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Abstract
The purpose of this review is to present the state-of-the-art in diagnosis, interpretation and
modelling of waves, particles and the magnetic configuration in fusion plasmas. Knowledge of
the magnetic configuration underpins all confinement, stability and transport physics, as well
as being an essential prerequisite for the inference of plasma parameters from many
diagnostics. As the effect of fast particles become important enough to modify the
macroscopic variables of the plasma, the macroscopic fluid equations for equilibrium need to
be modified to encapsulate the effects of pressure anisotropy, particle and heat flow. We
present a review of such modifications in tokamak geometry, and review probabilistic
validation techniques of different equilibrium models. In the last decade new spectral tools
have also emerged to characterize the linear behaviour of waves and wave-modes, such as
SVD, Fourier-SVD, data-mining and the bispectrum. An emerging trend is the use of statistics
to characterize the nonlinear wave population of the plasma from wave field data. Finally,
progress is reported on developments in understanding the physics of wave–particle resonant
interactions, and the emerging science of the wave–particle–plasma interaction.

Keywords: wave–particle interaction, resonance, equilibrium, diagnostics, validation
classification

(Some figures may appear in colour only in the online journal)

1. Introduction

Instabilities such as Alfvén eigenmodes, driven by fast
particles, are of programmatic concern as they can expel
energetic ions from the plasma, thereby preventing heating
by thermalization [1]. In addition, such energetic particles
expelled can damage the first wall, and a fusion reactor can
only tolerate fast particle losses of a few per cent [2]. Another
motivation for the study of Alfvén eigenmodes is their potential

use as a diagnostic for the plasma, particularly through the tool
of magnetohydrodynamic (MHD) spectroscopy [3].

The over-arching purpose of this review is to present the
state of the art in diagnosis, interpretation and modelling of
waves, particles and the plasma configuration. The review
is motivated by developments in diagnostic techniques, data
analysis and signal processing tools, as well as new physics
models that capture the impact of energetic particles on the
plasma configuration. We commence with a treatment of
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advances in equilibrium modelling, which is the basis of
all toroidal magnetic confinement. We discuss constraint
of these models as well as developments in complex model
validation. A large portion of the review is dedicated to wave
characterization, in both the temporal and spatial domains.
In addition to wavelet and Fourier transform techniques, we
also discuss advances in mode number determination, the
use of higher order spectral tools such as the bispectrum,
and new approaches in analysing wave data using stochastic
techniques, and thereby describing the nonlinear state of the
plasma. Our work complements other recent summaries by
focusing on equilibrium modelling and wave characterization.
Breizman and Sharapov [1] focused on the development of
plasma scenarios and novel energetic particle diagnostics, and
nonlinear theory of energetic particle instabilities in the near
threshold regime. For this reason, only a brief description
of wave modes is supplied. Another focus of the review is
to summarize developments in the physics of wave–particle
resonant interactions, and to describe the emerging science of
the wave–particle–plasma interaction, in which redistribution
of energetic particles can lead to changes in the configuration,
and thus the wave modes of the plasma. The manuscript
is structured along these two themes: section 2 discusses
developments in characterization, and section 3 discusses the
wave–particle–plasma interaction. Finally, section 4 contains
concluding remarks and challenges for the future.

2. Characterization

2.1. Equilibrium

Equilibrium reconstruction is a core topic in toroidal magnetic
confinement fusion, as knowledge of the magnetic field
structure underpins all confinement, stability and transport
physics, as well as being essential prerequisite for the inference
of plasma parameters from many diagnostics. As the effect
of fast particles become important enough to modify the
macroscopic variables of the plasma, the macroscopic fluid
equations for equilibrium need to be modified to encapsulate
the effects of pressure anisotropy, particle and heat flow. We
present a review of such modifications in tokamak geometry.
To make the review tractable, we have restricted attention to
axis-symmetric plasmas.

2.1.1. Flow and anisotropy in ideal MHD. In time independent
two-dimensional (2D) axisymmetric systems, the magnetic
field and mass flow can each be expressed as

B = ∇φ × ∇ψ + I (R, Z)∇φ, (1)

ρv = ∇φ × ∇ψM + IM(R, Z)∇φ, (2)

where we have used cylindrical coordinates (R, φ, Z) centred
on the axis of the tokamak. Also, I a poloidal current, ψ is
a poloidal magnetic field flux, related to the magnetic field
components through

BR = − 1

R

∂ψ

∂Z
, BZ = 1

R

∂ψ

∂R
, (3)

and the functions ψM and IM are not yet defined. Substitution
of equation (3) into the toroidal component of Ampere’s law
yields

R2∇ ·
(∇ψ

R2

)
= −µ0RJφ. (4)

It is a well-known result that the existence of magnetic flux
surfaces in guaranteed in 2D systems, and thus B ·∇ψ = 0 [4].

For the ideal MHD model, magnetic fields are frozen to
the plasma and we may use equations (1) and (2) to identify
two new flux functions constraining the poloidal and toroidal
velocity

ψ ′
M(ψ) = ρvp

Bp
, (5)

φ′
E(ψ) = vφ

R
− ψ ′

M(ψ)I

ρR2
, (6)

v = ψ ′
M(ψ)

ρ
B − Rφ′

E(ψ)eφ. (7)

Most treatments of magnetic equilibrium are concerned with
the second moment MHD equation

ρ (v · ∇) v = −∇·P + (∇ × B) × B, (8)

P = p⊥I + �BB, (9)

� ≡ (p|| − p⊥)/B2, (10)

which neglects viscosity by approximating the stress dyad P as
diagonalizable, or equivalently, that the stress is independent
of gyro-angle. Although this expression for the stress dyad was
originally obtained by Goldberger et al [5] one needs to make
a further assumption about the insular independence of p|| and
p⊥ before one can arrive at the ‘CGL’ or ‘double-adiabatic
model’. As far as equilibrium is concerned, the nature of the
heat flow only becomes relevant when one considers non-zero
plasma velocity or pressure anisotropy.

We must now obtain a set of scalar equations for the
components of equation (8). The toroidal component of force
balance yields a new flux function expression constraining the
toroidal magnetic field

IM(ψ) = τI − R2ψ ′
Mφ′

E, (11)

τ ≡ 1 − � − M2
p , (12)

M2
p ≡ (ψ ′

M)2

ρ
. (13)

The remaining natural directions to obtain scalar equations
are parallel to the field B and perpendicular with the
field, in the direction of ∇ψ . However, to proceed
further, a thermodynamic statement must be made about how
our pressure relates to the field and density by adding a
thermodynamic closure. We consider the work done against
the pressure to be equal to the change in energy per unit mass
U for a reversible process

P : ∇v = p||
ρ

dρ

dt
− �B

dB

dt
= ρ

dU

dt
, (14)
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noting that energy is not lost through resistivity in ideal
MHD. We may now proceed by specifying our convenient
thermodynamic variables U = U(ρ, B, ψ). The B

component of force balance gives, after some rearranging,

HM(ψ) = W(ρ, B, ψ) +
1

2

(
(ψ ′

MB)2

ρ2
− (Rφ′

E)2

)
, (15)

W(ρ, B, ψ) ≡ U +
p||
ρ

, (16)

which is a Bernoulli type equation complete with a new flux
function HM(ψ) analogous to the conserved energy along a
streamline. Finally, we obtain a Grad–Shafranov (GS)-like
equation from the ∇ψ component of force balance [6]

∇ ·
[
τ

(∇ψ

R2

)]
= − ∂p||

∂ψ

∣∣∣∣
B,ρ

− ρH ′
M(ψ) + ρ

∂W

∂ψ

∣∣∣∣
B,ρ

−I ′
M(ψ)

I

R2
− ψ ′′

M(ψ)v · B + Rρvφφ′′
E(ψ), (17)

subject to the integrability constraints

∂W

∂ρ

∣∣∣∣
B,ψ

= 1

ρ

∂p||
∂ρ

∣∣∣∣
B,ψ

, (18)

∂W

∂B

∣∣∣∣
ρ,ψ

= 1

ρ

∂p||
∂B

∣∣∣∣
ρ,ψ

− �
B

ρ
. (19)

Generally, equation (17) is an elliptic partial differential
equation for physical equilibrium cases, and indeed, certain
shock and instability phenomena are associated with
transitions to a hyperbolic system, which occur because of
poloidal rotation [7] or anisotropy [8] through the presence
of τ in the differential operator. Here we will only discuss
systems where the force-balance is elliptic.

The equilibrium is completely specified by the six free
functions{

∂p||
∂ψ

∣∣∣∣
B,ρ

, IM(ψ), HM(ψ), ψ ′
M(ψ), φ′

E(ψ),
∂W

∂ψ

∣∣∣∣
B,ρ

}
,

(20)

which respectively correspond to each physical assumption:
parallel pressure, toroidal field, density on magnetic surfaces,
poloidal flow, toroidal flow and thermodynamic closure. The
perpendicular pressure is implicitly specified through the
thermodynamic closure once the parallel pressure has been
defined. Some choices for closure correspond to assumptions
such as

MHD : p|| = p⊥ = S(ψ)ργ , (21)

CGL : p|| = S||(ψ)
ρ3

B2
, (22)

p⊥ = S⊥(ψ)ρB, (23)

which can be inserted into equations (18) and (19) to obtain
WMHD(ρ, B, ψ) or WCGL(ρ, B, ψ). Other expressions for W

are possible that can be derived from kinetic treatments such
as the guiding centre plasma [9].

