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Abstract

We suggest an alternative way of analyzing the canonical Bergstrom–Blume–Varian model of non-
cooperative voluntary contributions to a public good that avoids the proliferation of dimensions as the
number of players is increased. We exploit this approach to analyze models in which the aggregate level of
public good is determined as a more general social composition function of individual gifts — specifically,
as a CES form — rather than as an unweighted sum. We also analyze Hirshleifer's weakest-link and best-
shot models. In each case, we characterize the set of equilibria, in some cases establishing existence of a
unique equilibrium as well as briefly pointing out some interesting comparative static properties. We also
study the weakest-link and best-shot limits of the CES composition function and show how the former can
be used for equilibrium selection and the latter to establish that equilibria of some better-shot games are
identical to those of the much simpler best-shot game.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The canonical model of non-cooperative public good provision set out by Bergstrom, Blume
and Varian (1986) — hereafter BBV — is a prominent example of a non-cooperative game with
an aggregative structure. The common object of all players' preferences is a simple aggregate, the
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unweighted sum of all individual contributions gi, and each player's preferences can be
represented by a payoff function of the form πi(gi,G), where G=∑jgj.

We study a systematic way of exploiting its aggregative structure that avoids the proliferation
of dimensions as the number of players grows and thereby simplifies its analysis. This permits us
to extend the model by allowing G to be a more general (social composition) function of
individual contributions, rather than an unweighted sum. This extra generality allows us to
consider weaker link and better shot situations, of which Hirshleifer's (1983) weakest-link and
best-shot games are extreme cases. Social composition functions involving weaker-link public
goods exhibit a convex technology for transforming individual contributions into the aggregate
level of G, and imply a unique equilibrium in pure strategies. Situations involving better-shot
public goods have non-convex social composition functions and, typically, multiple equilibria.
Our approach also elucidates structural properties of equilibria and comparative statics properties.
To avoid excessive length, we avoid a full treatment of these topics, confining ourselves to
passing remarks.

In Sections 2 and 3, we show how “replacement functions” offer a simple and intuitive proof of
existence, uniqueness and neutrality in the canonical model of BBV. The main aim of these
sections is to set the scene for extensions of the canonical model which yield to modifications of
this approach. For example, in Section 4, we show how easily an appropriate redefinition of
replacement functions shows that Hirshleifer's weakest-link model has a continuum of Pareto
ranked equilibria. A more radical extension of the replacement function can be used to analyze
games with a generalized concave CES social composition function.1 In Section 5, we prove that
such games always have a unique equilibrium. The fact that the weakest-link composition
function can be viewed as a limiting case of CES suggests using the limiting equilibrium to select
from the continuum of equilibria under weakest link. We show that this can indeed be done, but it
does not typically select the Pareto dominant equilibrium. A further extension of replacement
functions (to correspondences) allows us to handle non-concave social composition functions and
we illustrate this by discussing games with convex CES composition functions and Cobb–
Douglas preferences in Section 6. When the (negative) elasticity of substitution is close enough to
zero, we offer a complete characterization of the set of equilibria. In particular, we characterize all
possible sets of players active in some equilibrium and show that, given such a set, the
equilibrium is uniquely determined. A final extension of replacement correspondences allows us
to characterize the set of equilibria in best-shot games and to show that Pareto-improving and
coordination-resolving transfers may be available in such games. Finally, we show that when the
elasticity of substitution is negative and close enough to zero in the better-shot game, the set of
equilibria coincides with that in the best-shot game.

2. The canonical model

We generally follow BBV's notation and assumptions. Their model has four elements:

1. Individual preferences: Player i , i=1,…, n, has preferences represented by the utility function
ui(xi,G), where xi≥0 is the quantity of a private good and G the total quantity of a pure public
good. BBV do not explicitly impose much structure directly on preferences. In particular, they
1 Todd Sandler, with various coauthors, has stressed the potential relevance of weak link and good shot public good
models to many situations involving regional and global public goods. See especially (Arce and Sandler, 2001; Sandler,
1998, 2003, 2004). Varian (2004) applies the weakest link model to modelling system reliability.
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assume that both goods are desirable and strictly normal. We will refer to this last assumption
as normal preferences, or normality. For convenience, we shall assume, without explicit
statement, that ui is continuously differentiable. Then, normality implies that the marginal rate
of substitution (of private for public goods) is strictly decreasing in G and non-decreasing in xi.
Such assumptions imply strictly convex preferences.

2. Individual budget constraints: Player i's budget constraint requires that

xi þ gi ¼ wi

where gi≧0 is her contribution to a pure public good, or her gift, andwi is her exogenous income.
3. The social composition function: The total public good provision is the unweighted sum of

individual gifts:2

G ¼
Xn
i¼1

gi:

4. The behavioral assumption: The game is a static, or simultaneous, non-cooperative game in
which the strategic choice variables are the individual gifts, (g1,g2,…,gn).

BBV demonstrate the existence of a unique Nash equilibrium in pure strategies. Existence is
established by appealing to Brouwer's fixed point theorem, and uniqueness by a separate
argument tailored to the public good model. Although there is no doubting its formal correctness,
their uniqueness argument has not struck all readers as intuitively transparent.3

Their comparative static analysis proceeds by direct examination of the budget set, and
establishes the well-known neutrality result associated with income redistributions amongst
contributors, as well as the limits on redistributions that maintain neutrality.

3. An alternative approach: the replacement function

Cornes and Hartley (2007) formally demonstrate the existence, and explore the properties, of
the replacement function ri of player i, which expresses the player's best response as a function,
not of the sum of best responses of all other players, but of the total level of public goodG. That is,
gi= ri(G) if and only if the strategy choice of player i is gi in all Nash equilibria in which aggregate
public good provision is G. (This includes the player's own choice amongst the arguments of the
function.) Replacement functions provide a simpler and more direct unified analysis of existence,
uniqueness and comparative static properties of equilibrium in the canonical model.4

A central proposition in Cornes and Hartley (2007) characterizes the properties of a player's
replacement function in the canonical model as follows:

Proposition 3.1. In the canonical public good model, player i has a replacement function ri(G)
with the following properties:

1. There exists a finite value, Ḡi, at which ri(Ḡi )=Ḡi.
2. ri(G) is defined for all G≧ Ḡi.
2 The term “social composition function” was suggested by Hirshleifer (1983).
3 Indeed, in (Bergstrom et al., 1992) they tighten up their original uniqueness argument in response to concerns voiced

by Fraser (1992).
4 An earlier treatment of public goods that exploits their aggregative nature is Okuguchi (1993).
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3. ri(G) is continuous.
4. ri(G ) is everywhere non-increasing in G, and is strictly decreasing wherever it is strictly

positive.

