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ABSTRACT

We reveal a number of fundamentally important effects which underpin the key aspects of light propagation in
photonic structures composed of coupled waveguides with loss and gain regions, which are designed as optical
analogues of complex parity-time (or PT ) symmetric potentials. We identify a generic nature of time-reversals
in PT -symmetric optical couplers, which enables flexible control of all-optical switching and a realization of
logic operations. We also show that light propagation in PT -symmetric structures can exhibit strongly nonlocal
sensitivity to topology of a photonic structure. These results suggest new possibilities for shaping optical beams
and pulses compared to conservative structures.
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1. INTRODUCTION

Photonic structures composed of coupled waveguides with loss and gain regions offer new possibilities for shaping
optical beams and pulses compared to conservative structures.1–4 Such structures can be designed as optical
analogues of complex parity-time (or PT ) symmetric potentials, which can have a real spectrum corresponding to
the conservation of power for optical eigenmodes, however the beam dynamics can demonstrate unique features
distinct from conservative systems due to nontrivial wave interference and phase transition effects,5–10 offering
new possibilities for all-optical beam control in the nonlinear regime11–15 Most recently, PT -symmetric properties
in couplers composed of two waveguides have been demonstrated experimentally.16, 17

In this work, we first overview in Sec. 2 our recent results15 revealing a generic connection between the effect
of time-reversals and nonlinear wave dynamics in systems with parity-time (PT ) symmetry. We consider a
nonlinear optical coupler with balanced gain and loss, and show that for intensities below a threshold level, the
amplitudes oscillate between the waveguides, and the effects of gain and loss are exactly compensated after each
period due to periodic time-reversals. For intensities above a threshold level, nonlinearity suppresses periodic
time-reversals leading to the symmetry breaking and a sharp beam switching to the waveguide with gain. Another
nontrivial consequence of linear PT -symmetry is that in the nonlinear regime, the threshold intensity remains the
same when the input intensities at waveguides with loss and gain are exchanged. Then, in Sec. 3 we present our
latest findings on the phenomenon of nonlocality in PT -symmetric photonic lattices. Specifically, we reveal that
nonlocality can lead to pronounced differences between optical beam dynamics in arrays of coupled waveguides
with the same characteristics but different topology.
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Figure 1. Scheme of nonlinear PT -symmetric directional coupler with balanced loss in waveguide 1 and gain in waveguide
2. The arrow indicates the propagation direction (z).

2. TIME-REVERSALS IN PT -SYMMETRIC NONLINEAR COUPLERS

It has been established already two decades ago that directional couplers with gain and loss1 can offer benefits
for all-optical switching in the nonlinear regime, lowering the switching power and attaining sharper switching
transition. Recently, these conclusions were complimented by the prediction of unidirectional switching and
exact analytical solution describing the switching dynamics in nonlinear PT symmetric couplers.14 Here we
overview the main results of our recent work,15 demonstrating that although nonlinearity always breaks the
PT -symmetry conditions for asymmetric wave profiles even at arbitrarily small intensity levels, the effects of
gain and loss are exactly compensated and PT -symmetric dynamics is preserved on average due to periodic
time-reversals, for intensities below a certain threshold. In contrast, for intensities above a threshold, nonlinear
self-action suppresses time-reversals and PT -symmetric dynamics is broken both locally and globally, resulting
in the asymmetric wave localization in the region with gain. This conclusion is based on the symmetry analysis
which is applicable to a broad class of nonlinear local responses, including in particular the cases of cubic (as
considered in Refs.1, 14) or saturable responses. This is important in view of possible experimental realizations
of such couplers in different material systems with various nonlinear response characteristics. For example,
linear PT -symmetric couplers have been demonstrated based on LiNbO3 platform,17 and this material possesses
photorefractive nonlinearity with saturable response.