Simpler versions of the GS equation can be re-obtained as
flow and anisotropy are removed from the model. For example,
eliminating anisotropy using an adiabatic MHD model gives

∇ ·
[
(1 − M2

p)

(∇ψ

R

)]
= −ρH ′

M(ψ) +
ργ

γ − 1
S ′(ψ)

−I ′
M(ψ)

I

R2
− ψ ′′

M(ψ)v · B + Rρvφφ′′
E(ψ), (24)

with the five free parameters{
IM(ψ), HM(ψ), ψ ′

M(ψ), φ′
E(ψ), S(ψ)

}
, (25)

and further eliminating toroidal and poloidal flow gives

∇ ·
(∇ψ

R2

)
= −ρH ′

M(ψ) +
ργ

γ − 1
S ′(ψ) − I ′

M(ψ)
IM(ψ)

R2
,

(26)

HM(ψ) = γ

γ − 1
ργ−1(ψ)S(ψ), (27)

with three free functions. We see, by taking the full derivative
with respect to ψ in equation (27), that H ′(ψ) can be inserted
into equation (28) and made redundant

∇ ·
(∇ψ

R2

)
= −(ργ (ψ)S(ψ))′ − I ′

M(ψ)
IM(ψ)

R2
, (28)

with the two free functions

{I ≡ IM(ψ), p(ψ) ≡ ργ (ψ)S(ψ)} . (29)

Thus, we have arrived at the well-known GS equation for a
static and isotropic plasma. The GS equation admits nested
flux surface solutions, in which pressure surfaces coincide with
surfaces of constant poloidal flux.

The most important difference between the modified and
conventional GS equations relates to the magnetic properties of
the pressure and poloidal current functions p||,⊥(ρ, B, ψ) and
I (R, Z) through equations (15) and (11) respectively. If we
examine the Bernoulli equation (equation (15)), we deduce that
any dependence on R or B in the equation must be countered
by an exactly opposing dependence through ρ if HM(ψ) is
to remain a strict flux function. Thus, it is clear that the
mass density (and by implication, the pressure) cannot be a
flux function in general. The same argument can be made
for the toroidal force balance and the conditions under which
IM(ψ) = I (ψ). The impact of beam direction relative to
the field on perpendicular and parallel pressure profile shift
was first characterized by Cooper et al [10]. For D-shaped
cross-sections, Cooper found that the shift was a function of
the broadness of the pressure profile. The most significant
result was found for broad-pressure-profile equilibria and
perpendicular beam injection, where it was found that p||
contours undergo a significant shift away from the outer edge
of the device with respect to the flux surfaces.

Constraints to experiment can be done for the modified
GS equation in a very similar fashion as for the static
version. Equations (11) and (4) can be constrained by external
magnetics such as flux loops magnetic pickup coils. Accurate
representation of the internal magnetic topology requires
internal constraints such as motional Stark effect (MSE) and
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Faraday rotation. Additionally, the internal magnetic topology
may be further constrained by locating the position of various
shear surfaces implied by the observed MHD activity. It is also
possible to infer properties of ∇p⊥ from the diamagnetic loop
signal [11].

The moments of the particle distribution functions provide
the remaining density, rotation and pressure constraints
required. These may be acquired spectroscopically but are
typically incomplete in energy, location and species without
further assumptions. Indeed, many of the forward models
which are used to measure the distribution function make
prior assumptions on their approximate form. Ultimately, an
integrated modelling approach is required utilizing transport
calculations such as TRANSP [12] where the various input and
output torques and powers from NBI and/or resonant heating
are balanced.

An implementation of a bi-Maxwellian kinetic closure
neglecting poloidal rotation has been recently developed by
Fitzgerald et al [13]. The code, EFIT TENSOR, is a
modification of the existing force balance solver EFIT++,
which is constrained to external magnetics vacuum toroidal
field, flux loops, magnetic probes, plasma current, poloidal
field coils, safety factor on axis q0 , static and rotational
pressure approximations, B components, diamagnetic flux,
boundary, equal ψ surfaces, and MSE. To this set of
constraints, EFIT TENSOR adds kinetic constraints of p||, p⊥
and a toroidal flow profile. Both EFIT and EFIT TENSOR
codes are equilibrium reconstruction codes, which find least
squares fit solutions to the data for GS, and flow and anisotropy
modified GS equations. To demonstrate the impact of full
order flow and anisotropy, Fitzgerald et al have compared
reconstructions using ideal MHD, and ideal MHD equilibrium
with flow and anisotropy for MAST discharge #18696 at
290 ms. Figure 1 shows the difference in radial force balance.
TRANSP, which uses the rotational pressure assumption,
underestimates the plasma pressure contribution either side of
the magnetic axis, and the MHD equilibrium with flow and
anisotropy is not satisfied away from the magnetic axis. At
maximum, the discrepancy is of order 35%, revealing that the
effect is significant.

2.1.2. Probabilistic methods. Bayesian inference offers an
alternate approach to equilibrium modelling in fusion plasmas
[14–18], and a pathway to validate different equilibrium model
descriptions [19, 20]. In Bayesian inference, an initial prior
probability distribution function (pdf), P(I), for the plasma
parameters I is specified, which is then updated by taking
into account information that the measurements D provide
through the likelihood pdf P(D|I). The result is the posterior
distribution P(I|D) given by Bayes formula

P(I|D) = P(D|I)P (I)/P (D). (30)

where P(D) is a renormalization constant of the posterior
called the evidence. The advantage of the Bayesian approach
over traditional inversion techniques is two-fold: (i) prior
knowledge, including known parameter inter-dependencies
is made explicit, and (ii) as the formulation is probabilistic,
random errors, systematic uncertainties and instrumental bias
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Figure 1. Finite difference radial force balance for profiles
produced by TRANSP and EFIT TENSOR, with the inclusion of
full order flow and anisotropy for MAST#18696 at 290 ms.
Reproduced with permission from figure 6 of Fitzgerald et al [13].
Copyright IAEA 2013.

are integral part of the analysis rather than an afterthought.
Hole et al have implemented Bayesian inversion on MAST
using the MINERVA framework [21]. Within this framework,
probabilistic graphical models are used to project the
dependence of the posterior distribution function on the prior,
the data, and the likelihood. An advantage of this approach
is that it visualizes the complex interdependency between
data and model, and thus expedites model development. The
techniques of Bayesian inference have also been inverted to
provide a tool to check data consistency [22].

Hole et al have developed Bayesian inference techniques
for fusion plasmas that combine information from a wealth
of diagnostics to enable probabilistic calculation of plasma
configuration, [18] provide automatic identification of faulty
diagnostics, [22] and developed a validation tool for
generalized force balance models [19]. Critically, Bayesian
techniques propagate experimental uncertainty correctly, and
enable the relative uncertainty between acceptable physical
models to be quantified. In von Nessi et al [20], a new
method, based on Bayesian analysis, is presented which unifies
the inference of plasma equilibria parameters in a tokamak
with the ability to quantify differences between inferred
equilibria and GS force balance solutions. At the heart of
this technique is the new concept of weak observation, which
allows multiple forward models to be associated with a single
diagnostic observation. This new idea subsequently provides
a means by which the space of GS solutions can be efficiently
characterized via a prior distribution. The posterior evidence
(a normalization constant of the inferred posterior distribution)
is also inferred in the analysis and is used as a proxy for
determining how relatively close inferred equilibria are to force
balance for different discharges/times.

Figure 2 shows expectation values of the toroidal current
density inferred from (a) a toroidal current beam model, (b)
a GS constraint, in which Jφ is computed from GS from
a ψ surface, together with fits to the pressure and toroidal
flux function, and forward models for magnetics, total plasma
current and MSE predictions, and (c) the difference between
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Figure 2. Expectation values of J (R, Z), JGS(R, Z) and �J(R, Z) inferred for MAST discharge #22254 at 350 ms, as calculated from
1800 samples of the posterior, using pickup coils, flux loops, MSE and Rogowski coil data. The inferred last closed flux surface is indicated
in white on each figure. Flux loop locations are indicated by stars outside the plasma region; the position and orientation of pickup coils are
indicated via heavy bars on the out-board edge of the first wall and as a vertically oriented column line along the solenoid; and MSE
observation positions are indicated by the stars across the mid-plane inside the plasma region. Panel (a) shows J (R, Z) current density data,
with the current densities in (b) reflecting that of JGS(R, Z). Note that the number and size of beams representing J (R, Z) and JGS(R, Z)
are allowed to differ in BEAST inferences. (c) shows the magnitude of the current density difference as averaged across each 2D rectangular
step corresponding to J (R, Z). Reproduced with permission from figure 2 of [20].

the two. The difference in Jφ can give some indication to
physical effects neglected in the GS equation, and/or reflect
diagnostic disagreement. In this case the discrepancy is
largest at the outboard mid-plane, and of order of 10%.
Using nested sampling, it is possible to integrate over the
evidence, and thus compute ln(P (D)) of the inferred hyper-
parameter, σ 2, which is the average current variance between
GS and toroidal current beam values. The smaller the value
of ln(P (D)), the larger the degree of freedom necessary to
predict diagnostic observations relative to other cases. For
22254 at 350 ms σ 2

∗ = 9.461 × 10−3 ± 1.2 × 10−5 (kA)2 and
ln(P (D)) = 765, while σ 2

∗ = 0.203381±1.59×10−4 (kA)2

and ln(P (D)) = −39 for adjacent discharge #24600 at
265 ms. This meant #22254 was much closer to GS, and/or
had fewer diagnostics in conflict, than #24600.