Here, Ḡi is the level of public good that player i would prefer, if that player were the sole
contributor. Replacement functions can be used to study equilibria via the following charac-
terization, whose proof is trivial.

Characterization of a Nash equilibrium: A strategy profile (ĝ1,…,ĝn) is a Nash equilibrium if
and only if

bgj ¼ rjðbGÞ for j ¼ 1; N ; n;

where Gb=∑j= 1
n gbj

Note that Gb is an equilibrium level of the public good if and only if it is a fixed point of the
aggregate replacement function R(G)=∑j= 1

n rj(G). It follows that, if R has a unique fixed point,
the game has a unique equilibrium. This will happen if R is continuous, strictly decreasing where
positive and has a graph that crosses the 45° line. Exactly these properties follow from Propo-
sition 3.1. Thus both existence and uniqueness of Nash equilibrium are established in a single
simple line of argument.

Not only do existence and uniqueness follow directly from simple geometric considera-
tions. So, too, do comparative static properties such as the well-known neutrality proposition.
We refer readers to Cornes and Hartley (2007) for a more systematic account of such issues. In
particular, they relax the assumption of a common unit cost of contributing across players, and
permit player i's budget constraint to take the form xi+ cigi=wi. Such an extension poses
no problems for the present approach, and raises interesting and surprising possibilities,
which Cornes and Hartley explore, concerning the consequences of both idiosyncratic and
systematic changes in unit cost levels. The same paper provides further references to earlier
literature that exploits the aggregative structure of the public good model, but in a less
systematic way.

In the rest of the paper, we demonstrate how to extend this approach to more general social
composition functions. Specifically, we consider the CES social composition function

G ¼
Xn
j¼1

bjg
q
j

 !1=q

ð1Þ

for real values of ρ≠05,6 and β1,…,βnN0. When ρb1 ( and ρ≠0 ), replacement functions always
exist but may not be decreasing. However, the share function: si(G)=βiri

ρ/Gρ is always
monotonic. Since Gb is an equilibrium level of the public good if and only if

SðbGÞ ¼Xn
j¼1

sjðbGÞ ¼ 1;
5 Of course, if qY0, the social choice function (6) approaches Cobb–Douglas (with parameters bi=
Pn

j¼1 bj). We do
not explicitly study this case, but the principal qualitative conclusions (existence and uniqueness of an equilibrium) are
still valid.
6 When qb0 and some gi ¼ 0, we suppose G=0 to ensure continuity.
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where S(G) is the aggregate share function, multiple equilibria are ruled out. The equilibrium
strategy of Player i is ĝi=Gbsi(Gb). If we can also show that the aggregate share function is
continuous and takes values greater and less than 1, the game has a unique equilibrium. When
ρN1, the social composition function is no longer concave and multiple equilibria are possible.
Nevertheless, extending replacement and share functions to correspondences allows us to
characterize equilibrium sets. We also examine the weakest and strongest link social composition
functions, which can be viewed as limiting cases of a CES function. 0nce again replacement
function methods, appropriately modified, can be used to analyze equilibria.

4. Weakest-link public goods

The approach of the previous section can be adapted to Hirshleifer's weakest-link and best-
shot public good games. In this section, we discuss the weakest-link social composition function:

G ¼ min
j¼1; N ;n

gj;

deferring treatment of the best-shot case to Section 7. Recall that if ri is the replacement function
of player i, ri(G) is the unique strategy of the player in all equilibria in which the aggregate level
of the public good is G.

Let Ḡi denote the preferred level of the public good of Player i among all allocations in which
G=gi, and let G−i=minj≠ igj. For all contribution levels such that G−i≤ Ḡi, Player i will want to
match the smallest of the other contributions, since her preferences are convex. In this event, her best
response is gbi=G−i and the total quantity of the public good isG=min{gbi,G−i}=gbi=G−i. However,
if G−iN Ḡi , Player i will only want to contribute up to the level Ḡi, and no further. Her contribution
then determines the value of the weakest link. In this event, G=min{gbi,G−i}= Ḡi. It follows that

ðriðGÞ;GÞ ¼ ðG�i;G�iÞ if 0 VG−i V Ḡi

and

ðriðGÞ;GÞ ¼ ðḠi;ḠiÞ if G−i N Ḡi:

Proposition 4.1. If Player i has convex increasing preferences, her replacement function has
domain [0, Ḡi] and satisfies ri(G) = G in this domain.

Nash equilibrium levels of the public good are still fixed points of the aggregate replacement
function R, provided the definition of R is modified to R(G)=minj= 1,…,nrj(G). The domain of R is
the intersection of the domains of individual replacement functions, so

RðGÞ ¼ G for 0 VG V min
j¼1; N ;n

Ḡi:

We may conclude that any non-negative level of the public good not exceeding any indi-
vidually preferred level is an equilibrium.

Proposition 4.2. If all players have convex, increasing preferences, (gb,…,gbn) is an equilibrium
strategy profile if and only if gbj=gb for all j for some gb satisfying 0≤gb≤minj= 1,…,nḠi.

Thus, there is a continuum of Pareto ranked equilibria. Hirshleifer suggested that the salient
equilibrium is precisely the value gbj=minj= 1,…,nGbi, which Pareto dominates all the others.
However, experimental evidence has not supported the idea of Pareto dominance as a selection
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criterion. Weber (2006) provides an interesting discussion of experimental evidence in situations
requiring coordination. In Section 5, we will offer an additional theoretical perspective on the
coordination issue in the weakest-link model.

Vicary (1990), Sandler and Vicary (2001) and Vicary and Sandler (2002) explore weakest-link
games in which players are able to make income transfers.

