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Summary Many hydrological models engage spatially distributed measures of ‘potential
evapotranspiration’ (ETpot). The reliability and utility of the physically based Penman–
Monteith approach to generate ETpot has been recently advocated. Assuming land-surface
conditions, spatial surfaces of reference evapotranspiration (ET0) can be generated taking
into account the topographic influence of forcing meteorological variables. This was per-
formed in this paper by spatially interpolating maximum (Tmax) and minimum (Tmin) air
temperatures, wind speed (u) and vapor pressure (ea), using a spline model with a linear
sub-model dependency on elevation, and modelling the radiation environment, taking
topography (i.e., elevation, slope and aspect) into account, prior to calculating ET0 at
each grid-cell. In accordance with previous research, resultant lapse rates showed a
strong seasonal pattern; values were steeper in summer than winter and those for Tmax

were steeper than for Tmin. Monthly mean Tmax lapse rates varied from �3.01 �C km�1

in winter to �7.69 �C km�1 in summer, with Tmin lapse rates ranging from �2.79 �C km�1

in winter, to �6.64 �C km�1 in summer. Monthly climatologies of the near-surface eleva-
tion-dependence (NSED) for u and ea also showed strong seasonal values. NSED of u varied
from 2.01 ms�1 km�1 in winter reducing to 0.75 ms�1 km�1 in summer. The NSED for ea
ranged from �0.08 kPa km�1 in winter to �0.64 kPa km�1 in summer. For a 252-month
sequence from 1980 through 2000, spatial surfaces of ET0 with a 100 m resolution for
the 113,000 km2 study site located in the Loess Plateau, China were generated using an
7 Elsevier B.V. All rights reserved.
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‘interpolate-then-calculate’ approach. Resultant ET0 values varied from about 20 mm
month�1 in winter to over 150 mm month�1 in summer. In order to assess the reliability
of these ET0 surfaces, pan evaporation (Epan) was also spatially interpolated and from
these a set of pan coefficient (Kpan – a unitless ratio defined as ET0/Epan) surfaces were
calculated. Spatio-temporally averaged Kpan values for the study site varied from 0.44
in April to 0.65 in late summer. Kpan values were in agreement with another study using
a Chinese 20 cm diameter micro-pan, and, as expected, were lower than other values doc-
umented using a Class A pan. The influence of topography, especially aspect, was seen on
the resultant ET0 and Kpan, but not Epan, surfaces. Sensitivity analysis showed that results
were particularly stable in the hydrologically active portion of the year extending from
March to October, inclusive. This study demonstrated that high spatial resolution monthly
surfaces of ET0 can be spatially modelled while taking into account the influence of topog-
raphy on the forcing variables.

ª 2007 Elsevier B.V. All rights reserved.
Introduction

Many hydrological, agricultural and environmental models,
including assessments of global water cycle intensification
due to climate change (Huntington, 2006) and frameworks
to predict impact of re-vegetation activities on regional
hydrology (e.g., Donohue et al., 2007; McVicar et al., in
press; Zhang et al., 2001), require a spatially distributed
measure of ‘potential evapotranspiration’ (ETpot). The gen-
erally accepted broad ‘definition’ of ETpot is that it defines
an upper limit of evapotranspiration if the land-surface for a
given environment (meaning both meteorological and land-
surface conditions Lhomme, 1997) was brought to satura-
tion (Granger, 1989); noting that ETpot is an idealised value
as no feedbacks between the evaporating land-surface and
the governing meteorological variables are included
(Lhomme, 1997). That is, if a regional surface were evapo-
rating at its potential the fact that this would alter atmo-
spheric conditions, therefore changing rates of ETpot, is
not considered. For ETpot to be a useful index, it must be
calculated from readily available data (Lhomme, 1997),
and it must be physically robust taking into account the
known interactions between variables controlling evapora-
tion (e.g., McKenney and Rosenberg, 1993; Monteith,
1965; Penman, 1948; Penman, 1956). For example, interac-
tions between minimum air temperature, dew point and the
corresponding vapor pressure deficit should be accounted
for, especially when considering a changing climate.

Since the 1950s the concept of ETpot has been increas-
ingly used by more disciplines, for different purposes, and
for vastly different climates, with the number of empirical
definitions growing (e.g., Allen et al., 1998; Oudin et al.,
2005; Xu and Singh, 2002 and the references therein); many
of these were only calibrated locally. To encourage the use
of a standard ETpot the concept of ‘crop reference evapo-
transpiration’ (ET0) was developed, which was calculated
using four approaches in the mid 1970s (Doorenbos and Pru-
itt, 1975; Doorenbos and Pruitt, 1977). Following extensive
analysis of the four methods in many locations world-wide,
the Penman–Monteith approach (Monteith, 1965) was unan-
imously accepted (Smith et al., 1991) as the sole Food and
Agricultural Organisation (FAO) endorsed approach to esti-
mate ET0, culminating in publication of Allen et al.’s
(1998) FAO-56 report.
Development of ET0 from the Penman–Monteith equa-
tion requires simplifying assumptions via the detailed defini-
tion of reference land-surface conditions. The Allen et al.
FAO-56 report (1998, pp. 23) defines the land-surface condi-
tions as: ‘A hypothetical reference crop with an assumed
crop height of 0.12 m, a fixed surface resistance of
70 s m�1 and an albedo of 0.23. The reference surface clo-
sely resembles an extensive surface of green grass of uni-
form height, actively growing, completely shading the
ground and with adequate water. The requirements that
the grass surface should be extensive and uniform result
from the assumption that all fluxes are one-dimensional up-
wards’. Using these reference land-surface conditions, and
given a few other assumptions, the FAO-56 formulation of
ET0 (Allen et al., 1998) is:

ET0 ¼
0:408DðRn � GÞ þ c 900

Tþ273 u2ðes � eaÞ
Dþ cð1þ 0:34u2Þ

ð1Þ

where ET0 is the reference evapotranspiration (mm day�1);
D is the slope of the saturation vapor pressure curve
(kPa �C�1); Rn is the allwave net radiation at the surface
(MJ m�2 day�1); G is the allwave ground heat flux
(MJ m�2 day�1); c is the psychrometric constant (kPa �C�1);
T is the mean daily air temperature, that is T = (Tmax + Tmin)/
2 (�C), where Tmax and Tmin respectively are the daily maxi-
mum and minimum air temperatures (�C); u2 is the daily
average wind speed at 2 m above ground level (m s�1);
es � ea is the saturation vapor pressure deficit (kPa); with
es being the saturation vapor pressure (kPa) and ea the actual
atmospheric water vapor pressure (kPa). Starting from the
one-dimensional single-source formulation of the Penman–
Monteith equation (Monteith, 1965) the FAO-56 ET0 is fully
derived, including explicitly expanding the ‘few other
assumptions’, in several sources (e.g., Allen et al., 1998;
McVicar et al., 2005a). If the time-step of all data are
monthly then the resultant ET0 is provided with units of
mm month�1 (Allen et al., 1998; McVicar et al., 2005a).

To our knowledge there is only one previous case where
ET0 has been spatially distributed (Xu et al., 2006). This
was performed for the entire Yangtze River basin with an
approximate 25 km resolution output. Even though there is
an elevation range of 6621 m, changes in meteorological
conditions as a function of topography (e.g., Barry, 1992;
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Dodd, 1965; Geiger, 1950; Raupach and Finnigan, 1997;
Yoshino, 1975, among many others) were not incorporated
in Xu et al.’s (2006) spatial modelling, which they performed
using a ‘calculate-then-interpolate’ approach (McVicar and
Jupp, 2002; Stein et al., 1991). By calculating ET0 then spa-
tially interpolating it geometrically in two dimensions (i.e.,
longitude and latitude) means that topographic changes of
key meteorological variables between the meteorological
stations are not captured in their implementation (Xu
et al., 2006). In another study, Chuanyan et al. (2004) spa-
tially distributed the Hargreaves and Samni (1985) form of
ETpot (which is forced using only air temperature) and in con-
trast to the findings of Xu et al. (2006) they showed the
importance of topography on the resulting ETpot surfaces.
However, the results from Chuanyan et al. (2004) study are
not physically based as the reliability of both uni-meteoro-
logical variable (e.g., air temperature only including Thorn-
thwaite, 1948) and bi-meteorological variable (e.g., air
temperature and solar radiation such as Priestley and Taylor,
1972) formulations of ETpot have increasingly been ques-
tioned (e.g., Chen et al., 2005; Garcia et al., 2004; McKenney
and Rosenberg, 1993; Shenbin et al., 2006). These research-
ers advocate use of physically based formulations of ETpot
(such as the Penman–Monteith approach that uses solar radi-
ation, humidity and wind speed) as feedbacks between the
forcing meteorological variables can influence the resulting
ETpot calculation. Given that mountainous regions may expe-
rience climate change more rapidly than adjacent lower
areas (Beniston and Rebetez, 1996; Giorgi et al., 1997; Wil-
liams et al., 1996), it is imperative to use physically realistic
expressions of ETpot while considering topographic influ-
ences on forcing variables in such environments.