We describe the propagation of waves in a PT -symmetric optical coupler by the equations for the mode
amplitudes at the first and second waveguides. We use a set of coupled-mode equations which include additional
terms accounting for Kerr-type nonlinearity:1, 17

i
da1
dz

+ iρa1 + Ca2 +G(|a1|2)a1 = 0, i
da2
dz

− iρa2 + Ca1 +G(|a2|2)a2 = 0, (1)

where z is the propagation distance, a1 and a2 are the mode amplitudes, ρ = ρ1 = −ρ2 defines the rates of
loss in the first waveguide and gain in the second waveguide, C is the coupling coefficient between the modes of
two waveguides, and function G characterizes the nonlinear response. We assume with no loss of generality that
C > 0, since for negative C it is possible to make the transformation a2 → −a2 and C → −C. We also consider
the values of gain/loss coefficient below the linear PT -symmetry breaking threshold,17 ρ < C.

In order to analyze nonlinear dynamics, it is convenient to represent the mode amplitudes in the following
form,

a1 =
√
I(z) cos[θ(z)] exp[+iϕ(z)/2] exp[iβ(z)], a2 =

√
I(z) sin[θ(z)] exp[−iϕ(z)/2] exp[iβ(z)], (2)

where I is the total intensity, θ and ϕ define the relative intensities and phases between the two input waveguides,
and β is the overall phase. After substituting Eq. (2) into Eq. (1), we derive the closed system of evolution
equations for I, θ, and ϕ:

dI

dz
= −2ρI cos(2θ),

dθ

dz
= ρ sin(2θ)− C sinϕ,

dϕ

dz
= G(I cos2 θ)−G(I sin2 θ)− 2C cot(2θ) cosϕ, (3)

and additional equation for β:
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dβ

dz
=

1

2

[
G(I cos2 θ)/2 +G(I sin2 θ)

]
+

C cosϕ

sin(2θ)
. (4)

In order to describe the features of nonstationary dynamics, we identify an important symmetry property
of the model equations. After performing the complex conjugation of Eq. (1) and comparing it to the original
equations, we conclude that for any solution aj(z),

ã1(z0+) = a∗2(z0−)e
iδ, ã2(z0+) = a∗1(z0−)e

iδ (5)

is also a solution of Eq. (1) for arbitrary constants z0 and δ, where z0± = z0 ± z. This transformation represents
the action of PT operator, where parity operator (P) corresponds to exchange of waveguide numbers and
time operator (T ) defines the reversal of propagation direction. Using notations of Eq. (2), we express the
transformation in Eq. (5) as

Ĩ(z0+) = I(z0−), ϕ̃(z0+) = ϕ(z0−), θ̃(z0+) = π/2− θ(z0−), β̃(z0+) = δ − β(z0−). (6)

We notice that if z0 = zm where
θ(zm) = π/4, (7)

then we can choose the free parameter as δ = 2β(z0), and solution transforms into itself at z = zm. This
happens because the intensity distribution is symmetric, |a1(zm)|2 ≡ |a2(zm)|2, and accordingly nonlinearity
does not break the PT -symmetry condition at z = zm. Since the original and transformed solutions satisfy the
same evolution equation, it follows that

I(zm+) = I(zm−), θ(zm+) = π/2− θ(zm−),

ϕ(zm+) = ϕ(zm−), β(zm+) = 2β(zm)− β(zm−),
(8)

for zm± = zm ± z and any zm which satisfies condition in Eq. (7). According to Eq. (8), the dynamics starting
from zm in positive (+z) and negative (−z) directions is exactly equivalent, subject to the effective exchange
of waveguide numbers [Eq. (5)], and this is a nontrivial consequence of linear PT symmetry in the nonlinear
regime. It also follows from Eqs. (3) and (7) that

dI

dz

∣
∣
∣
∣
z=zm

= 0. (9)

The physical interpretation of this important result is that the system exhibits effective time-reversal when the
total intensity reaches the maximum or minimum values, where time-reversal (T ) corresponds to change of
the propagation direction (z). We use this result to reveal that for arbitrary nonlinear response functions, all
solutions belong to two classes: (i) periodic solutions, where the intensities and relative phases in two waveguides
are exactly restored after each period (z → z + zp), or (ii) solutions where the total intensity grows without
bound due to nonlinearly-induced symmetry breaking. Let us prove that solutions are periodic if intensity is
bounded, i.e. when there exists zmax where dI/dz = 0 and d2I/dz2 < 0 (we neglect the special case of a
separatrix trajectory approaching a saddle point). Then, according to relation in Eq. (9), Eq. (8) should be
satisfied simultaneously for zm = zmax and zm = zmin, i.e.