2.2. Wave theory

Most understanding of electromagnetic waves in fusion
plasmas is based on a wave perturbation analysis of the
ideal MHD model, which describes a plasma in local thermal
equilibrium. As the system is periodic in both toroidal and
poloidal directions, the perturbation is of the form exp(i(mθ +
nφ − ωt)), with m, n the poloidal and toroidal mode number,
respectively, and θ and φ the poloidal and toroidal angle,
respectively, ω the frequency and t , time. Thermal plasmas can
support a wide range of electromagnetic waves, many of which
can be driven unstable by energetic particles. Experimentally,
the most prolific wave is the shear Alfvén wave, which
represents a balance between plasma inertia and field line
tension. In cylindrical plasmas, shear Alfvén waves of finite

radial extent cannot persist without coupling to adjacent radial
wave packets. The phenomenon, known as phase mixing, leads
to damping of continuum modes. The inclusion of symmetry-
breaking geometric effects can, however, break degeneracy’s,
leading to band gaps in the continuum, where damping due
to phase mixing is much reduced, and thus modes in the gap
can be driven unstable. The first such bandgap, corresponding
to ‘elliptical Alfvén eigenmodes’ (EAEs) was discovered by
Dewar [23]. In tokamak plasmas, the most prolific of these
band gap modes are toroidal Alfvén eigenmodes (TAEs) [24].

In addition to perturbative modes, which are modes of the
background thermal (i.e. Maxwellian) plasma driven unstable
by the energetic populations, there also exist non-perturbative
modes (energetic particle modes or EPMs) which exist only
in the presence of an energetic population. EPMs have
frequencies characteristic of energetic-particle motion, such
as transit, bounce, and precession frequencies. Figure 3 is
a schematic of the energetic-particle driven zoo of normal
modes, illustrating both the range of modes that can be driven,
and their spatial localization [25].

2.2.1. Wave measurements. One of the simplest and most
effective diagnostics of wave activity are external Mirnov
coils, which are solenoidal coils that measure magnetic
field oscillations. Although the basic principles are well
understood, optimizing the coil design requires careful
analysis. Recent treatments of the design of high frequency
coils include: Bak et al [26], who developed a Mirnov coil
system for KSTAR with self-resonant frequency of 12 MHz,
which was downshifted to 1 MHz due to unmatched signal
cabling; Hole et al [27], which designed and built a high
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Figure 3. Normal modes of a tokamak: �i, ωA, and ω∗i are the ion
cyclotron, Alfvén and ion diamagnetic drift frequencies. Modes and
their radial localization are shown as horizontal lines. Reproduced
with permission from Heidbrink [25]. Copyright 2002 AIP
Publishing LLC.

frequency Mirnov array for MAST with a self-resonant
frequency above 5 MHz and maximized voltage output at
100 kHz; and Testa and Albergante [28], who present a
prototype study of a high frequency magnetic coils for ITER.
External magnetic coils are an important tool for the detection
of magnetic modes which have a significant perturbation near
the plasma edge which couples to external vacuum. Such
modes typically have low toroidal mode numbers.

The in situ shielding requirements of magnetic coils can
also place limitations on their frequency response, ranging
from mild to potentially severe. The OMAHA coils in MAST
for example are mounted at the end of a 30 cm long, 17.5 mm
radius cylindrical Al2O3 ceramic test tube with 0.2 mm layer
of colloidal graphite, which was bolted to the vessel wall.
This largely eliminated the effect of currents induced in the
wall. In ITER, the coils will be placed behind the blanket
modules [29]. Eddy currents have decay times in the range
7–17 ms [30]. If the blanket module were contiguous, signals
would be limited to well below 200 Hz. Fortunately, Mirnov
coils will be positioned under poloidal gaps between adjacent
blanket modules [29]. For the high mode frequencies expected
in the interval 10–500 kHz the gap can be considered as a wave
guide operating in the cutoff mode. For the gap dimensions
of the ITER blanket modules the cutoff frequency for the
TE10 mode is 38 MHz, and the attenuation below 500 kHz
is frequency independent, and approximately 0.48. The effect
of blanket shielding on phase is currently being examined [31].

Microwave interferometry/reflectometry provides mea-
surements of perturbed electron density, and thereby offers

a tool to characterize modes internal to the plasma [32]. A
microwave beam propagating through the plasma undergoes
a change in amplitude and a shift in phase due to the vari-
ation of the refractive index caused by the electron density.
Frequencies above the mode cutoff frequency will propagate
across the plasma and be reflected from the inner wall of the
plasma. In the cold plasma approximation the ‘O’ mode cutoff
is ωpe = (nee

2/ε0me)1/2, so for given microwave frequency
the diagnostic will act as an interferometer up to a cutoff den-
sity. At higher frequencies the microwaves will be reflected
within the plasma, and the diagnostic operates as a reflectome-
ter. The signals associated with changes in the density, δn, are
obtained from the amplitude and the change of the phase of mi-
crowave beams by comparing the beam propagating through
the plasma with the reference beam outside the plasma. These
techniques provide line integrated measurements of density
perturbations in frequency ranges comparable to Alfvén wave
mode activity. Sharapov et al [33] have monitored Alfvén cas-
cade activity on JET using an interferometer. The value of
the diagnostic is in providing clear indication of the density of
states of rational surfaces and reliable identification of integer
qmin(t) events. Figure 4 shows an example of interferome-
try measurements in JET, together with Mirnov coil measure-
ments. In contrast to the interferometer measurements, which
are line integrated across the chord of the beam through the
plasma, Mirnov coils measure external oscillations at the probe
location, and so are not sensitive to internal plasma oscilla-
tions. Unlike interferometry however, a toroidal/poloidal array
of Mirnov coils does provide toroidal/poloidal mode numbers.
Similar results to Sharapov et al have been obtained by Zeeland
et al in DIII-D plasmas [34]. Reflectometry measurements of
mode structures have been reported in JET [35] and DIII-D
plasmas [36]. Orsitto et al [37] provides a wider review of
requirements for fast particle measurements on ITER and can-
didate measurement techniques.

The canonical approach to identify wave activity from
time series data is through the Fourier transform [38]. This
integral transform

x(t) = 1√
2π

∫ ∞

−∞
F(ω)eiωt dω, (31)

expresses the signal x(t) in terms of a complex function F(ω)

whose magnitude represents the correlation of x(t) with a wave
eiωx+iχ with phase χ chosen to maximize F(ω), and the phase
of F(ω) is χ . The variable ω is angular frequency. The short
time base Fourier transform is often used, with Ns samples,
to resolve the temporal variation of spectral components. In
most laboratory plasma experiments, temporal data is regularly
sampled with sampling time spacing δts , leading to a linear
Fourier array of frequencies ranging from fs/(2N) � f �
fs/2, with the sampling frequency fs = 1/δts . A spectrogram
is a short time Fourier transform, in which a windowing
function may be applied to remove or limit artefacts [38].

Wavelet analysis is a generalization of short time Fourier
transform, and is commonly used in turbulence analyses [39].
A wavelet is any function �(t), whose Fourier transform �(ω)

satisfies the wavelet admissibility condition:

c� =
∫ ∞

−∞
|�(ω)|2|ω|−1 dω < ∞, (32)
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Figure 4. Fourier spectrograms showing Alfvén cascades with
different toroidal and poloidal mode numbers JET discharge
#60935. The top panel shows interferometry measurements with a
microwave beam of 45.2 GHz. The bottom panel shows
measurements with external magnetic pick-up coil. Reproduced
with permission from figure 2 of Sharapov et al [33]. Copyright
2003 American Physical Society.

such that the corresponding wavelet family is obtained by
means of the scale length parameter a,

�a,b(t) = (1/ap)�((t − b)/a), (33)

where b is the translation and a is the scale. The wavelet
transform of x(t) is then given by

Wx(a, b) =
∫

f (t)�a,b(t) dt, (34)

and the commonly used scalagram S(a, b) = |Wx(a, b)|2,
where time and frequency are given by t = b and f = Fc/a.
A common choice for the wavelet in plasma physics is the
complex Moret wavelet, which is a sinusoid within a Gaussian
envelope:

�(τ) = 1√
πFb

exp(i2πFcτ) exp

(
− τ 2

Fb

)
, (35)

where Fc is the centre frequency and
√

Fb a decay time scale of
the wave packet [39]. The wavelet transform can be considered
a short time Fourier transform with a windowing function,
whose window length decreases inversely with frequency such
that the number of wavelets is fixed.

A third approach to characterizing the spectral content of
non-stationary signals is use of the quadratic time–frequency
distributions introduced by Cohen in the context of quantum
mechanics [40]. Each member of this distribution class is
given by

Cx(t, ω; φ) = 1

2π

×
∫∫∫

ej (ζµ−τω−ζ t)φ(ζ, t)x(µ + τ/2)x∗(µ − τ/2) dµ dτ dζ,

(36)

where x(µ) is the time signal, x∗(µ) its complex conjugate,
and φ a kernel function. The Choi–Williams distribution [41]
is a particular choice of exponential kernel function, for which

φ(ζ, τ ) = exp(−ζ 2τ 2/σ), (37)

with σ > 0 is a scalar factor that represents the localization
of the wave packet. For large values of σ , Cx(t, ω) has
very good frequency resolution, but poor artefact resolution.
Reduction of artefacts is achieved by reducing σ , with some
loss of time–frequency resolution [42]. Figure 5 shows the
spectrogram, the scalogram or wavelet and analysis and Choi–
Williams distribution of JET #55976 [42]. The figure shows
type I edge localized mode (ELM) precursors at 15 kHz,
interrupting wash-board modes at 25–50 kHz. The scalagram
has better frequency resolution than the spectrogram, but
poorer temporal resolution. In contrast, the Choi–Williams
distribution achieves better temporal and frequency resolution
than either. While the difference in analysed signal is
particularly clear in this example, the use of spectrograms
is much more widespread, both because of simplicity, and
because it is possible to achieve a comparable result to the
Choi–Williams distribution across a narrow band-width.