Our paper fills the niche of spatially distributing ET0 (a
physically based ETpot formulation) while modelling the
influence of topography and land-surface conditions on the
forcing variables by using an ‘interpolate-then-calculate’
approach (McVicar and Jupp, 2002; Stein et al., 1991). Our
approach maximises the temporal and spatial influence
forcing variables have on the resulting ET0 estimates be-
cause topographic influences in-between the meteorologi-
cal stations (which is the vast majority of the study site)
are considered. ET0 has been shown to be sensitive to
changes in forcing variables both temporally and spatially
(Gong et al., 2006). Implementing an elevation dependent
‘interpolate-then-calculate’ approach uses information
from many points (e.g., millions – as topographic informa-
tion is used as a covariate), whereas a geometric two
dimensional ‘calculate-then-interpolate’ approach uses
information from less points (e.g., tens to hundreds). We
note that the need to accurately include the influence of
topography on resulting surfaces of ET0 obviously depends
on their use and spatial resolution. For example, the
25 km resolution data produced for the Yangtze River basin
(Xu et al., 2006) was developed to assess spatio-temporal
climatological patterns and trends, and hence the need to
accurately account for topographic influences is likely less
stringent. In contrast, our results are used to predict the im-
pact of land use change on regional hydrology (McVicar
et al., in press; Zhang et al., in press), and map perennial
vegetation suitability (McVicar et al., 2005b), and hence
higher resolution data accurately accounting for topo-
graphic influences in all forcing datasets are needed. Conse-
quently, the results, and methods used here to generate the
results, are important as many communities across the
globe rely on water resources derived from the headwaters
of catchments that are often topographically complex. Thus
developing physically reasonable methods to spatially dis-
tribute ET0, or ETpot, while considering the impact of topog-
raphy on the forcing meteorological variables is important.
The resulting surfaces (ET0 or ETpot) are also useful because
they can be modulated by a moisture availability function to
calculate actual evapotranspiration (ETact) for use in water
balance models (e.g., Chiew and McMahon, 1992; Keig and
McApine, 1974; Wallace, 1995). In order to assess the reli-
ability of the resulting ET0 surfaces in our paper, pan evap-
oration (Epan) was also spatially interpolated and from these
a set of pan coefficient (Kpan – a unitless ratio defined as
ET0/Epan) surfaces were calculated. Spatio-temporal analy-
sis of the resulting ET0, Epan and Kpan surfaces were con-
ducted for the entire study site and for a transect with
large elevation differences. These results highlight the con-
trol topography has on meteorology, especially where as-
pect changes quickly. The remainder of the paper is
organised as follows. In Section ‘Study site’ the input data
are described with climatologies characterising the hydro-
meteorological environment provided. Section ‘Methods’ in-
cludes the following sub-headings: (i) select the spline
model and determine the elevation relationships; (ii) spa-
tially model the radiation environment; (iii) calculate ET0;
(iv) spatially interpolate Epan; (v) calculate Kpan; (vi) assess
the sensitivity of resulting evaporative forms to spatial
interpolation; and (vii) characterise the influences of Rn,
ET0, and Kpan to both dynamic and static land surface
parameterisations used in radiation modelling. Section ‘Re-
sults and discussion’ uses the same sub-headings as in Sec-
tion ‘Methods’, and finally conclusions are made.
Study site

Major environmental issues

The Yellow River basin (752,444 km2) in China is one of its
most important basins, directly supporting a population of
107 million people with another 400 million living on the
North China Plain (Fig. 1), who partly rely on water from this
basin. The average annual erosion rate (2480 t km�2) for the
entire Yellow River basin is the highest of any major river
system worldwide (Shi and Shao, 2000). This is caused by
the middle reaches of the Yellow River draining the Loess
Plateau (623,586 km2 – Fig. 1), where severe soil erosion
rates ranging from 20,000 to 30,000 t km�2 year�1 are com-
monly reported (e.g. Xiang-zhou et al., 2004), though extre-
mely high rates (59,700 t km�2 year�1) have also been
documented (Shi and Shao, 2000). Levees and dykes have
been constructed over the past 2000 years on the lower
reaches of the Yellow River to contain the river in times
of flood (Ren et al., 1985). The high erosion rates from
the Loess Plateau combined with continuous presence of le-
vees and dykes means that in the lower reaches of the Yel-
low River (i.e., on the North China Plain – Fig. 1), the
bottom of the river bed is, in places, 20 m above the sur-
rounding land surface (Li, 2003). Approximately 90% of the
sediment delivered to the Yellow River comes from the



Figure 1 The inset map shows the location of the Loess Plateau (dark shading) and the North China Plain (lighter shading) on the
middle and lower reaches of the Yellow River, respectively. The main map shows the location of the 112,728 km2 Coarse Sandy Hilly
Catchments (CSHC) where the dark grey line represents the boundary of the Loess Plateau. The location of the meteorological
stations are shown by the black dots, and the location of a 23 km transect (in red) used in Fig. 12 is shown on the eastern border of
the CSHC. (For interpretation of colour representation in this figure legend the reader is referred to the web version of this article.)
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major south-flowing branch draining the region of the Loess
Plateau, locally known as the ‘sandy coarse-sandy area’ (Li,
2003). Our study site is defined by the catchments encom-
passing this sandy area where the landform is primarily hilly
and is thus termed the Coarse Sandy Hilly Catchments
(CSHC, see Fig. 1).

To reduce this erosion, and its downstream impacts (Li,
2003), the Chinese Central Government has developed a
‘‘National Forest Protection Project (NFPP)’’ and under that
umbrella the ‘‘Grain for Green’’ (Tui Geng Huan Lin) project
was established with the aim to return cultivated land to
forest (e.g., Ke and Zhou, 2005; Wenhua, 2004; Winkler,
2002; Xu et al., 2004; Yang, 2004; Ye et al., 2003). Since
1999, as part of the ‘‘Grain for Green’’ project over 7 mil-
lion ha has been re-vegetated, with 5.9 million ha being
converted in 2002 and 2003 alone (Xu et al., 2004). It is gen-
erally accepted that re-vegetating large areas of the land-
scape reduces streamflow, largely due to increasing rates
of evapotranspiration (McVicar et al., in press; Sun et al.,
2006; Xiubin et al., 2003). With approximately 43% of the
annual runoff to the Yellow River basin generated from
the middle reaches of the Yellow River (draining the Loess
Plateau from Lanzhou to Sanmen, (Fig. 1), Li, 2003; Xiubin
et al., 2003) and water resources being already overcommit-
ted (e.g., Chen et al., 2003; McVicar et al., 2002; Varis and
Vakkilainen, 2001; Xu et al., 2002) any reduction of stream-
flow generated from the Loess Plateau is a serious concern
for the 500 million people partly reliant on its water. With
average annual streamflow decreasing, and demand for
water increasing, water resources will continue to be over-
committed into the future (Wallace, 2000; Xu et al., 2002).
Over the last 30 years the Yellow River has increasingly
failed to reach the Bohai Sea (Li, 2003; Xiubin et al.,
2003). This happened for the first time in recorded Chinese
history in 1972 (for 15 days) and in 1997 (a ‘drought’ year)
there were 226 zero-flow days; in the late 1990s the average
number of zero-flow days per year was approximately 100
(Chen et al., 2003; Li, 2003). When zero-flow occurs all sed-
iment is deposited in the river bed and this feedback exac-
erbates the rate at which the river bed increases its height
above the surrounding plain.

Data description and characterisation

Monthly hydrometeorological data were obtained from Jan-
uary 1980 through December 2000 (21 years) from 58 sta-
tions in and around the CSHC; see Fig. 1. Detailed quality
control was performed on the monthly data for all stations
(Li et al., 2005a). Seven monthly hydrometeorological vari-
ables were recorded including: (1) mean maximum air tem-
perature (Tmax �C); (2) mean minimum air temperature (Tmin

�C); (3) mean wind speed (u m s�1); (4) precipitation (P
mm); (5) mean relative humidity (relative humidity %); (6)
bright sunshine hours (n h); and (7) pan evaporation (Epan
mm). All measurements were made daily according to Chi-
nese Bureau of Meteorology standards with monthly data
being integrated or averaged from daily data as appropri-
ate. While detailed definitions were reported in McVicar
et al. (2005a) some issues need description here. Wind
speed was measured from an anemometer located 10.0 m
above the surface, and Epan was the decline in water (pre-
cipitation corrected) from a 20-cm diameter by 10-cm deep
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pan (called a micro-pan), that is filled to 2 cm, or some-
times 3 cm depending on local daily evaporative rates.
Monthly relative humidity was converted to monthly vapor
pressure (ea) by calculating the saturated vapor pressure
(es) at both Tmax and Tmin (e.g., Allen et al., 1998; McVicar
et al., 2005a).

To characterise our study site, data measured at the 58
meteorological stations was spatially averaged to provide
monthly values, and the time series of monthly data (252
months for the 21 years from 1980 through 2000) was subse-
quently temporally averaged to illustrate general character-
istics (Fig. 2). As expected, both Tmax and Tmin peak in July
(Fig. 2a and b). The monthly distribution of u is weakly bi-
modal, with a strong peak in spring (April) and a weaker
peak in late autumn (November), see Fig. 2c. The influence
of the summer monsoons on P with most occurring in July
and August is clearly seen (Fig. 2d). The general pattern
of relative humidity (Fig. 2e) is governed by the summer
monsoons. It increases during summer months peaking in
August, and slowly declines until the minimum is experi-
enced during the following autumn. Maximum n occurs in
May (Fig. 2f); governed by the relative summer–winter day-
length differences, modulated by increasing cloud cover
associated with the summer monsoons. Fig. 2g shows that
monthly Epan is greater than 200 mm from April to August
reaching almost 300 mm in May and reduces to approxi-
a b

d e

g h

Figure 2 Monthly values of: (a) Tmax (�C); (b) Tmin (�C); (c) u (m s
(mm); (h) ea (kPa); and (i) es�ea (kPa). The 21-year mean (solid lin
maximum (dash–dot lines) are shown.
mately 40 mm in both December and January. Fig. 2h shows
that maximum ea is observed in summer (July and August)
coincident with the summer monsoons and minimum ea is
experienced in winter. Fig. 2i shows that es–ea is low in win-
ter, and increases rapidly during April and May, to reach its
maximum value in June. As ea is highest in July and August,
es–ea starts to decrease during these months, and de-
creases linearly through the autumn months (September to
November). Annual time series trends in our base meteoro-
logical data (McVicar et al., 2005a) are in agreement with
those reported for all China (Liu et al., 2004; Shen and Varis,
2001; Wu et al., 2006; Zhai et al., 1999).

Methods

To spatially distribute ET0 on a grid-cell basis required that
the input variables were either spatially interpolated, or
spatially modelled; these are discussed in turn in the next
two sub-sections. Our ET0 is slightly modified from that pro-
posed by Allen et al. (1998) as we spatially distributed the
input variables for the 252 months with as much physical
reality as possible. This was performed by taking elevation
into account when interpolating the hydrometeorlogical
data, and accounting for topography (i.e., elevation, slope
and aspect) and temporally varying land-cover based sur-
face conditions when modelling the radiation environment.
c

f

i

�1); (d) P (mm); (e) relative humidity (%); (f) n (hours); (g) Epan
e), ± 1 standard deviation (dashed lines), and the minimum and
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The outputs from the spatial interpolation and spatial mod-
elling were then used in the FAO-56 ET0 formulation – see
Eq. (1).