5. More general concave social composition functions

In this and following sections, we revisit the extension of the canonical model suggested by
Cornes (1993) focussing on the CES social composition functions. Throughout this section we
restrict attention to concave social composition functions, which ensures continuity of behavioral
functions. In the following section, we extend the analysis to the non-concave case. There are two
principal results in this section. Proposition 5.1 demonstrates that normality still ensures that the
game has a unique Nash equilibrium. The second main result shows that the Pareto dominant
Nash equilibrium identified by Hirshleifer in his analysis of weakest-link models may not be a
reliable guide to the equilibrium of weaker link models (in which the marginal productivities of
low contributors are significantly larger than those of higher contributors).

5.1. Best responses, replacement and share functions

5.1.1. Best responses
If the social composition function takes the CES form, the payoff of player i is

ui wi � gi;
Xn
j¼1

bjg
q
j

 !1=q
0@ 1A

and, in this section, we assume ρb1 and ρ≠0. In this parameter range, the social composition
function is a concave function of gi and, since ui is strictly quasi-concave and increasing in both
arguments, the payoff is a strictly quasi-concave function of gi. It follows that best responses can
be characterized by standard first-order conditions.

The marginal payoff of Player i (holding other players' strategies fixed) is

� Aui
Axi

þ bi
Aui
AG

gi
G

� �q�1
:

So the first-order conditions can be written: gi∈ (0,wi] and

MRSiðwi � gi;GÞz 1
bi

gi
G

� �1�q
with equality if gibwi; ð2Þ

whereMRSi denotes the marginal rate of substitution ( Agi
AG for fixed ui). Note that we cannot have a

solution to the first-order conditions with gi=0 and GN07, so this boundary value can never be a
best response.
7 If 0bqb1, satisfaction of the first order conditions would imply MRSiðwi;GÞ ¼ 0 which is inconsistent with normal
demand. When qb0, such a solution is excluded by fiat.
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Defining

G�i ¼
X
jpi

bjg
q
j

 !1=q

;

we observe that best responses depend on individual strategies of other players only through G−i
and write bi(G−i) for the best response to G−i.

5.1.2. Replacement functions
The replacement function ri(G) of player i is the strategy the player would choose in any

equilibrium in which public good provision is G. That is, gi= ri(G) satisfies gi=bi(G−gi), which
means that (gi,G) satisfies Eq. (2). It is necessary to establish that ri is well-defined by showing
that Eq. (2) has a unique solution in gi for any G in a suitable domain.

The desired conclusion follows from normality, since this implies that, if we hold G fixed,
MRSi(G,wi−gi) is non-increasing in gi. Furthermore, the right hand side of Eq. (2) is strictly
increasing in gi and takes the value zero at gi=0, since ρb1. Fig. 1 illustrates these observations.
The upper panel shows an interior best response and the lower panel displays a boundary case.
Fig. 1.
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We deduce that Eq. (2) has a unique solution in gi. However, for this to correspond to a
strategy profile satisfying the feasibility requirement gj≥0 for j≠ i, we must have G−i

ρ ≥0. In
the case ρ≥0, G−i

ρ N0 implies GρNβigi
ρ, so the solution is feasible if and only if G≥ Ḡi,

where

Ḡi ¼ b1=qi bið0Þ

is the level of the public good which player i would choose, if she were the sole contributor.
If ρb0, Gi−

ρ N0 implies Gρbβigi
ρ and the solution is feasible if and only if G≤ Ḡi. Formal

proofs of these observations are a little delicate and given in the Appendix. The following
Lemma summarizes our conclusions at this point.

Lemma 5.1. Under increasing, normal preferences, there is a unique gi∈ (0,wi] satisfying Eq.
(2). Furthermore, the feasibility condition βigi

ρ≤Gρ is satisfied for G≥ Ḡi if 0bρb1 and for
G≤ Ḡi if ρb0.

This lemma implies that replacement function ri(G), the unique gi satisfying Eq. (2), is well-
defined and has domain [Ḡi,∞) if [0bρb1 and [0,Ḡi] if ρb0. Note also that Ḡi=βi

1/ρbi(0) implies
that

riðḠiÞ ¼ Ḡi: ð3Þ

5.1.3. Share functions
In contrast to the canonical case, the replacement function need not be decreasing. We

can circumvent this difficulty by using the share function si for player i, which is defined
as

siðGÞ ¼ bi
½riðGÞ�q
Gq

: ð4Þ

It follows from the definition of equilibrium that S(G)=∑j=1
n sj(G)=1 is a necessary and

sufficient condition for G to be a Nash equilibrium level of public good provision. It follows that,
if S is strictly monotonic and its graph crosses the line S=1, the game has a unique equilibrium.
We complete the proof by establishing properties of individual share functions entailing these
properties.

In carrying out this analysis, it is convenient to rewrite the interior first-order condition (2)
as

MRSi wi � b�1=q
i r1=qi G;G

� �
¼ b�1=q

i rð1�qÞ=q
i ¼ b�1=q

i r1=qi

� �1�q
; ð5Þ

where σi= si(G). Normality implies that, if we hold G fixed, an increase in σi
1/ρ leads to a

strict decrease in MRSi and, if we hold σi fixed, an increase in G leads to a strict decrease in
MRSi. Thus, the graph of the left-hand side of Eq. (5) as a function of σi

1/ρ slopes down and
shifts upwards with G. Furthermore, the right hand side is strictly increasing in σi

1/ρ and
independent of G. This is illustrated in Fig. 2 and shows that the intersection at si

1/ρ(G) is
decreasing in G.



Fig. 2.

1692 R. Cornes, R. Hartley / Journal of Public Economics 91 (2007) 1684–1707
If 0bρb1, this means that si(G) is a strictly decreasing function defined on the domain [Ḡi,∞)
(from Lemma 5.1). Furthermore, Eq. (3) implies that si(Ḡi)=1 and the constraint ri(G)≤wi

implies that si(G)→0 as G→∞. Continuity of si follows from continuity of both MRSi and the
right-hand side of Eq. (5).

This share function is shown in the upper graph in Fig. 3 and is one of two possible forms. The
second form is shown in the bottom panel and applies when ρb0. In this case the domain is [0,Ḡi]
and si(Ḡi)=1. Furthermore, si is strictly increasing in G, since si

1/ρ is decreasing and therefore si
(G) has a limit σ̄i≥0 as G→0. To ease the exposition, we make the additional assumption:MRSi
(wi,0). (This holds when the indifference map is asymptotic to the axes, as with Cobb–Douglas
preferences for example, and implies that σ̄i=0. This follows directly by taking the limit G→0 in
Eq. (5).