2.2.2. Mode numbers. In a configuration with periodicity
such as toroidal magnetic confinement wave numbers become
discretized, and so the problem of inference of spatial wave
numbers is replaced with inference of mode numbers. The
simplest approach to measuring phase variation is through the
use of cross-correlation techniques. These measure the phase
difference between two signals f1(t) and f2(t) through

rxy(τ ) = lim
T0→∞

1

T0

∫ T0/2

−T0/2
f1(t)f2(t + τ) dt. (38)

The frequency analogue of this approach is cross-spectral
techniques, in which the complex cross-spectrum a probe pair
is computed using

C12(ω) = 〈F1(ω)F ∗
2 (ω)〉, (39)

where F1 and F2 are the complex Fourier transforms of the
digitized coil magnetic signal of coils 1 and 2, and 〈〉 denotes
averaging in the frequency domain over an interval δω centred
about ω. The phase spectrum

�12 = tan−1 {Im[C12(ω)]/Re[C12(ω)]} , (40)

gives the phase difference between the probes as a function of
frequency. The toroidal mode number is then be estimated by

n(ω) = �12(ω)/δφ, (41)

rounded to the nearest integer, with δφ = φ1 −φ2, the spacing
between the coils.

An early approach to determining mode numbers from an
array of data is through the use of a phase time diagram. In this
approach points of common phase on a phase time diagram and
a straight-line best fit performed. Poloidal mode numbers may
be similarly computed with the poloidal angle computed by

7
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Figure 5. Analysis of a magnetic pickup coil signal (JET pulse 55976), using (a) the spectrogram with l = 255, (b) the scalogram with
Fc = 1 Hz and Fb = 200 s2, and (c) the Choi–Williams distribution with lτ = 2047, lµ = 255 and σ = 0.5. Reproduced with permission
from figure 1 of Figueiredo and Nave [42]. Copyright 2004 AIP Publishing LLC.

the Merezkhin expression [43, 44], which accounts for toroidal
curvature to lowest non-vanishing order in inverse aspect ratio
ε. Over time, the Merezhkin expression has increased in order,
capturing the effects of toroidal geometry and plasma shaping
to at least O(ε3) [45]. Indeed, if the equilibrium magnetic
field solution is available, the straight-field-line poloidal angle
is available to arbitrary accuracy [46].

More sophisticated approaches, which harness and
exploit the sparse and often irregularly spaced diagnostics
include singular value decomposition (SVD)[47–50], Fourier-
SVD [51], and the code and methodology SparSpec [52].
Nardone [47] (and subsequently others [48–50]) have applied
principal component analysis to the time traces of spatially
resolved magnetic and soft x-ray data channels, enabling the
simultaneous use of information from the entire detector array.
The method involves construction of a Ns × N rectangular
matrix

X = 1√
N




x(0) · · · xN(0)

x(�ts) · · · xN(�ts)
...

...
...

x((Ns − 1)�ts) · · · xN(Ns − 1)(�ts)


 ,

(42)

where Ns is the number of samples, �ts the sampling time,
and N the number of channels. SVD matrix inversion [53]
expresses X in terms of the product

X = Ux · diag(wx,i) · V T
x , (43)

where Ux and Vx are column-orthonormal Ns ×N and N ×N

matrices, respectively, and wx,i are the singular values of X.
The column vectors v

(j)
x = Vx,ij are the principal axes, and

form the orthonormal basis on which the signal is spatially
decomposed. The projections of X along Vx (i.e. the product
Ux ·diag(wx,i) are the principal components, and give the time
evolution of the signal along the corresponding principal axis.
To extract the mode numbers, the principal axes must either be
fitted to a Fourier spatial basis, or a counting operation applied
to the zero crossings of their spatial projection.

In fusion, the terms principle component analysis,
SVD and bi-orthogonal decomposition have been used
interchangeably [54]. Principal component analysis is
very closely related to other techniques in different fields,
including: the discrete Karhunen–Loéve transform and the

SVD method in signal processing [55], and proper orthogonal
decomposition in computational science [56].

Fourier-SVD [51] is a procedure whereby the rows of X
are replaced by their Fourier transform, and a basis imposed
for the Fourier weights. For a coil located at angle φk , the
integrands Fk(ω) in equation (31) can be written

Fk =
M∑
i=1

αie
jniφk . (44)

At a particular frequency each measurement provides two
constraints via the complex Fourier transform Fk . The
measurement is matched to a set of modes each one of
which has three unknowns: magnitude, phase and eigenmode
number. Equation (44) can be rewritten as

F = γ · α, (45)

for N coils, with

F =




F1

F2
...

FN


 , γ =




ejn1φ1 · · · ejnMφ1

ejn1φ2 · · · ejnMφ2

...
...

ejn1φN · · · ejnMφN


 ,

α =




α1
...

αM


 ,

where M is the number of distinct eigenmodes in the plasma at
angular frequency ω. Equation (45) comprises 2N equations
in the 3M unknowns: the eigenmode numbers n1, ..., nM ;
the mode amplitudes |α1|, . . . , |αM |; and mode phases
tan−1(αi

1/α
r
1), . . . , tan−1(αi

M/αr
M). Solutions of equation (45)

thus yield simultaneous extraction and hence identification
of up to 2N/3 distinct eigenmodes. Fourier-SVD finds the
best fitting mode combination by obtaining the inverse of γ
through SVD inversion, subject to the overall minimization of
the residual

r = |γ · α − F |/ |F |. (46)

Fourier-SVD has been inverted to determine an optimal
configuration for magnetic coils [27].

A similar technique for the inference of frequency
spectrum comes from astronomy [52], where the objective
is inferring spectral content using a minimum information
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approach. Like Fourier-SVD, the technique is well suited when
sampling is sparse and irregular. In this approach data yn is
modelled by

yn =
K∑

k=−K

xk exp

(
j2π

k

K
fmaxtn

)
+ εn, (47)

with xk are unknown spectral amplitudes and εn is a
perturbation term that stands for model errors and observation
noise. In matrix–vector form equation (47) can be rewritten

y = W · x + ε, (48)

where y = [y1 . . . yN ]T , x = [x−K . . . xK ]T , ε = [ε1 . . . εN ]T ,
and the matrix W = {exp(j2πfktn)}k=−K...K,n=1...N . The
method has been adapted to infer mode numbers by Klein
et al [57], who replace y with the Fourier transform F in
equation (44), and W with γ in equation (45). The difference
between the two approaches is the minimization criterion. In
SparSpec it is

J (x) = 1

2
||y − Wx|| +

λ

λMax

K∑
k=−K

|xk|, (49)

with λ a hyper-parameter whose magnitude controls the
number of modes that are fitted to the data.

Figure 6 shows Fourier-SVD and SparSpec fits to mode
activity in MAST and JET magnetic coil data, respectively.
In panel (a) a Fourier-SVD fit of low n modes, separated
by toroidal rotation, together with high frequency modes of
opposite n sign, believed to be aliased compressional Alfvén
eigenmodes (CAEs) [58]. A filter has been applied to suppress
mode fits if the signal/noise ratio is below five. In panel (b), a
SparSpec fit to modes reveals a grand cascade of reverse shear
Alfvén eigenmodes, with sequentially lower toroidal mode
number.

The difference between Fourier-SVD and SparSpec lies in
the choice of number of modes, and normalization. In Fourier-
SVD the spatial mode basis is fit at every frequency, and may
account for multiple modes at the same frequency, i.e. M > 1.
SparSpec however does not fit the spatial mode basis at every
frequency: the number of modes is implicitly set through the
hyperparameter λ. SparSpec is routinely used with less than
ten modes. Fourier-SVD uses the L1 norm of |γ ·α−F |/|F |,
while SparSpec uses a norm that is L2 in y − W · x and L1

in x. The latter choice of normalization enables fine control
over the number of modes fitted: for a given value of λ the
mode basis is minimized. As implemented by Klein et al the
choice of λ is empirical, and it is selected as small as possible
while ‘still avoiding erratic or unlikely results in the output’.
Fourier-SVD has established the number of meaningful modes
fit by computing the fit of noise, and comparing the residue of
the signal fit to that of noise. Plasma signals are identified if
the probability that noise could generate the same residue and
mode number, or same amplitude falls below 1% confidence.
Practically, the two techniques are both routinely implemented
for fast analysis. As SparSpec solves for a smaller basis set, it
thus may be more amenable to real time mode identification.
Fourier-SVD is capable of resolving multiple modes at the
same frequency.
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Figure 6. Toroidal mode fitting of waves in a plasma from Mirnov
array data. (a) shows Fourier-SVD fit to MAST for #9429 from 0.1
to 0.2s, and (b) SparSpec fit to JET shot #69436 using eight Mirnov
coils. Reproduced with permission from figure 8 of Klein et al [57].