There are many algorithms available to spatially interpo-
late data (Lam, 1983), with a few of these being primarily
used to interpolate meteorological and climatic data sets
(e.g., Daly, 2006; Hong et al., 2005, and the references in
each). Daly (2006) summarises the five main methods as:
(1) inverse distance weighting; (2) various forms of kriging;
(3) tri-variate splines implemented using ANUSPLIN; (4) local
regression models (Daymet and PRISM are examples); and (5)
regional regression models. In this research ANUSPLIN was
used – our goal was not to compare different methods,
and we recognise that each has relative strengths and weak-
nesses (Daly, 2006). Previous research has shown that results
from splines, including ANUSPLIN, were favourable when
compared with other interpolation algorithms (Price et al.,
2000), including kriging (Hutchinson and Gessler, 1994; Las-
lett, 1994). For example, when interpolating precipitation in
Canada, Price et al. (2000) reported that the ANUSPLIN root
mean square error was lower than the Gradient plus Inverse-
Distance Squared (GIDS) counterpart for all months in the
mountainous British Columbia/Alberta region and for 10
months in the flatter Ontario/Québec region. Given that a
previous comparison (Nalder and Wein, 1998) showed the
superiority of GIDS over six other interpolation methods
(including kriging), the results of Price et al. (2000) provide
a strong argument for using ANUSPLIN. Additionally, ANU-
SPLIN has been used extensively for spatially interpolating
hydrometeorological surfaces including: air temperatures
(e.g., Hong et al., 2005; Hutchinson, 1991; McVicar and
Jupp, 2002); wind speed and wind run (e.g., Hutchinson,
1989; Hutchinson et al., 1984b); vapor pressure (e.g., Jef-
frey et al., 2001; McVicar and Jupp, 2002); solar radiation
and atmospheric transmittance (e.g., Hutchinson et al.,
1984a; Jeffrey et al., 2001; McVicar and Jupp, 2002); precip-
itation (e.g., Hutchinson, 1995; McVicar et al., 2002; Price
et al., 2000) and pan evaporation (e.g., Jeffrey et al.,
2001; Sharples et al., submitted for publication).

Wahba and Wendelberger (1980) primarily developed
thin-plate spline interpolation, with Wahba (1990) extend-
ing the theoretical development to include covariates (or
parametric sub-models), the resultant model being termed
a partial thin-plate spline. Hutchinson (1991); Hutchinson
(2004b) has implemented these algorithms in ANUSPLIN, pri-
marily to spatially interpolate hydrometeorological and cli-
matological variables; it provides a dependence on
covariates (which can include elevation but is not limited
to this) and methods for detecting data errors. ANUSPLIN re-
ports several statistics including the expected true mean-
square error, T(m,k), which is regarded as an optimistic
measurement of error and the generalised cross-validation
statistic, GCV(m,k) considered a pessimistic, or conserva-
tive, measurement of error (Hutchinson, 2004b). When both
errors are reported as a square root they have the units of
the dependent variable. The order of the spline (m) and
the smoothing parameter (k) control the trade-off between
the amount of data fidelity and surface roughness (Hutchin-
son, 1991). k is determined by minimising the GCV(m,k)
which has been previously used to find the ‘best’ model
among competitors (Davis, 1987).
Spatially interpolating the required meteorological
variables

Selecting spline models
To select the variable-specific ANUSPLIN parameters, the
year with near-average annual precipitation was selected
(as most other hydrometeorological variables are some-
what positively or negatively correlated to precipitation).
The annual mean for the 58 stations was 421 mm and as
1995 had a spatially-averaged value of 424 mm, this year
was selected as the test year. When interpolating Tmax,
Tmin, u, ea, and P, 18 spline models were explored. The
18 variants were slight modifications on three main spline
models; they were:

(1) bi-variate thin plate spline (BVTPS) as a function of
longitude and latitude only;

(2) tri-variate partial thin plate spline (TVPTPS) incorpo-
rating a BVTPS as a function of longitude and latitude
and a constant linear dependence on elevation; and

(3) tri-variate thin plate spline (TVTPS) as a function of
longitude, latitude and elevation, with the units of
elevation varying from km to cm.

Elevation was provided with the location of the meteoro-
logical stations, and this was in agreement with the hydro-
logically correct Digital Elevation Model (Yang et al., in
press; Yang et al., 2005) developed using ANUDEM (Hutchin-
son, 2004a) that was used as the covariate when developing
the output surfaces. When using a TVPTPS there is no sensi-
tivity to the relative scaling of elevation. However, if imple-
menting a TVTPS it has been shown that the range of the
three variables (usually controlled by a relative scaling of
elevation) should be approximately equal (Hutchinson,
1995). In this research we use an Albers projection with
the units of metres and the relative scaling of elevation
when using a TVTPS is provided in units of km, m, dm and
cm (McVicar et al., 2005a). In all cases, (1) to (3) above,
m was set at 2, 3, and 4. As both P and u can have positively
skewed distributions, the impact of using a square root
transformation prior to fitting the data with a spline was as-
sessed (Hutchinson, 1995).

Previous modelling of atmospheric transmission has re-
vealed that the diurnal temperature range is a good mea-
sure of atmospheric transmission (e.g., Bristow and
Campbell, 1984; McVicar and Jupp, 1999; Meza and Varas,
2000). Hutchinson et al. (1984a) used a transformation of
monthly precipitation as an index of cloudiness, which can
be otherwise thought of as an indicator of atmospheric
transmission. Given this, we examined both the monthly
air temperature range (DT) and/or P as additional variables
(either independent variable or covariates) when fitting n.
All eight possible combinations were evaluated withm being
2, 3 or 4 – hence 24 spline models were tested. Full details
are provided in McVicar et al. (2005a).

For each variable, to temporally assess the relative error
for the 252-month sequence both the pessimistic expression
of relative error ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GCVðm; kÞ

p
Þ and the more optimistic

expression of relative error ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tðm; kÞ

p
Þ were divided, in

turn, by the observed standard deviation (SD) for each
month.
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Analysis of elevation dependencies
Several of the variables were interpolated with a TVPTPS
using elevation as a covariate (see Section ‘Results and dis-
cussion’). In this case a constant linear dependence (or con-
stant sub-model) is determined as a function of elevation
when fitting the data. For Tmax and Tmin this is known as
the lapse rate. For other meteorological variables influenced
by elevation, most notably u and ea, this metric is termed the
near-surface elevation-dependence (NSED). For each vari-
able the average monthly NSED value was calculated from
the 252-month sequence. As the NSED for Tmax, Tmin and ea
are usually negative, using the terms ‘increase’ or ‘decrease’
can be confusing (Pepin and Losleben, 2002; Pepin, 2000), so
following their protocol for these three variables (and using
Tmax as an example) herein a ‘steeper’ NSED means a more
negative lapse rate and a ‘shallower’ NSED denotes a less
negative lapse rate. For u, where the NSED is commonly po-
sitive, the terms ‘stronger’ (and ‘weaker’) will be used to
mean an increasing (or decreasing) NSED, respectively. If
elevation (x-axis) was cross plotted against Tmax (y-axis)
the lapse rate is the slope of this relationship and using a
spline allows the offset of this relationship to vary spatially.
Regression modelling does not allow this offset to vary
spatially and this is a major distinction between spatially
implementing regression models and using a spline model.
Spatially modelling the radiation environment (Rn

and G)

To calculate ET0 both Rn and G were spatially modelled. Rn

is the balance of the incoming and outgoing shortwave and
longwave radiation components defined by:

Rn ¼ Rs in � Rs out þ Rl in � Rl out ð2Þ
where: Rs_in (MJ m

�2 day�1) is the incoming (or solar) short-
wave (0.15–4 lm) radiation measured on a horizontal sur-
face; Rs_out (MJ m�2 day�1) is the shortwave radiation
reflected by the surface, governed by the surface albedo
(a); Rl_in (MJ m�2 day�1) is the incoming longwave radiation
(>4 lm); and Rl_out (MJ m

�2 day�1) is the longwave radiation
emitted from the surface into the atmosphere.

We used SRAD (an abbreviation for Solar RADiation) on a
12-minute time-step to model all processes governing the
radiation environment in complex terrain (McKenney
et al., 1999; Moore et al., 1993; Wilson and Gallant, 2000).
SRAD uses the Ångström–Prescott equation (Prescott,
1940), which is based on the ratio of n to total sunshine hours
(N) as its measure of atmospheric transmittance. Historical
developments of the Ångström–Prescott formula, and its
many variants, are reviewed by Martinez-Lonano et al.
(1984) and Ulgen and Hepbasli (2004). The original Ång-
ström–Prescott equation has the form:

Rs in ¼ aþ b
n

N

� �
Ra ð3Þ

where Ra is the extraterrestrial (or top-of-Earth atmo-
sphere) solar radiation measured on a horizontal surface
(MJ m�2 day�1); a and b are semi-empirical coefficients; a
being the atmospheric transmittance relating Rs_in to Ra

for totally overcast days (i.e., when n = 0); and a + b being
the atmospheric transmittance for totally clear days (i.e.,
when n = N).
With n being spatially interpolated, N was calculated for
the 15th day of each month, using Allen et al.’s (1998)
method, and then multiplied by the number of days in each
month. For each of the 252 months surfaces of n/N, Tmax,
Tmin and ea were input to SRAD. Several other parameters
were required (Wilson and Gallant, 2000), including the
Ångström–Prescott a and b coefficients. If no local mea-
surements are available, it is suggested to use a = 0.25
and b = 0.5 (Allen et al., 1998). Recently Chen et al.
(2004) reported a and b values for China and here we used
the average of the four closest stations (Xian, Lanzhou,
Yinchuan and Taiyaun) from their research; the mean values
for a and b were 0.195 and 0.5125, respectively. While these
values are slightly lower than Allen et al.’s (1998) suggested
values, they are in agreement with other radiation model-
ling that has shown that atmospheric transmittance in China
is low (Lin and Lu, 1998; McVicar and Jupp, 1999), due to
high amounts of aerosols.