I(zmin − z) = I(zmin + z), I(zmax − z) = I(zmax + z) (10)

Making a variable transformation z → (zmin− z) and z → (zmax− z) in the first and second relations in Eq. (10)
respectively, we obtain

I(z) = I(2zmin − z), I(z) = I(2zmax − z). (11)

Applying the second relation in Eq. (11) recursively after the first one, we find that

I(z) = I(2zmax − 2zmin + z). (12)
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Figure 2. System dynamics for different initial conditions: (a)-(d) ϕ = π/6−π/20 and (e)-(h) ϕ = π/6+π/20. (a),(e) Tra-
jectories in the phase plane (θ, ϕ). Red open circle marks the point at z = 0, and open triangle marks the unstable
stationary solution with ϕ− = π/6. (b),(f) Intensity dependencies on propagation distance in the first (dotted line) and
second (dashed) waveguides, solid line show the sum of individual intensities. (c),(g) and (d),(h) show the intensity and
phase evolution along the propagation direction. For all the plots, ρ = 0.5 and I(z = 0) = 2.2.

This means that the solution is periodic, with the period equal to zp = 2|zmax− zmin|. This is a highly nontrivial
result, since the model equation has three independent degrees of freedom (I, θ, φ), and such dynamical systems
can in general exhibit quasi-periodic and chaotic behavior. It is a remarkable consequence of PT -symmetry
that dynamics can be only periodic or unbounded for arbitrary Kerr-type nonlinearities. We can determine the
location of extrema points (zmax and zmin) on the phase plane. It follows from Eq. (3) and (7) that maxima
(zmax) correspond to θ = π/4 and ϕ− < ϕ < ϕ+, and minima (zmin) to θ = π/4 and ϕ < ϕ− or ϕ > ϕ+.

Based on these general predictions, we can reveal a remarkable property. The type of nonlinear dynamics
(periodic or unbounded) remains the same if we swap the intensities between the two waveguides [see Eq. (8)]. In
particular, we can couple light at the input just to the first waveguide with loss, or to the second waveguide with
gain, and the type of dynamics would be the same. This is a counter-intuitive result, since in the first case the
total intensity will initially decrease, whereas in the second case the total intensity will be growing. However, in
both cases the type of dynamics will be determined only by the initial intensity level. This is a highly nontrivial
consequence of linear PT -symmetry in the strongly nonlinear regime.

We complement the general analytical results with numerical examples. To be specific, we consider the Kerr-
type nonlinear response function G(I) = γI, where γ > 0 for self-focusing nonlinearity. Then, by introducing
the transformation z → zC and aj → aj

√
C/γ, we can scale the values of coefficients to unity, C = 1 and γ = 1,

and we use these values in numerical simulations. We present in Fig. 2 two examples of system dynamics. In
the first example presented in Fig. 2(a)-(d), the solution is periodic. We see that the trajectory in phase space
rapidly moves away from the initial location, but then returns back after a full period. Completely different
dynamics is observed in the second example [Fig. 2(e)-(h)], where the total intensity grows without bound and
light becomes concentrated in a single waveguide at |z| → ∞. These examples illustrate two generic types of the
system dynamics.