2.2.3. Wave polarization. A three-probe set of magnetic
field coils can also be used to measure wave polarization.
For instance, in MAST, the OMAHA set of magnetic field
probes consists of three coils wound on orthogonal axes on
a common former. In Fourier space, the complex magnitude
δBR(ω), δBz(ω), δBφ(ω) of each field coefficient is related to
the voltage on the coil as follows:

δBR(ω) = HRVR(ω)

jωNRAR

, (50)

δBZ(ω) = HZVZ(ω)

jωNZAZ

, (51)

δBφ(ω) = HφVφ(ω)

jωNφAφ

, (52)

where HR, HZ, and Hφ is the transfer function; NR, NZ and
Nφ the number of turns; and AR, AZ and A� the cross-
sections of each coil, respectively. The time projection of
(δBR(ω), δBz(ω), δBφ(ω)) traces out a polarization ellipse.
Characterizing the properties of the polarization, and relating
these properties to that of the equilibrium field B and wave
vector k requires a polarization model,

In optics and astrophysics [59, 60], a popular representa-
tion for the polarized electric or magnetic field vector is the

9
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φ

−Φ

x
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a

t E

Figure 7. The rotation of an arbitrary transverse wave vector
through angle φ can always be written as a polarization ellipse with
δB the peak field strength, and � the initial phase. The unit normal
to the polarization plane, en, is directed into the page. Both the wave
vector k and magnetic field B may be at an arbitrary angle with
respect to en. The mode drawn here rotates in a clockwise direction,
and has a negative initial phase angle.

axial-ratio formulation. In this representation, an arbitrary
transverse magnetic field vector is written

δB = δBei(�−ωt)

√
1 + T 2

(T et + iea) , (53)

with the coordinates axes et and ea taking the major and minor
axis of the polarization ellipse, and en = et × ea the unit
normal to the polarization plane. The quantity T is referred
to as the axial ratio, being the ratio of the major to minor
axis. As time advances, the real projections of equation (53)
trace out an ellipse with axes along the et and ea direction
and initial phase �. Figure 7 shows the coordinate geometry
and the trajectory of the magnetic field vector tip for a wave
with T > 0, and negative initial phase. As time advances the
wave propagates into the page, whilst the wave vector rotates
in a clockwise direction, and is said to be right-hand (RH)
elliptically polarized. The value of the axial ratio formulation
is that if the polarization plane and major axis is known, the
polarization properties of the wave are determined by one real
quantity, T .

In order to express the perturbed magnetic field in the
axial-ratio formulation, the Fourier data must be rotated to the
polarization frame. In general, this can be accomplished by
three frame rotations. In column vector notation, the rotated
coordinate frame (e

(3)
R , e

(3)
φ , e

(3)
Z ) is related to the laboratory

frame (eR, eφ, eZ) via
e

(3)
R

e
(3)
φ

e
(3)
Z


 = R3 · R2 · R1 ·


eR

eφ

eZ


 , (54)

where R1, R2 and R3 are rotation matrices, and where the
superscript (n) denotes the frame rotated by Rn · . . . · R1. The
first two rotation matrices R1 and R2 rotate the laboratory
frame so that e

(2)
R = en. These rotations can be chosen in two

arbitrary orthogonal directions, and we have selected χ1, χ2

to be rotations about the eZ and e
(1)
φ axes, respectively. The

Fourier components in the (e
(2)
R , e

(2)
φ , e

(2)
Z ) and (eR, eφ, eZ)

frames are then related by
 0

F
(2)
�

F
(3)
Z


 =


cos(χ2) 0 − sin(χ2)

0 1 0
sin(χ2) 0 cos(χ2)




·

 cos(χ1) sin(χ1) 0

− sin(χ1) cos(χ1) 0
0 0 1


 ·


FR

F�

FZ


 . (55)

The real and imaginary components of complex equation
F

(2)
R = 0 is solved for the rotation angles χ1, and χ2. This

yields

tan χ1 = F i
ZF r

R − F i
RF r

Z

F r
ZF i

φ − F r
φF i

Z

, (56)

tan χ2 = F r
R cos χ1 + F r

φ sin χ1

F r
Z

, (57)

where the superscript r and i denote real and imaginary
components, respectively. The third rotation, χ3 is chosen
to rotate (F

(2)
φ , F

(2)
Z ) in the polarization plane onto the major

and minor axis. That is,(
F

(3)
φ

F
(3)
Z

)
= |δB|ei�

(
T

i

)
. (58)

Equation (58) comprises two independent equations, which
can be solved for the axial-ratio T and the rotation angle χ3.
This yields for χ3

tan χ3 = T F
(2)i
Z − F

(2)r
φ

T F
(2)i
φ + F

(2)r
Z

, (59)

together with the quadratic

T 2[F (2)r
Z F

(2)i
φ − F

(2)i
Z F

(2)r
φ ] + T [(F (2)r

Z )2 + (F
(2)i
Z )2 + (F

(2)r
φ )2

+(F
(2)i
φ )2] + [−F

(2)i
Z F

(2)r
φ + F

(2)i
φ F

(2)r
Z ] = 0. (60)

The two solutions for T have the same sign, and are equal to
their inverse. Without loss of generality, we have chosen the
solution with T > 1, such that et is the major radius.

To extract the unit vector et , ea and en in the laboratory
frame the inverse rotations are performed. For example, in the
laboratory frame the polarization plane e(−3)

n is

e(−3)
n = R−1

1 · R−1
2 · R−1

3


1

0
0


 . (61)
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Appel et al [58] have extracted the polarization of modes from
low and high frequency MAST data, the latter of which is
believed to be CAE activity. Figure 8 shows the computed
value of en × B for both low and high frequency modes in
MAST discharge #17944. At the times shown, the on-axis
TAE frequency is 120 kHz, and the high frequency modes are
in the frequency interval ωci/2 < ω < ωci , with ωci the ion
cyclotron frequency. Both low and high-frequency modes are
elliptically polarized.

2.2.4. Wave–wave coupling. The tools above are linear to
describe the frequency and mode numbers of wave oscillations.
Higher order spectral tools, such as the bispectrum [61, 62],
offer quantitative techniques to resolve and quantify the
phase relationships between harmonics. The bispectrum is
defined by

B(ωk, ωl) = 〈
X(ωk)X(ωl)X

∗(ωk + ωl)
〉
, (62)

where X is the Fourier transform of the signal computed over
a time window �t , and ∗ denotes the complex conjugate. The
〈〉 brackets denote an averaging operation over a time window
�τ , with �τ > �t . The bispectrum, with magnitude |B|
and biphase � B, identifies and resolves frequency components
that satisfy the frequency coupling condition ωk + ωl =
ωk+l . The properties of the bispectrum depend largely
upon the phase � X(ωk)X(ωl)X

∗(ωk + ωl) over each window
�t . Three different types of signals produce different phase
relationships [62]:

(i) For signals that are coherent over the interval �τ and
exhibit frequency coupling, but are not the result of
nonlinear modulation, the phase � X(ωk)X(ωl)X

∗(ωk +
ωl) will be the same for every window �t within �τ .
The biphase need not be zero. That is, in general,
�l + �k − �l+k �= 0. Such a signal might correspond to
three independently driven cavity modes with frequencies
ω1, ω2 = 2ω1 and ω3 = 3ω1.

(ii) For signals that are the result of a quadratic non-
linearity the biphase at all peaks in the bispectrum
amplitude (which correspond to signals with compo-
nents at frequency ωk, ωl and ωk+l = ωk + ωl)
is always zero. A signal of the form xp =∑M

i=1 Ai/2[exp(j (ωit + �i)) + exp(−j (ωit + �i))] when
driven to produce a signal yNL of nonlinear order N

through

yNL =
N∑

γ=1

βγ xγ
p + xnoise, (63)

where βγ are arbitrary real coefficients and xnoise a noise
component, will have zero biphase at all peaks in the
bispectrum. That is, if �a, �b and �a+b are frequencies
given by �a = ∑M

i=1(k
a
i − ka

M+i )ωi, �
b = ∑M

i=1(k
b
i −

kb
M+i )ωi , with ki ∈ N, and ki, ki+M are the power indices

of the ωi and −ωi components respectively, and �a+b =
�a + �b, then we find

� B(�a, �b) =
M∑
i=1

[(ka
i − ka

M+i ) + (kb
i − kb

M+i )

−(ka
i + kb

i − ka
M+i − kb

M+i )]�i = 0. (64)

Such signals satisfy the phase coupling condition �l +
�k = �l+k . A plasma example is a single mode driven
nonlinearly to large amplitude, producing harmonics.

(iii) For frequencies (ωk, ωl) which correspond to noise, the
� X(ωk)X(ωl)X

∗(ωk + ωl) will be uniformly distributed.
The averaging operation in the bispectrum has no effect
on signals that are coherent, but serves to minimize the
magnitude of the bispectrum value of noise, by sampling
wave packets with different random biphase.

The presence of both frequency and phase coupling is very
strong evidence that the signal comprises components that are
the product of nonlinear modulation. A measure of signal
nonlinearity often used is the bicoherence [63]:

b2(ωk, ωl) = |B(ωk, ωl)
2|〈|X(ωk)X(ωl)|2

〉 〈|X(ωk + ωl)|2
〉 (65)

which lies between zero and unity. A bicoherence of zero
indicates no frequency coupling at frequencies ωk, ωl and
ωk + ωl . While a bicoherence of unity indicates frequency
coupling, it does not necessarily imply phase coupling,
especially if the signal is coherent over the window within
which the averaging of equation (62) was performed. In this
instance, to better distinguish between signals (i) and (ii), either
the time window �τ must be increased to span multiple wave
bursts, or the biphase must be inspected.