Rl_in was calculated using ear T4 + (1 � v)Rl_out where ea is
the effective atmospheric emissivity (Prata, 1996); r is the
Stefan–Boltzmann constant (5.67 · 10�8 W m�2 K�4); and v
is the sky view factor for each grid cell (driven by slope and
horizons of each grid cell, Moore et al., 1993). Rl_out was
calculated as esrT

4 where es is the surface emissivity given
as 0.96. In SRAD, slight modification of Tmax used to calcu-
late T was made to capture the influence of aspect and veg-
etation density, given by Leaf Area Index (LAI) (Hungerford
et al., 1989; Moore et al., 1993; Running et al., 1987). To
model Rn with as much physical reality as possible both
LAI and a were provided as land-cover dependent time ser-
ies for use in SRAD. This was the basis of our slight modifica-
tion of ET0 – meaning that the FAO-56 ET0 formulation (Eq.
(1)) was used with spatially distributed inputs that were as
physically realistic as possible. Both LAI and a were defined
for 1:500 000 scale polygons of land-cover classes derived
from Landsat Thematic Mapper data acquired in 1986 (Shen,
1991). The 8 main land-cover classes were: (1) agriculture;
(2) forest; (3) sparse forest; (4) shrubland; (5) pasture; (6)
urban; (7) water; and (8) desert – see McVicar et al.
(2005a) for the locations. The logic of the temporally vary-
ing LAI and a parameters used in SRAD for the 8 main land-
cover classes is provided below.

Summer crops are planted in April, rapidly growing in
June and July reaching their maximum LAI in August with
LAI rapidly decreasing during the reproductive stage prior
to senescence (Mo et al., 2004; Wu et al., 2003). In winter
agricultural LAI is negligible (Zhu et al., 1999), yet consider-
ing that the minimum mapping unit of the 1:500 000 scale
land-class data will be a mix of different land-covers
(including small patches of forest), agricultural LAI never
falls below 0.5 in the SRAD parameterisation. The forest
and sparse forest land-covers are a mixture of evergreen
conifers and deciduous broadleaf forest communities (Liang
et al., 2003). LAI increases from winter to summer due to
the phenology of the deciduous species, and during summer
there will also be a slight increase of LAI as understorey
perennial grasses grow. Values from Mo et al. (2004, their
Table 1) were used to parameterise the forest and sparse
forest LAI time series; they provide minimum LAI for ever-
green conifers and deciduous broadleaf of 3.0 and 0.5,
respectively. Shrubland also contains evergreen and decidu-
ous species (Liang et al., 2003). In general, its overstorey
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canopy closure is less than forested lands (Wu et al., 2003),
meaning there will be a greater effect of the grass understo-
rey on shrubland in summer compared to forest in the same
season (Table 1). Pasture reaches its maximum LAI earlier
than the agricultural crops and remains at a LAI of 3.0 for
the remainder of summer, slowly decreasing and remaining
low over winter (Wu et al., 2003). Urban areas have isolated
trees, and hence have a constantly low LAI. Water areas
were assigned a LAI of 0.0 and desert areas (or ‘wasteland’
Wu et al., 2003) were assigned a value of 0.5 in winter
increasing to 1.0 in the wetter summer months (July and Au-
gust) when perennial grasses will respond to more favour-
able conditions (see Table 1).

The a of water was set at the average value of the water
class provided by Brutsaert (1982). For the remaining classes
a was determined by recognising that, at low LAI, the land-
cover a is dominated by the soil a and, when the LAI �P3.0
(depending on the canopy architecture), land-cover a is pri-
marily dominated by the vegetation a (Stanhill, 1970). In the
Loess Plateau soil a is high with values ranging from 0.28 to
0.35 (Li et al., 2000; Li et al., 2002; Qiang and Ronghui,
2004). Li et al. (2000) show that land-surface a decreases
as the percent vegetation cover increases, as soil a is typi-
cally higher than the vegetation a. Since grazing density is
unknown at the temporal and spatial extents of the study
site, for pastures we used the moderately grazed values re-
ported by Li et al. (2000) as the basis for parameterisation.
Deserts were assumed to have 10% vegetation cover during
winter which increases slightly over summer causing a cor-
responding slight decrease in a (Table 2). For agriculture,
it was assumed that the winter a would be the average of
the desert a (0.30) and the pasture a (0.28), as we expect
Table 1 Indicative monthly LAI values for the 8 main land-cover

Class Month

January February March April May June

Agriculture 0.5 0.5 0.5 0.5 1.0 1.5
Forest 2.0 2.0 2.25 2.75 3.0 3.10
Sparse Forest 1.5 1.5 1.75 1.75 2.0 2.25
Shrubland 0.75 0.75 1.0 1.0 1.0 1.25
Pasture 0.5 0.5 0.5 1.0 2.0 3.0
Urban 0.2 0.2 0.2 0.2 0.2 0.2
Water 0.0 0.0 0.0 0.0 0.0 0.0
Desert 0.5 0.5 0.5 0.5 0.5 0.75

Table 2 Indicative monthly a values for the 8 main land-cover c

Class Month

January February March April May June

Agriculture 0.29 0.29 0.29 0.29 0.27 0.26
Forest 0.15 0.15 0.15 0.15 0.15 0.145
Sparse Forest 0.18 0.18 0.18 0.18 0.18 0.17
Shrubland 0.20 0.20 0.20 0.20 0.20 0.19
Pasture 0.28 0.28 0.28 0.27 0.26 0.25
Urban 0.25 0.25 0.25 0.25 0.25 0.25
Water 0.06 0.06 0.06 0.06 0.06 0.06
Desert 0.30 0.30 0.30 0.30 0.30 0.29
more fallow in agricultural areas. The minimum a of 0.23
(Allen et al., 1998) is assumed to occur at the time of max-
imum LAI, with crop phenology dictating the representative
temporal change in a for agriculture (Mo et al., 2004).
Brutsaert (1982) reported approximate ranges of a for ever-
green conifers (0.1–0.15) and deciduous broadleaf trees
(0.15–0.25); these values were used with the knowledge
that LAI for forest > sparse forest > shrubland to provide
monthly estimates of a for these three land-cover classes.
Due to differing amounts of vegetation cover, and with veg-
etation having lower a than soil, comparative results for
monthly a are forest < sparse forest < shrubland (Table 2).
For each class (except urban and water), inter-annual a
changes are governed by assumed increases of perennial
growth associated with summer P. As with the monthly land-
cover-specific LAI parameterisation, these monthly land-
cover-specific a values represent generalised relationships
as many factors (e.g., climate variability, different species
composition, grazing pressures of domestic and feral ani-
mals and insects) may cause slightly different actual time-
traces for specific locations over the 21 years.

Following Allen et al. (1998), G was calculated as
0.07(Ti+1 � Ti�1) for each month i in the 252-month se-
quence. This assumes a constant soil heat capacity of
2.1 MJ m�3 �C�1, and with the deep (50–200 m thick) uncon-
solidated silty loam soils present on the Loess Plateau
(Huang, 1988), the actual soil depth is greater than the mod-
elled soil depth beyond which soil temperature does not vary
(approximately 2 m for a monthly time-step Allen et al.,
1998). Daily output values of Rn and G were then multiplied
by the number of days in each month to convert their units to
MJ m�2 month�1 for use in the subsequent modelling.
classes used in SRAD

July August September October November December

3.0 4.0 2.0 1.0 0.5 0.5
3.25 3.25 3.10 2.5 2.0 2.0
2.50 2.50 2.25 1.75 1.5 1.5
1.50 1.50 1.25 1.0 0.75 0.75
3.0 3.0 3.0 2.0 1.0 0.5
0.2 0.2 0.2 0.2 0.2 0.2
0.0 0.0 0.0 0.0 0.0 0.0
1.0 1.0 0.75 0.5 0.5 0.5

lasses used in SRAD

July August September October November December

0.24 0.23 0.25 0.27 0.29 0.29
0.14 0.14 0.145 0.15 0.15 0.15
0.16 0.16 0.17 0.18 0.18 0.18
0.18 0.18 0.19 0.20 0.20 0.20
0.24 0.23 0.25 0.26 0.27 0.28
0.25 0.25 0.25 0.25 0.25 0.25
0.06 0.06 0.06 0.06 0.06 0.06
0.28 0.28 0.29 0.30 0.30 0.30
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Calculating ET0

The 252 monthly surfaces of ET0 were calculated for each
month independently on a grid-cell basis using an ‘interpo-
late-then-calculate’ approach with the outputs from the
spatial interpolation and spatial modelling conducted above
used as inputs. This means that changes in forcing variables
as a function of: (1) seasonality; (2) topography (including
elevation, slope and aspect); (3) climate variability; and
(4) longer term trends (associated with climate change)
are implicitly accounted for when spatially distributing the
required variables needed to calculate ET0. Near-surface u
interpolated surfaces were based on measurements made
10.0 m above the ground. A wind-profile relationship was
applied to generate u 2.0 m above the ground (u2); this
was u2 ¼ uz

4:87
Inð67:8z�5:42Þ (Allen et al., 1998); where z is 10 m.

es was calculated (Allen et al., 1998) from the surfaces of
Tmax and Tmin, and with ea being spatially interpolated,
es � ea was calculated on a grid-cell basis; representative
examples are shown in McVicar et al. (2005a). Using meth-
ods outlined in Allen et al. (1998) D and c were calculated;
see McVicar et al. (2005a).
Spatially Interpolating Epan

