ. We choose several sample values for 
τ of 10-2, 10-3, 10-4, 10-5 and 10-10, and consider the value of 10-10 as corresponding to a 
complete LU decomposition. The sparsities of the preconditioner for the four different 
test systems and the five different values for τ are given in Table 1. These results 
show that even with a value for τ of 10-2 the LU decomposition contains roughly 50% 
non-zero elements for all the systems considered. And that if the system size is held 
constant while the fitting basis is expanded, the sparsity decreases even further (i.e. in 
going from system 1 to system 2, or system 3 to system 4). These results might be 
expected since the fill-in that occurs during the ILUT process is controlled only by the 
numerical value of the fill-in, not by whether there is a non-zero element in the same 
location in the original matrix A.  

Table 1. Sparsity of the ILUT preconditioner with different τ values for all studied systems 

τ System 1 
System 

2 
System 

3 
System 

4 
10-10 1.000 1.000 1.000 1.000 
10-5 0.868 0.886 0.904 0.905 
10-4 0.761 0.781 0.782 0.789 
10-3 0.608 0.647 0.608 0.627 
10-2 0.476 0.627 0.471 0.572 

We now consider the overall performance of the ILUT method, and in particular 
the influence of τ on performance. As was discussed in section 3, there are two 
aspects to using ILUT with density fitting. The first involves the incomplete 
factorization of the A matrix and occurs once at the start of the SCF process. The 
second involves use of the ILUT factorized A matrix to solve the density fitting 
equations during every SCF iteration (where the only difference in the density fitting 
equations between SCF iterations is in the form of the right hand side). For the 
purpose of this paper we will refer to the first aspect as the “preconditioning time”, 
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while the second aspect is referred to as the “GMRES time”. The combined time is 
referred to as the “density fitting total time”. As sparsity of the preconditioner plays a 
key role in determining the performance and storage requirements for density fitting, 
we plot the preconditioning time, GMRES time and density fitting total time for 
System 1 as a function of the sparsity of the preconditioner in Figure 1. Also shown 
are the corresponding τ values, and the total time taken if the density fitting problem 
is solved using the SVD direct approach. 
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Fig. 1. The dependence of the preconditioning time, GMRES time and the density fitting total 
time on the sparsity of the ILUT preconditioner for System 1 
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Fig. 2. The dependence of the preconditioning time, GMRES time and the density fitting total 
time on the sparsity of the ILUT preconditioner for System 2 
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The results in Figure 1 show that the preconditioning time increases monotonically 
as the sparsity of the preconditioner decreases, and for τ=10-10 (i.e. when the LU 
decomposition is complete) the total time is similar to that required when using SVD. 
For the GMRES component decreasing the quality of the preconditioner to the level 
of 60% sparsity has minimal effect on the overall GMRES time, but moving beyond 
this level dramatically increases the GMRES time. This behavior reflects the fact that 
the number of GMRES iterations changes only slightly from 14 GMRES steps for 
τ=10-10 to 87 steps when τ=10-3, however, for τ=10-2 this number explodes to 994 
GMRES steps; at this point the preconditioning is so poor that the GMRES algorithm 
has problems converging. Clearly, the goal is to pick the value of τ that minimizes the 
overall time, and for this benchmark it appears to be a value of around 10-3, at which 
point the ILUT approach is about twice as fast as using SVD. 

Equivalent performance results for the other 3 systems are shown in Figures 2-4. 
These all show similar behavior with steadily decreasing computational time that 
reaches a minimum before increasing dramatically if the value of τ becomes too 
large. Interestingly, the value of τ that works best appears to be roughly the same at 
10-3 for all 4 systems. The ratio of the density fitting time using ILUT preconditioner 
with τ=10-3, to the SVD time for system 1, 2, 3 and 4 are 0.47, 0.78, 0.46 and 0.55 
respectively. This shows that between system 1 and system 2, or system 3 and 
system 4, the maximum relative advantage of using ILUT over SVD is smaller the 
larger the fitting basis set. This is to be expected since larger fitting sets exhibit 
greater linear dependency giving rise to a more ill-conditioned A matrix. (We note 
that for system 2 the SVD shows 8 eigenvalues below 10-5, while it is full rank for 
the other systems.) 
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Fig. 3. The dependence of the preconditioning time, GMRES time and the density fitting total 
time on the sparsity of the ILUT preconditioner for System 3 
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Fig. 4. The dependence of the preconditioning time, GMRES time and the density fitting total 
time on the sparsity of the ILUT preconditioner for System 4 
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Fig. 5. The variation of the scaling preconditioning time of all three tests with the sparsity of the 
ILUT preconditioner 