There is a simple intuition for the sensitivity of the slope of the share function to the sign of the
parameter ρ. In the canonical model, an increase of one unit in G implies an increase of one unit
in i's full income. Normality implies that i's preferred quantity of public good also increases, but
by less than one unit. Player i will therefore prefer to reduce her contribution. The sole
mechanism at work is an income effect.

However, when ρb0, an increase in G has a second effect, in addition to the pure income
effect identified in the paragraph above. At any given level of gi, it also increases the marginal
productivity of player i's contribution. This ‘substitution effect’ by itself will encourage player i
to contribute more, since a given increase in G generated by her contribution now has a lower
opportunity cost in terms of private consumption. Thus the fact that the public good is of the
weaker link type at least moderates the negative slope of the replacement function and, if ρ is
sufficiently small, the substitution effect dominates the overall behavioral response, making it
positive.

In either of the two possible cases illustrated in Fig. 3, there are values of G at which the
aggregate share function S is at least one (maxj Ḡj for ρN0 and minjḠj for ρb0) as well as
values at which it is less than one (large enough if ρN0 and close to zero if ρb0). Since S is
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continuous and monotonic in either case, S has a unique fixed point, implying a unique equi-
librium. The following proposition summarizes these results.

Proposition 5.1. Suppose all players have increasing, normal preferences and the social composi-
tion function takes the CES form (1) with parameter ρ. If 0bρb1 or if ρb0 and MRSi(wi, 0)

−1=0,
the game has a unique equilibrium.

This uniqueness result holds for a wider class of social composition functions than CES.
Specifically, consider the following generalization:

G ¼
Xn
j¼1

bjg
qj
j

 !1=q

; ð6Þ

where β1,…,βnN0. If the parameters ρ1,…,ρn and ρ satisfy

0bqiVqV1 and for i ¼ 1; N ; n and max
j¼1; N ;n

qjb1; ð7Þ

the argument given above for 0bρb1 may be modified to prove that share functions continue to
take the form in the upper panel of Fig. 3. Details may be found in (Cornes and Hartley, 2006).

Alternatively, if

qVqib0 for i ¼ 1; N ; n;

share functions take the form displayed in case (b). In either case, we have a unique equilibrium.
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5.2. The weakest-link limit

When ρ→−∞, the symmetric CES social composition function: (∑j= 1
n gj

ρ)1/ρ approaches the
weakest-link social composition function. We have seen that there is typically a continuum of
equilibria in the weakest-link case. Under conditions on preferences that ensure a unique
equilibrium when ρb0, we might hope that limits of equilibria as ρ→−∞ would select a unique
member of the continuum, perhaps the Pareto dominant equilibrium studied by Hirshleifer. In the
rest of this section, we investigate this issue for symmetric games and verify that a unique
equilibrium of the weakest-link game is selected, but it is not the Pareto dominant equilibrium.

Throughout this subsection we assume a symmetric CES social composition function with
ρb0 and identical preferences that are strictly increasing, normal and satisfy MRSi(wi,0)

−1 for
all i. This guarantees a unique equilibrium by Proposition 5.1 and we shall write Gb(ρ) for the
level of public good provision in this equilibrium. Symmetry of payoffs implies a unique
equilibrium in which gb=n−1/ρGb for all i and substitution in Eq. (2) gives

MRS w� n�1=qbGðqÞ; bGðqÞ� �
zn1�1=q; ð8Þ

with equality if Gb(ρ)=n1/ρw (dropping subscripts). Since 0≤Gb(ρ)≤n1/ρw for all ρb0, the set
{Gb(ρ):ρb0} has limit points. Let Gb(−∞) be such a limit point and take the limit in Eq. (8) to
obtain Gb(−∞)≤w and

MRS w� bGð�lÞ; bGð�lÞ
� �

zn; ð9Þ

with equality if Gb(−∞)bw. Normality implies that there is a unique Gb(−∞) satisfying these
conditions and therefore Gb(ρ)→Gb(−∞) as ρ→∞. We now show that for an interior solution
Gb(−∞) is never the Pareto dominant level of the public good in the best-shot game.

As we saw in Section 4, the equilibrium values of G in the symmetric weakest-link game
are [0,Ḡ], where Ḡ is the level each player would choose as sole contributor. Since Ḡ
maximizes u(w−G,G), it satisfies Ḡ≤w and

MRSðw� Ḡ;ḠÞz1; ð10Þ

with equality if Ḡbw. Comparison of Eqs. (9) and (10) shows that Gb(−∞)≤ Ḡ and this
inequality is strict unless Gb(−∞) =w, in which case Ḡ=w. Indeed, the equilibrium depends
on the number of players and as this increases, Gb(−∞) decreases, reducing payoffs of all
players. Thus with symmetric, increasing, normal preferences and a symmetric CES social
composition function, we have the following observations.

• The limiting weaker link equilibrium is Pareto dominated by the weakest-link equilibrium with
Gb= Ḡ.

• This dominance is strict if there is any private consumption in the weakest-link equilibrium.
• Under these conditions, an increase in the number of players leads to a Pareto inferior limiting
weaker link equilibrium.

As an example, suppose every player has a Cobb–Douglas utility function

uðx;GÞ ¼ xaG



1695R. Cornes, R. Hartley / Journal of Public Economics 91 (2007) 1684–1707
where αN0. It can also be shown in this example that the replacement function for ρb0
approaches the weakest-link replacement function as ρ→−∞. However, since

MRSðw� g;GÞ ¼ w� g
aG

;

we have

bGð�lÞ ¼ w
anþ 1

bḠ ¼ w
aþ 1

:

In this case, Gb(−∞) decreases to zero as n→∞.