In recent years, higher order spectral techniques such
as the bispectrum have found an increasing use in the
study of mode coupling. Some examples in magnetic
confinement include the study of the interaction of multiple
neoclassical tearing modes (NTMs) [64], plasma turbulence
[65], confinement transitions [66], evidence of mode saturation
in a laboratory plasma [67], and identification of three wave
coupling in the Earth’s foreshock region [68]. Raju et al [64]
study the interaction of m/n = 3/2, 4/3 and 7/5 coupled
modes in JET plasmas. By studying the time evolution of the
bicoherence and mode amplitude, they were able to deduce
that the 7/5 mode is driven by the 3/2 and 4/3 modes, and
that the strong 4/3, 3/2 coupling may be responsible for the
observed stabilization of the 4/3 mode on the 3/2 mode.
Itoh et al [65] study the bicoherence of fluctuations in a
test system comprising drift waves and zonal flows. They
computed the response of a test mode to nonlinear interaction
between a pair of modes in a turbulent plasma, and using this,
compute the turbulent spectrum and bicoherence. Amongst
other results, Itoh et al find the total bicoherence increases as
the amplitude of the zonal flow increases. White et al [66]
study the characteristics of the bicoherence calculated from
Dα oscillations measured in the edge plasma of NSTX. Their
main result is that the level of nonlinear coupling between low
and high frequency fluctuations does not vary in the 10 ms
prior to confinement transition. Austin et al [67], has studied
electrostatic fluctuations of a vacuum arc centrifuge [69] reveal
the plasma is in a stochastic growth state [70], also employs the
bicoherence to confirm the electrostatic modes are nonlinearly
coupled. Recently, Narita et al [68] have estimated the
bicoherence in magnetic field perturbations and density in the
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Figure 8. Orientation of the polarization plane for (a) low-frequency modes and (b) high- frequency modes in MAST discharge #17944.
Here, B0 is the equilibrium field. Reproduced with permission from figure 16 of Appel et al [58].

wavenumber domain from four Cluster spacecraft positioned
in Earths foreshock region.

An example application of the bicoherence and the biphase
is interpretation of the phase relationships between low and
high frequency mode activity of magnetic fluctuation data from
the OMAHA magnetic array in MAST [71]. In that analysis
the biphase and bicoherence of low and high frequency chords
of discharge #9429 at 220 ms were examined, and the modes
found to be consistent with quadratic phase coupling, such that
�l +�k −�l+k = 0 and the frequency response of the amplifier
featured a cubic nonlinearity at high frequency. Figure 9 shows
the biphase and bicoherence of MAST magnetics for discharge
#9429 at 220 ms, together with the unwrapped biphase chords.

2.2.5. Wave statistics. In the last 10–15 years the calculation
of wave statistics has become popular in laboratory plasmas
in attempts to quantify the state of the underlying plasma
oscillations. Such tools are common to astronomy and
astrophysics, where data is extremely poor in spatial resolution,
and therefore more extensive signal processing is applied to
time series data to maximize information extraction.

A range of theories now exist to describe wave
field statistics in inhomogeneous stochastic systems/media,
including self-organized criticality (SOC) [72], which predicts
power law distributions for the electric field strength; scattering
by density irregularities [73] which produces Gaussian
statistics; strong turbulence [74], which predicts power-law
distributions; and stochastic growth theory [70], which predicts
lognormal field distributions. Physically, each of these various
theories are differentiated by the varying types of interaction
between the waves and background medium.

The study of wave statistics has also become more com-
mon in laboratory plasma physics, in a quest to use differ-
ent techniques to infer physics of important plasma processes.
Austin et al [67] have computed the statistics of the wave en-
velope of electrostatic field oscillations in a plasma centrifuge.
They have found that the wave envelope demonstrated lognor-
mal distribution functions, and therefore was consistent with
the description of stochastic growth theory for which the mean
plasma growth rate was at marginal stability.

By computing the pdf of the ELM inter-burst interval,
Greenhough et al [75] have shown that inter-burst-interval
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Figure 9. Biphase and bicoherence of MAST magnetics for
discharge #9429 at 220 ms. Figure (a) and (b) show the measured
and predicted bicoherence, and figure (c) shows the unwrapped
biphase chords, showing measured (heavy) and predicted (light)
biphase. Reproduced with permission from figures 8 and 10 of Hole
and Appel [71].

pdf’s can be either Gaussian or inverse exponential1 ; and it
is possible to distinguish inverse exponential cases that do,
or do not, reflect a Poisson process. This suggests that there
may be several fundamentally different kinds of underlying
nonlinear processes at work. Much more recently, Webster and

1 An inverse exponential function is one of the formf (x) = η/x2 exp(−η/x),
with η a scale length.
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Dendy [76] have established the waiting times ELMs should
obey a Weibull distribution, providing that the conditional
probability that another ELM follow the immediate previous
ELM obeys a power law distribution. They show this for JET
type I and type III ELMs.

In other work, Chapman and co-workers [77] have
shown that confinement phenomenology characteristic of
magnetically confined plasmas emerges naturally from a
simple sandpile algorithm when the parameter controlling
redistribution scale length is varied. Building on this work,
Rhee et al [78] recently constructed an extended cellular
automata model that reproduces key qualitative features of
ELM mitigation experiments, most significantly the increase
in frequency of grain ejection events (ELMs), and the decrease
in the number of grains ejected by these transport events.

Statistical analysis techniques have also been used to
analyse the structure and intermittency of localized plasma
‘blobs’ or coherent structures (see D’Ippolito et al [79]
and references therein), whose formation is often linked to
wavelike interchange or drift oscillations in basic plasma
devices, or in fusion plasmas, turbulence or ELMs. A
pronounced feature across many magnetic geometries (see
Garcia et al [80] and references therein) is a skewness and
flattening of the pdf of particle density and temperature in
the plasma edge region, consistent with the interpretation of
coherent or blob-like structures. Statistical characterization
also suggests computational techniques to model blob
transport, such as the replacement of blobs with ‘macro-blobs’
in transport codes such as UEDGE [81]. The replacement
is valid providing the statistics of plasma perturbations are
identical using blob and macro-blob models.

2.3. Particles

2.3.1. Simulation. Simulation is the most wide spread
used tool to diagnose fast particle populations toroidal
magnetic confinement. Monte Carlo beam codes such as the
NUEBEAM module [82] of TRANSP [12] contain a Monte
Carlo package for time dependent modelling of fast ion species
in an axisymmetric tokamak. This Monte Carlo package
represents the fast ion slowing down distribution function as
a discreet set of weighted model ions. Gyrophase averaged
particle trajectories are followed down to thermal energies:
NUBEAM stops following ions that slow down below (3/2)Ti,
where Ti is the temperature of the thermal ions. These ions are
then considered as thermalized ions and are described in terms
of a thermalization source function provided as an output of
the NUBEAM module.

A wider number of test particle full-orbit codes exist, such
as CUEBIT, [83] which are useful for physics exploration, but
do not have a self-consistent electric field. Such codes have
been generalized to include the collisional interaction of supra-
thermal test-particles with a Maxwellian population of field
particles in the presence of toroidal magnetic field ripple [84].
Figure 10 shows the projections onto the poloidal plane of
the collisionless passing (those that are not toroidally trapped)
particle orbits of beam ions that are (a) well-confined and
(b) marginally-confined. In MAST, the beam ion deposition

Figure 10. Projections onto the poloidal plane of collisionless beam
ion orbits in MAST. The ions were born at (a) R = 0.81 m,
Z = 0.12 m and (b) R = 1.32 m, Z = 0.02 m. Black curves show
flux surface contours, with the last closed flux surface in blue.
Reproduced with permission from figure 2 of [84]. Copyright 2012
AIP Publishing LLC.

profile extends up to the plasma edge, and the majority of beam
atoms are ionized well before they reach the tangency radius.
Thus, the impact of toroidal field ripple will be large, and as
the Larmor radius is large owing to the relatively weak toroidal
field, full orbit effects may be important. McClements et al
find that the effect of toroidal field ripple accounts for only
a small contribution to anomalous transport rates that have
been invoked to account for measured neutron rates and plasma
stored energies in some MAST discharges.

2.3.2. Particle measurements. Neutral particle analysers
(NPA) measure the energy spectra of neutral particles collected
along a line of sight of a viewing chord, (see Tournianski
et al [85] and references therein) and form the main diagnostic
on many machines to study the confinement of fast ions.
Neutral particles travelling along the line of sight of the
viewing chord are predominantly either injected neutrals that
undergo Coulomb scattering with an impurity ion in the
plasma, or are produced by charge exchange with a confined
ion. The energy spectra extends up to the injection energy of
neutral beams. A complete interpretation of NPA spectra is
critically dependent on Monte Carlo particle simulations such
as TRANSP, which simulate the neutral particle flux. The
degree of agreement with the simulated and measured NPA
spectra provides evidence of whether transport processes are
correctly captured, and the level of anisotropy.

A direct measure of the slowing down of deuterium ions
is available through fast ion D-alpha (FIDA) diagnostic. In
this challenging diagnostic, energetic deuterium ions undergo
charge exchange with a beam or edge neutral alpha, and
the neutral emits Dα light. The Dα line is Doppler shifted
away from other bright interfering signals. Analysis yields
the fast-ion velocity distribution function and spatial profile.
[86] Since developed in 2007, FIDA has now been deployed
on NSTX, DIII-D, ASDEX Upgrade, TEXTOR, MAST
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and LHD. FIDA has been useful in contributing to the
understanding of redistribution of fast ions. For instance, FIDA
measurements of the fast-ion populations in MAST reveal
strong redistribution of fast ions in both real and velocity space
as a result of fishbones [87], confirming that anomalous (higher
than neoclassical) fast-ion redistribution in MAST appears to
be due mainly to MHD.

Fast ions that lose confinement can be directly measured.
A scintillator based fast ion loss detector (FILD) acts as a
magnetic spectrometer, dispersing fast-ions onto a scintillator,
with the strike points depending on their gyro-radius energy
and pitch angle between ion velocity and magnetic field line
[88]. The short decay time of some scintillators (e.g. 490 ns for
TG-Green scintillator, Sarnoff Corporation, USA) means that
they can be used in conjunction with wave diagnostics, such
as Mirnov coils, to study wave induced fast ion losses. For
example, figure 11 shows the correlation between magnetic and
FILD spectrograms in AUG [89]. Synthetic diagnostic codes
have been written to simulate the scintillator measurements in
quiescent [90] and MHD-rich [91] plasmas. Finally, neutrons
from fusion reaction can be detected by either scintillators
or by an array of indirect measurements such as a fission
chamber. Together with other diagnostics these are often
used to characterize the impact of particle redistribution during
MHD (e.g. [91]).