It is of interest to compare the preconditioning time as a function of the sparsity of 
the ILUT factorization across the different test systems. To do this it is necessary to 
scale the preconditioning time obtained for a given test by the preconditioning time 
obtained when the sparsity was equal to 1.0. These results are shown for all four 
systems in Figure 5. This shows that the preconditioning time exhibits a uniform 
decrease as the sparsity of the preconditioner increases, and that this rate of decrease is 
very similar for all test systems. Clearly the ILUT preconditioning time depends solely 
on the sparsity of the ILUT preconditioner. If we assume that the cost of the GMRES 
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iterations varies little with τ until we reach the “tipping point”, then it would be 
relatively easy to develop a performance model that can predict what level of sparsity in 
the ILUT preconditioner is required in order to achieve a given level of performance. 
Such a model might then be used to weigh up the potential gain associated with using 
ILUT to solve the density fitting problem over a direct approach like SVD. 

In summary, it can be concluded that use of the ILUT method can enhance the 
performance of the density fitting process over use of a direct approach like SVD, 
although the performance gain depends greatly on the threshold used for τ. It also 
appears unlikely that by using a simple numerical cutoff we will be able to exploit 
greater than approximately 50% sparsity in the representation of the LU factorization 
(as beyond this threshold the GMRES iterations tend to increase dramatically).  

4.2   Pre-screening of the A Matrix  

In the above it was shown that the ILUT preconditioner failed to reach convergence if 
the value of τ was smaller than about 10-3. At this point the sparsity of the 
preconditioner was still quite large, with around 50% of the elements being non-zero. 
While this is a useful memory reduction it is hardly dramatic, so it is pertinent to 
examine whether further memory reductions are possible by removing elements from 
A prior to performing the ILUT factorization. Two options are considered, i) the use 
of a pure numerical threshold (DPRE) to set elements of A to zero, and ii) the removal 
of elements of A based the underlying physical problem [31]. Specifically with respect 
to (ii) we consider use of a sparse block diagonal preconditioner where the only 
elements of A to be considered are those that occur between functions located on the 
same atomic center. In what follows we use A′  to denote the A matrix after certain 
elements have been set to zero. 

As has been mentioned before the A matrix in the density fitting problem is 
essentially a Coulomb integral matrix in which the elements come from the Coulomb 
interaction between two fitting basis functions. Since the fitting functions are 
(usually) Gaussian functions located on different atomic centers the value of this 
integral will depend on both the distance between the two functions and the values of 
the exponents of the two Gaussian functions involved. At a coarse level we can, 
however, ignore the exponent values and assume only distance between two fitting 
functions will determine the value of the corresponding element in A.  

In Table 2 we show the sparsity of A′ obtained using a variety of different drop-off 
thresholds (DPRE) and also using block diagonal sparsity. These tables also contrast the 
sparsity of A′  with the sparsity of the preconditioner assuming an LU decomposition 
with unrestricted fill-in. These results show that even if A′ is sparse the LU 
decomposition is significantly less sparse, e.g. for system 1 Table 2 shows that with 
DPRE =10-2 A′  has a sparsity of 0.105, but the preconditioner has over 45% of its 
elements non-zero. By contrast when using the block diagonal algorithm to derive A′ , 
fill-in is considerably less since it cannot exceed the block structure of A′ . Thus in 
Table 2 we find that both the A′  matrix and the preconditioner have very high  
sparsity with just 4% and 6.6% of their elements non-zero respectively when using  
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Table 2. Sparsity of the A′  matrix and the resulting preconditioning matrix (M) obtained when 
employing numerical screening with criteria DPRE and the block diagonal scheme for all studied 
systems 