6. Convex CES social composition function

6.1. Best responses and the replacement correspondence

When the social composition function is not concave, even qualitative results are more
sensitive to the specific form of the social composition function and preferences. However, the
approach of the preceding sections may still be adapted to handle such cases, provided we extend
replacement and share functions to correspondences. To illustrate, we focus on Cobb–Douglas
preferences:

uiðxi;GÞ ¼ xaii G;

with αiN0 for all i and a CES social composition function with ρN1. Our approach uses a set-
valued extension of replacement and share functions and we start by examining best responses.
The payoff function of Player i is

pi ¼ ðwi � giÞai
Xn
j¼1

bjg
q
j

 !1=q

:

Recalling the definition

G�i ¼
X
jpi

bjg
q
j

 !1=q

;

we can write Bi(G−i) for the set of best responses:

BiðG�iÞ ¼ arg max
0VgiVwi

fðwi � giÞaiðbigqi þ Gq
�iÞ1=qg:

If the contributions of the other players are sufficiently large, a given player will free ride.
Specifically, there is a critical value ofG−i above which zero is the unique best response for player
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i. Below this value, there is a single interior best response, which is a stationary point of πi. At the
critical value, both strategies become alternative best responses.

Lemma 6.1. There exists G−i
⁎ N0 and a positive real-valued function bi on [0,G−i⁎] such that

BiðG�iÞ ¼
fbiðG�iÞg if G�ibG⁎�i;
f0; biðG�iÞg if G�i ¼ G⁎�i;
f0g if G�iNG⁎�i:

8<:
A detailed proof of this lemma is given in the Appendix. However, the intuition behind the

result is straightforward and displayed in Fig. 4.
As a function of own strategy, each player's payoff πi can take one of three forms. For large

enough G−i, the payoff decreases strictly as gi goes from 0 to wi, (see top panel) and gi=wi is the
unique maximizer. For smaller G−i, as gi increases from 0 to wi, the payoff initially decreases,
Fig. 4.
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then increases to a local maximum and finally decreases to zero at gi=wi. The local maximum
must be at the unique stationary point and therefore satisfies

aiðbigqi þ Gq
�iÞ ¼ ðwi � giÞbigq�1

i : ð11Þ

This is also the global maximum if the payoff at the stationary point exceeds the payoff at
gi=0:

ðwi � giÞaiðbigqi þ Gq
�iÞ1=qzwai

i G�i: ð12Þ

The value of G−i
⁎ (and the corresponding stationary point gi⁎ ) are determined by the

requirement that payoffs at gi=0 and gi=gi⁎ . Hence, (gi⁎ ,G−i
⁎ ) satisfies Eqs. (11) and (12) with

equality. In the proof, we show that, if G−i
⁎ , the payoff at the local maximum exceeds that at gi=0

and is therefore the global maximum (see middle panel), whereas for G−iNG−i
⁎ the maximum is

higher at gi=0 (see bottom panel).
The nature of the best-responses does not permit a well-defined replacement function. How-

ever, we can define the replacement correspondence Ri of Player i by

RiðGÞ ¼ gi : giaBi ½Gq � big
q
i �1=q

� �n o
:

It follows from the lemma that gi∈Ri(G) if and only if either (i) gi=0 and G≥G−i
⁎ or

(ii) giN0 and

aiG
q ¼ biðwi � giÞgq�1

i ; ð13Þ

b1=qi giVGVb
1=q
i wai

i gi½waiq
i � ðwi � giÞaiq��1=q: ð14Þ

Eq. (3) and the right-hand inequality in Eq. (14) are simply restatements of Eqs. (11) and (12)
respectively. The left-hand inequality is equivalent to the requirement G−i≥0.

6.2. Properties of the replacement and share correspondences

We have shown that the graph of the replacementRi has two components. One runs along the
axis to the right of G−i

⁎ . From Eq. (13), the second positive component can be viewed as the
reflection in the 45° line of that portion of the graph of the function

G ¼ ðbi=aiÞ1=q½wig
q�1
i � gqi �1=q; ð15Þ

which also satisfies Eq. (14). This is illustrated in the upper panel of Fig. 5, which graphs the right
hand side of Eq. (15) as well as shading the regions which fail to satisfy the bounds on G imposed
by Eq. (14).
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The right hand side of Eq. (15) vanishes at both gi=0 and gi=wi and has a unique maximum at
gi=(1−1/ρ)wi. The boundary line of the left-hand inequality in Eq. (14): G=βi

1/ρgi, crosses the
graph of Eq. (15) at the point

ð ḡi; ḠiÞ ¼ wi

1þ ai
;
b1=qi wi

1þ ai

 !
:

By definition of gi⁎ and G−i
⁎ the boundary curve of the right-hand inequality in Eq. (14)

crosses the graph Eq. (15) to the left of this point, at (gi,G)= (gi⁎ ,Gi
⁎ ), where

G⁎i ¼ ðbig⁎qi þ G⁎q�i Þ1=qNG⁎i :

If ρ≥1+(1/αi), both (ḡ i,Ḡi) and (gi⁎ ,Gi
⁎ ) lie to the left of (or at) the maximum of the function

(15). This puts both points on the increasing portion of this function which implies that the
Fig. 5.
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positive component of the replacement correspondence is single-valued on its domain: [Gi
⁎ ,Ḡi].

This is the case illustrated in the two panels of Fig. 5.
In characterizing equilibria it proves convenient to use shares and so we define the share

correspondence of player i as

SiðGÞ ¼ big
q

Gq
: gaRiðGÞ

� �
:

Since the positive component of Ri can be viewed as the graph of a function, the same is
true of the positive component of Si. Furthermore, this function, which we write si(G), is
strictly increasing. To see this note that, if σi= si(G), Eq. (13) can be written after some
manipulation as:

G ¼ b1=qi wir
ðq�1Þ=q
i

ai þ ri
ð16Þ

and therefore si′=(dG/dσi)
−1 where

dG
dri

¼ b1=qi wir
�1=q
i ½aiðq� 1Þ � ri�
qðai þ riÞ2

N0

for σib1. The inequality uses the fact that αi(ρ−1)≥1Nσi. Furthermore, si is the inverse of a
continuous function (16) on a compact domain and therefore itself continuous. The following
proposition summarizes these observations and is illustrated in Fig. 6.
Fig. 6.



1700 R. Cornes, R. Hartley / Journal of Public Economics 91 (2007) 1684–1707
Proposition 6.1. If ρ≥1+1/αi, the graph of Si is the disjoint union of two sets: {(G,0):G≥G−i
⁎ }

and {(G,si(G)):Gi
⁎ ≤G≤ Ḡi}. Furthermore, si is continuous, strictly increasing and satisfies

siðG⁎i Þ ¼ r⁎i ¼ bi
g⁎qi

G⁎qi
N0

and si(Ḡi)=1.