3. Wave–particle interaction

We begin by a brief review of the physics of the wave–particle
resonant interaction with an example of linear resonant drive
of a TAE, inclusion of some damping physics (continuum),
and calculation of the nonlinear evolution of wave amplitude
and resonant part of the distribution function. We furnish our
calculations with some relevant developments in wave–particle
interaction physics.

3.1. Linear drive

Alfvén waves are driven unstable by the free energy
of the energetic particle distribution function. Power
transfer between a particle population with particle velocity
distribution function f0, the resonant part of the distribution
function f , and a wave field producing Lorentz force
F = eZ(E + v × B), is

Pα = d

dt

∫ ∫
(F · dl) f d x3 dv3, (66)

with v = dl/dt the velocity vector. Expanding in cylindrical
coordinates r, ϑ, φ, equation (66) becomes

Pα =
∫

dϕdθdrR dr

∫
dvf (−evd · E⊥), (67)

where for shear Alfvén waves E|| = 0, and vd is the
guiding centre drift velocity. Using the mode representation
E = ∇φm exp(i(nϕ − mθ − ωt)) with E|| = 0 of equation (3)
of Berk et al [92] a linearized kinetic equation for the function
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Figure 11. AUG discharge #21011: (a) spectrogram of a magnetic
pick-up coil signal, (b) spectrogram of a FILD channel. Reproduced
with permission from figure 9 of [89]. Copyright 2009 AIP
Publishing LLC.

f can be written, and the condition for resonant energetic
particles identified as

ω + (m + l)θ̇ − nϕ̇ = 0, (68)

where the wave potential has been expanded as a Fourier series:

φm =
∞∑
l=0

φm,l cos(lθ), (69)

Only particles with orbits satisfying the resonance condition
contribute to nonzero Pα .

In the absence of collisions, particle motion of an ion is
well described by the invariance of motion, particle energy
W = mv2/2, the first adiabatic invariant of magnetic moment
µ = mv2

⊥/(2B), and the toroidal canonical momentum
Pζ = mvζR − ψ , where R is the guiding centre of the particle.
Particle orbits can be classified according to these constants of
motion. Figure 12 shows an example from Heidbrink [93],
illustrating classes of particle orbits. Passing and counter-
passing refer to the direction of the toroidal magnetic field,
the lost region describes particles lost to the wall, and trapped
describes particles that are toroidally trapped.

As an illustration of linear wave drive, Appel and Hole
[94] computed TAE drive for a MAST discharge using both
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Figure 12. Classification of different orbit types for beam ions in
the DIII-D tokamak versus µ and Pζ The poloidal flux at the wall is
�w , the particle energy is W , and the magnetic field at the magnetic
axis is B0. Particles that move outwards from the magnetic axis
move leftwards on the Pζ axis. Four types of energetic particle
transport are illustrated. (Red square) The wave can perturb the
equilibrium, causing particles near a loss boundary to collide with
the wall. (Green triangle) Particles that stay in phase with a mode
throughout the plasma can convectively escape via the E × B drift.
(Blue diamond) Particles can diffuse as they receive velocity kicks
associated with the many wave–particle resonances in the plasma.
(Purple circles) If the energetic particles move outwards, they can
locally alter the energetic particle gradient and destabilize a new
wave that transports them further, where a new wave is destabilized.
Reproduced with permission from figure 10 of [93]. Copyright 2008
AIP Publishing LLC.

expressions Pα and the wave particle interaction code HAGIS
[95]. Using the resonance condition v|| = vA/(1 − 2l),
they projected the distribution function on the resonant plane
v|| = √

(E − µB)/M for co-passing and counter-passing
particles and computed the derivative ∂f0/∂p

0
ζ |µ,v|| appearing

in equation (67). Excellent agreement was found between
HAGIS and analytic working in the linear growth rate of co
and counter-passing populations.

Multiple resonances can also be driven simultaneously by
the same population of particles. Schneller et al [96] treat
the interaction of a 55 kHz reverse shear Alfvén eigenmode
and a 120 kHz TAE. This treatment examines the resonance of
modes in the same phase-space area using the wave particle
interaction code HAGIS. The analysis found the striking
result that depending on the radial mode distance, double-
resonance is able to enhance growth rates as well as mode
amplitudes, without a radial mode overlap of the modes [97].
In Hole et al [98], a global and core TAE was found at the
same frequency for an anisotropy-modified MAST discharge:
a double-resonant wave–particle interaction between theses
modes suggests the possibility of significant growth rate
modification.

The calculation of linear growth rates from approxima-
tions or slices of the distribution function is widespread across
wave-phenomena in fusion: the excitation of whistler waves
by runaway electron beams in tokamaks [99–101], the drive of
ion cyclotron instabilities [102], as well as EPMs [103].

3.2. Quasilinear growth and nonlinear analysis

Beyond the linear phase of the instability, the dynamics of
the resonant interaction between the electrons and waves can
be described by quasilinear theory [99, 104]. The distribution
function of the particles is then separated into a slowly and
a rapidly varying part, and only the average effect of the
rapidly varying part on the slowly varying part is taken into
account. The slowly varying part of the distribution is then
described by a diffusion equation in phase space, and the rate of
growth of wave-energy is equal to the linear growth rate. Such
approaches have been used extensively to model the evolution
of the distribution function up to the onset of saturation. The
dynamics of the resonant interaction between particles and
waves can be described by quasi-linear theory if the following
conditions are satisfied: (i) the waves should be incoherent and
have a sufficiently dense spectrum, in order to avoid particle
trapping, (ii) the wave amplitudes should be small enough to
affect the zero-order particle orbits and distribution functions
to an extent negligible for the linear theory, and (iii) damping
and growth rates of the waves should be small with respect to
their real frequencies [105]. Such approaches have been used
extensively to model the evolution of the distribution function
up to the onset of the saturation regime [106].

The long term nonlinear evolution of the wave
and resonant particle population for a fixed equilibrium
configuration can be advanced by either long time simulation
in HAGIS, or one dimensional (1D) line resonance model
developed by Berk et al [107], its numerical implementation
(the Bump-on-Tail code) and extensions [108, 109]. The 1D
line resonance model couples to the magnetic configuration
and particle distribution function weakly. The wave frequency,
electrostatic eigenfunction, and magnetic configuration do
not appear in the 1D line resonance model. The resonant
distribution function contributes only through a linear growth
rate γl , and damping with the background through a single
term γd . These codes are electrostatic, and do not have
an electromagnetic field. Comparisons to experiments
are afforded through the width of the line resonance and
the constants reflecting velocity space diffusion, dynamical
friction and Krook collisions. Despite these limitations, a
qualitative match can be obtained between the nonlinearly
frequency sweeping activity and 1D simulations. Figure 13
shows chirping hole and clump formation in MAST, detailed
HAGIS modelling results, and bump-on-tail simulations. The
chirping modes correspond to hole-clumps in distribution
space, in which an initially resonant wave at frequency ω/k

causes a local change in the distribution function +�f and
−�f above and below the resonant phase speed. HAGIS
reproduces the theoretically expected chirp frequency shift, as
well as saturation of the chirp. In the bump-on-tail simulation,
multiple bursts are generated by particle conservation. Since
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Figure 13. (a) Magnetic spectrogram showing frequency sweeping
n = 1 core-localized mode in MAST #5568. The first event shows a
frequency shift of 18 kHz in a time of 0.8 ms. Reproduced from
figure 9 of [112]. (b) Sliding Fourier spectrum showing frequency
evolution of marginally unstable TAE mode in response to kinetic α
particle drive γL/ω0 = 4.5 × 10−3 and external damping
(γd/ω0 = 4 × 10−3). The over-plotted white line shows the
theoretically predicted frequency shift of 0.4γL(γd t)

1/2. Reproduced
from figure 8 of [112]. (c) Spectrogram of the electric field
amplitude E1 for the collisionless case close to the threshold.
Reproduced with permission from figure 7 of [109]. Copyright 2010
AIP Publishing LLC.

the particle number is conserved, a number of particles must
be displaced during the motion of a hole or a clump, which
leads to a slight excess behind a hole and a depletion behind a
clump. The resulting steepening of gradient in the distribution
function makes the system susceptible to instability once again.
It is expected long-time simulation will flatten the distribution
function, leading to a global plateau that determines the
maximum amount of energy that can released from the system
for the prescribed modes.

The Berk and Breizman model has also provided a
development environment to enable calculation of isolated
phase-space structures, such as a hole-clump pair. Lesur and
Diamond [110] explore the relationship between the wave

energy density and the phasestrophy, � = ∫ inf
− inf〈δf 2〉dv,

where the angle brackets denote the spatial average.
They present a general relation between wave energy and
phasestrophy, compare phasestrophy and wave energy density
growth of a single phase-space structure, and obtain a simple
expression for the growth rate of a single phase-space structure
in the collisionless limit. By updating the width of the resonant
velocity distribution function, they find reasonable agreement
between the collisionless phase-space structure growth rate and
simulation parameters, beyond the linear initial phase near
marginal stability. The impact of turbulence on the phase-
space dynamics of a 2D (spatial) phase space density-hole has
also been addressed. Kosuga and Diamond [111] find that the
impact of turbulence driven flows is to alter such drift-hole
structures by shifting the drift-hole potential radially, and that
the drift-holes and turbulence driven flows are dynamically
coupled and can self-regulate each other.

