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Attack Vulnerability of Complex Communication
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Abstract—The Internet has been studied as a typical example of
real-world complex networks. In this brief, we study the traffic per-
formance of the Internet when it encounters a random or inten-
tional attack. Different from previous approaches, the congestion
control protocols are considered so that the bandwidth can be real-
located among flows. In this way, cascading breakdown is less likely
to happen. The flow rates are adjusted when a node is attacked
and out of function. Consequently, the traffic utility and the utiliza-
tion ratio of bandwidth are affected. We compare the real Internet
data with the classic random graph and scale-free network models.
The simulated results also show that the “robust yet fragile” prop-
erty previously observed in the study of cascading failures in the
scale-free networks is still valid in this scenario.

Index Terms—Bandwidth allocation, complex networks, In-
ternet, vulnerability.

I. INTRODUCTION

RESEARCH on complex networks has received consider-
able attention during the past decade [1]. Networks in a

wide range of areas are studied and statistical properties, which
show the characteristics of those networks, are found. More-
over, several network models are proposed [2], [3], which help
us to have a further understanding of those statistical proper-
ties. Based on these developments, the research interest has been
switched to the dynamic behaviors of networks in recent years
[4]. Cascading failures [5]–[7], congestions in communication
networks [8], [9], epidemic spreading [10], [11] and synchro-
nization [12]–[16] are some examples of dynamic behaviors of
complex networks.

Many researchers have studied random and intentional at-
tacks to complex networks and their effects on the traffic per-
formance in the networks (e.g., see [4] and its references). It
is a natural problem which many real-world networks, such as
power grids, the Internet, telephone networks and transportation
networks, may face. When a node is attacked and then out of ac-
tion, the flows which originally go through the node have to re-
configure their paths and go through other nodes. The redistribu-
tion of traffic may affect loads on other nodes and possibly start
a sequence of overload failures. Further study indicates that a
scale-free network is highly robust to random failures yet fragile
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under intentional attack, whereas a random graph is robust under
both random and intentional attacks [5].

In these results, the flow rates are assumed to be fixed even
after the reconfiguration of flow paths. In the real Internet, how-
ever, the case is quite different [17]–[19]. When a node is out of
function and flows which used to go through it reconfigure their
paths, the transmission control protocols (TCP) adjust the rate
of each flow using congestion control algorithms, and make the
aggregate flow rate under the bandwidth limitation. Thus, the
cascading breakdown is less likely to happen.

In this brief, we will study the effect of random and inten-
tional attacks on the traffic performance in the Internet. Because
flow rates are adjusted by the congestion control protocols when
a node is attacked, the traffic performance is then affected. We
will define some indicators to measure the traffic performance
and show how they are affected.

II. OPTIMAL BANDWIDTH ALLOCATION ALGORITHM

Consider a network with links and flows. Set
if flow goes through link and otherwise. Then the
matrix contains all the
routing information. If the rate of flow is and the capacity
of link is , then we have the following inequality:

(1)

where and are
the flow rate vector and capacity vector, respectively. The above
inequality gives the constraint of telecommunication channels,
i.e., the aggregate rate cannot exceed the channel bandwidth.

The aim of transmitting a flow of packets from their source
to the destination is to get some benefit from the information
transmission (e.g., downloading a file, reading news, or making
an online booking, etc.). It is natural to set a utility function
for flow , and assume that is related to its rate . Thus, we
can denote it as . In order to get an optimal bandwidth
allocation solution, the congestion control protocols try to solve
the following optimization problem [18]:

subject to over (2)

We consider two kinds of attacks: random attack and inten-
tional attack. In the random attack scenario, the attacked node
is randomly chosen from the network. The intentional attack
is assumed on the node with the largest degree. When a node
is attacked, it is removed from the network. The flows which
originate or end at this node are removed simultaneously, while
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the flows which go through the node reconfigure their routes
to find new shortest paths. All these removals and reconfigura-
tions modify the corresponding entries in matrix . Based on
the modified routing information, congestion control protocols
compute a new optimal bandwidth allocation.