6.3. Equilibria

The results of the preceding subsection allow us to characterize equilibria when ρ≥1+1/αi for
all i. Share correspondences can be used to study equilibria by exploiting the fact that Gb is an
equilibrium level of the public good if and only if there is σbi∈Si(Gb) for all i such that
∑j=1

n σbj=1. In the associated equilibrium strategy profile gbi=(σbi/βi)1/ρGb.
Equilibria are not typically unique. However, it follows from Proposition 6.1 that if J is the set

of players making a positive contribution in some equilibrium, the corresponding level of the
public good G satisfiesX

jaJ

sjðGÞ ¼ 1; ð17Þ

since gbj=0 for all j∉J. Since each sj is strictly increasing, this holds for at most one G and we
write Gb(J) for this value. Note that the corresponding equilibrium is also uniquely defined by
taking σbj= sj(Gb(J)) for j∈J and σbj=0 for j∉J. We shall call such a J an equilibrium set.

Hence, characterizing equilibria is equivalent to characterizing equilibrium sets and necessary
conditions for a non-empty subset of players to be a such a set follow from Proposition 6.1, for we
must have

G⁎j VbGðJÞVḠj for all ja J ;

G⁎�jVbGðJÞ for all jg J :

Hence, if we define

G⁎ðJÞ ¼ max max
jaJ

G⁎j ;max
jgJ

G⁎�j

� �
; ð18Þ

we must have G⁎(J)≤Gb(J)≤minj∈ J{Ḡj}. Furthermore, since each sj is increasing,X
jaJ

sjðG⁎ðJÞÞV
X
jaJ

sj bGðJÞ� �
¼ 1:

We may conclude that

G⁎ðJÞVmin
jaJ

fḠjg; ð19ÞX
jaJ

sjðG⁎ðJÞÞV1: ð20Þ

Conversely, if Eqs. (19) and (20) hold, ∑j∈ Jsj(G) takes values not exceeding 1 (at G⁎(J)) and
not less than one (at Ḡ=minj∈ J{Ḡj}). Since G⁎ and Ḡ lie in the domain of ∑j∈ Jsj and this
function is continuous, Eq. (17) holds for some (unique) G.
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The following proposition summarizes these conclusions.

Proposition 6.2. Suppose that ρ≥1+1/αi for i=1,…,n. Non-empty J⊆{1,…,n} is an
equilibrium if and only if it satisfies Eqs. (19) and (20).

It follows from this proposition that non-empty subsets of equilibrium sets are themselves
equilibrium sets. If K⊂J,

max
jaK

G⁎j Vmax
jaJ

G⁎j VG
⁎ðJÞ;

max
jgK

G⁎�jVmaxfmax
jgJ

G⁎�j; max
jaJ�K

G⁎�jgVmaxfmax
jgJ

G⁎�j; max
jaJ�K

G⁎j gVG⁎ðJÞ:

So G⁎(K)≤G⁎(J) and therefore

G⁎ðKÞVG⁎ðJÞVmin
jaJ

fḠjgVmin
jaK

fḠjg;X
jaK

sjðG⁎ðKÞÞV
X
jaK

sjðG⁎ðJÞÞV
X
jaJ

sjðG⁎ðJÞÞV1;

where we have used the fact that the sj are increasing functions. This shows that K is an
equilibrium set. Noting that Gb (J)≥G⁎(J)≥G⁎(K), we also haveX

jaK

sj bGðJÞ� �
V
X
jaJ

sjðG⁎ðJÞÞ ¼ 1 ¼
X
jaK

sj bGðKÞ� �
;

which shows that Gb(K)NGb(J).
Corollary 6.1. If ρ≥1+1/αi for i=1,…,n and J is an equilibrium set, any K⊂J (proper
inclusion) is also an equilibrium set and Gb(K)NGb(J).

Note that under the supposition of the corollary, all players not in K prefer K to J as
equilibrium set as they free ride on a larger quantity of the public good. Indeed, if j∈J all players
except j prefer the equilibrium in which j is the sole positive contributor. In the next section, we
shall show, inter alia, that for large enough ρ, all equilibrium sets are of this form.

7. Best-shot public goods

7.1. Equilibria

The strongest link, or best-shot social composition function is G=maxj=1,…,ngj. In this case,
replacement correspondences need not be well-defined. For example, suppose Ḡi denotes the
preferred level of the public good of Player i as sole contributor and G−i=maxj≠ igj. Then gi= Ḡi

is the best response to G−i=0, whereas gi=0 is the best response to G−i= Ḡi and in both cases
G=max{gi,G−i}= Ḡi. This means that there is no strategy that is a best response to all and every
G−i satisfying max{gi,G−i}=G.

Instead, we use the upper replacement correspondence R̄i, which puts gi∈R̄i(G) if and only
if there is some G−i such that gi is a best response to G−i and max{gi,G−i}=G. In our example,
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R̄i(Ḡi) ={0,Ḡi}. Such correspondences offer a necessary, but not sufficient, condition for
equilibrium. In particular, if (gb1,…,gbn) is a Nash equilibrium, then

bgiaR̄iðbGÞ; where bG¼ max
j¼1;…;n

bgj: ð21Þ

Thus, the solutions of Eq. (21) provide a superset of the Nash equilibria and it is necessary to
test each strategy profile in the superset to eliminate members that are not equilibria.

To determine R̄i, let G−i⁎ denote the level of G−i at which player i is indifferent between not
contributing and being the sole contributor:

pið0;G⁎�iÞ ¼ piðḠi; ḠiÞ:

If G−ibG−i
⁎ , player i will prefer to contribute Ḡi and G= Ḡi. However, if G−iNG−i

⁎ , player i is
better off being a free rider and contributing nothing. In this case, G=G−i. If G−i=G−i

⁎ , the player
is indifferent between the two strategies and G=G−i=G−i

⁎ . This is clear from the indifference map
in Fig. 7. The form of the upper replacement correspondence is evident and described in the
following proposition.