In cases where all meteorological data needed to calculate
ET0 are not available, it is common to use Epan for periods of
10 days or longer as a surrogate for ETpot (Allen et al., 1998).
Obviously, ET0 and Epan are not identical expressions of the
potential amount of liquid water that may be transformed
into the gaseous phase; they have historically been related
through the empirically defined pan coefficient (Kpan),
which is a unitless ratio defined as ET0/Epan. To assess the
reliability of the ET0 surfaces, measurements of Epan made
at the network of meteorological stations in and around
the CSHC were spatially interpolated. To perform this inter-
polation while capturing as much of the governing physical
processes as possible meant that dependent (co)variables
additional to longitude and latitude needed to be tested –
the three candidates examined were es � ea, Rn, and u.
These three variables, and only these three, were assessed
due to their use in previous Epan models (Rotstayn et al.,
2006; Thom et al., 1981) that account for the radiation
and aerodynamic components and are most suited to geo-
graphic distribution. For monthly estimates of Epan, the
influence of changes of heat storage in the pan (a function
of the pan water temperature which would lag changes in
air temperature) is negligible (Roderick and Farquhar,
2005; Thom et al., 1981); hence T is not explored as a po-
tential covariate here. The utility of each of the three can-
didate dependent (co)variables was first explored by linear
regression, using multiple linear regression as required,
against measurements of Epan. After deciding which
(co)variables to use surfaces of Epan were generated using
ANUSPLIN (as opposed to spatially implementing a regres-
sion model) as ANUSPLIN allows offsets to be spatially vari-
able (which regression models do not). McVicar and Jupp
(2002) previously employed the approach of first using
regression models to decide which candidate dependent
(co)variables are subsequently used to spatial distribute
an independent variable using ANUSPLIN.
Table 4 shows that using all three potential dependent
(co)variables has the highest r2 and lowest root squared
difference (RSD) statistics from the six possible combina-
tions, so we decided to develop quint-variant (longitude,
latitude, es � ea, u, and Rn) spline models to spatially
interpolate Epan. However, it was unclear if the spline
model should be a function of these three additional vari-
ables or if constant linear dependencies using the three
additional variables as sub-models (or some combination
of the two) should be developed. McVicar et al. (2005a)
tested all eight possible options, and for each, m was set
at 2, 3 or 4 – hence 24 spline models were tested. Once
a model was selected and used for the 252-month
sequence, the two temporal assessments of the relative
error: (1) the pessimistic expression

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GCVðm; kÞ

p
=SD; and

(2) the optimistic formulation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tðm; kÞ

p
=SD were calcu-

lated on a monthly time-step.

Calculating Kpan

Values of Kpan vary depending on, among other factors, local
meteorological conditions, local landscape position, type of
pan, and maintenance of the pan. Long-term site factors
also need to be considered: trees growing close to meteoro-
logical stations can reduce u and there can be changes in
the radiative environment (Roderick, 2006; Stanhill and Co-
hen, 2001) that also produce changes in Epan measurements
(Thom et al., 1981) and thereby influence Kpan. Neverthe-
less, analysing the spatial and temporal trends of Kpan pro-
vides a means to assess the representativeness of both ET0
and Epan as spatially distributed measures of Epot. Given this,
252-monthly surfaces of Kpan were calculated simply by
dividing ET0 by Epan, i.e., Kpan = ET0/Epan. For the 23-km
transect located in Fig. 1 these three variables were ex-
tracted from the resulting surfaces and monthly means were
calculated for each 100 m grid-cell along the transect.

Sensitivity analysis of ET0, Epan and Kpan to spatial
interpolation

To characterise sensitivity, comparisons were made be-
tween: (1) calculations (or measurements in the case of
Epan) made with data measured at stations; and (2) values
extracted from the output surfaces of the spatial interpola-
tion/spatial modelling. For the 3 variables (denoted Var in
the following being ET0, Epan or Kpan in turn) four statistics
were generated between the calculated (denoted Var_c)
and extracted (identified by Var_e) values. They are:

Root Squared Difference ðRSDÞ ¼ 1

num

Xnum
j¼1
ðVar c�Var eÞ2

" #1
2

;

Bias¼ 1

num

Xnum
j¼1
ðVar c�Var eÞ;

Relative RSD¼ 1

num

Xnum
j¼1
ðVar c�Var eÞ2

" #1
2
,

Var c;and

Relative Bias¼ 1

num

Xnum
j¼1
ðVar c�Var eÞ

" #,
Var c:

ð4Þ
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These statistics were calculated using each of the 30 sta-
tions (j = 1 to num) located within the study site. Note the
other 28 stations are located outside the CSHC, this ensures
we are interpolating between stations for the entire CSHC
and not extrapolating at its edges. For all monthly averages
the starting point was a 7560 element array (12 months at 30
stations for 21 years) that was first averaged for the 21
years, and then for the 30 stations. Performing calculations
in this order meant that extreme values, possibly seen at
the edge of the study site where the interpolation is likely
to be poorest, due to a relatively low density of input data,
would be maintained in the resulting maximum and mini-
mum statistics.

Sensitivity analysis of Rn, ET0, and Kpan to land
surface parameterisation

To assess sensitivity in land surface parameterisation when
modelling Rn with SRAD, and as it propagates to ET0 and
Kpan, comparisons were made for all 3 variables between:
(1) estimates made using temporally dynamic land-cover
dependent LAI and a parameters (see Section ’Spatially
modelling the radiation environment (Rn and G)’); and (2)
values of the same 3 variables when LAI and a were static
for each month and land-cover. Following Allen et al.
(1998), the LAI and a were set to 2.88 and 0.23, respectively
for the static case. For the 3 variables (denoted Var in the
following being Rn, ET0, or Kpan in turn) two statistics were
generated between the dynamic (denoted Var_dynamic) and
static (identified by Var_static) values. They are:

Bias ¼ 1

num

Xnum
k¼1
ðVar dynamic � Var staticÞ; and

Relative bias ¼ 1

num

Xnum
k¼1
ðVar dynamic � Var staticÞ

" #
=Var dynamic:

ð5Þ

Twelve monthly averages of each Var (both dynamic and
static) were calculated first, and then Eq. (5) was imple-
mented, and finally mean and variance statics were deter-
mined monthly for k = 1 to num, where num is the
11,272,796 grid-cells in the study site.
Results and discussion

Spatially interpolating meteorological variables

Selecting spline models
For Tmax, Tmin, u and ea a TVPTPS provided the lowest errors
and were primarily used to interpolate the data for the 21
years. For u the non-transformed results provided lower error
than the square root transformed results. For n a TVPTPS
using DT as a covariate was selected. For P, a BVTPS usually
provided the lowest error statistics and so was selected. This
result for P was unexpected, and while elevation is one con-
troller of P it is also known that the distribution of P is highly
discontinuous withmany complex interacting factors govern-
ing its spatial and temporal distribution (Bergeron, 1960;
Roe, 2005). This unexpected result is site and data specific,
in that at the CSHC it appears that the influence of highly
localised relative relief on P is not adequately captured by
the network of stations measuring P and unresolved topo-
graphic bias (Briggs and Cogley, 1996) results in tri-variate
models (i.e., those using elevation as a dependent (co)vari-
ate) having larger errors than bi-variate models. The square
root transformation of P (thereby making the positively
skewed distribution more normal prior to fitting the spline)
provided lower (or equal) error estimates when compared
to non-transformed data (McVicar et al., 2005a), confirming
the finding of Hutchinson (1998). Full details are presented
in McVicar et al. (2005a), as are surfaces for all interpolated
variables representing seasonal differences in 1995.

Results from assessing the relative error for the 252
month sequence for all 6 spatially interpolated variables,
determined by dividing

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GCVðm; kÞ

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tðm; kÞ

p
by the ob-

served SD for each month are presented in Table 3; with time
series plots being provided in McVicar et al. (2005a). For Tmax

the temporal expression of relative error was smaller than
Tmin revealing that interpolating Tmin was more challenging
than Tmax, most likely a result of nocturnal (or ‘cold’) air
drainage (Bolstad et al., 1998; Gustavsson et al., 1998; Stull,
1988) in the topographically complex study site. Table 3
shows that Tmax could be interpolated with low relative er-
ror, and that both Tmin and ea had moderate relative error,
with u, n and P having relatively higher errors.
Analysis of elevation dependencies
When fitting data with a TVPTPS, using elevation as a covar-
iate, ANUSPLIN calculates the NSED using all input data.
Monthly mean (or monthly climatology) Tmax lapse rates var-
ied from �3.01 �C km�1 in winter to �7.69 �C km�1 in sum-
mer (Fig. 3a), with Tmin lapse rates ranging from
�2.79 �C km�1 in winter, to �6.63 �C km�1 in summer
(Fig. 3b). These findings in terms of: (1) the magnitude;
(2) Tmax lapse rates being steeper than Tmin lapse rates;
and (3) for both Tmax and Tmin winter lapse rates being shal-
lower than the summer counterparts are consistent with
previous results for China (Chuanyan et al., 2004; Hong
et al., 2005; Zhang and Lin, 1992), eastern USA (Bolstad
et al., 1998), northwestern USA (Lookingbill and Urban,
2003; Thornton et al., 1997), and four sub-areas of the Euro-
pean Alps (Rolland, 2003).

It is widely known that near the crest of hills, near-sur-
face u increases as elevation increases (Miller and Daven-
port, 1998; Wood, 2000); it has previously been termed
‘wind speed-ups’ (Miller and Davenport, 1998) and ‘frac-
tional speed-up ratio’ (Taylor, 1998). This phenomenon
has been previously reported for mountainous areas in China
(Zhang and Lin, 1992). Note, we determine the NSED of u
using measurements of u consistently made 10 m above
the ground surface, so it is not the increase in u associated
with reduced drag as altitude above the surface increases.
The monthly climatology of NSED of u shows a marked sea-
sonality with the control of elevation being stronger in win-
ter than summer (Fig. 3c). In summer, when solar loading is
highest, mesoscale convective circulation will be the domi-
nant process controlling u in the boundary-layer (Kossmann
et al., 1998), whereas in winter, synoptic frontal-scale
winds dominate (Zhang and Lin, 1992) allowing greater
influence of surface topography (both shape and elevation)
resulting in a larger NSED of u. In the topographically com-
plex country Switzerland, Weber and Furger (2001) showed



Table 3 For each of the 6 variables that were spatially interpolated, the mean, SD, maximum (Max.) and minimum (Min.) for the
252-monthly sequence of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GCVðm; kÞ

p
=SD and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tðm; kÞ

p
=SD are provided. All values are unitless fractionsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GCVðm; kÞ
p

=SD
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tðm; kÞ

p
=SD

Mean SD Max. Min. Mean SD Max. Min.