The Sparsity of the A′ (M) matrix 
 DPRE 

System 1 System 2 System 3 System 4 

10-10 0.97(1.00) 0.99(1.00) 1.00(1.00) 1.00(1.00) 
10-5 0.61(0.95) 0.63(0.97) 0.72(1.00) 0.70(1.00) 
10-4 0.45(0.86) 0.43(0.89) 0.49(0.97) 0.47(0.98) 
10-3 0.27(0.71) 0.23(0.75) 0.25(0.84) 0.24(0.86) 

Numeric 
Screening 

10-2 0.11(0.46) 0.08(0.44) 0.08(0.56) 0.07(0.57) 
Block 

Diagonal 
 0.04(0.07) 0.02(0.04) 0.01(0.01) 0.01(0.01) 
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Fig. 6. Comparison of density fitting total time for computing System 1 using numerical 
screening and block diagonal screening on A′  matrix 
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Fig. 7. Comparison of density fitting total time for computing System 2 using numerical 
screening and block diagonal screening on A′ matrix 
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block diagonal screening; values that are over one order of the magnitude less than 
those for the original A matrix. 

In Figures 6-9 we plot the total density fitting time for the 4 test systems that are 
obtained if prescreening of A is combined with use of the various τ values to control 
fill-in during the ILUT process. The times are plotted as a function of sparsity in the 
preconditioner. Also shown are the SVD times. The results show that in terms of 
overall computation time the minimum is achieved at a sparsity level of around 50% 
non-zero elements. Removing elements from A by using a threshold of 10-4 for DPRE 
has relatively little effect on performance, except in the case of system 2 where a 
slightly tighter threshold is required. Going to the extreme of only keeping the block 
diagonal elements of A has a dramatic effect on the sparsity of the preconditioner, but 
in general it leads to an overall increase in the density fitting time in comparison to 
SVD. The exception is for system 3, where a block diagonal preconditioner is slightly 
faster than SVD or ILUT with a tight threshold. 
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Fig. 8. Comparison of density fitting total time for computing System 3 using numerical 
screening and block diagonal screening on A′ matrix 
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Fig. 9. Comparison of density fitting total time for computing System 4 using numerical 
screening and block diagonal screening on A′ matrix 
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5   Discussion and Conclusions 

We have investigated the use of ILUT preconditioning combined with the GMRES 
subspace method for iteratively solving the sort of linear equations systems that are 
encountered when using density fitting techniques in electronic structure calculations. 
Our results show that under the right circumstances it is possible to obtain a 
performance advantage from using the ILUT approach compared with a direct method 
like SVD, however, this requires careful choice for τ (the numerical threshold 
parameter in the ILUT algorithm). Moreover, as τ increases we can very quickly 
transition from having a beneficial preconditioning matrix to having one that is rather 
poor – causing a huge increase in the number of GMRES iterations required. 
Somewhat disappointingly it also appears that for the preconditioning matrix to be 
beneficial it requires over 50% of the matrix elements to be non-zero. 

Using an alternative approach that approximates both A and the LU decomposition 
of A we found some encouraging results were obtained when using physical insight to 
zero out all elements in A except for those corresponding to interactions between basis 
functions on the same centre. This block diagonal approach dramatically decreases 
the number of elements in the LU decomposition, and this may be advantageous if 
memory usage is a bottleneck. In comparison to SVD, for small systems the block 
diagonal ILUT method was found to be slower, but for larger systems and moderate 
fitting sets it was found to be slightly faster. This raises the question whether an even 
better block diagonal preconditioner can be found, perhaps by expanding the size of 
the diagonal blocks to correspond to functional groups or small fragments of the total 
system. Work along these lines is currently in progress. 
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