Proposition 7.1. If Player i has convex, increasing preferences, her upper replacement function
R̄i has domain [G−i

⁎ ,∞) and satisfies

R̄iðGÞ ¼ f0g if G pḠ i; f0; Ḡig if G ¼ Ḡi:

To find equilibria, we look for solutions of Eq. (21) and observe first that Gb must lie in the
intersection of the domains of all R̄i, which means Gb≥maxjG−i

⁎ . This precludes Gb=0, and the
proposition implies thatGb=Gbi for at least one i. However, we cannot haveGb=Ḡi=Ḡj for i≠ j, since
i and j would not be choosing best responses. If we label every player i for which Ḡi≥maxjG−j

⁎ as
potentially active, every solution of Eq. (21) has gbi=Ḡi and gbj for j≠ i each potentially active player.
It is trivial to verify that each such strategy profile is indeed a Nash equilibrium, so we have
characterized the set of Nash equilibria.
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Proposition 7.2. If all players have convex, increasing preferences, Nash equilibria are in 1−1
correspondence with the set of potentially active players. In each such equilibrium the potentially
active player contributes her preferred level of the public good and no other player contributes.

7.1.1. An example
To illustrate the approach, consider two players with identical Cobb–Douglas preferences:

ui=xiG and incomes wi for i=1, 2. Then, Ḡi=wi/2 and G−i
⁎ . If incomes do not differ too much,

specifically w2≤2w1≤4w2, both players are potentially active and there are two equilibria in
each of which one player contributes half their income and the other free rides. If w2N2w1, only
player 2 is potentially active and there is a unique equilibrium in which only player 2 contributes
w2/2. Similarly, if w1N2w2, player 1 is sole contributor. This raises the possibility of Pareto-
improving transfers.

If w1=w2=8, there is an equilibrium: gb1=4,gb2=0 for which Gb=4 and payoffs are π1=16,
π2=32, as well as an alternative equilibrium with player 2 as sole contributor. If w1=4 and
w2=12, there is a unique equilibrium: gb1=0,gb2=6, in which Gb=6 and payoffs are π1=24,
π2=36. It follows that, if player 1 offers a transfer of 4 units of income to player 2, the latter does
better to accept and the former also benefits. Such a transfer also resolves the coordination
problem arising from multiple equilibria. It can be shown further that, if w2b2w1b4w2 a player
anticipating an equilibrium in which they are sole contributor can always find a transfer that
results in a unique equilibrium with the other player as sole contributor and in which both
players have strictly greater payoffs than the anticipated equilibrium. Indeed, in some simple
modifications of the two-player game with two equilibria, there will be transfers such that
the post-transfer game has a unique equilibrium which strictly Pareto dominates both the
equilibria in the original game. Clearly, the topic of transfers in best-shot games deserves further
investigation.

7.2. Best-shot and better-shot games

In this subsection, we return to the better-shot game of Section 6 and consider what happens as
ρ→∞. In this limit, the CES social composition function approaches the best-shot case and we
investigate whether the same is true of the sets of equilibria. To keep the exposition simple, we
shall assume βi=1 for all i, though our conclusions remain valid without this assumption. The
next result shows that the CES replacement correspondence approaches the best-shot upper
replacement correspondence. First, consider player i, recall that preferences are Cobb–Douglas
and from Fig. 5 that the replacement correspondence for finite ρ has two components. The first
runs along the axis from G−i

⁎ (ρ) to infinity and there is a positive component from Gi⁎ to Ḡi. Here,
Ḡi is the level of public good provision that Player iwould provide if she were the sole contributor
and G−i

⁎ =G−i
⁎ (ρ) and gi⁎=gi⁎(ρ) satisfy Eq. (13) and equality in Eq. (14). We have made the

dependence on ρ explicit to avoid confusion with the best-shot values, which we will continue to
write as Gi⁎ etc. In the Appendix, we prove the following lemma.

Lemma 7.1. As ρ increases, so do gi⁎ and Gi⁎. Furthermore, Gi⁎→ Ḡi as ρ→∞.

This shows that the positive component of the replacement correspondence shrinks to the point
of tangency between the 45° line and the indifference curve in the (Gi,gi) plane in Fig. 7. Several
consequences from this lemma and the figure. We have (i) gi⁎(ρ)→ Ḡi and so (ii) σi⁎(ρ)=gi⁎(ρ)/
Gi
⁎ (ρ)→1. Furthermore, equality in Eq. (14) implies that (G−i⁎ρ,0) and (Gi⁎(ρ),gi⁎(ρ)) lie on the
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same indifference curve, so (iii) G−i
⁎ (ρ) is decreasing and (iv) G−i

⁎ (ρ)→G−i
⁎ . It follows from

(ii) and Proposition 7.2 that, if ρ is large enough, all equilibrium sets are singletons and that {i} is
such a set if and only if

Ḡiz max
j¼1; N ;n

fG⁎�jðqÞg: ð22Þ

It follows (iii) that player i is potentially active in the best-shot game. Conversely, Proposition
7.2 shows that in any equilibrium of the best-shot game, in which player i is the sole contributor
Ḡi≥maxjG−j

⁎ and we call this equilibrium strict if this inequality holds strictly. If i is such a
player, (iv) implies that Eq. (22) is valid for all large enough ρ.

Proposition 7.3. Under Cobb–Douglas preferences and a CES social composition function,
there is a ρb such that, if ρNρb, the set of equilibria coincides with the set of strict equilibria of the
best-shot game.

Thus the best-shot game is more than just a limiting approximation to the better-shot game.
Equilibria of the latter can be analyzed by studying the (simpler) former game. Barring the
coincidence that there exist i≠ j such that Ḡi=G−j

⁎ ≥G−k⁎ for all k≠ i,j, the two games have the
same equilibria for large enough ρ. For example, the discussion of transfers in the previous
subsection is also applicable to better-shot games. We conjecture that this conclusion holds for a
much wider class of preferences than Cobb–Douglas.