Tmax 0.25 0.05 0.49 0.14 0.11 0.02 0.23 0.06
Tmin 0.53 0.10 0.84 0.33 0.19 0.04 0.29 0.11
u 0.80 0.06 0.96 0.65 0.33 0.02 0.38 0.28
P 0.60 0.18 1.22 0.10 0.26 0.08 0.50 0.01
ea 0.34 0.10 0.74 0.16 0.14 0.04 0.37 0.07
n 0.67 0.19 1.16 0.29 0.28 0.08 0.52 0.01
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how the climatology of near-surface u is related to well
known processes controlling flow patterns that have distinct
mean u. Previously, no climatology on a monthly time-step
of NSED of u has been reported, though for China Zhang and
Lin (1992, pp 206) reported an annual mean NSED of u of
2.22 m s�1 km�1 for 6 station-pairs, where one station of
each pair is located near the summit of high mountains.
While their value is higher than our annual mean of 1.33 m
s�1 km�1 (SD = 0.40 m s�1 km�1) they only use 6 station-
pairs with large elevation differentials where this phenom-
ena would be exaggerated.

The monthly climatology of NSED for ea is much steeper
during summer than winter (Fig. 3d). The annual average
of NSED for ea (calculated by averaging the monthly means)
is �0.333 kPa km�1 (SD = 0.205 kPa km�1). Zhang and Lin
(1992, pp 148), reported values ranging from �0.4 kPa km�1
a

c

Figure 3 Monthly values of the NSED for: (a) Tmax; and (b) Tmin

deviation (dashed lines), and the minimum and maximum (dash–d
number) are shown by grey (dash-dot-dot-dot) lines, with equation
to �0.25 kPa km�1, with a mean value of �0.337 kPa km�1

(SD = 0.055 kPa km�1); our annual average NSED for ea is sim-
ilar. In agreement with results presented in Fig. 3d, for the
contiguous United States, Dodd (1965) reported the dew
point for proximally located station-pairs with substantial
elevation differences. The monthly variation, calculated as
the average value for three station-pairs is January
(�0.176 kPa km�1); March (�0.214 kPa km�1); May
(�0.303 kPa km�1); July (�0.515 kPa km�1); September
(�0.416 kPa km�1); and November (�0.239 kPa km�1). Dodd
(1965) illustrated that the NSED for ea is steepest in summer
(July) and shallowest in winter (January); the magnitude and
this temporal pattern agrees with results shown in Fig. 3d.

The spline-generated underlying spatially variable offset
for elevation–Tmax cross plots are illustrated for 1995 for
winter (February) and summer (August), see Fig. 4a and b
b

d

; (c) u; and (d) ea. The 21-year mean (solid line), ±1 standard
ot lines) are shown. Lines of best fit (as a function of month
s and statistics of fit provided on each plot.



Figure 4 Spatially varying offsets of the elevation–Tmax

relationship are shown; units are �C.
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respectively. These surfaces are generated as if there was
no surface elevation present. For February (Fig. 4a) the pat-
tern is primarily north–south and is driven by solar loading,
while for August (Fig. 4b) a strong east–west signal gov-
erned by the differential moisture associated with monsoon
rains influenced by the continentality effect is seen. These
figures illustrate the worth of using splines to spatially dis-
tribute hydrometeorological data over spatially implement-
ing regression models. Of course for forcing data used here,
and in subsequent calculations, surface elevation (as appro-
priate) was used to generate the data; example surfaces for
all interpolated variables representing seasonal differences
in 1995 are presented in McVicar et al. (2005a).

Spatially modelling the radiation environment (Rn

and G)

Surfaces of Rn andGwere calculated for the 15th day of each
month for the 252-month sequence, with monthly mean daily
values for the entire study site from the 21-years provided in
Fig. 5. These values are obtained by spatially averaging the
resultant surfaces, and then temporally averaging those val-
ues. For Rn on a per grid-cell basis the minimum of
a b

Figure 5 Monthly values of average daily: (a) Rn (MJ m�2 day�1)
standard deviation (dashed lines), and the minimum and maximum
�4.85 MJ m�2 day�1 was estimated in November 1986 and
the maximum of 21.06 MJ m�2 day�1 was simulated in July
1985. As expected, Rn reaches its maximum in summer,
decreasing to its minimum in winter, and G being larger in
spring (March and April) and lowest in autumn (October
and November) when rates of change in T were largest.

Calculating ET0

Per grid-cell monthly average surfaces of ET0 for the 21
years (derived from 252 monthly surfaces) are shown in
Fig. 6 where the strong seasonal trend of es � ea (following
the onset of the summer monsoon and associated seasonal
changes in T) and Rn are obvious. In winter (from November
to February) some steep north-facing slopes have negative
values of Rn, causing the resultant ET0 values to be negative
which is logically incongruous. Consequently, all grid-cells
with negative ET0 values have been nulled in all following
calculations.

Fig. 7 shows the long-term monthly average of ET0, and
measures of variance around this average associated with
climate variability. These values are obtained by spatially
averaging the resultant surfaces, and then temporally aver-
aging those values.

Spatially interpolating Epan

Results presented in Table 4 show that Epan and es � ea have
the strongest relationship of the three meteorological vari-
ables tested. When adding the other variables, in turn, to
es � ea and performing multiple linear regression, it can
be seen that the results for es � ea and u are slightly better
than those for es � ea and Rn (Table 4). Subsequently use of
all three variables provides the best fit (as determined by
the r2 statistic) and the lowest error (as determined by
the RSD statistic); see Table 4. This analysis was performed
using monthly data for the 30 stations in the study site for 21
years; there were 7560 observations.

Of the 24 spline models tested, the quint-variate partial
thin plate spline (QVPTPS) incorporating a BVTPS function of
longitude and latitude with constant linear dependencies on
es � ea, u and Rn with m = 2 provided the lowest errors. This
primary model was used for the majority of months, though
; and (b) G (MJ m�2 day�1). The 21-year mean (solid line), ± 1
(dash–dot lines) are shown.



Figure 6 Monthly averages of ET0 from the 21 years of data available, all units are mm month�1.
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secondary and tertiary models, using a QVPTPS with m = 3
and 4, respectively, were needed for some problematic
months. Eight months had spurious data that were removed
prior to fitting the remaining data with the primary spline
model. Full results are presented in McVicar et al. (2005a).

Surfaces of monthly Epan were generated for all 252
months (i.e., from January 1980 through December 2000).
Per grid-cell monthly averages of Epan were calculated
(see Fig. 8). The strong seasonal trend of es � ea and Rn

are obvious. Values were typically in the order of 25–
50 mm month�1 in the winter months, increasing to the
maximum of about 300 mm month�1 in May, which gradually
decreased over June to August (due to the influence of more
cloud, hence lower n and Rn associated with the summer
monsoons) and then quickly decreased during autumn (Sep-
tember to November).
Fig. 9 shows the monthly Epan average, and measures of
variance around this average associated with climate vari-
ability. These values were obtained by spatially averaging
the resultant surfaces, and then temporally averaging those
values.

For Epan,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GCVðm; kÞ

p
=SD has a mean value of 0.53, the

SD, maximum and minimum are 0.11, 0.82 and 0.26, respec-
tively. The pessimistic relative error is 53% of the input data
variance and, at worst, the pessimistic relative error is 82%

of the input data variance. The mean value of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tðm; kÞ

p
=SD

(a more optimistic expression of relative error) is 0.21, the
SD, maximum and minimum are 0.06, 0.35 and 0.01, respec-
tively. Given that ‘true’ relative error is somewhere be-
tween the pessimistic (53%) and optimistic (21%)
expressions of relative error, we conclude that Epan can be



Figure 7 Time series of the surface-averaged monthly ET0.
The 21-year mean (solid line), ±1 standard deviation (dashed
lines), and the minimum and maximum (dash–dot lines) are
shown.
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spatially interpolated without introducing more than mod-
erate relative error.

Calculating Kpan

From the 252 Kpan surfaces, per grid-cell monthly averages
shown in Fig. 10 illustrate a strong annual cycle with a range
of about 0.21 Kpan units throughout the year. The minimum
occurs in mid-spring (April) where values of approximately
0.44 were seen; this quickly increased through summer to
reach a maximum of 0.65 in late summer (August), rapidly
decreased in early autumn (September and October) and
then gradually decreased through the winter months
(November to March) to reach a minimum the following
April. The general pattern is clearly seen in Fig. 11, where
the effect of climate variability is seen by the introduced
variance.

Only one other study has reported Kpan values using Epan
measurements based on 20-cm diameter Chinese micro-
pans (Xu et al., 2006). For the upper reaches of the Yangtze
River, a site relatively close to ours that experiences a
somewhat similar climate, Xu et al. (2006) reported Kpan
Table 4 Statistical results when regressing measurements of Epa
shown

Dependent variable(s) r2 RSD (mm mo

1 Rn 0.79 47.06
2 es � ea 0.90 31.81
3 u 0.19 92.85
4 es � ea and 0.92 28.53

Rn

5 es � ea and 0.93 28.00
u

6 es � ea, 0.94 24.29
u, and
Rn

The units of the dependent variables are MJ m�2 day�1 for Rn, kPa for
with the heading ‘coefficient(s)’ are mm month�1 per the units of t
squared difference (RSD) is provided in Eq. (4) and the constant and c
values ranging from approximately 0.51 in winter to about
0.68 in summer; these values and their seasonality are very
similar to our spatio-temporal averaged results (Fig. 11). To
enable comparison of our results with Kpan values recorded
with the pseudo-standard Class A pan, differences in Epan
measurements need to be discussed. As both are located
above the ground (micro-pans sit 70 cm above and Class A
pans 15 cm above, both on wooden frames), conduction of
heat from the ground are assumed to be negligible (Oroud,
1998). For a micro-pan the ratio of surface area that heat
(Aheat) from the environment can be transferred to the li-
quid water in the pan relative to the surface area that mass
(i.e., water – Awater) can be transferred to the environment
is larger than for a Class A pan. Aheat is given by the water
surface area plus the area of the sides of the pan (assuming
no heat transfer through the bottom of the pan). Given the
20 cm diameter and 10 cm high walls of the Chinese micro-
pans the ratio Aheat/Awater is 3.00, whereas for the 120.7 cm
diameter by 25 cm high Class A pan this ratio is 1.83. Sec-
ondarily, the smaller volume of water in a Chinese micro-
pan (20 cm diameter by 2 cm deep containing 628 g of
water) may heat more rapidly than a Class A pan
(120.7 cm diameter filled to 20 cm holds 228,841 g of
water), slightly reducing the latent heat of vaporisation of
water (Monteith and Unsworth, 1990). While relatively more
water area would be shaded by the lip in the micro-pan
compared to the Class A pan, especially at low solar zenith
angles, over a month we expect that differences in the
Aheat /Awater ratio and water temperature will outweigh dif-
ferences in shading. While the energetics of a pan can be
modelled (e.g., Jacobs et al., 1998; Linacre, 1994; Molina
Martı́nez et al., 2006; Rotstayn et al., 2006) this is outside
the scope of this research. As the micro-pan is able to ‘har-
vest’ energy more efficiently from the environment (given
its larger Aheat/Awater ratio) we assume that the rate of
evaporation from a micro-pan would be larger than the rate
of evaporation from a Class A pan – all other variables being
equal. Calculating Kpan with a larger denominator means
that the resulting expected (or typical) Kpan value will be
smaller (for the micro-pan).