Because of the large scale of the Internet, it is necessary to
consider whether using the centralized or decentralized algo-
rithms to solve the optimization problem (2). Although the cen-
tralized algorithms have a faster convergence, they require that
a link knows the information of the whole network, which is not
practical in the real Internet. So the decentralized algorithm is
more applicable. In this brief we use a decentralized algorithm
to compute the optimal results [17]. The algorithm is as follows.

• Link ’s Algorithm: At time , link :

1) gets rates of flows which go through link ;

2) computes its price

where is the aggregate flow rate on
link , is the set of flows which go through link , and

;

3) communicates the new price to all flows which
go through .

• Flow ’s Algorithm: At time , flow :

1) receives prices of links which flow goes through;

2) chooses a new transmission rate based on the sum
, where is the set of links which

flow goes through;

3) communicates new rate to links .

The idea of the algorithm is straightforward. At each step,
each link receives the rates of those flows which go through it.
Then it adjusts its price based on the flow rates and communi-
cates the new price to all flows through it. Similarly, each flow
receives the prices of links on its route, computes its new rate
based on those prices, and tells its new rate to links on its route.
In this way, what a link or flow needs to know is only the local
information related to it. It does not need to acquire the infor-
mation of the whole network.

III. NETWORK MODELS

We acquire the inter-connection information of the Internet
at the autonomous systems (ASs) level from the online data-
base [20]. Then we select the largest connected part, containing
1470 nodes and 3131 links, from the raw data, as a subnetwork
of the Internet. We also consider a Barabási and Albert (BA)
scale-free network model proposed by Barabási and Albert [21]
and a random graph model proposed by Erdős and Rényi [22]
for comparison. In order to compare three network structures
fairly, the number of nodes and the number of links in both
random graph and BA model are also set to be 1470 and 3131,
respectively. Figs. 1 and 2 illustrate the degree distributions of

Fig. 1. Degree distribution of the subnetwork of the Internet and BA scale-free
network.

Fig. 2. Degree distribution of a random graph.

the three network models, respectively. They clearly show that
both the Internet data and the BA model follow the power-law
degree distribution, while the degree distribution of a random
graph is Poisson.

In each network, we randomly generate .
To do that, for each flow, the source and destination nodes are
randomly chosen. Once a source-destination pair is determined,
a shortest path between them is found. If there are more than
one shortest path between the source and destination, then we
randomly choose one.

IV. SIMULATIONS

A. Link Capacity

In the Internet, the link capacity means the bandwidth of the
link. Intuitively, links connected to those popular nodes need
larger capacities since more traffic loads go through them. Here
we set

(3)

where is the capacity of link between nodes and , “ ”
means proportional to, and is the betweenness of node ,
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which is defined as the number of shortest paths between any
pair of nodes which go through [23]. Comparing the defini-
tion of betweenness with the routing rule of traffic flows (i.e., to
go through a shortest path from the source to the destination),
we can conclude that the betweenness characterizes the average
traffic load on a node [24]. Generally speaking, if a link is con-
nected to a node with a larger betweenness, it will encounter
more traffic loads. Therefore, it needs more capacity.

B. Performance Indicators

The traffic performance can be measured in two aspects: the
utility and the utilization ratio. Since the task of optimal band-
width allocation is adjusting the flow rates to find the maximum
utility, we can use the total utility, , as our first per-
formance indicator. In the following simulations, we use

(4)

as the utility function, where is the path length of flow . It is
actually a simplified version of the utility function used in TCP
Vegas [25].

The second performance indicator is the utilization ratio of
bandwidth. When the total utility reaches the maximum, there
is still some idle bandwidth. That is to say, a proportion of the
bandwidth is wasted. From an economical point of view, we
want this kind of waste to be as little as possible, or the utiliza-
tion ratio of bandwidth to be as high as possible. The utilization
ratio of bandwidth is defined as

(5)

where is the total used bandwidth and is
the total provided bandwidth.