8. Conclusion

The pure public good provision model of BBV is an outstandingly tractable model of
reciprocal positive externalities. Its usefulness prompts one to enquire whether, and in what ways,
its scope can be extended with minimal sacrifice of tractability. The present paper has explored
extensions that modify the form of social composition function while retaining the game's
aggregative structure. For reasons of space, we have concentrated on existence and uniqueness
and limited ourselves to a few observations on comparative statics such as income redistribution.
A more complete treatment of these issues is a subject for future research. Further extensions can
also be envisaged that incorporate this aggregative structure — for example, the joint
characteristics model of Cornes and Sandler may be revisited. We have explored circumstances
under which our approach can be exploited to finesse what Richard Bellman once called, in
another context, the “curse of dimensionality”. The time seems ripe for further consideration of
the range of interpretations and applications on which the model, and our method of analysis, may
shed useful light.
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Appendix A

In this Appendix, we give several proofs displaced from the main text.
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Proof of second assertion in Lemma 5.1. We start by defining

g̃iðG�iÞ ¼ ðbi½biðG�iÞ�q þ Gq
�iÞ1=q

and observing that continuity of bi implies continuity of γ̃i. Note also that, if gi= ri(G) and
G−i

ρ =Gρ−βi,gi
ρ, then G= γ̃i(G−i). In the case of Parameter Set 1, suppose that we had a G′

satisfying Eq. (2) with 0bG′b Ḡi. By Lemma 5.1, there is a unique g′ satisfying Eq. (2) and
this implies a unique G′−i and γ̃i(G′−i)=G′b Ḡi. Now choose any G″−iN Ḡi and note that G″= γ̃i
(G″−i)≥G″−iN Ḡi. By continuity, there would be a G‴−i∈ (G′−i,G″−i) such that γ̃i(G‴−i)= Ḡi and
G‴−iN0 giving two distinct solutions to (2) with G= Ḡi and contradicting Lemma 5.1.

This argument requires some modification with Parameter Set 2. Suppose that G′N Ḡi, let G′−i
satisfy γ̃i(G′−i)=G′ and note that, as gj→0 for some j≠ i, it follows from Eq. (6) that G→0. This
means that we can choose G″−i such that γ̃i(G″−i)b Ḡi. We use the fact that, for any εN0, there is a
ɛN0 and a G‴ within ε of Ḡi such that Eq. (2) holds, which means that γ̃i(G‴−i)=G‴. By
continuity, there is a G‴∈ (G′−i,G″−i) such that γ̃i(G‴−i)=G‴, giving two distinct solutions to Eq.
(2) and contradicting Lemma 5.1. �

The following lemma is used in both the remaining proofs.

Lemma A. For any i=1,…,n and ρN1, there is a unique x∈ (0,1) satisfying

uiðx; qÞ ¼ ð1þ aiÞxþ ð1� xÞaiqþ1 ¼ 1: ð23Þ

Writing x̃(ρ) for this solution, x̃(ρ) is strictly increasing in ρ and x̃(ρ)→ (1+αi)
−1 as ρ→∞.

Note that x=0 is always a solution of Eq. (23): the lemma is concerned with positive solutions.

Proof of Lemma A. Observe that

Aui

Ax
ð0;qÞ ¼ aið1� qÞb0;

and ∂2φi/∂x2N0 for 0bxb1. It follows that ui(x;ρ) is strictly convex and strictly decreasing at
x=0, as well as satisfying

uið0; qÞ ¼ 1buið1; qÞ:

This establishes the existence of a unique x̃(ρ) satisfying φi(x̃(ρ);ρ)=1. Furthermore, ui(x;ρ)
is increasing in x and strictly decreasing in ρ at x= x̃(ρ). Consequently, x̃ (ρ) is strictly increasing
in ρ and, since it is bounded above (by 1), it has a limit as ρ→∞. Letting ρ→∞ in Eq. (23) shows
that this limit is (1+αi)

1. �

Proof of Lemma 6.1. The payoff πi takes the value wi
αiG−i at gi=0 and zero at gi=wi. A little

algebraic manipulation shows that stationary points of πi satisfy Eq. (11). Writing

/i ¼ ðwi � giÞbigq�1
i � aibig

q
i ;

it is straightforward to verify that ϕi(0)=0 (since ρN1) and ϕi(wi)=−βiαiwi
ρb0. Further, ϕi has a

unique stationary point g′i∈ (0,wi) satisfying ϕi(g′i)N0. We conclude that g′i maximizes ϕi over
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[0,wi] , which means that Eq. (11) has a solution if and only if αiG−i
ρ ≤ϕi(g′i), so this is a necessary

and sufficient condition for stationary points. Thus πi is a strictly decreasing in [0,wi] if αiG−i
ρ ≥ϕi

(g′i), has an interior local minimum and local maximum if 0bαiG−i
ρ bϕi(g′i) and just an interior

local (and global) maximum for G−i=0. It follows that there are two cases.

A. A stationary point is the global maximum if the value of πi at that point is not exceeded by
that at gi=0; these two conditions are expressed in Eqs. (11) and (12) holding with equality.

B. The global maximum is at gi=0 if either αiG−i
ρ ≥ϕi(g′i) or the value of πi at all stationary

points does not exceed that at gi=0.

The proof is completed by showing that G−i
⁎ is well-defined and Case A holds for G−i≤G−i

⁎

and Case B for G−i≥G−i
⁎ . This can be achieved by showing that there is a unique G−i=G−i

⁎ for
which both A and B hold and appealing to continuity8 together with the fact that Case B holds for
large enough G−i. Note that both A and B hold if and only if marginal payoff is zero and the
payoff equals that at gi=0; these conditions are equivalent to Eqs. (11) and (12) holding with
equality.

Raising Eq. (12) to the power ρ, multiplying by αi, substituting for G−i
ρ from Eq. (11) and

dividing by wi
αiρ+1 shows that Eq. (12) holding with equality is equivalent to φi(gi/wi;ρ)=1,

where u is defined in Lemma A. Choose gi⁎ =wix̃(ρ) and G−i
⁎ to satisfy

aiG
⁎q
�i ¼ biwig

⁎q�1
i 1� ð1þ aiÞ g

⁎
i

wi

� �
:

By construction, (gi⁎ ,G−i
⁎ ) satisfies Eqs. (11) and (12) with equality. Lemma A implies that

0bx˜(ρ)b (1+αi)
−1 and therefore G−i

⁎ N0 (and gi⁎ N0). �

Proof of Lemma 7.1. In the proof immediately above we showed that φi[gi⁎ wi;ρ]=1, where φ
is defined in Lemma A. Recalling that g¯i=wi(1+αi)

−1, this lemma implies that Gi
⁎ → Ḡi as

ρ→∞. �
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