3. NONLOCAL EFFECTS WITH PT -SYMMETRIC DEFECTS

PT -symmetric potentials appear in many physical contexts, and one feature actively investigated in the context
of quantum theories is the property of nonlocality, where PT -defect dynamics can be sensitive to potential profile
at distant locations, and it was questioned the observability of such behavior in real physical systems.18, 19 In this
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Figure 3. Schematic of a waveguide array with a pair of PT -symmetric waveguides at sites j = 0, 1 with balanced gain
and loss.
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Figure 4. PT symmetry breaking regions shown with shading for (a) planar waveguide array, (b) circular waveguide array,
and (c) infinitely long planar or circular waveguide array.

work, we reveal that effective nonlocality of PT -symmetric structures with gain and loss elements can lead to
pronounced differences for optical beam dynamics in arrays of coupled waveguides with the same characteristics
but different topology.

To demonstrate the phenomenon of nonlocality in optical structures, we compare arrays of coupled optical
waveguides with planar and circular geometries as schematically illustrated in Figs. 3(a) and (b), respectively.
The beam profile is determined by the mode amplitudes aj at individual waveguides, and mode overlap between
waveguides is characterized by coupling coefficients: C2 between the central waveguides j = 0, 1, and C1 between
all other neighboring waveguides. We consider PT -symmetric structure composed of waveguide with gain at
location j = 0 and with loss at the adjacent waveguide j = 1. The absolute magnitudes of gain/loss should
be equal to satisfy PT -symmetry condition. We use the coupled-model equations10, 13, 17 to model the beam
propagation:

i
daj
dz

+ C1aj−1 + C1aj+1 = 0, j �= 0, 1, N + 1,−N (13)

i
da0
dz

+ iρa0 + C1a−1 + C2a1 = 0, (14)

i
da1
dz

− iρa1 + C2a0 + C1a2 = 0, (15)

where j is the waveguide number, z is the propagation distance, aj are the mode amplitudes at waveguides,
ρ > 0(< 0) defines the rate of loss (gain) at 0-th and gain (loss) at 1-st waveguides, and C1,2 are the coupling
coefficients between the modes of waveguides that can be tuned by changing the distance between the waveguides.
The boundary conditions are zero for a planar structure [Fig. 3(a)],

aN+2 ≡ 0, a−N−1 ≡ 0 (16)
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Figure 5. Optical beam dynamics in (a,c) planar and (b,d) circular waveguide arrays for (a,b) ρ/C2 = 0.8 and (c,d) ρ/C2 =
2. In each plot, left panel shows beam intensity profiles and right panel shows the calculated beam power (black solid line)
and power trend for the most unstable eigenmode (dashed blue line) in logarithmic scale. For all the plots, C1/C2 = 1.5.

and periodic for a circular configuration [Fig. 3(b)],

aN+2 ≡ a−N , a−N−1 ≡ aN+1 (17)

We note that Eqs. (13)-(15) are linear, since we consider the case of relatively weak optical intensities when the
gain saturation and nonlinear effects can be neglected. Then, the beam dynamics can be described by representing

the amplitude as a sum of eigenmodes, aj(z) =
∑

m Bma
(m)
j exp(iλmz). Here λm are the eigenvalues, a

(m)
j are

the eigenmode profiles, and Bm are the eigenmode excitation amplitudes determined by the input beam profile.
A key feature of PT -symmetric structures is that under certain conditions, the spectrum of all eigenmodes can be
real (i.e. Im(λm) ≡ 0), meaning that the effects of gain and loss can be compensated on average. On the contrary,
if some of the eigenmodes have complex propagation constants, the mode amplitude can grow exponentially fast
along the propagation direction as gain cannot be compensated by loss. For a PT -symmetric coupler composed
of two waveguides,3, 16, 17 which can be modeled with Eqs. (13)-(15) by putting C1 = 0, the spectrum is real when
the value of gain/loss coefficient is below the threshold |ρ| < |C2|. Considering the total number of waveguides
N to be rather large but finite, we derive approximate analytical expressions for the thresholds in case of planar
and circular array configurations. For a planar configuration, we find that the PT -symmetry condition remains
the same as for an isolated coupler, i.e. |ρ| < |C2|, and somewhat surprisingly there is no dependence on the
value of coupling coefficient in the rest of the array (C1). This region is shown in Fig. 4(a). For a circular
configuration, we determine that the threshold condition is modified and it now nontrivially depends on all the
structure parameters, ||C1| − |C2|| ≥ |ρ|, and this region is plotted in Fig. 4(b). Most remarkably, the PT
symmetry conditions separating fundamentally different cases of real spectrum, when the power is conserved
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on average, and complex spectrum, when some guided modes experience amplification, are always different for
planar and circular arrays of arbitrary size (N) – and this is a manifestation of nonlocality.