Ideal values of Class A Kpan values for given meteorolog-
ical and site conditions can be derived from Allen et al.
n as the independent variable with the dependent variable(s)

nth�1) Constant (mm month�1) Coefficient(s)

7.01 20.10
1.90 240.82
�7.31 83.61
�5.72 181.87

6.10
�49.25 228.80

29.79
�56.36 170.53

29.54
6.04

es � ea and m s�1 for u. The units of values reported in the column
he appropriate dependent variable(s). The formula for the root
oefficient(s) are outputs from the linear regression modelling.



Figure 8 Monthly averages of Epan, all units are mm month�1.

Figure 9 Time series of surface-averaged monthly Epan. The
21-year mean (solid line), ± 1 standard deviation (dashed lines),
and the minimum and maximum (dash–dot lines) are shown.
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(1998, pp. 81). Fig. 2c shows that monthly average u ranges
from approximately 2.6 m s�1 in April to about 1.75 m s�1 in
August, with Fig. 2g showing that monthly average relative
humidity ranges from approximately 40% in April to just over
70% in August. Using Allen et al.’s (1998, pp. 81) definitions
the April u can be considered ‘moderate’ and relative
humidity ‘low’; while for August u is ‘light’ and relative
humidity ‘high’. In April, using a Class A pan and assuming
a 10 m fetch results in Kpan values of 0.60 for a green crop
and 0.55 for a dry fallow soil. The corresponding values
for August are 0.85 and 0.80. The ideal Class A pan Kpan val-
ues have a range of 0.3 Kpan units (from 0.85 to 0.55), and
our micro-pan Kpan values for the 252 months have a range
of 0.32 Kpan units (from 0.72 to 0.40 – see Fig. 11). For
the two different pans, the ranges of Kpan values are similar,
with the magnitude of the micro-pan Kpan values being smal-
ler, as expected.



Figure 10 Monthly averages of Kpan. All values are a unitless ratio.

Figure 11 Time series of surface-averaged monthly Kpan. The
21-year mean (solid line), ±1 standard deviation (dashed lines),
and the minimum and maximum (dash–dot lines) are shown.
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Our micro-pan Kpan values (considering the impact of the
smaller pan on Epan and Kpan as discussed above) can be
compared with Class A Kpan values reported in the interna-
tional literature. For example, for a well-watered pasture
in Florida, USA, Sumner and Jacobs (2005) report monthly
Kpan values from 0.60 to 0.83, with Cohen et al. (2002) for
Bet Dagan in Israel providing monthly mean Kpan values rang-
ing from 0.70 to 0.84, occurring in February and October,
respectively. Chiew et al. (1995, their Table 5) showed that
seasonal averages of Kpan for 16 stations located across Aus-
tralia ranged from 0.56 to 0.81. It is important to note that
if Kpan values were spatially averaged across areas with fun-
damentally different climates then the range in the resul-
tant values were dampened. Chiew et al. (1995) showed
that when the values for all stations were spatially aver-
aged, Kpan values were 0.68 in summer, 0.66 in autumn,
0.65 in winter, and 0.69 in spring. This dampening influence



Figure 12 Monthly average values of: (a) ET0; (b) Epan; and (c) Kpan are shown for each 100 m grid cell along the 23 km long
transect, located in Fig. 1. The elevation is shown by the solid line and aspect is represented by the dashed line, the transect runs
from west (0 km) to east (23 km).
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due to spatial averaging was confirmed by Chen et al. (2005)
who reported seasonally averaged values that ranged only
from 0.48 in spring to 0.59 in autumn using approximately
50 stations in the entire Yellow River basin. By way of con-
trast, Cohen et al.’s (2002) data summarised above was
averaged only across time (not across space as the results
presented by Chen et al., 2005 and Chiew et al., 1995 are)
and has a larger range. These results suggest that distinct
monthly variation of Kpan values were found when perform-
ing calculations at a single station, or when spatially averag-
ing Kpan values in regions experiencing similar climatic
conditions (as is the case of the CSHC), but not when spa-
tially averaging from stations experiencing different
climates.
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To compliment previous results which encompass the en-
tire study site, detailed spatio-temporal analysis was per-
formed for ET0, Epan and Kpan at the 100 m grid-cell
resolution for the 23 km transect introduced in Fig. 1. For
the 252 monthly sequence for each grid-cell along the tran-
sect, the values of ET0, Epan and Kpan were extracted. Next,
the mean monthly values for each 100 m resolution grid-cell
were calculated, as shown in Fig. 12. The x-axis of this fig-
ure represents the distance along this transect and the pri-
mary (or left hand) y-axis are the months; topographic
information is also shown on the secondary (or right hand)
y-axes. In addition to a strong monthly signal for ET0,
Fig. 12a shows a response associated with rapidly varying as-
pects. This reveals the control that Rn has on the resulting
values of ET0 generated using an ‘interpolate-then-calcu-
late’ (i.e., the result of spatial interpolation/modelling fol-
lowed by per grid-cell calculations) approach. In contrast,
less intra-monthly variation in Epan, the direct output of spa-
tial interpolation, is shown in Fig. 12b. Results for Kpan show
a strong annual cycle modulated by the finer spatio-tempo-
ral variance introduced by ET0, see Fig. 12c.

Detailed results for this 23-km long transect with eleva-
tions ranging from 1115 m to 2816 m reveal that monthly
averages of Kpan are more strongly influenced by aspect than
elevation, due to the surfaces of ET0 being impacted by as-
pect. Comparisons with previous Kpan values measured using
a micro-pan are similar in terms of magnitude and seasonal-
ity (Xu et al., 2006). Class A Kpan values that are both ideal
(Allen et al., 1998) and measured (from Australia, Israel and
southeast USA, respectively, Chiew et al., 1995; Cohen
et al., 2002; Sumner and Jacobs, 2005) are slightly higher,
as expected, with the annual ranges being similar.
Sensitivity analysis of ET0, Epan and Kpan to spatial
interpolation

At the meteorological stations inside the study area values
for ET0, Epan and Kpan were generated using data recorded
at the stations or extracted from the resulting spatially
modelled surfaces. From these the RSD, bias, relative
RSD, and relative bias (see Eq. (4)) were calculated to assess
the sensitivity of these variables to spatial interpolation/
modelling; see Fig. 13.

Results for ET0 are presented in Fig. 13a–d. For the RSD
all values were less than 7.5 mm month�1, though a strong
seasonal pattern was seen, with values being larger in sum-
mer than winter (Fig. 13a). The mean bias of ET0 was less
than 1.0 mm month�1 for all months (Fig. 13b). For the
hydrologically active portion of the year (March to October
inclusive) the mean relative RSD was less than 7%, with the
maximum relative RSD being in the order of 15%, see
Fig. 13c. For winter – November to February – the mean
and maximum relative RSD, and both the mean relative bias
and extreme relative bias (Fig. 13d), all increased greatly.
This was due to the small ET0_c values in those months being
used as the denominator to calculate the relative statistics,
so even small actual differences (Fig. 13a and b) made large
relative differences (Fig. 13c and d). While some individual
winter months had large relative differences, this made lit-
tle impact when considering regional water balance model-
ling given that both P and ET0 were low in winter.
For Epan, results for the four statistics are provided in
Fig. 13e–h. The mean RSD was larger in summer (about 20
mm month�1) with winter values approaching 0 mm
month�1 (Fig. 13e). The mean bias was within the range
of 3.5 mm month�1 for all months, see Fig. 13f. There was
a slight seasonal trend in mean bias, with Epan_e being larger
than the measured Epan values in winter (November to
March; hence the bias is negative), and Epan_e being smaller
than the measured Epan values during summer (April to Octo-
ber resulting in a positive bias). Fig. 13g shows the mean rel-
ative RSD ranges from just over 13% in winter (November
and December) to approximately 7.5% in April, and for the
hydrologically active portion of the year (March to October),
the mean relative RSD was less than 10%. Fig. 13h shows that
from March to October inclusive, the absolute mean relative
bias was 6 2%, indicating that, on average, there was little
difference in the Epan results at the meteorological stations
due to spatial interpolation. For winter – November to Feb-
ruary – the increase in average absolute relative bias to 6
5% was a result of formulation of relative bias being greatly
influenced by small differences when Epan was low in winter.
While the relative bias of individual months of Epan varied
from –32.5% to 18.5%, on average it was low, with values
being in the range of ± 2% for most months.

Sensitivity analysis results for Kpan are shown in Fig. 13i–l.
The RSD (Fig. 13i) exhibits a seasonal pattern, with mean
values being smallest (approximately 0.02) in autumn (April
and May) and increasing to 0.05 in winter (November to Jan-
uary). Fig. 13j shows that the mean bias for all months was
close to zero. The average relative RSD (Fig. 13k) from Feb-
ruary through October was less than 10%. From November to
January this statistic degraded to large maximum values. A
similar pattern was seen for the relative bias (Fig. 13l); it
was within the range of 1% from March to November inclu-
sive, while over winter (December to February) the statis-
tics became worse. Winter was when the relative
differences of ET0 and Epan were at their maximum, result-
ing in the larger relative differences of Kpan. The results
demonstrated that for the hydrologically active part of
the year – spring to autumn – small impacts arose from spa-
tial interpolation/spatial modelling on the resultant Kpan
values (with the mean relative RSD < 10%).