C. Simulation Results

Fig. 3 depicts the simulated results of total traffic utility in a
subnetwork of the Internet. In the figure the total utility is a func-
tion of total capacity . When the total capacity increases,
there are more bandwidth resources for traffic flows. As a result,
the total utility increases. This figure also compares the perfor-
mance of the original network with the cases under random and
intentional attacks. The “random attack” curve overlaps with
the original one, whereas the “intentional attack” curve is about
15% lower. These results show the important role of the hubs in
the Internet traffic. In the network, a hub has so many connec-
tions that it is on the routes of lots of flows. Consequently, the
traffic load on a hub is very heavy. If the hub is attacked, a large
proportion of flows are affected, which results in the dramatic
degradation of traffic performance. On the other hand, according
to the power-law degree distribution, the number of hubs is quite
small. In the random attack scenario, since the target is ran-
domly selected, it is much more likely that the attacked node
has only few connections. This node has less effect on the traffic
performance of the whole network. That is the reason why the
“random attack” curve overlaps with the original one.

Fig. 3. Total traffic utility in a subnetwork of the Internet.

Fig. 4. Utilization ratio of the bandwidth in a subnetwork of the Internet.

Fig. 4 gives the simulated results of utilization ratio of the
bandwidth in a subnetwork of the Internet. The utilization ratio
of the bandwidth decreases as the total capacity rises,
which means that a higher percentage of bandwidth is wasted,
although the total utility increases, as illustrated in Fig. 3. Com-
paring three cases, we find similar results as shown in 3 , i.e., the
“random attack” curve overlaps with the original one, whereas
the “intentional attack” curve is much lower.

Figs. 5 and 6 show the performances of the BA network. The
simulated results of the BA network is similar to the Internet
data, i.e., the “random attack” curve is overlapped with the orig-
inal one, whereas the “intentional attack” curve is remarkably
lower. The results indicate that the BA scale-free network is ro-
bust under random attack but fragile under intentional attack.

By contrast, as illustrated in Figs. 7 and 8, the random graph
is robust to both random and intentional attacks. There are only
slight declines when the network is attacked. The random graph
is a homogeneous network, in which there is no node with an
enormous number of connections. As a result, the traffic is well
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Fig. 5. Total traffic utility in a BA network.

Fig. 6. Utilization ratio of the bandwidth in a BA network.

distributed among all nodes. Therefore, the attack at one node
(no matter randomly or intentionally) has little effect on the
traffic performance of the whole network. These results also
agree with the results in the study on the cascading failures in
the random graph [5].

The simulations confirm the “robust yet fragile” property of
scale-free networks, whereas the random graph is robust to both
random and intentional attacks. Although these results are also
found in the study on the cascading failures in complex networks
[5], our mechanisms and performance measurements are quite
different from those in previous study. In the study on cascading
failures, because the flow rates are fixed, the failure of one node
may cause a sequence of overload failures. Under this condi-
tion, the size of the largest connected component is a good mea-
surement of network performance. In our scenario, on the other
hand, the optimal bandwidth allocation algorithm reallocates the
flow rates to avoid cascading failures. We use the total utility and
the utilization ratio of the bandwidth as the performance indi-
cators. The comparison with cascading failure results indicates

Fig. 7. Total traffic utility in a random graph.

Fig. 8. Utilization ratio of the bandwidth in a random graph.

that the “robust yet fragile” property is intrinsic to scale-free
networks.

V. CONCLUSION

This brief has studied the attack vulnerability of the Internet
in consideration of the real TCP congestion control protocols.
Both real Internet data and the typical BA network show a con-
siderable decline in performance when they encounter an inten-
tional attack. However, a random attack does not significantly
affect the network performance. As to a random graph, both
random and intentional attack have little effect on the network
traffic.

Interesting enough, although our traffic model and perfor-
mance indicators are quite distinct from the cases in previous
cascading failures results, we get similar conclusion: the
scale-free network has “robust yet fragile” property, whereas
the random graph is robust to both random and intentional
attacks.
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