From a physical point of view, we should expect that if the structure size is increased towards infinity, the
type of boundaries should not matter. We calculate the strongest growth rate characterized by −maxmImλm for
different structure sizes and find that as N → ∞, strong eigenmode amplification corresponding to PT -symmetry
breaking can occur only for the structure parameters corresponding to the region ρ2 > ρcr = C2

1 + C2
2 , shown

with shading in Fig. 4(c). When structural coefficients correspond to unshaded region in Fig. 4(c) (corresponding
to ρ < ρcr) but shaded region in Figs. 4(a) or (b), then there appear unstable modes however their growth rate
reduces to zero as the structure size is increased. Accordingly, for a particular propagation distance, there will
appear a structure size where the presence of slowly growing modes would be insignificant from a practical point
of view.

We illustrate our predictions with numerical simulations. As an example, we consider the beam coupled
to waveguide number j = 1 at the input, however similar scenarios are observed for other input conditions.
We first choose the structure parameters ρ/C2 = 0.8 and C1/C2 = 1.5 such that they correspond to stable
regions for planar but unstable region for circular configuration, i.e. below the shaded area in Fig. 4(a) but
inside the shaded area in Fig. 4(b). The plots of beam dynamics presented in Fig. 5(a) show that the power
is conserved on average for planar structure. For the circular geometry, Fig. 5(b) demonstrates that power
grows exponentially, and we also note that the power increases in “steps” since mode amplification occurs when
wave is scattered on the central waveguides, and this happens periodically through beam circulation through
the periodic boundary conditions. Such instability development would become slower as the structure size is
increased and it would take longer for the wave to reach the boundaries and come back to the central region.
This explains why such instabilities would disappear for infinitely large structures corresponding to unshaded
region in Fig. 4(c). Completely different dynamics is observed for parameters ρ/C2 = 2 and C1/C2 = 1.5, which
fall within the shaded regions for all the plots in Figs. 4(a,b,c). In this case, Figs. 5(c) and (d) show that the
instability develops in the central region and the power grows at a steady rate for both planar and circular
geometries, with practically no effect of the boundaries

These results demonstrate that optical wave dynamics in PT -symmetric structures with gain and loss elements
can be strongly nonlocal, and can be critically affected by the structure topology. This resolves the fundamental
questions on the observability of nonlocality effects raised in the context of quantum theories,18, 19 and also
indicated new opportunities in designing active photonic structures.

4. CONCLUSIONS

We have identified and analyzed the effects of PT -symmetry associated with optical nonlinearity and nonlocal
sensitivity to distant boundaries in arrays of waveguides with a symmetric arrangement of gain and loss regions.
We have revealed that in the nonlinear regime, time-reversals can support average balance between gain and
loss despite nonlinearly-induced local PT -symmetry breaking, whereas suppression of time-reversals at stronger
nonlinearities results in switching and light concentration in a region with gain. We have also found that optical
wave dynamics in PT -symmetric structures with gain and loss elements can be critically affected by the structure
topology due to effective nonlocality. Our results may offer a new insight and suggest different possibilities for
optical beam shaping, switching, and amplification in linear and nonlinear photonic structures containing loss
and gain elements.

This work was supported by the Australian Research Council through Centre of Excellence CUDOS, Fel-
lowship, Discovery projects. SVD and SVS acknowledge financial support from the RFBR grant 11-08-97057-
p povolzhie a.
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