3.3. Wave–particle–plasma interaction

Simulation codes such as TRANSP [12] evolve the plasma
equilibrium on time scales of resistive diffusion. Rapid
changes in the particle distribution function due to wave–
particle drive occur on a much faster time scale, and are
normally termed ‘anomalous transport’. Some consequences
of anomalous transport are well studied, such as fast ion loss
due to MHD. Fast ions loss to the first wall is a concern for
ITER, owing to the potential power loading. A recent ITPA
research project [113] concluded that for ITER, the loss power
fraction of NBI ions due to the 3D effect of ferromagnetic
materials and ELM mitigation coils was about 0.2%, rising to
0.3% in the presence of Alfvénic MHD activity and 4–5% with
the ELM mitigation field. An emerging topic is wave–particle–
plasma interaction, in which a redistribution of particles in
phase space is sufficient to cause a change in the plasma
equilibrium.

Farengo et al [114] compute the alpha particle
redistribution due to internal kink modes, in which the
magnitude of the redistribution of particles is quantified by
a diffusion coefficient. They found that at the relatively low
mode frequencies expected in large devices the effect of the
perturbed fields will be larger at lower energies, with a diffusion
coefficient of alphas resonant with the (1, 1) flux surface of
order 10−8 m2 s−1. One extreme way to scope the potential
impact is to identify the energetic particle contribution to
the plasma from beam injection, and thus provide a worst
case estimate if all the particles are redistributed. In existing
machines the contribution of energetic particles will be largest
in spherical tokamaks, where the highest toroidal beta has
been found [115]. Hole et al [116] showed that in the limit
of a 100% fast particle fraction the impact of anisotropy of
p⊥/p|| ≈ 1.7 in a 700 kA MAST discharge with 1.9 MW of
neutral beam heating was to lift the central safety factor by
15%. In contrast, the change produced by toroidal rotation
induced by the beam is small, with a reduction in central
safety factor of≈5%. Subsequent wave mode calculations [98]
showed that the impact of this change in the q profile was to
create both core and global TAEs at nearly the same frequency.
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An intriguing possibility associated with this new phenomena
is the possibility of mode coupling between the core and edge,
which may contribute to enhanced losses. Unlike the treatment
of Schneller et al [96], such modes are at the same frequency.

Energetic particles can also stabilize modes. For instance,
Testa and Albergante [28] show that fusion-born alphas that
are not yet thermalized can stabilize ITG turbulence, thereby
reducing an energy loss channel for thermal ions. In ITER
at high energy gain Q, fusion born alphas are expected to
thermalize on the electrons. Through energy equipartition,
the electrons then heat the thermal ions.

The opposite phenomena is α channelling, in which the
α particle energy is redirected to waves, which then transfers
it rapidly to fuel ions such that the electrons are not heated
and the fusion ash can be extracted [117]. Channelling 75%
of the alpha particle energy to ions can result in more than
a factor of two increase in fusion reactivity [118]. Initial
work focused on lower hybrid waves, but subsequent work
has shown the phenomena can be simulated using neutral
beams in replacement of alphas, driving Alfvén waves. More
recently, Ido et al report observations [119] of a new energy
channel from energetic particles to bulk ions through the
geodesic acoustic mode proposed by Sasaki et al [120],
thereby broadening the concept further. All are examples of
engineering the slowing-down of energetic ions to maximize
performance by either indirectly or directly shaping the plasma.

4. Conclusions and future directions

The purpose of this work was to review established and
emerging techniques in diagnosing and modelling the wave–
particle–plasma interaction. In today’s machines, a motivation
for this physics is neutral beam injection, which can drive both
rotation and anisotropy. A new numerical implementation of
a double-adiabatic model reveal that the impact of anisotropy
can be significant, particularly in spherical tokamaks. While a
basic understanding of the impact of anisotropy and flow on the
magnetic configuration is well established, the detailed impact
of beam parameters such as injection geometry relative to the
field, tangency radius, and beam direction (co- or counter-
injection) on the magnetic configuration is not well understood.
The impact of anisotropy on plasma wave modes and global
stability is also a rich but largely untouched topic.

Probabilistic methods such as Bayesian analysis, which
integrate multiple different equilibrium diagnostics, propagate
experimental error correctly. Although the last decade has
seen a slow increase in the reporting of experimental errors,
the correct propagation of uncertainty is still rare when
computing experimentally derived properties of two or more
measurements, such as thermal pressure. Instead, it is often
assumed that the quantities are independent and Gaussian.
A challenge for the field is to utilize available information
to propagate uncertainty correctly, and/or to provide greater
transparency in uncertainty calculation. Bayesian analysis
also offers the opportunity to perform validation between
different physical models, such as force balance, and identify
faulty diagnostics in addition to current tomography. With a
prescribed equilibrium model it is also now possible to infer

poorly diagnosed internal profiles, such as energetic particle
pressure. The use of such techniques seems promising for
future experiments such as ITER with a limited diagnostic set.
Indeed, it is likely DEMO will have a very restrictive diagnostic
set due to higher levels of neutron and gamma fluxes, and
fluences, nuclear heating and possible restricted access [121].

Significant progress has been made in wave mode
characterization, spanning both high frequency diagnostic
optimization, higher order spectral techniques to explore
chirping modes, and mode analysis techniques. It is now
routine to extract multiple mode numbers from Mirnov arrays,
use bispectral techniques to examine mode coupling and
phase relationships, and by analysing the statistics of events,
infer properties about the underlying state of the plasma.
Further opportunity exists to study the linear and nonlinear
relationships between perturbed wave quantities, and thus
validate or disprove theoretical models. Using the language
of Bayesian statistics, the predicted relationship between
perturbed wave quantities can be regarded as a forward model.
In fusion, the comparison of the stochastic properties (such
as the probability distribution function) between different
perturbed quantities (such as the density in terms of the field)
is in its infancy. These tools enable characterization of the
degree of non-linearity in the system.

An increased uptake of short-decay time scintillators and
fast ion loss detectors has provided quantitative comparison to
full particle orbit codes, and enabled experimental verification
of anomalous and/or resonant magnetic field perturbation
transport. Linear, quasi-linear and nonlinear wave–particle
simulations determine mode growth and saturation are
routinely used to determine wave amplitude, and determine
the impact of modes on particle orbits.

An emerging topic, which will be enabled in the long
term by self-consistent nonlinear simulations, is the study of
wave–particle–plasma interaction, in which a redistribution of
confined particles in phase-space is sufficient to cause a change
in the plasma equilibrium. To date, only scoping studies
have been conducted to establish the possible magnitude of
the effect, such as assuming the plasma is entirely a slowing
down function from neutral beam injection (no thermals).
Long term challenges include determining the impact from
multiple-mode resonances, particularly in cases where the
same resonant population can drive modes with different radial
mode localizations, and thereby enhance radial transport.
Such calculations will likely offer a nonlinear integrated
modelling challenge, in which the equilibrium is recomputed
from changes in the distribution function, and the modes
recomputed.

An important issue we have not addressed at all in the
review is the impact of toroidal asymmetric fields, or so-called
fully 3D fields, on the notionally toroidally symmetric plasma
configuration and plasma wave modes. In toroidally axis-
symmetric systems closed magnetic field lines always lies
in nested magnetic flux surfaces. However, the breaking of
axisymmetry in 2D tokamaks has profound implications on
the structure of magnetic field lines, as the field can now
support nested flux surfaces, magnetic islands, and chaotic
field regions. Fully 3D structure can be spontaneously
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induced, such as magnetic islands or other helical structures
such as long-lived modes, or imposed structure such as
toroidal field ripple or resonant magnetic field perturbation
coils, which have been experimentally shown to reduce and
indeed quench ELMs. Through stellarator research, a large
body of literature is devoted to understanding the magnetic
configuration and wave modes in fully 3D nested plasmas. A
grand open challenge is to understand the impact of magnetic
islands and chaotic fields on the plasma configuration, particle
confinement, wave modes and global stability.
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the ITPA TG on Diagnostics 2007 Requirements for fast
particle measurements on ITER and candidate
measurement techniques Nucl. Fusion 47 1311–7

[38] Bracewell R N 1986 The Fourier Transform and its
Applications (New York: McGraw-Hill)

[39] van Milligen B Ph, Sanchez E, Estrada T, Hidalgo C,
Brafias B, Carreras B and Garcia L 1995 Wavelet
bicoherence: a new turbulence analysis tool Phys. Plasmas
2 3017–32

[40] Cohen L 1966 Generalized phase-space distribution functions
Math. Phys. 7 781–6

[41] Choi H and Williams W J 1989 Improved time–frequency
representation of multicomponent signals using
exponential kernels IEEE Trans. Acoust. Speech Signal
Process. 37 862–71

[42] Figueiredo A C A and Nave M F F 2004 Time–frequency
analysis of nonstationary fusion plasma signals: a
comparison between the Choi–Williams distribution and
wavelets Rev. Sci. Instrum. 75 4268–70

[43] Merezhkin V G 1978 Sov. J. Plasma Phys. 4 152–64
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waves destabilized by runaway electrons in near-critical
electric fields Phys. Plasmas 20 012117

[102] Chen K R, Huang R D, Wang J C and Chen Y Y 2005
Relativistic electromagnetic ion cyclotron instabilities
Phys. Rev. E 71 036410

[103] Zhang C, Zhang W, Lin Z and Li D 2013 Comparison of
toroidicity-induced Alfven eigenmodes and energetic
particle modes by gyrokinetic particle simulations Phys.
Plasmas 20 052501

[104] Vedenov A A 1962 Quasi-linear theory of a plasma At.
Energ. 13 5–24
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