In summary, assessing the sensitivity of the three hydro-
logical variables (generated in two ways at the 30 stations in
the study site) provided increased confidence for using the
resultant ET0 or Epan surfaces in regional hydrologic model-
ling. This was because their differences, and relative differ-
ences, were small in the hydrological active non-winter
months. Differences in the absolute values for the three
variables are provided in McVicar et al. (2005a).
Sensitivity analysis of Rn, ET0, and Kpan to land
surface parameterisation

The bias and relative bias (Eq. (5)) were calculated for Rn,
ET0, and Kpan by using land-cover dependent temporally
varying land surface parameters in SRAD (see Tables 1 and
2), or by using static estimates of LAI and a in SRAD. For Rn

the average bias for the entire CSHC reaches its maximum
value of 0.02 MJ m�2 day�1 in August with the minimum of
�0.39 MJ m�2 day�1 occurring in April, see Fig. 14a. A
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Figure 13 Monthly figures of: (a) ET0 RSD; (b) ET0 bias; (c) ET0 relative RSD; (d) ET0 relative bias. With (e) to (h) are for Epan nd (i) to (l) are for Kpan, and for both cases the
statistics reported in the 4 plots are the same order as for ET0 provided in (a)–(d). The 21-year mean (solid line), ±1 standa deviation (dashed lines), and the minimum and
maximum (dash–dot lines) are shown.
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Figure 14 Monthly bias and relative bias of Rn (a and b, respectively); ET0 (c and d, respectively) and Kpan (e and f, respectively) to
changes in land surface parameterisation of LAI and a used in SRAD. The 21-year mean (solid line), ±1 standard deviation (dashed
lines), and the minimum and maximum (dash–dot lines) are shown.
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positive bias is primarily due to the dynamic a being set to
0.14 for forest (Table 2) in some months causing Rs_out to re-
duce, so Rn increases (when compared to the static case
when a = 0.23). The negative bias is mainly caused by the dy-
namic a being >0.23 for most of the year for the agriculture,
pasture and desert land-cover classes (Table 2), resulting in
an increase of Rs_out and hence a decrease of Rn (compared
to when a = 0.23). As these land-covers dominate the CSHC
(Li et al., 2005b; McVicar et al., 2005a) the time series of
the area-averaged bias is inverted relative to the prescribed
a time series of these classes (Table 2). At a grid-cell basis
the largest bias was 4.1 MJ m�2 day�1 recorded in June, and
the smallest was �1.8 MJ m�2 day�1 in May. The average
relative bias (Fig. 14b) ranges from 0.12% in August to
�17.83% in December, with per grid-cell relative biases
ranging from 31.25% (September) to �27.27% (April) in the
hydrologically active portion of the year (April to Septem-
ber), and becoming greater than 200% on a per grid-cell ba-
sis in winter. This large relative bias is due to the value of
the denominator used to calculate the relative statistics
approaching 0.0 MJ m�2 day�1, hence small actual differ-
ences seem relatively large.

For ET0 the study area averaged bias ranges from
0.35 mm month�1 in August to �4.35 mm month�1 in May.
On a per grid-cell basis the maximum bias (33 mm month�1)
occurs in August, and the minimum (�12 mm month�1) in
both May and June, see Fig. 14c. A positive bias is associated
with the forest and sparse forest classes, as the relative
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increase in Rn associated with a < 0.23 results in ET0 increas-
ing (compared to the static case when a = 0.23). The nega-
tive bias is caused by the decrease in Rn for the dynamic
case for agriculture, pasture and desert land-cover classes
(a > 0.23 for most months) compared to the static case. As
these land-cover classes occupy most of CSHC this results
in the monthly trend of the area averaged bias (Fig. 14c.)
essentially being inverted from the prescribed a used in
the dynamic SRAD modelling. The area averaged relative
bias of ET0 due to having dynamic or static land surface
parameterisations of SRAD is less than 5% for April to
November inclusively (Fig. 14d). On a per grid-cell basis
the range of the relative bias increases dramatically in win-
ter, again due to the small values of the denominator used
in the expression.

For Kpan the area-average bias ranges from �0.03 in
winter (December to February) to 0.0 in summer (July
and August), see Fig. 14e, with the temporal trend follow-
ing the a based land-cover class argument as presented
above. In summer the area weighted difference of dy-
namic and static a are minimal, causing this result. Both
extreme per-pixel biases occur in December, ranging from
0.21 to �0.10. The mean relative bias is less than 5% from
April to November, inclusive – see Fig. 14f. The smallest
is �5.6 % in January and the largest value of 0.22% occurs
in August when the dynamically prescribed a is set to 0.23
for both the agricultural and pasture land-cover classes
(Table 2) which equals the static a used in this sensitivity
analysis, resulting in the minimal relative bias for this
month.

The findings from this sensitivity analysis illustrate that
utilising a temporally dynamic and land-cover dependent
parameterisation of LAI and a in SRAD impacts the area
averaged relative bias by less than 5% for Rn, ET0, and Kpan
for the hydrologically active portion of the year, defined as
April to October inclusively. This provided increased confi-
dence for using the resultant surfaces in regional hydrologic
modelling.
Conclusions

For the first time, high resolution surfaces of ET0 have been
developed regionally considering the influence of topogra-
phy on the forcing meteorological data. This was achieved
by spatially interpolating the required meteorological vari-
ables (taking elevation into account) and spatially modelling
the radiation environment (considering topography) to
100 m resolution data prior to calculating ET0 at each
grid-cell. This approach is called ‘interpolate-then-calcu-
late’, and it maintains topographic influences on the forcing
data – especially net radiation. Implementing an ‘interpo-
late-then-calculate’ approach to spatially distribute ET0 in
the CSHC uses information from >11 million points (primarily
the 58 stations and secondarily the >11 million grid-cells in
the DEM), whereas in contrast, using a geometric two
dimensional ‘calculate-then-interpolate’ approach would
have only used information from the 58 points in, and
around, the CSHC. Since many communities across the globe
rely on water resources derived from topographically com-
plex upper-catchments, the value of this approach for spa-
tially distributing ET0 is widespread.
In addition to the larger issue-based conclusions drawn
above, other conclusions specific to our data analysis can
be made. They are:

(1) Tmax, Tmin, u and ea were best interpolated using a
TVPTPS using elevation as a covariate;

(2) n was optimally interpolated with a TVPTPS using the
monthly air temperature range as a covariate;

(3) unexpectedly P was best modelled with a BVTPS;
(4) Tmax was interpolated with low relative error, both

Tmin and ea had moderate relative error, and u, n
and P had relatively higher errors;

(5) average monthly variations of lapse rates were stee-
per in summer than winter and those for Tmax were
steeper than those for Tmin;

(6) monthly climatologies of the NSED for u and ea also
showed strong seasonal values, and this was the first
time that monthly climatologies of NSED for both u
and ea have been determined;

(7) Rn was modelled accounting for topographic factors
and temporally dynamic land-cover based estimates
of LAI and a to provide physically realistic estimates;

(8) spatial and temporal patterns of the 252-month
sequence of output ET0 surfaces were biophysically
reasonable, with average values ranging from approx-
imately 20 mm month�1 in winter (January and
December) to about 150 mm month�1 in summer
(May to July);

(9) monthly surfaces of Epan were generated using a
quint-variate partial thin plate spline which incorpo-
rated a BVTPS function of longitude, latitude with a
constant linear dependences on es – ea, u, and Rn;

(10) the spatial and temporal patterns of Epan were physi-
cally sensible; average values ranged from about
40 mm month�1 in winter (January and December)
to over 300 mm month�1 in May;

(11) spatially then temporally average values of the pan
coefficient (Kpan = ET0/Epan) varied from the minimum
of 0.44 in April, increasing to a maximum of 0.65 in
late summer (August) before decreasing in autumn
and winter;

(12) the range and seasonality of Kpan values agreed well
with the only other study reporting values made
using Epan measurements from a micro-pan. As
micro-pans have a higher ratio of surface area for
heat transfer to surface area for mass transfer, we
assumed this difference primarily controls micro-
pans having higher rates of evaporation relative to
the larger Class A pans experiencing the same mete-
orological conditions. This explained why our Kpan
values were slightly lower than both ideal and mea-
sured values reported in the international literature
when Class A pans were used;

(13) grid-cell analysis of a transect with over 1650 m eleva-
tion range revealed that aspect influenced the resul-
tant ET0 calculations to a greater extent than
elevation, while the impact of aspect was less pro-
nounced for Epan. This was due to Epan being spatially
interpolated from isolated measurements (akin to
using a ‘calculate-then-interpolate’ approach) com-
pared to the ET0 surfaces that were generated using
an ‘interpolate-then-calculate’ approach;



Spatially distributing monthly reference evapotranspiration and pan evaporation 217
(14) sensitivity analysis for ET0, Epan and Kpan performed at
the 30 stations located in the study site found that the
average relative RSD was less than 10% and the abso-
lute relative bias was smaller than 1.5% from March to
November, inclusive. These results indicated that the
spatial modelling introduced negligible differences at
the stations during the hydrologically active portion of
the year; and

(15) sensitivity analysis of Rn, ET0, and Kpan to the param-
eterisation of LAI and a in SRAD showed that the area
averaged relative bias was less than 5% during the
hydrologically active portion of the year.

Finally, the methods developed here can be utilised to
realistically spatially distribute ET0, Epan and Kpan for other
topographically complex terrestrial regions. The resulting
spatially-distributed time-series of hydrometerological data
can be used for many applications including simulating the
hydrological response of current and planned re-vegetation
activities implemented as part of the ‘‘Grain for Green’’
project (McVicar et al., in press; Zhang et al., in press),
and mapping perennial vegetation suitability (McVicar
et al., 2005b) used in those programs.
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